/ZKBoq on the GPU: Better soundness
errors for a little extra

(ZKBoo pa GPU’en: Bedre sikkerhed
for lidt ekstra)

Nina Andrup Pedersen, 202006703
Jakob Schneider Villumsen, 202004222

Bachelor Report (15 ECTS) in Computer Science
Advisor: Jesper Buus Nielsen

Department of Computer Science, Aarhus University
July 2023

AARHUS
/v UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

Abstract

We present ZKG, a parallel implementation of ZKBoo’s SHA-256 (2, 3)-decomposition
on the GPU using the Futhark Programming Language. ZKBoo builds on the MPC-in-
the-head paradigm from Ishai et al. (IKOS construction) to produce Zero-Knowledge
proofs from MPC protocols.

Although ZKG is generally slower in reaching soundness error 278 than ZKBoo
on the CPU, we achieve soundness error 278 significantly faster on the GPU. Exper-
imental results show that ZKG is up to 40 times faster in achieving soundness error
278 hence more secure against quantum computers.

Nina Andrup Pedersen and Jakob Schneider Villumsen,
Aarhus, July 2023.

il

Contents

[Abstractl ii
(I__Introduction| 1
2 Preliminaries| 2
2.1~ Multi-Party Computation| 2
2.1.1 WaystoCheat] 2

[2.1.2 Properties| 2

[2.1.3 SecretSharing] 3

2.2 Zero-Knowledge| 3
[2.2.1 Properties for a Zero-Knowledge Proof] 4

222 2X-Protocolsl oo 5

[2.2.3 Proof of Knowledge| 6

224 CommitmentSchemes| 6

3 MPC-in-the-head| 8
3.1 IKOS construction| oL 8
B3.1.1 Preliminartes| 8

B.12 Protocoll. 8

[3.1.3 MPC to Zero-Knowledge Properties| 9

B2 ZRBOG -« o v ot 10
3.2.1 (2, 3)-function decomposition| 10

[3.2.2 Theprotocoll 11

4 7ZKGl 13
4.1 Implementation| 13
[4.1.1 Approachl 13

4.1.2 (2, 3)-Function Decomposition for SHA-256(. 14

|4.1.3 Properties of the Function Decompositions| 16

42 Benchmarksl oo 17
B2T Overviewl oo v i 17

422 Differences from ZKBool 18

[4.2.3 Experimental Setup|. L. 18

4.2.4 Experimental Results| 19

M3 FutureWorkl. 23

il

S Conclusion

[Acknowledgments|

graphny

v

25

26

27

Chapter 1
Introduction

Zero-Knowledge proofs (ZK-proofs) allow parties to agree on the truthfulness of a
statement without revealing the fact that makes the statement true. This paradigm has
the potential to tackle many issues in the digital realm. For example, a ZK-proof allows
one party to convince another that they know a password without ever revealing it.

Independent of ZK-proofs, Multi-Party Computation (MPC) protocols allow mu-
tually distrustful parties to correctly compute a function despite errors or deliberate
manipulation without revealing the individual inputs. Thus, MPC allows for privacy-
preserving general-purpose computation.

However, Ishai et al. found in 2007 that any perfectly correct and z-private MPC
protocol was reducible to a ZK-proof, assuming only the existence of one-way functions
[[1]. This newfound connection was later named MPC-in-the-head. Specifically, given
an MPC protocol that computes a function f, and a public value y, a prover can prove
that they know a secret w where y = f(w).

Building upon this discovery, the ZKBoo protocol, published in 2016, introduced
the (2,3)-decomposition, which allows for the transformation of any function into
an MPC protocol, which, in turn, can be used for a ZK-proof [2]]. Contrary to other
Zero-Knowledge Proof systems, which allow for quick verification at the expense of
longer proof times [3| 4]], ZKBoo achieved low running times for both the prover and
verifier, albeit at a higher offset. However, they must repeat the protocol 137 times to
achieve sufficient soundness error.

In this report, we aim to improve upon the running times of ZKBoo, by spreading
protocol repetitions onto parallel tasks on the GPU. GPUs excel at data-parallel com-
putation tasks, where the goal is to apply the same function to lots of data. We aim
to replicate the experiments of ZKBoo as closely as possible such that we can easily
compare our results with theirs.

First, we in explain the theoretical aspects of MPC and Zero-Knowledge proofs in
Chapter 2] after which we introduce the IKOS construction [1] and the ZKBoo protocol
in Chapter[3] We then finally introduce our experiments and findings in Chapter [4]

Chapter 2

Preliminaries

2.1 Multi-Party Computation

Multi-Party Computation (MPC) is a technique used in cryptography where multiple
parties collectively compute a function on their secret inputs. One key advantage of
this technique is that the involved parties never need to trust a single intermediary.
Additionally, an MPC protocol is resistant to cheating parties. This chapter will
introduce ways to cheat, the properties of an MPC protocol, and techniques for sharing
a secret.

2.1.1 Ways to Cheat

In an MPC protocol, a party is allowed to cheat in several different ways, and it is
the job of the protocol designer to create a protocol that can tolerate some cheating
parties. When a party cheats, we call them corrupted. A corrupted party can cheat by
giving incorrect inputs or simply not following the protocol. Why a party would want
to do that may seem counterintuitive. However, it may be the case that giving incorrect
inputs reveals something about other parties’ inputs. Not following the protocol could
break correctness, privacy, or the protocol’s progress. Finally, if multiple corrupted
parties exist, we assume the same adversary controls them so that they can pool their
knowledge. In the rest of the report, we only consider MPC protocols in the semi-honest
model, where corrupted parties follow the protocol and provide correct inputs but can
pool their knowledge. In constrast, in the malicious model, parties can deviate from the
protocol [3]].

2.1.2 Properties

An MPC protocol is for n parties Py, P»,...,P,. Each P, has an input x;. The protocol
should compute the result y of some function f, such that y = f(x1,x2,...,x,) [5].

In the semi-honest model, we want the MPC protocol to have properties of correctness
and privacy [1]].

Definition 2.1.1. (Perfect Correctness). An MPC protocol is correct if, for any input

(x1,X2,...,%y), the protocol always outputs the correct value y = f(x1,x2,...,Xn). EI

Definition 2.1.2. (r-Privacy). An MPC protocol is private if, for any input (x1,X2,...,X,),
no party learns any new knowledge other than y from the protocol.

Particularly, assume we have a probabilistic polynomial time (PPT) Turing machine, S,
called a simulator. The simulator has the same inputs as t corrupted parties who have
pooled their knowledge. Then the MPC protocol is private if the resulting view of S has
the same distribution as the combined views of the t corrupted parties.

2.1.3 Secret Sharing

The goal of secret sharing is to split some secret x into n shares, such that any (7 +1)
shares can reconstruct x. Here, ¢ is the threshold with ¢t < n, and we can tolerate ¢
corrupted partiesE] Any number of shares ¢ or less should not reveal any knowledge
about x. We can differentiate between two cases of secret sharing: (1) = (n— 1) and

2t <n.f

For case (1), we want to share secret x with t = (n—1). We will start by defining
the group Z,, where p is a prime number. Then we choose n — 1 random numbers

Xiy.vesXn—1 € Zp, and let
n—1
X, = — Z X; mod p

i=1

For n parties, P; will receive the shares x;. Then (z + 1) parties can reconstruct x only if
t=(mn-1)[3].

For case (2), we want to share some secret x with ¢ < n, then we can use what is known
as Shamir’s secret sharing scheme [6]. Here, any secret, x, is shared with a polynomial
f of degree t, where f(0) = x. For n parties, P, will receive the share f(i). Then (r+1)
parties can reconstruct x, since (¢ + 1) distinct points can deterministically define a
function of degree using Lagrange interpolation [7]]. Figure[2.1]shows an example of
this construction.

2.2 Zero-Knowledge

A Zero-Knowledge Proof is a technique used in cryptography where one party (the
prover) will try to convince another party (the verifier) that some statement is true. The
Zero-Knowledge Proof should not reveal any knowledge other than the statement’s
validity. The technique is relevant if the prover possesses some secret knowledge, which
makes the statement true, and no one else knows this knowledge. This chapter will

I'There is also statistical and computational correctness, but we will only focus on perfect correctness.
2When ¢ = n all parties are corrupted, and secret sharing does not make sense.
3Actually, case (1) is just a special case of case (2).

=
S)
=
S

Shares
O H N W » U1 OO0 N O O
1 mel
[e5]
Shares
o H N W & U O N @ O
0
co

o 1 2 3 4 6 7 8 9 10 o 1 2 3 4 6 7 8 9 10

5 5
Parties Parties

(a) Polynomials for two secret shares. (b) Polynomial for three secret shares.

Figure 2.1: Shamir’s secret sharing scheme for a polynomial of degree 2. Two secret shares
cannot deterministically determine the polynomial. But if one more distinct point is added (the
dark orange point, Ps), then the only possible polynomial is the orange one.

introduce the properties for Zero-Knowledge Proofs and relevant techniques used in
these protocols, such as X-protocols, Proof of Knowledge and Commitment schemes.

2.2.1 Properties for a Zero-Knowledge Proof

Every Zero-Knowledge Proof must have the following three properties, completeness,
soundness, and zero knowledge [8]]. First, however, we will need formal definitions to
argue for the properties.

Assume the prover, P, and the verifier, V, are both probabilistic polynomial time (PPT)
Turing machines with input y. And P knows some witness w. Let R be the relation for
any computational problem. Furthermore, assume a probabilistic Turing machine can
decide if any pair (y,w) belongs to R in polynomial time. This assumption means R is
an NP-relation. Let L be the language of yes-instances for R. Then P wants to convince
V that (y,w) € L [8]].

All the definitions in the following are based on [8]. These first two properties should
hold for every proof system.

Definition 2.2.1. (Completeness)An honest prover should be able to convince an honest
verifier of a true statement. Formally, the following should hold:

Vy € L,Pr[(P,V)(y) = Accept] = 1
Where (P,V)(y) is the interaction between P and V on y.

Definition 2.2.2. (Soundness) The verifier should not accept false statements (except
with negligible probability). Formally, the following should hold:

vy &€ L,Pr [V(y’) = Accept} <e

Where € is called the soundness error.

Specifically for Zero-Knowledge Proofs, the following property should hold:

Definition 2.2.3. (Zero-Knowledge) The verifier learns nothing beyond the truth value
of the given statement. Formally, the following should hold:

Assume V* is a corrupted verifier, and we have a PPT algorithm M* (called a simulator).
Then for every y where 3w such that (y,w) € L, it should hold that the following two
results have the same distribution:

1. The actual interaction between P and V* on y.
2. The simulated interaction by M*, with access to V* and y.

V* does not gain knowledge from P because M* can simulate the interaction without
access to P and their knowledge, w [I8].

Using the soundness property specified in definition [2.2.2] only makes sense when we
want to prove the membership for y € L, but sometimes this property is trivial. For
example, consider a verifier who knows the hash value, y, such that y = H (w’) (for
some hash function H). Then the proof that y € L is trivial, and the prover should
instead convince the verifier that they know w’. Then we need to define Z-protocols,
which guarantee Proof of Knowledge.

2.2.2 X-Protocols

A X-Protocol is a form of Zero-Knowledge proof, and in this section we give the defini-
tion and the essential properties (without proof). Here, we use Damgérd’s definition

[9].

Definition 2.2.4. (X-Protocol) A protocol &2 is a X-protocol for binary relation R if
the following properties hold:

1. The communication pattern looks as follows

(a) Prover P sends a message a.
(b) Verifier V sends a random t-bit string e

(c) P replies with z, and V decides to accept or reject based on y,a,e,z.
2. & has completeness (same definition as)

3. s-Special soundness: From any y and any set of s accepting conversations on
input y:

{(aaeiazi)} i€{17--'as}

where e; # e Vi, j when i # j.
Then the witness w is effeciently computable such that (y,w) € R.

4. Special honest-verifier Zero-Knowledge: There exists a polynomial-time sim-
ulator M which, given y and e, outputs accepting conversations of the form
(a,e,z) with the same probability distribution as real conversations between
honest parties P,V with input y.

Finally, X-Protocols have two valuable properties. First, they are invariant under parallel
composition, and secondly, any X-protocol is also a Proof of Knowledge [9]]. Note that
it is not always the case that soundness is invariant under parallel composition [8].

2.2.3 Proof of Knowledge

Proof of Knowledge captures the setting where the prover can prove the claim that
they know some witness w. For instance, for a hash function, a prover must prove that
they know the input that maps to the hash value. We will use Damgard’s notation [9]
based on Bellare and Goldreich’s definition [10]. Let k be the knowledge error which
denotes the probability that the verifier accepts a proof without a correct witness w.
Then a protocol (P,V) is a Proof of Knowledge for the relation R if the following two
conditions hold:

Definition 2.2.5. (Completeness) On common input y, if the prover is honest and

receives an extra input w such that (y,w) € R, then the verifier always accepts EI

Definition 2.2.6. (Knowledge Soundness) Assume there exists a PPT Turing Machine
called M. It receives as input y and black-box rewindable access to the prover and tries
to compute w, where (y,w) € R. For any prover P*, let p(y) be the probability that the
verifier V accepts on input y. Then there exists constant c¢ such that when p(y) > k(y),
then M will output a correct w in at most

Iyl
p() —«x()

steps, where access to P* counts as one step.

Knowledge soundness states that when the prover is good at convincing the verifier, M
outputs a correct w in few steps. When p and k are close to each other, the expression
increases in value, and the further apart they are, the closer it gets to |y|°.

2.2.4 Commitment Schemes

A commitment scheme is a two-phased protocol. The sender will commit to some value
in the first phase (the commit phase) and reveal the value in the second phase (the reveal
phase). The commitment should be unforgeable by ensuring the sender cannot change
the committed value later. In addition, the receiver should be able to validate that the
revealed value is the same as the committed value [8]].

A practical method for committing a value is to apply a cryptographic hash function
to the given value. The receiver can easily verify a hash value. Moreover, the sender

is similar to m

cannot modify the committed value because cryptographic hash functions are collision-
resistant.

Zero-Knowledge proofs frequently incorporate a commitment scheme. For instance,
in a X-protocol, the verifier’s challenge could be asking about the value of a commitment,
as we will see later.

Chapter 3

MPC-in-the-head

3.1 IKOS construction

Combining Zero-Knowledge Proofs and Secure Multi-Party Computation, we get what
is known as MPC-in-the-head, first described by [[1]. The general idea is to generate a
Zero-Knowledge proof, by simulating an n-party MPC protocol "in the head". Notably,
the Zero-Knowledge Proof properties follow from the MPC properties.

3.1.1 Preliminaries

The following is a simplified version of the notation and explanations in [[1]].

Assume we have an NP-relation R, the language L of yes-instances in R, and a function
f corresponding to the relation R. Also, assume we can transform the function f into
an n-party MPC protocol I1; with perfect correctness and ¢-privacy (in the semi-honest
model). As described in section [2.2.] both the prover and verifier know some y € L,
and the prover knows a w such that (y,w) € L.

Whenever we execute the protocol, each party will store their computed values in a
so-called view. For example, for party P, their view, V;, will store their input share, w;,
the randomness used throughout the execution, r;, and the messages they receive from
other parties. The purpose of these views is for the verifier to check and recompute the
execution of the protocol. The verifier will examine two views, V; and V;, by checking
that the incoming messages at V; are the same as the outgoing messages from V;. If this
holds, then the views are consistent.

3.1.2 Protocol

The following describes the steps in the protocol from [[1]]. This version is in the semi-
honest model and assumes perfect correctness and two-privacy for the MPC protocol
I1;. Additionally, we have a commitment scheme as defined in section[2.2.4}

1. In-the-head execution

(a) The prover secret shares the witness w such thatw =w; ®&w, ®... P w,ﬂ

(b) The prover executes the MPC-protocol Iy on the inputs wi,wa,...,w,
"in-the-head" by simulating each party.

(c) From the execution, the prover has obtained the views Vi, V,,...,V, which
are transcripts of the MPC protocol as seen by party P, P,...,P,. The
prover commits to each of these views and the commitments are sent to the
verifier.

2. Challenge

(a) The verifier picks two distinct numbers i, j € {1,2,...,n}.

(b) The verifier challenges the prover to open the corresponding two views.
3. Response

(a) The prover opens the two views V; and V; and sends them to the verifier.
4. Verification

(a) The verifier checks that the opened views are consistent with each other,

the committed views, output shares, and the public value y.

(b) If the views are consistent, the verifier accepts. Otherwise, reject.

3.1.3 MPC to Zero-Knowledge Properties

The Zero-Knowledge proof should have the properties introduced in section [2.2.1] This
section will argue how to get the ZK-proof properties from the MPC properties (perfect
correnctness and t-privacy). All the argumentations are based on the work of [1]].

Completeness

This should only hold when both the prover and verifier are honest. Assuming honest
prover and verifier, we get completenes from perfect correctness of the MPC protocol.
An honest prover will always output the correct value, y, given the inputs, xy,...,X,,
and all views will be consistent, which makes the verifier accept.

Soundness

Assume that Vw, (y,w) € R ﬂ The soundness depends on whether the prover executes
the protocol honestly or not. If the prover honestly executes the protocol, the result of
the protocol is y'. Since the MPC protocol is correct, we get y' # y, and the verifier will
always reject. On the other hand, if the prover does not execute the protocol honestly,
then at least two views are inconsistent. In this case, the verifier will reject with the
same probability that it opens the two inconsistent views.

I'This secret sharing technique is just a special case of addition which is introduced in section
2This describes Proof of Membership, which is sometimes trivial. See discussion inm

Zero-Knowledge

The proof will have property Zero-Knowledge when the MPC protocol is ¢-private.
Assume we have a PPT simulator, M*, which has access to y, a corrupted verifier, V*,

and an MPC simulator, S. E]The prover chooses the inputs, wy,...,w,, to be uniform
and independent. If M* chooses t random values, w7, ...,w;, these will have the same
distribution as the provers inputs. Then let M* obtain ¢ views, V1,...,V;, by running S

on (wj,...,w)). It follows from the MPC property of ¢-privacy that these obtained views
have the same distribution as those from P in the interaction with V*. Correspondingly,
the interaction between P and V* has the same distribution as when M* simulates S and
V*. This equivalence is precisely the definition of Zero-Knowledge.

3.2 ZKBoo

The ZKBoo protocol [2] is a practical instance of the IKOS construction [1]], which
works for statements on the form:

"I know w such that y = f(w)". 3.1)

Additionally, ZKBoo includes an implementation of the protocol with SHA-1 [[11]] and
SHA-256 [11], which demonstrates the feasibility of a real library implementation.

3.2.1 (2, 3)-function decomposition

The original IKOS construction treats the MPC functionality as a black box. ZK-
Boo introduces an MPC circuit construction for three partie§’| with correctness and
2-privacy (in the semi-honest model) called (2,3)-function decomposition. This de-
composition works for any function f on the form Thus, the (2,3)-decomposition
gives the flexibility to decompose any function to an MPC protocol with the desired
properties, and the IKOS construction ensures that it can be reduced to a valid ZK-proof.

The method allows each party P; to receive intermediate computations from Py |, where
i+ 1= (i mod3)+ 1. Whenever a party receives an intermediate computation, they
store it in their view. In addition to the computations, each party also stores their
secret share w; and their output share y; in their view. The views allow the verifier to
recompute and verify the computations for party P; but keep the view of P, secret
(since the recomputation of one view only requires the prover to reveal two views).

Specifically, a (2,3)-function decomposition, D, includes several components:
* Share: the method for secret sharing the input, w (like the ones in section [2.1.3).

* Output;: computes the output share y; from view V; and random tape k;.

3The MPC simulator is defined in deﬁnitionm
4There are some performance considerations underpinning the choice of 3 parties, but we refer the
curious reader to [2]].

10

* Reconstruct: the method for reconstructing the output, y, from the outputs
shares, y{, y2, and ys.

e II;: the MPC protocol for three parties with 2-privacy corresponding to f.

The definitions for the decomposition’s MPC properties (correctness and privacy) are
similar to the formal definitions in section 2.1.2

3.2.2 The protocol

The prover knows w, such that y = f(w). The prover and verifier know y and D (a
(2,3)-decomposition of f). The protocol consists of three phases, the commitment
phase, the proving phase, and the verification phase [2]. These phases realize the
communication pattern for a X-protocol.

Commitment phase

1. The prover secret shares the input w with Share and generates three random
tapes, k1, k>, and k3, one for each partyE]

2. Then the prover runs Iy in its head with the secret shares as input. The result is
three views, Vi, V», and Vj.

3. The prover commits to the view at each party, ¢; = Commit(k;, V;).

4. Lastly, the prover sends the commitments to the verifier along with the output
shares, (y1,y2,y3), where y; = Output,(k;, V;).

Proving phase
1. The verifier picks some number e € {1,2,3} and sends it to the prover.

2. The prover opens the commitments with index e and e + IE] and sends the random
tapes, k., and k.41, and views, V,, and V,, 1, to the verifier.

Verification phase

1. The verifier checks that the information from the prover is consistent. This can
be done by answering the following questions:

(a) Is the reconstruction of the output shares the same as the public input, y?
?
Reconstruct(yy,y2,y3) =y

(b) Are all the output shares the same as the last value of the corresponding
opened views?

Vi = Output,(k;,Vi), Vi€ {e,e+1}
(c) Are all the committed views the same as commiting the opened views? |Z]
Commit(k;,V;) =ci, Vi€ {e,e+1}

SThese tapes provide the randomness to D.

*Where e+ 1= (¢ mod3)+1

TThis step is not in the original ZKBoo paper [2], but they did include it in the paper for ZKB++ [12].
If the verifier omitted this check, the prover could cheat with the commitments.

11

(d) Are all the values in the opened view, V., the same as recomputing I1; for
party e?

2. If the verifier can answer "yes" to all the questions, the verifier accepts; otherwise,
the verifier rejects.

The properties for the Zero-Knowledge proof follow from the fact that the protocol
is a X-protocol and the IKOS construction. We assume the MPC protocol is perfectly
correct and perfectly 2-private in the semi-honest model. The IKOS construction proves
these MPC properties give Completeness and Zero-Knowledge [[1]. The X-protocol
gives us 3-Special Soundness and Special honest-verifier Zero-Knowledge.

However, we must argue 3-Special soundness. Assume we have three accepting con-
versations, {(a,e1,21),(a,e2,22),(a,e3,23)}. If €1 # €2, €1 # e3, and e3 # e3, we must
have overlapping views (which are equal) in all conversations because the commitment
function is assumed to be collision resistant. Then we know that there must exist some
simulator W, which from the opened views, can backtrack the protocol and compute w’
such that y = f(w') [2].

Finally, the 2-protocol is a Proof of Knowledge [9]], which means the prover must know
w such that y = f(w). Additionally, because it is a X-protocol, running several instances
in parallel does not reduce soundness [2] [9].

Remark: As demonstrated by the Picnic signature scheme based on ZKBoo [12],
the primitives in MPC-in-the-head do not have to rely on asymmetric cryptography—
easily broken in a post-quantum world [13]]. Instead, the signature scheme can use
symmetric-key primitives, which are harder to break. This fact is one of the reasons
why MPC-in-the-head is useful.

12

Chapter 4

ZKG

The ZKBoo protocol, introduced in Chapter 3, enables efficient Zero-Knowledge proofs
using techniques from Multi-Party Computation. However, we must run the ZKBoo
protocol repeatedly to achieve a sufficient soundness error. This chapter presents our
contribution, where we aim to improve the speed by implementing ZKBoo on GPUs.
A GPU can perform many more parallel computations simultaneously than a CPU.
Furthermore, by utilizing the Futhark Programming Language [14], intended for par-
allel programming, which compiles to GPU code, we aim to gain some additional
performance from the Futhark compiler, as opposed implementing it directly in an
OpenCL C dialect [[15].

As a proof-of-concept, we have implemented the SHA-256 hash function [[11]] within
the ZKBoo framework, showcasing the potential advantages of GPU-based Zero-
Knowledge proofs.

Lastly, we have named our project ZKG-an abbreviation of ZKBoo on the GPUE] Our
implementation is available at https://gitlab.au.dk/jaschdoc/zkg!

4.1 Implementation

This section briefly argues why we implemented ZKBoo, the way we did it, and what
trade-offs we considered. We then prove that the SHA-256 (2,3)-decomposition has
privacy and correctness, thus yielding the required properties for Zero-Knowledge
proofs via the IKOS construction

4.1.1 Approach

Our primary hypothesis was that we could improve the ZKBoo protocol’s performance
by splitting the 137 instances into parallel jobs on the GPU instead of being bound by

1ZKGoo had an odd ring to it.
2Qur proof is naturally valid because the (2,3)-decomposition of ZKBoo is valid for all functions, but
our proof may be easier to understand in the context of this report.

13

https://gitlab.au.dk/jaschdoc/zkg

the maximum number of threads available on a CPU. In order to make it easy for us,
we opted to implement it in the Futhark Programming Language.

Futhark is a functional and pure language, and because of its purity, the compiler can
be aggressive in its optimizations. Furthermore, since Futhark is syntactically similar to
the ML family of languages, it has high-level abstractions that allow the programmer to
express complicated concepts while emitting efficient GPU code. The language also
has several desirable features. Firstly, it can compile a program into several different
backends: sequential C, multi-threaded C, CUDAEL and OpenCIﬂfthe latter two run
on the GPU. The different backends ensured the possibility of comparing the ZKBoo
implementation with ours. If we had chosen to implement it directly in CUDA or
OpenCL, we would not have easily been able to compare our CPU performance with
the ZKBoo implementation. Secondly, Futhark has integrated benchmarking features
with the possibility of automatically estimating parameters for when to parallelize tasks
through the autotune feature [[16]. Moreover, since autotune is a dynamic optimization
technique, it compliments its static optimization, yielding even more performance.

Initially, we opted to write the control code in the Go programming languageﬂ
However, after observing a considerable slow-down compared to the ZKBoo C imple-
mentation, we wrote the control code in C instead. The Go runtime, especially the
garbage collector, likely incurred this overhead. Additionally, since we were trying to
compare our results with the original ZKBoo results, we needed to reduce the changes
we made from the original implementation. Thus, after seeing the poor performance of
Go, it was an easy choice to rewrite it in C. Luckily, we had written a test suite for our
Go implementation, so it was easy to port things over to C and remain confident that it
would work.

4.1.2 (2, 3)-Function Decomposition for SHA-256

[2]] introduces the technique (2, 3)-function decomposition to construct an MPC protocol
from any function. Since our implementation uses the function SHA-256, we will
demonstrate the course of action in this section. The basic arithmetic operations in
SHA-256 are bitwise XOR, bitwise AND, and integer addition [11]]; we must construct
these as three-party MPC operations.

Lemma 4.1.1. Let a and b be two bits, which are secret shared as a = a; ® ar ® az and
b=>b1 Dby ®bs. And let a; and b; be the shares of a and b held by party P,. Then XOR
and AND are defined as:
(aEBb),- =a; ® b; “4.1)
(a/\b)i=(a,-/\bi)69(aj/\bi)ﬂa(ai/\bj)@ri@rj “4.2)
Where j= (i mod3)+ 1. And r; is a random bit for party P,.

We will do integer addition as specified in [17]. Figure . T]illustrates the bristol circuit
for integer addition, which only uses XOR and AND.

3https://docs.nvidia.com/cuda/
4https://www.khronos.org/opencl/
Shttps://go.dev/

14

https://docs.nvidia.com/cuda/
https://www.khronos.org/opencl/
https://go.dev/

Ci

G}@\) >—@

Figure 4.1: A bristol sub-circuit [17] for integer addition. The inputs x; and y; are two
bits from the input integers x and y; ¢; is the carry bit from the previous sub-circuit; and
ci+1 1s the carry bit for the next sub-circuit.

Theorem 4.1.1. [f the prover did not use randomness to calculate the AND (eq[d.2)),
then from the opened commitments, there is a 50% chance that an adversary can guess
the inputs to AND.

Proof. Let us assume the prover did not use randomness to calculate AND, and the
opened views are from party P and party P,. Then the opened views will reveal the
following knowledge:

alab17a27b2’ (43)
wyp = (a1 /\b])EB(az /\b])EB(d] /\bz), and 4.4)
wy = (aa Ab2) ® (a3 Aby) @ (ax Ab3) 4.5)

The calculation [4.4] does not include any new knowledge not known by P; and P». But
the calculation 4.5|includes new knowledge a3 and b3. Let’s rewrite this equation:

wo P (az /\bz) = (Clg A bz) &) (az A b3) 4.6)

Then we have four cases for leaking knowledge, depending on the values of a, and b;.

a | by Eqresult Revealed knowledge
0

010 -
0 |1 |a;3 a=a ®da;Das.
1 [0 | b3 b=bi®byDb3.
1 1 az®d by -

Note: ’-’ means nothing is revealed.

From these cases, there is a 50% chance that an adversary can get hold of either a or b.
And this breaks the property of privacy (definition[2.1.2)), which means we must use
randomness for AND. u

15

4.1.3 Properties of the Function Decompositions

Theorem 4.1.2. The function decompositions of XOR and AND have the property
Perfect Correctness (as defined in[2.1.1)).

Proof. If the arbitrary operation is H, then the following should hold:
aBb=(aBb), ®(aEBb),® (aBDb)s

for the operation to be correct.

For XOR, we get:

(a®b)1®(a®b),®(adb);
=(a1®b1) D (a2 ®b2) ® (a3 D b3)
=(a1©a®a3)® (b1 ©by®bs)
=a®b

For AND, we get:

(anb)1®(aNDb),®(aNb)3
= (a1 Ab1) B (a2 AD))® (a1 Ab2) Dri ®nd
(a2 AD2) ® (a3 AD2) B (a2 AND3) D ra ®1r3®
(a3 AD3) @ (a1 Ab3) @ (a3 Ab) Drs®r
= (a1 ADb1) B (ax Ab1)® (a1 AND2)®
(aa ANDp) ® (a3 Ab2) B (ax ANb3)D
(a3 \b3)® (a1 AD3)® (a3 Aby)
= (@A (D10 ®b3))® (a2 A (b1 ®b2®b3)) ® (a3 A (b1 © b2 D b3))
= (a1 Ab)® (ax ANb) ® (a3 \D)
=(a1®ar®az) \b
=aAb

Both the equations for XOR and AND hold, which means they have the property Perfect
Correctness (as defined in[2.1.1). [|

Theorem 4.1.3. The function decomposition of XOR and AND (from lemma have
the property 2-Privacy (as defined in[2.1.2)).

Proof. For the property of 2-privacy for a (2, 3)-function decomposition, it should hold
that the knowledge received by two parties in the protocol should have the same distri-
bution as if a PPT simulator, S, simulated the protocol. Formally, we can encapsulate

the knowledge received by two parties as

{kea Veyker1, Vet 7ye+2}

16

Then the simulator can do as follows:

1. The simulator, S, knows the public input y and D. It simulates the protocol for

two imaginary parties, P; and P;, where j =i+ 1.

2. Let S sample two random tapes, k; and k;, and two input shares, w; and w;.
This randomness will have the same distribution as the randomness in the actual

protocol.

3. Then S can simulate the functionality of D, where it calculates the operations as
defined in lemma

(a) The XOR gate will always have the same distribution as in the actual
protocol.

(b) For an AND operation in P;, S should generate random values for ay, by,
and ry, where k = j+ 1. Since an AND operation uses a randomly sampled
r in the actual protocol, the result distributes uniformly like the result for S.

4. Lastly, S can use the output shares from D, y; and y;, to calculate y, = y®y; ®y;.
Here, y; will have the same distribution as y,;.

This simulation gives us the 2-privacy property since the knowledge for party P; and P;
in the simulation has the same distribution as the knowledge for party P, and P, in
the actual MPC protocol. |

The MPC protocol has both properties of Perfect Correctness and Perfect 2-Privacy.
We know from ZKBoo, that the Zero-Knowledge proof has properties of Soundness,
Completeness and Zero-Knowledge (see section[3.2.2)).

4.2 Benchmarks

4.2.1 Overview

We split the benchmarks into two major categories:

1. End-to-end benchmarks

2. Futhark-only benchmarks

The end-to-end benchmarks are directly comparable to the original implementation of
the SHA-256 decomposition demonstrated in ZKBoo. These benchmarks wrap our
SHA-256 decomposition into a binary that reads input, generates randomness, and
has other quality-of-life improvements, like setting the number of times to repeat the
benchmark. Naturally, this is comparable to a real-world setting, where a program
would call this API to generate a transferable ZK-proof and to verify with a separate
API call.

17

The Futhark-only benchmarks do not have wrapper code. Instead, we generated
inputs in advance and directly ran custom entry points in Futhark, using the built-in
benchmarking feature. This approach has less overhead than our end-to-end benchmarks
and allows us to examine one part of the algorithm at a time closely. This suite consists
of five benchmarks:

1. Proof and verification total time

2. Proof-only time

3. SHA-256 time

4. Parallel SHA-256 Mock time

5. Proof-only time using parallel SHA-256 mock

We crafted the latter two benchmarks to investigate the slow-down that the sequential
nature of SHA-256 incurred on execution times when used as commitment function
and how much we could reduce the execution time of a single protocol phase. The
parallel SHA-256 Mock is not a secure hash function, as we have replaced the sequential
loops with data-parallel operations map/reduce using mock constants to see how much
performance we could gain from removing dependencies on previous computations.
We only experimented with the commitment function in this regard.

4.2.2 Differences from ZKBoo

The most significant difference is that we ran the verifier within the same program
without writing to disk, so we did not have to worry about noise from I/O operations [2].
Of course, the verifier ran in a separate API call so that we could benchmark separately.

We also used a different function to time function calls, as the clock function on
Linux did not measure parallel programs correctly, and we updated the original ZKBoo
code, making timings comparable.

Finally, we have larger proof sizes as our prover sends the fully materialized random
tapes to the verifier instead of just the keys to AES. This change is an oversight on our
part, as it made it easier to test when writing the code.

4.2.3 Experimental Setup

We ran our benchmarks on a computer installed with Fedora 38, equipped with an Intel
17-4790k CPU with four cores and eight threads, clocked at 4 GHz, boosting to 4.4
GHz. For the GPU, the computer had a NVIDIA GeForce GTX 970 clocked at 1114
MHz, boosting to 1253 MHz, with 1664 CUDA cores.

The wrapper program uses OpenSSIE] to generate randomness and a hash value of
the input that the verifier can compare to the hash value in the ZK-proof. For our end-
to-end benchmarks, we report on the results of running the program on four different
inputs using 137 rounds. This experiment was repeated 1000 times for each input. We
then separately measured the proving and verification times using the omp_get_wtime
function in OpenMPE]

Shttps://www.openssl.org/
"https://www.openmp.org/

18

https://www.openssl.org/
https://www.openmp.org/

We ran the Futhark-only prover and parallel prover with increasing numbers of
rounds. We also repeated the benchmark for the total time of proof and verification
1000 times; for the remaining benchmarks in this suite, we ran 500 times. For the
SHA-256 benchmarks, we ran it on varying input sizes up to 50 MB. However, only the
parallel SHA-256 mock version could handle larger input sizes. We ran the Futhark-
only benchmarks with Futhark’s four backends: Sequential C, Multicore C, CUDA,
and OpenCL. Additionally, we ran everything for the GPU backends without using
Futhark’s autotune feature and after having tuned GPU parameters with autotune.

Finally, we generated an interactive proof and the indices the verifier should choose
for its challenge in advance. Of course, it is not entirely correct, but the most important
thing is that the prover does not get to choose the indices; thus, for benchmarking and
correctness of the protocol, it does not matter if the verifier picks these numbers or
receives them from an oracle.

4.2.4 Experimental Results

All the data used in this section can be found in Appendix [A] All color schemes are
from [18]].

Total running times of all implementations

Mean of total running times

2204 213 ZKBoo
201 ZKG (end-to-end)
200 4
ZKG (Futhark-only)
180 ZKG (Futhark-only with autotune)
160 A
140 A
g i 120 120
£ 120 - 113 112
o 106
E 100
80 1
60
40 = 32 33 - -
27 27 27
1 18
20
4] T T T T
1 Thread / Sequential 8 Threads / Multicore 8 Threads / CUDA 8 Threads / OpenCL

No. threads (ZKBoo) / Futhark backend {ZKG)

Figure 4.2: Total running times of proof and verification (not including random tape generation),
average of 1000 repetitions over 4 different inputs, using 137 protocol rounds. Since the ZKBoo
implementation does not compile to GPU, we compare the CPU runtime using the maximum
number of threads with the ZKG running on the GPU.

Figure 4.2] shows the mean of all implementations’ total running times. Here, we

can compare how our implementation, ZKG, performs against the original ZKBoo
implementation. The second batch of bars (multicore) shows that the parallel backend

19

of Futhark is clearly on par with ZKBoo, both for the end-to-end and the Futhark-only
benchmarks. The pink and blue bars for the GPU backends (CUDA and OpenCL) show
that the non-tuned backends are significantly slower than ZKBoo. The story changes
slightly after tuning GPU parameters, as we see an increase of 9 ms over ZKBoo (the
orange bar for CUDA and OpenCL). Of course, this varies from system to system
as some systems may have newer GPUs than CPUs and vice versa. We leave it as
future work to estimate the parameters for deciding when to run on the GPU and CPU.
Nevertheless, the results indicate that despite the tension between the sequential nature
of SHA-256, the ZKBoo protocol benefits from GPU parallelization in some cases.

Normal SHA-256 versus Parallel SHA-256 Mock

Normal SHA256 Parallel SHA-256 Mock
700000 450
Multicore Multicore
—=— OpencCL 400 4 —— OpencCL
600000 1 —— opencL, tuned —e— OpenCL, tuned
—— CUDA 3504 —— cupa
s00000 | CUDA, tuned —s— CUDA, tuned
—_ 300
(%]
=
w 400000 i
E 250
g
E 300000 2001
=
=
&

150 4
200000 +

100 A

100000 +
50

o] " " T T 0 T T T T
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000
Input size (bytes) Input size (bytes)

Figure 4.3: The running times of SHA-256 on the GPU and multicore on the CPU. These
were Futhark-only benchmarks.

Figure {.3 shows the running time of SHA-256 and the mock version on different
backends. It is easy to see that the GPU backends suffer from the sequential loops
in SHA-256, and the hash times benefit significantly from a parallel implementation.
Moreover, the autotune functionality in Futhark did not improve the running time as it
did for the entire protocol (see figure d.2)), which indicates that significantly increasing
speed using SHA-256 is difficult. However, if we use the parallel mock version of
SHA-256, the running time improves dramatically, and the autotune in Futhark makes
it even faster. The hash function now only takes a few hundred microseconds, making
it over 1000 times faster than the sequential implementation. As mentioned previously,
the parallel mock version is not secure, but it merely demonstrates that GPUs work
better with data-parallel algorithms. Despite the much faster running times of the
parallel SHA-256 mock, the multicore backend still beats the GPU backends. This
finding is likely because the clock rate of the CUDA cores is lower than the clock rate
of the CPU cores. However, discounting the memory limit, the graphs indicate that
eventually, the GPU would be just as fast as the CPU, so a natural next step would be to
investigate when this happens.

20

Proof times, Normal SHA-256 versus Parallel SHA-256 Mock

Prover with different commitment functions.

Normal SHA256 Parallel SHA-256 Mock

35 35

30 1 30+

25 A 251
)
E ¥
w 204 204
£
o
£ 15 J 15 4
=
c
=
o N N

10 - Multicore 10 Multicore

—— OpencCL —e— OpenCL
5 —— OpenCL, tuned 5 —— OpenCL, tuned
1 —— CUDA 1 —e— CUDA
—— CUDA, tuned —— CUDA, tuned
0

T T T T T T 0 T T T T T T
0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750
Mumber of rounds Number of rounds

Figure 4.4: The running times of the Prover on the GPU and multicore on the CPU. These
were Futhark-only benchmarks.

Figure [4.4] compares the running time of the prover when we use normal SHA-256
against the parallel mock version of SHA-256. The proof times also benefit from a
parallel implementation, but less drastically than only SHA-256 (figure 4.3). However,
since the GPU swiftly executes data-parallel programs, SHA-256 significantly impacts
the total running time. Furthermore, figure [4.4] shows that the GPU backends are faster
than the CPU multicore backend when running the prover with the parallel SHA-256
mock over 200 rounds. The figure shows that running both several hundred rounds in
parallel with a data-parallel commitment scale better on the GPU than on the CPU.

Lastly, figure[4.5]indicates that the average running time per round decreases further
than the multicore backend as the number of rounds grows, suggesting that the GPU
backend has more headroom for many instances of the protocol. The multicore backend
stabilizes on a running time per round of around 120 and 60 (SHA-256 and mock
version respectively) on smaller inputs than the GPU backends. Figure4.5]also supports
the finding in figure {.2] that the GPU backend can sometimes outperform the CPU
backend. However, it is worth noticing that the parallel SHA-256 mock helps decrease
the running time per round at fewer rounds faster than the normal SHA-256.

To summarize, all backends benefit from a data-parallel commitment function, and
the GPU backends, in particular, see a massive increase in performance compared to
the multicore backend.

Soundness Errors

Figure [4.6) shows the running time of the prover for 137 rounds (orange bar) and 1000
rounds (full bar). When we run the protocol for 137 rounds, we get a soundness error

21

Prover with different commitment functions.

Normal SHA256 Parallel SHA-256 Mock
120 4 120 4 Multicore
—— OpenCL
—— OpenCL, tuned

= | i .
% 100 100 —e— CUDA
- —e— CUDA, tuned
@
(=5 m - -
= 80 Multicore 80
= —— OpencCL
E 60 | —— OpenCL, tuned 60 |
‘;‘ —e— CUDA
£ —— CUDA, tuned
S a0 40 -
2
c
[1:]
s

N \ 20 4

T T T T 0 T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Number of rounds Number of rounds

Figure 4.5: Running time per round of the Prover on the GPU and multicore CPU. These were
Futhark-only benchmarks. For the parallel SHA-256 mock, we can run up to 1000 rounds for a
little additional execution time.

of 2780 whereas 1000 rounds yield a soundness error of 2_584ﬂ The figure shows
the smaller soundness error for a slight increase in execution times when using the
GPU backend. The multicore backend is faster at running 137 rounds than the CUDA
backend within each group. However, the CUDA backend is consistently faster on 1000
rounds.

For the normal SHA-256, the multicore CPU backend runs 137 rounds faster than
the tuned CUDA backend. However, the tuned CUDA backend only takes an additional
2.6 ms to run 1000 rounds, whereas the CPU is 40.73 times slower. Furthermore, the
tuned CUDA backend improves when we use the parallel SHA-256 mock compared
to the normal SHA-256. However, although the multicore backend with the parallel
SHA-256 mock is still slightly faster when running 137 rounds, it is much slower in
reaching the second milestone. Thus, in the parallel SHA-256 mock case, the tuned
CUDA backend reaches the same soundness error as the multicore CPU backend at
nearly the same time and much improves the soundness error for just a few milliseconds
more.

One explanation for this result could be that the GPU will run all 1000 rounds in
parallel since it has more than 1000 CUDA cores. In contrast, the number of cores
bounds the CPU, slowing it down even though each CPU core is faster than a CUDA
core. We tested the protocol with 5000 rounds in the prover-only benchmark, this did
not result in a huge increase in running time.

In a post-quantum signature scheme like Picnic [[12], the lesser soundness errors
further future proofs signatures against Grover’s algorithm [[19].

86((logy3) — 1)7! rounds yield a soundness error of 279 [2]. Thus, running n rounds yields a

soundness error of 2~° where ¢ = [* .
((log; 3)-1)!

22

130

122.42 Time for 137 rounds

120 1 Time for 137 to 1000 rounds

110 4
100 A
90 A

80

m
E 70 104.26 6391
')
E 60
):
50 |
40 54.25
29.25 :
30 1 2.56
204 18.81
26.69 8.64
10 - 18.16
8.96 10.17
T T T T
Multicore CUDA Multicore CUDA
Normal SHA-256 Parallel SHA-256

Figure 4.6: The prover running times. Note that the blue bar alone is from 137 rounds to 1000
rounds, and the time at the top of the bar is the total time. The "Parallel SHA-256" refers to the
parallel mock version.

4.3 Future Work

In this section, we have collected some of our ideas for future projects building upon
the findings in this report.

The proof size in our current implementation is much larger than in ZKBoo, con-
taining indices, random tapes, and two opened views. Hence, our proof size is 1610.29
KiB. The size was not a problem as our proofs never left the GPU, so there was no
extra overhead attached to this method. A natural course of action to reduce the size
would be only to send the AES keys so the verifier can generate the random tapes. It
would also be interesting to try the same GPU-based approach with the optimization
introduced in ZKB++ [[12]]. An example of an optimization would be to let the prover
only send one view instead of two when opening the commitment.

Our results show that the sequential nature of SHA-256 incurred a major bound
on performance. Thus, a Merkle Tree-based hash function [20] would improve com-
mitment time as we can parallelize the tree structure more easily. One way to do this
would be to implement a parallel hash algorithm like BLAKE3 [21]] or ParallelHash
from SHA-3 [22]. BLAKES is particularly interesting as the backing data structure is a
Merkle Tree, directly allowing us to test our hypothesis above.

We chose SHA-256 in order to reproduce and compare the results of the original
ZKBoo implementation. However, it would be interesting to exploit the parallel nature
of BLAKE3 in a (2,3)-decomposition to see if this also yields a performance increase
when computing the ZK-proof.

Of course, data-parallel hash functions and cryptographic operations are worth
investigating as they would run faster than sequential algorithms on modern hardware.
However, this claim is very general and applies to various computer science problems.

23

For example, it would be interesting to investigate whether there is a tension between
parallelism and security (in this case, collision resistance and one-way property of hash
functions).

As a final remark, the ZKBoo and ZKB++ function decomposition is a flexible
tool for in tandem with the IKOS construction, and the SHA-256 decomposition is just
an example decomposition. Furthermore, compared to other Zero-Knowledge proof
protocols, ZKBoo allows online parties to communicate synchronously, which is the
case for password-based sign-in. It is already a substantial improvement that ZKBoo
allows a user never to reveal their password to another party, but it is much easier to find
the preimage of a hash function than encryption schemes; thus, it would be interesting
to create a (2,3)-decomposition of LowMC [23]] as done in Picnic [12], on the GPU
and investigate the performance of it. A server storing an encrypted password has better
security guarantees than a server storing a hashed password.

24

Chapter 5
Conclusion

This report provided the reader with the necessary building blocks for understanding
MPC-in-the-head [1]]. We showed how (2,3)-decompositions from ZKBoo [2] worked
as an example of the IKOS construction [1].

We also showed that implementation of the (2,3)-decomposition of SHA-256 on
the GPU yielded significantly lesser soundness error, 2758, for little extra running time,
despite being slower at reaching soundness error 278 which [2] used as goal. The
lesser soundness error provides better future proofing for signature schemes against
quantum algorithms such as Grover’s algorithm [19].

Additionally, our findings indicate that the sequential nature of SHA-256 bottle-
necked performance. Thus, using a less sequential function for commitments would
significantly increase performance. We also hypothesize that a less sequential function
in the (2,3)-decomposition would further increase performance, for instance, with
BLAKE3 [21]]. However, we leave this as future work, alongside implementing the
optimizations from ZKB++ [12] and implementing a (2,3)-decomposition of LowMC
[23]).

25

Acknowledgments

We want to thank our supervisor Jesper Buus Nielsen for his guidance and feedback
and Claudio Orlandi for clarifying our questions regarding ZKBoo.
Finally, we also want to thank Troels Henriksen, author of the Futhark Programming

Language, for his swift and helpful answers on the Futhark Gitter channel whenever we
encountered Futhark-related issues.

26

Bibliography

(1]

(3]

[5]

[6]
[7]

(8]

[9]

[10]

[11]

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In Proceedings of the Thirty-Ninth Annual
ACM Symposium on Theory of Computing, STOC *07, pages 21-30, New York,
NY, USA, 2007. Association for Computing Machinery.

Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. Zkboo: Faster zero-
knowledge for boolean circuits. In USENIX Security Symposium, volume 16,
2016.

Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. Snarks for c: Verifying program executions succinctly and in zero knowl-
edge. In Advances in Cryptology—CRYPTO 2013: 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part 11,
pages 90-108. Springer, 2013.

Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly
practical verifiable computation. Communications of the ACM, 59(2):103-112,
2016.

Ronald Cramer, Ivan Bjerre Damgard, and Jesper Buus Nielsen. Secure Multiparty
Computation and Secret Sharing. Cambridge University Press, West Nyack, 2015.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, 1979.

Joseph-Louis Lagrange. Lectures on Elementary Mathematics. Open court
publishing Company, 1795. Translated by: Thomas John McCormack.

Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge
University Press, Cambridge, 2001.

Ivan Damgard. On o-protocols. 2010. https://www.cs.au.dk/"ivan/Sigma|
pdf|[Online; accessed 05-06-2023].

Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Advances
in Cryptology—CRYPTO’92: 12th Annual International Cryptology Conference
Santa Barbara, California, USA August 16-20, 1992 Proceedings, pages 390—420.
Springer, 2001.

National Institute of Standards and Technology. Security requirements for cryp-
tographic modules. Technical Report Federal Information Processing Standards

27

https://www.cs.au.dk/~ivan/Sigma.pdf
https://www.cs.au.dk/~ivan/Sigma.pdf

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Publications (FIPS PUBS) 180-4, U.S. Department of Commerce, Gaithersburg,
Maryland, 2015.

Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian
Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-
quantum zero-knowledge and signatures from symmetric-key primitives. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS *17, pages 1825-1842, New York, NY, USA, 2017. Association for
Computing Machinery.

Peter W Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th annual symposium on foundations of computer
science, pages 124—134. Teee, 1994.

Troels Henriksen. Design and implementation of the Futhark programming
language. PhD thesis, University of Copenhagen, Faculty of Science [Department
of Computer Science], 2017.

Aaftab Munshi. The opencl specification. In 2009 IEEE Hot Chips 21 Symposium
(HCS), pages 1-314. IEEE, 2009.

Philip Munksgaard, Svend Lund Breddam, Troels Henriksen, Fabian Cristian
Gieseke, and Cosmin Oancea. Dataset sensitive autotuning of multi-versioned
code based on monotonic properties: Autotuning in futhark. In Trends in Func-
tional Programming: 22nd International Symposium, TFP 2021, Virtual Event,
February 17-19, 2021, Revised Selected Papers, pages 3—23. Springer, 2021.

Stefan Tillich and Nigel Smart. (bristol format) circuits of basic functions suit-
able for mpc and fhe. https://homes.esat.kuleuven.be/ nsmart/MPC/
old-circuits.html), 2020. [Online; accessed 07-05-2023].

Cynthia A Brewer, Geoffrey W Hatchard, and Mark A Harrower. Colorbrewer
in print: a catalog of color schemes for maps. Cartography and geographic
information science, 30(1):5-32, 2003.

Lov K Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
pages 212-219, 1996.

Ralph C Merkle. A digital signature based on a conventional encryption function.
In Advances in Cryptology—CRYPTO 87: Proceedings 7, pages 369-378. Springer,
1988.

Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C-W Phan.
Sha-3 proposal blake.

John Kelsey, Shu-jen Chang, and Ray Perlner. Sha-3 derived functions: cshake,
kmac, tuplehash, and parallelhash. NIST special publication, 800:185, 2016.

28

https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html
https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html

[23] Martin R Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for mpc and fhe. In Advances in Cryptology—
EUROCRYPT 2015: 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015,
Proceedings, Part I 34, pages 430—454. Springer, 2015.

29

Appendix A

Benchmark data

A.1 ZKBoo results

The mean for 1000 runs with 137 rounds of the protocol.

’ No. threads ‘ Proof times (ms) ‘ Verify times (ms) ‘ Total times (ms) ‘

1 thread 69 37 106
8 threads 17 10 27

A.2 ZKG results

End-to-end benchmarks

The mean for 4000 runs with 137 rounds of the protocol (1000 rounds on 4 distinct
inputs).

’ Backend ‘ Proof times (ms) ‘ Verify times (ms) ‘ Total times (ms) ‘

C 139.06 74.41 213.47

Multicore 20.58 12.31 33.12

CUDA 105.56 7.86 113.41

OpenCL 108.82 11.77 120.60
Futhark

The mean for 500 runs with 137 rounds of the protocol.

] Backend \ Proof times (ms) \ Total times (ms) ‘
c 115.25 201.75
Multicore 18.16 33.12
CUDA 13.02 11291
CUDA, tuned 26.69 18.70
OpenCL 19.38 120.10
OpenCL, tuned 29.92 18.83

30

Futhark, proof only

Here, all measurements are in microseconds (LLs).

’ Rounds ‘ C ‘ Multicore ‘ CUDA ‘ CUDA, tuned | OpenCL | OpenCL, tuned
1 0.88 0.42 8.23 20.51 8.48 13.48
10 8.58 1.68 8.6 20.57 8.94 13.53
20 16.94 2.9 9.51 20.78 12.52 13.58
50 42.6 6.75 10.83 22.02 17.23 27.02
100 84.61 13.33 13.88 24.73 19.72 29.51
137 115.25 18.16 13.02 26.69 19.38 29.92
200 167.63 26.56 14.08 27.97 21.24 30.76
300 251.67 39.05 15.94 28.24 22.44 30.07
400 335.62 50.68 18.08 28.37 249 29.48
500 418.79 62.43 19.3 28.53 27.17 32.29
1000 837.99 | 122.42 32.36 29.25 41.12 31.8
5000 4186.7 | 594.68 160.7 43.17 174.56 42.06

A.3 SHA-256 results

Size is the input size in bytes to the SHA-256 function. All measurements are in
microseconds (us) and B is the abbreviation of bytes (mean of 500 runs per input).

Normal SHA-256

] Size \ C \ Multicore CUDA \ CUDA, tuned | OpenCL \ OpenCL, tuned
50B 5.7 6.16 707.69 671.36 952.01 908.09
100B 7.45 5.82 709.38 672.78 943.68 906.3
1000B 48.35 44.0 5087.94 5083.65 6920.56 6637.97
5000B 207.42 207.34 24892.68 24695.25 33931.97 32426.67
100008 386.57 415.84 49436.34 49260.96 66719.32 64234.47
500008 | 1888.25 | 1949.74 | 245912.58 | 245303.88 | 333414.26 320157.56
100000B | 3720.89 | 3659.29 | 491777.53 | 485071.18 | 665595.12 637263.31

Parallel SHA-256 Mock

| Size | C | Multicore | CUDA | CUDA, tuned | OpenCL | OpenCL, tuned
50B 15 118 [51.62 3247 56.95 52.94
1008 1.48 193 [44.03 332 52.75 51.05
1000B | 5.05 4.55 487 34.24 52.14 50.79
50008 | 2154 [1776 | 72.56 60.41 83.18 81.58
10000B | 41.51 | 26.07 | 89.48 146.23 138.19 100.67
50000B | 19628 | 6595 |232.96 | 10532 128.38 122.41
100000B | 382.27 | 114.36 [42345 | 212.96 164.84 159.36

31

Prover with Parallel SHA-256 Mock
’ Rounds ‘ C ‘ Multicore ‘ CUDA ‘ CUDA, tuned | OpenCL | OpenCL, tuned

1 0.6 0.23 7.12 6.66 6.16 6.17
10 3.75 0.85 7.94 6.84 6.3 6.32
20 7.51 1.5 8.82 6.91 6.39 6.41
50 18.84 3.33 11.66 7.37 9.95 9.99
100 37.62 6.54 17.61 9.22 11.95 11.95
137 51.5 8.96 10.82 10.17 12.52 12.52
200 75.46 12.94 11.77 11.04 14.07 14.08
300 112.89 19.48 13.54 12.66 15.06 15.06
400 150.7 25.97 15.45 14.41 16.68 16.69
500 188.11 33.01 16.85 14.76 19.77 18.41
1000 376.8 63.21 28.89 18.81 21.22 21.26
5000 1882.33 | 298.01 120.93 36.84 48.05 48.03

32

	Abstract
	Introduction
	Preliminaries
	Multi-Party Computation
	Ways to Cheat
	Properties
	Secret Sharing

	Zero-Knowledge
	Properties for a Zero-Knowledge Proof
	-Protocols
	Proof of Knowledge
	Commitment Schemes

	MPC-in-the-head
	IKOS construction
	Preliminaries
	Protocol
	MPC to Zero-Knowledge Properties

	ZKBoo
	(2, 3)-function decomposition
	The protocol

	ZKG
	Implementation
	Approach
	(2, 3)-Function Decomposition for SHA-256
	Properties of the Function Decompositions

	Benchmarks
	Overview
	Differences from ZKBoo
	Experimental Setup
	Experimental Results

	Future Work

	Conclusion
	Acknowledgments
	Bibliography
	Benchmark data
	ZKBoo results
	ZKG results
	SHA-256 results

