
University of Copenhagen
Computer Science Department

Parallel Parsing using Futhark
The Implementation of a Parallel LL Parser Generator

Author: William Henrich Due
Advisor: Troels Henriksen
Submitted: June 12, 2023

Abstract

An implementation of a deterministic parallel LL parser generator is
presented. This LL parser generator only works for a subset of LL
grammars which is known as the grammar class LLP. The implemen-
tation details of such a parser generator will be discussed. These
details entail the creation of LL(k) parsers and parallel computing us-
ing Futhark. Furthermore, problems with definitions and algorithms
that stems from the LLP grammar class will be examined.

Contents

1 Introduction 2

2 Theory 3
2.1 LL(k) Parser Generator . 3

2.1.1 FIRSTk and FOLLOWk 3
2.1.2 LL Parsing . 6

2.2 LLP(q, k) Parser Generator 8
2.2.1 LLP parsing . 8
2.2.2 The PSLS definition 9
2.2.3 Infinite loop . 12
2.2.4 Determining if a grammar is LLP 13

3 Implementation 15
3.1 Structure . 15
3.2 Assumptions . 16
3.3 Memoization of FIRST and LAST 17
3.4 LLP collection of item sets . 18
3.5 Parser . 19

3.5.1 String Packing . 19
3.5.2 Bracket Matching . 20

Page 1 of 26

4 Testing 21
4.1 FIRST and FOLLOW . 21

4.1.1 Unit tests . 21
4.1.2 Property based like testing 21

4.2 LL(k) . 22
4.3 LLP(q, k) . 22

4.3.1 Unit tests . 23
4.3.2 Property based testing 23

5 Conclusion 25

1 Introduction
Parsing is usually a sequential task which can be done using LL, LR or
LALR parsers. In the case of LL parsing you would need to keep track of
a pushdown store through the parsing. Using this pushdown store you can
keep track of the context for the given input string from start till the end.

Instead of doing this an idea for a parallel parser is to put some restrictions
on the LL grammar class. These restrictions should allow for the parser to
look at an arbitrary substring from a grammar and determine if it is valid
or not. It should then also be able to compare this specific substring to its
neighboring substrings and determine if the given context is valid.

One such grammar class which uses this strategy is the LLP grammar
class. The LLP(q, k) grammar class uses q lookback and k lookahead for
determining the substrings sizes.

In this paper a LLP(q, k) parser generator will be implemented. It is
likely this is the first implementation of such a parser. This is due to the
LLP papers [5] few citations and the fact that some mistakes have been
found in the LLP papers algorithms and definitions through this project.
It is known there exists a LLP(1, 1) [7], but one of the problems found are
unlikely to appear and the other appears when q > 1 and k > 1.

The technologies used to do the implementation is Haskell 2010 using
GHC 9.2.7, Cabal 3.10.1.0, Python 3.10 and Futhark nightly. The code base
can be found at the link below.

https://github.com/diku-dk/parallel-parser/releases/tag/BachelorProject

Page 2 of 26

https://github.com/diku-dk/parallel-parser/releases/tag/BachelorProject

Acknowledgements

Thanks, Troels Henriksen for the immense amount of help throughout this
project, and thanks to my sister for helping me proofread.

2 Theory

2.1 LL(k) Parser Generator
To construct a LLP(q, k) parser generator the construction of FIRST sets,
FOLLOW sets [5, p. 5] and a LL(k) parser generator is needed.

2.1.1 FIRSTk and FOLLOWk

During the research of this project it was quite often explained how to con-
struct FIRSTk and FOLLOWk where k = 1 but never k > 1 since this was
often seen as trivial.

The FIRST and FOLLOW set algorithms described takes heavy inspira-
tion from Mogensens book “Introduction to Compiler Design” [4, pp. 55–65]
and the parser notes [3, pp. 10–15] by Sestoft and Larsen. The modifications
are mainly using the LL(k) extension described in the Wikipedia article in
the section “Constructing an LL(k) parsing table”1 [8].

Definition 2.1 (Truncated product). Let G = (N, T, P, S) be a context-free
grammar, A,B ⊆ (N ∪ T)∗2 be sets of symbol strings and ω, δ ∈ (T ∪ N)∗.
The truncated product is defined in the following way.

A
k• B

def
=

{
arg max

γ∈{ω :ωδ=αβ,|ω|≤k}
|γ| : α ∈ A, β ∈ B

}
The truncated product can be computed by hand by concatenating each
element α ∈ A in front of every element β ∈ B. This results in a new set,
then the k first symbols of each element in this set is kept while the rest is
discarded.

Definition 2.2 (Nonempty substring pairs). Let G = (N, T, P, S) be a
context-free grammar, ω ∈ (N ∪T)∗ be a symbol string and α, β ∈ (N ∪T)+3

1At the time of writing the Wikipedia article does have a description of constructing
first and follow sets for k > 1. The problem is the algorithm described does not fullfill the
definition of first and follow sets that is being used in the LLP paper [5, p. 5].

2Let Z be an alphabet, Z∗ is defined to be ε ∈ Z∗ and Z∗ def
= {tv : t ∈ Z, v ∈ Z∗}

3Z+ def
= Z∗\{ε}

Page 3 of 26

be nonempty symbol strings. The set of every nonempty way to split ω into
two substrings is defined to be.

ϕ(ω)
def
= {(α, β) : αβ = ω}

Using these definitions the FIRSTk and FOLLOWk algorithms can now be
described.

Algorithm 2.1 (Solving FIRSTk sets). Let G = (N, T, P, S) be a context-
free grammar and FIRSTk : (N ∪ T)∗ → P(T ∗)4. The first set for a given
string can be solved as followed.

FIRSTk(ε) = {ε}
FIRSTk(t) = {t}

FIRSTk(A) =
⋃

δ :A→δ∈P

FIRSTk(δ)

FIRSTk(ω) =
⋃

(α,β)∈ϕ(ω)

FIRSTk(α)
k• FIRSTk(β)

This may result in an infinite loop if implemented as is, so fixed point iteration
is used to solve this system of set equations. Let M : N → P(T ∗) be a
function which maps nonterminals to sets of terminal strings, this function
can be thought of as a dictionary. FIRST′

k is then the following modified
version of FIRSTk.

FIRST′
k(ε,M) = {ε}

FIRST′
k(t,M) = {t}

FIRST′
k(A,M) = M(A)

FIRST′
k(ω,M) =

⋃
(α,β)∈ϕ(ω)

FIRST′
k(α,M)

k• FIRST′
k(β,M)

This function is then used to solve for a FIRSTk function for some fixed k
with fixed point iteration.

1. Initialize a dictionary M0 such that M0(A) = ∅ for all A ∈ N .

2. A new dictionary Mi+1 : N → P(T ∗) is constructed by Mi+1(A) =⋃
δ :A→δ∈P FIRST′

k(δ,Mi) for all A ∈ N where Mi is the last dictionary
that was constructed.

4P is the powerset.

Page 4 of 26

3. If Mi+1 = Mi then terminate the algorithm else recompute step 2.

4. Let Mf be the dictionary last dictionary constructed during the fixed
point iteration. It then holds that FIRSTk(ω) = FIRST′

k(ω,Mf) if k
stays fixed.

Now that the FIRSTk sets can be computed, the FOLLOWk set can also be
computed.

Algorithm 2.2 (Solving FOLLOWk sets). Let G = (N, T, P, S) be a context-
free grammar and FOLLOWk : N → P(T ∗). The follow set for a given
nonterminal can be solved as followed.

FOLLOWk(A) =
⋃

B :B→αAβ∈P

FIRSTk(β)
k• FOLLOWk(B)

Once again this may not terminate so fixed point iteration can be used to
solve the equation with the following altered FOLLOWk where M : N →
P(T ∗) is a function.

FOLLOW′
k(A,M) =

⋃
B :B→αAβ∈P

FIRSTk(β)
k• M(B)

This FOLLOW′
k function for some fixed k can then be computed using the

following algorithm.

1. Extend the grammar G = (N, T, P, S) using G′ = (N ′, T ′, P ′, S ′) =
(N ∪ {S ′}, T ∪ {�}, P ∪ {S ′ → S�k}, S ′).

2. Initialize a dictionary M0 such that M0(A) = ∅ for all A ∈ N ′\{S}
and M0(S) = {�k}.

3. A new dictionary Mi+1 : N ′ → P(T ∗) is constructed by Mi+1(A) =⋃
B :B→αAβ∈P FIRSTk(β)

k• Mi(B) for all A ∈ N ′ where Mi is the last
dictionary that was constructed.

4. If Mi+1 6= Mi then recompute step 3.

5. Let Mf be the dictionary last dictionary constructed during the fixed
point iteration. Let Mu be a dictionary where Mu(A) = {α : α�∗ ∈
Mf (A)} for all A ∈ N .

6. It then holds that FOLLOWk(A) = Mu(A) if k stays fixed for the
grammar G.

Page 5 of 26

Using FIRSTk and FOLLOWk a LL(k) table which maps nonterminals and
k or less terminals to the index of a production can be constructed.

Definition 2.3 (LL(k) table). Let G = (N, T, P, S) be a LL(k) context-free
grammar and τ : N × T ∗ → P(N) denote the LL(k) table. For a given
production A → δ = pi ∈ P where i ∈ {0, ..., |P | − 1} is a unique index.

i ∈ τ(A, s) where s ∈ FIRSTk(δ)
k• FOLLOWk(A)

If for a given grammar it holds that |τ(A, s)| = 1 for all (A, s) ∈ N×T ∗ then
the grammar is LL(k).

2.1.2 LL Parsing

To describe how LL parsing is done, a definition for a given state during LL(k)
parsing is needed. First a definition for production sequences is needed.

Definition 2.4 (Production sequence). Let G = (N, T, P, S) be a context-
free grammar where each production pi ∈ P is assigned a unique integer
i ∈ {0, ..., |P | − 1} = I. Then the set of every valid and invalid sequence of
productions indexes S5 is given by.

S = {(ak)nk=0 : n ∈ N, ak ∈ I}

This definition can now be used to define a given state of a LL(k) parser.

Definition 2.5 (LL parser configuration). Let G = (N, T, P, S) be a context-
free grammar that is an LL(k) grammar for some k ∈ Z+. A given configu-
ration [5, p. 5] of a LL(k) parser is then given by.

(w, α, π) ∈ T ∗ × (T ∪N)∗ × S

Where w is the suffix of an input string, α is the current states pushdown
store and π is the prefix of a production sequence used to derive the input
string.

When using deterministic LL(k) parsing you want to create a parsing func-
tion. To define how such a function is created the LL parsing relation is
defined. This relation holds if the left LL configuration can turn into the

5It is chosen to use a sequence for the “prefix of a left parse” [5, p. 5] because it seemed
like a better choice than the grammar notation.

Page 6 of 26

right LL configuration after the left configuration pops the top element of
the pushdown store.

(w, α, π) ` (w̄, ᾱ, π̄)

⇐⇒
(a ∈ T ∧ w = aw̄ ∧ aᾱ = α ∧ π = π̄)︸ ︷︷ ︸

Popping condition

∨
(α = Aω ∧ τ(A,FIRSTk(w)) = i ∧ pi = A → δ ∧ δω = ᾱ ∧ πi = π̄ ∧ w = w̄)︸ ︷︷ ︸

Deriving condition

The pop condition is if the left configuration has an input string and a push-
down store with the same first terminal. And the right configuration matches
the left configuration, but the first terminal is popped from the stack and
input.

The deriving condition is if the pushdown store α of the left LL con-
figuration has a first element that is a nonterminal A. If the nonterminal
together with the lookahead string results in a valid production index. And
the right-hand side of the production is on top of the pushdown store on the
right.

It is a possibility this definition does not match the definition in the
paper fully [5, p. 6]. This is related to the notation used in Algorithm 13 [5,
p. 15] which could be a mistake, this will be discussed later. Besides for this
problem the relation will correspond to a single change in state during LL
parsing.

This relation is expanded upon by introducing the relation `∗ which is
reflexive and transitive, therefore the relation may hold if.

(w, α, π) `∗ (w, α, π)

Or the relation may hold if.

(w1, α1, π1) `∗ (wn, αn, πn)

⇐⇒
(w1, α1, π1) ` (w2, α2, π2) ` · · · ` (wn, αn, πn)

The relation holds if and only if any of these conditions are fulfilled. This
parsing relation can be used to define the following parser function φ : T ∗ →
S.

φ(w) = π where (w, S, ()) `∗ (ε, ε, π)

If the `∗ relation does not hold then w can not be parsed.

Page 7 of 26

2.2 LLP(q, k) Parser Generator
2.2.1 LLP parsing

The idea of the LLP(q, k) grammar class comes from wanting to create a
LL(k) like grammar class, which can be parsed in parallel. To do this a
definition for a LLP configuration will be needed.

Definition 2.6 (LLP parser configuration). Let G = (N, T, P, S) be a
context-free grammar that is a LLP(q, k) grammar for some q, k ∈ Z+. Let
(x, y) be a pair such that xy occurs as a substring in L(G)6, x ∈ T ∗q7, y ∈ T ∗k.
If PSLS(x, y) = {ω} the pair (x, y) has the following LLP configuration.

(ω, α, π) ∈ (T ∪N)∗ × (T ∪N)∗ × S

Where ω is the initial pushdown store, α is the final pushdown store after
parsing (y, ω, ()) = (vw, ω, ()) `∗ (w, α, π), v ∈ T , w ∈ T ∗ and π are the
resulting productions.

The idea now is, that you would start off by creating every pair P that can
occur in the given input string. These pairs are defined to be the following.

P = {((x, y), i) : w = δxyiβ, |x| = q, |yi| = k}
∪ {((x, y), i) : w = xyiβ, |x| ≤ q, |y| = k}
∪ {((x, y), i) : w = δxyi, |x| = q, |y| ≤ k}

Where i ∈ N denotes the index of where the start of the substring yi starts,
this i is used such that the ordering can be kept. Then we would want to
create a table look up function Φ : T ∗×T ∗ → (T ∪N)∗× (T ∪N)∗×S. This
function maps the pairs (x, y) to a triplet (ω, α, π) which is much the same
as the configuration described in definition 2.5.

After all the x, y pairs have been constructed Φ is mapped over all the
pairs. The idea is now to check if the configuration besides each other
((ω, α, π), i) and ((ω̄, ᾱ, π̄), i + 1) matches on α and ω̄. This can be done
using the associative glue binary operation, which is described in detail in
the LLP paper [5, p. 7] or using Algorithm 18 [5, p. 18]. Using glue you can
do a parallel reduce since it is associative.

This description will suffice for the theory needed to explain the important
parts of the LLP paper [5] in relation to this paper.

6This is the set of all derivable strings s ∈ T ∗ : S ⇒∗ s here ⇒∗ is almost the same
relation as ⇒ but transitive and reflexive.

7This set is defined to be {t ∈ T ∗ : |t| ≤ q}.

Page 8 of 26

2.2.2 The PSLS definition

To construct Φ function Algorithm 8, 9 and 13 [5, pp. 13, 15] can be used
where Algorithm 13 results in the final table which is Φ. There is just the
problem that Algorithm 8 contains a mistake. This is due to Definition 6 [5,
p. 12] which is the definition of the PSLS function.

The function PSLS : T ∗ × T ∗ → P((N ∪ T)∗) is a function that finds
the Prefix of a Suffix of a Leftmost Sentential form. This function is able to
determine the initial pushdown store ω in an LLP configuration (ω, α, π) for
the pair (x, y).

The trouble occurs when considering the following LL(2) grammar. Let
G = (S ′, {`,a, a}{S ′, S, A}, P) be an augmented grammar where P is a set
of the following productions.

0) S ′ →` S a 1) A → ε 2) S → aAa 3) A → a

The augmentation comes from Algorithm 8 [5, p. 13] and introduces produc-
tion 0. If you now were to use the definition from the paper as it is you would
arrive at the following PSLS table.

a a a aa
` {S}
` a {A} {A}
aa a {a}

Table 1: The computed PSLS table using Algorithm 8 [5, p. 13].

To construct the table function that maps admissible pairs to LLP configura-
tions, Algorithm 13 [5, p. 15] will be needed. This Algorithm needs a LL(k)
parser so the following LL(2) table is constructed.

` a aa a a
S ′ S ′ →` S a
S S → aAa
A A → a A → ε

Table 2: The LL(2) parsing table.

The trouble you run into is if you create the LLP configuration from the PSLS
table entry (` a, a a). Then Algorithm 13 states that you need to parse the
first symbol of the lookahead string a a to obtain the final pushdown store
and the production sequence. But when you try to parse (a a, A, ()) then

Page 9 of 26

you get (a a, A, ()) ` (a a, ε, 1) due to the parser table. Because of this you
would never be able to parse the first symbol and Algorithm 13 would fail.

This can be fixed by changing the PSLS definition such that it is depen-
dent on k, it could then be called PSLSk instead. The dependency would
result in FIRSTk being used instead of FIRST1

8.

Definition 2.7 (PSLSk). Let G = (N, T, P, S) be a context-free grammar.
The function PSLSk(x, y) for a pair of strings x, y ∈ T ∗ is defined as follows:9

PSLSk(x, y) = {α : ∃S ⇒∗
lm wuAβ ⇒ wxBγ ⇒∗ wxyδ,

w, u ∈ T ∗, A,B ∈ N,α, β, γ, δ ∈ (N ∪ T)∗, u 6= x,

α is the shortest prefix of Bγ such that y ∈ FIRSTk(α)}
∪ {y : ∃S ⇒∗ wuAβ ⇒ wxaγ ⇒∗ wxyδ,

a = FIRST1(y), w, u ∈ T ∗, β, γ, δ ∈ (N ∪ T)∗, u 6= x}

And Algorithm 8 would then be changed when solving for the shortest prefix.

Algorithm 2.3 (Construction of a collection of sets of LLP(q, k) items.).
Input: A context-free grammar G = (N, T, P, S) that is LL(k). Ouput: A
collection C of sets of LLP(q, k) items for G.

1. The grammar is augmented in the following way:

G′ = (N ′, T ′, P ′, S ′) = (N ∪ {S ′}, T ∪ {`,a}, P ∪ {S ′ →` S a}, S ′)

where S ′ is a new nonterminal symbol and `,a are new terminal sym-
bols.

2. The initial set of LLP(q, k) items is constructed as follows:

(a) D0 := {[S ′ →` S a ., u, ε, ε] : u ∈ LASTq(` S a)}
(b) C := {D0}

3. If a set of LLP(q, k) items has been constructed, then a new set Dj is
constructed for each symbol X ∈ N ′ ∪ T ′ standing just before the dot
in Di. The set Dj is constructed as follows:

(a) Dj := {[Y → α.Xβ, uj, vj, γ] : [Y → aX.β, ui, vi, δ] ∈ Di, uj ∈⋃
ω∈BEFOREq(Y)α LASTq(ω), vj ∈ FIRSTk(Xvi), γ is the shortests

prefix of Xδ such that vj ∈ FIRSTk(γ)}.
8There are also some other changes made besides this which are mentioned in section

3.2.
9⇒∗

lm is much the same as ⇒∗ but only leftmost derivable strings are considered in the
relation.

Page 10 of 26

(b) If [X → αY .β, u, v, γ] ∈ Dj, Y ∈ N ′ and Y → δ ∈ P ′, then
Dj := Dj ∪ {[Y → δ., u′, v, γ] : u′ ∈

⋃
ω∈BEFOREq(Y)δ LASTq(ω)}.

(c) Repeat step (3b) till no new item can be added into Dj.
(d) C := C ∪ {Dj}

4. Repeat step (3) for all created sets till no new set can be added into
C.

Using the new definition and algorithm would result in the following PSLS
table.

a a a aa
` {S}
` a {Aa a} {Aa}
aa {a} {a a}

Table 3: The computed PSLS table using the new PSLS definition.

Using the new definition to create the LLP configuration from Aa a which is
the table (` a, a a) would now succeed. This is due to (a a, Aa a, ()) ` (a a
, a a, 1) ` (a,a, 1).

This changed definition would still work for LLP parsing. The difference
is the prefix of a suffix of a leftmost sentential form found via PSLS is now
guaranteed to be able to parse the first symbol. Since the pushdown store
will always have enough symbols to derive the k first symbols of the input.

It is important to note that this argument needs some assumptions. Be-
fore these assumptions will be accounted for a typo in Algorithm 13 [5, p. 15]
will be cleared up. This typo is the pushdown store and input string is
switched in the 3-tuple because of the definition in the LLP paper [5, p. 5].

The assumption is that Algorithm 13 uses implicitly the lookahead in the
LL configuration. This is assumed since only one symbol in the input string
of the LL configuration appears. If the lookahead is not accounted for then
LL(1) parsing would only be possible. This is a reasonable assumption since
the paper says the following about their parallel LL parsing method.

“The method is not universal because only a subset of LL(k) grammars can
be deterministically parsed in this way.” [5, p. 2]

If Algorithm 13 only used LL(1) then it would be true the method is a subset
of LL(k). It would then have been more precise to write their method only
works for a subset of LL(1). Therefore, it is assumed that LL(k) parsing is
meant to be used in Algorithm 13. Because of this assumption the example
shown here with the original PSLS definition will fail.

Page 11 of 26

2.2.3 Infinite loop

There is an infinite loop in Algorithm 8 [5, p. 13]. It will be shown in this
section that the infinite loop can occur. Consider the following augmented
grammar.

S ′ →` S a S → aSA A → ε S → b

This grammar is LL(1), so you should be able to use Algorithm 8 to determine
the PSLS table and therefore determine if it is LLP(1, 1). If you try to
construct the LLP item collection for the given grammar with q = 1 and
k = 1 what you find is.

D0 = {[S ′ →` S a .,a, ε, ε]}
D1 = {[A → ., b,a,a], [S → aSA., b,a,a],

[S → b., b,a,a], [S ′ →` S. a, b,a,a]}
...

The problem will occur due to the tuple [S → aSA., b,a,a]. This item will
become a singleton set when grouping the set D1 in the start of step 3. In
step 3 (a) you are able to create the tuple [S → aS.A, b,a, A a]. This is due
to:

b ∈
⋃

ω∈BEFORE1(S)aS

LAST1(ω) =
⋃

ω∈{`aS,aaS}

LAST1(ω) = LAST1(S) = {b}

a ∈ FIRST1(A a) since A ⇒∗ ε

A a is the shortests prefix of A a such that a ∈ FIRST1(A a)

Because [S → aS.A, b,a, A a] occurs, then the production S → aSA. also
appears in some item in Dj due to step 3 (b). This item has the same prefix
and same shortest prefix as [S → aS.A, b,a, A a]. The suffix b will also
appear in the next tuple because.⋃

ω∈BEFORE1(S)aSA

LAST1(ω) =
⋃

ω∈{`aSA,aaSA}

LAST1(ω) = LAST1(S) = {b}

Because of this [S → aSA., b,a, A a] is a member of the new set Dj which
is:

{[A → ., b,a, A a], [S → aS.A, b,a, A a],
[S → aSA., b,a, A a], [S → b., b,a, A a]}

Page 12 of 26

The problem is since the production, suffix and prefix is the same as the tuple
[S → aSA., b,a,a] the same item set will be created but with a different
shortest prefix. The new shortest prefix will always be prepended by A such
that a can be derived. This results in this computation can be repeated
infinitely. If you compute the next set using [S → aSA., b,a, A a] you will
arrive at:

{[A → ., b,a, AA a], [S → aS.A, b,a, AA a],
[S → aSA., b,a, AA a], [S → b., b,a, AA a]}

Therefore the item [S → aSA., b,a, A∗ a] will appear infinitely many times
in different sets. Algorithm 8 only terminates if a fixed point is reached, but
this is impossible, so it will not halt.

This algorithm was not fixed in this paper, instead a grammar is checked
for the following. Let G = (N, T, P, S) be a context-free grammar, this
grammar may cause an infinite loop if.

∃N ∈ N : α ∈ (N ∪ T)∗ ∧ A ∈ N ∧N ⇒∗ αAA ∧ A ⇒∗ ε

This predicate should not capture the essence of the problem. It is intended as
a way to make sure not infinitely many nullable nonterminals are prepended
to the shortest prefix.

2.2.4 Determining if a grammar is LLP

A common answer to whether or not a grammar is a LL(k) grammar is: if the
LL(k) parser can be constructed, then it is a LL(k) grammar. The same goes
for LLP(q, k) grammars. That is, a grammar is a LLP(q, k) if the LLP(q, k)
parser can be constructed.

The first step in determining if a grammar is a LLP(q, k) grammar is if
it is in the LL(k) grammar class. This is because the LLP parser uses the
LL parser to construct the table, therefore the class suffers from the same
limitations. The next step is to determine if the (x, y) pair leads to multiple
(ω, α, π) LLP configurations. This is what definition 10 [5, p. 13] is used for.
To determine if the grammar is LLP.

Definition 10 [5, p. 13] uses the PSLS(x, y) [5, p. 12] values to determine
the initial pushdown stores which can be used to determine the LLP con-
figuration. The trouble when working with LLP grammars the PSLS(x, y)
definition can be troublesome when trying to understand if a grammar is
LLP(q, k). Therefore, some examples of using the definition are given below.

Page 13 of 26

Example 2.1. Let ({A,B}, {a, b}, P, A) be a context free grammar where
P is.

A → abbB B → b B → A

It will be checked if the grammar is LLP(1, 1), when computing PSLS1(b, b).
It can be seen that there exists the following occurrences of bb which leads
to two different initial pushdown stores.

A ⇒∗
lm (abb)∗A ⇒ (abb)∗abbxBBγ ⇒∗ (abb)∗abbxby

This derivation10 corresponds to the first set in the PSLS1(b, b) definition.
The shortest prefix of B is B where b ∈ FIRST1(B) so B ∈ PSLS1(b, b) [6,
p. 2] by definition. The other occurrence comes from the last set in the PSLS
definition.

A ⇒∗
lm (abb)∗A ⇒ (abb)∗abxbyB ⇒∗ (abb)∗abxbyB

Since FIRST1(b) = {b} then b ∈ PSLS(b, b) by definition. The initial push-
down store for the admissible pair (b, b) is PSLS1(b, b) = {b, B}. Therefore,
by Definition 10 [5, p. 13] this grammar is not LLP(1, 1). If one were to check
for all admissible pairs then they would find that PSLS1(b, b) is the only prob-
lem pair. If one wishes to parse the grammar a LLP(2, 1) parser can be used.
It solves the ambiguities since PSLS1(ab, b) = {b} and PSLS1(bb, b) = {B}.

Example 2.2. Let ({S}, {[,]}, P, S) be a context free grammar where P is.

S → [S] S → ε

This grammar seems like it is not LLP(q, k) for any q, k ≥ 1. When LL
parsing the pairs ([q,]k) can lead multiple LL configuration (]n, S]n, π) where
q + k ≤ n. This grammar is actually a LLP(1, 1) grammar because the LLP
parser only uses the shortest prefix of the initial pushdown store in the LLP
configuration. This can be determined as not a problem by using the PSLS
definition.

S ⇒∗
lm [nS]n ⇒ [n+1S]n+1 ⇒∗ [n+1]n+1

Here the admissible pair (x, y) are ([q,]k) where q, k ≤ n+ 1 for a LLP(q, k)
grammar. Here Bγ from the definition corresponds to S]n+1 and the shortest
prefix of S]n+1 is S]k. Therefore, this is not a reason for the grammar not
being LLP(q, k).

10The subscripts denote what the symbols correspond to in the PSLS definition and
does change what the symbols mean in the grammar.

Page 14 of 26

Example 2.3. Let ({S}, {a}, P, S) be a context free grammar where P is.

S → aaS S → ε

This grammar is mentioned in the LLP paper [5, p. 16] as a grammar that is
not LLP(q, k) for any q, k ∈ Z+. This is because the pairs (aq, ak), that could
lead to the possible initial pushdown stores are PSLSk(a

q, ak) = {S, a(S|ε)}.
This is much the same reason as to why Example 2.1 is not LLP(1, 1). The
trouble with this grammar is even when increasing q or k there is not a
symbol that can make PSLSk(a

q, ak) become a singleton. If the productions
for the grammar were.

S → aS S → ε

Then the grammar is LLP(1, 1) because now only PSLSk(a
q, ak) = {S} can

occur.

3 Implementation

3.1 Structure
The parser generator was chosen to be written in Haskell. The reason for
doing so is the author likes the language. Another reason is also when dealing
with parsing, Haskell seems to be commonly used, so this tool seems to belong
in this toolbox.

The generated parser comes in the form of a Futhark source file. The
reason for doing so is Futhark is designed for “parallel efficient computing”
[2] that can be executed on a GPU. This is a good choice since the parser
that will be generated is designed for parallel parsing on a GPU. Futhark
is also in the ML family which helps with readability and makes it easy
for the author to write efficient GPU code. These advantages come in the
form of abstractions like non-recursive sum types and pattern matching. The
structure of the parser generator is.

1. Parse a context-free grammar.

2. If the grammar has common left factors, left recursion, predicate from
section 2.2.3 or the LL(k) table can not be constructed fail.

3. Construct PSLS table using Algorithm 9 and the new Algorithm 8 [5,
p. 13].

4. Use Algorithm 13 [5, p. 13] to construct the LLP(q, k) table.

Page 15 of 26

5. Add to the LLP(q, k) table, table entries (ε, w) which maps to the LLP
configuration (S ′, S a, 0) where w ∈ FIRSTk(S

′)

6. Make a Futhark source file which contains a LLP(q, k) table and algo-
rithm 18.

3.2 Assumptions
At times the notation of the LLP paper [5] was unknown to the author of this
paper. This was cause of problems when trying to implement the algorithms.
Therefore the following assumptions about the LLP paper [5] are mentioned
here.

Algorithm 8 [5, p. 13] has the following notation.

step 2. (a): “{[S ′ →` S a ., u, ε, ε]}, u = LASTq(` S a)”
step 3. (b): “{[Y → δ., u′, v, γ]}, u′ = LASTq(BEFOREq(Y)δ)”

In the context u and u′ are used. They are supposed to be terminal strings.
Both of these sets do not result in singletons, so the interpretation cannot
be unwrapping them. An example of this is if you compute u with q = 2
for the Example 11 grammar [5, p. 14]. It is therefore assumed that for each
element in the u and u′ sets, an item is constructed from them i.e.

step 2. (a): {[S ′ →` S a ., u, ε, ε] : u ∈ LASTq(` S a)}
step 3. (b): {[Y → δ., u′, v, γ] : u′ ∈ LASTq(BEFOREq(Y)δ)}

The second type of notation in Algorithm 8 is.

step 3. (a): “uj ∈ LASTq(BEFOREq(Y)α)”
step 3. (b): “u′ = LASTq(BEFOREq(Y)δ)”

For step 3. (a) BEFOREq(Y)α is interpreted as element-wise concatenation
of α on the back of each string in BEFOREq(Y). Since this results in a
set and LASTq : (N ∪ T)∗ → P(T ∗) then it is assumed that LASTq is used
element-wise on the set BEFOREq(Y)α. This would in turn mean uj is a
set. Therefore it is also assumed that union is implicitly used. The same
idea goes for step 3. (b) since from before it was assumed that it should be
interpreted as {[Y → δ., u′, v, γ] : u′ ∈ LASTq(BEFOREq(Y)δ)}. Therefore,
these two steps should be interpreted as.

step 3. (a): uj ∈
⋃

ω∈BEFOREq(Y)α
LASTq(ω)

step 3. (b): u′ ∈
⋃

ω∈BEFOREq(Y)δ
LASTq(ω)

Another assumption made in algorithm 8 is when G′ is defined.

Page 16 of 26

“G′ = (N ∪ S ′, T ∪ {`,a}, P ∪ {S ′ →` S a}, S ′)”

It is assumed that N, T or P now refers to the sets with which includes the
elements they are unionized with. Since if not, then step 3. (a) would result
in the empty set in the first iteration.

In Example 12 [5, p. 14] the tuple in the set E2 should be T → [.E].

3.3 Memoization of FIRST and LAST
The FIRST implementation corresponds to Algorithm 2.1. The LAST im-
plementation corresponds to the one mentioned in the LLP paper [5, p. 12],
which uses an existing FIRST implementation. A big problem with FIRST
is it is extremely expensive because of the truncated product step.

FIRST′
k(ω,M) =

⋃
(α,β)∈ϕ(ω)

FIRST′
k(α,M)

k• FIRST′
k(β,M)

This inefficiency can be solved by the use of memoization since FIRST is
recursively defined and has overlapping subproblems. In Haskell this can
be done using a State monad from the mtl library. As an example the
difference in performance can be seen in the before11 and after12 tests. In
the tests at the time this optimization was made, 25 LLP(q, k) parsers where
q, k ∈ {1, 2, 3, 4, 5}, FIRSTk where k ∈ {1, 2, . . . , 20} and FOLLOWk where
k ∈ {1, 2, . . . , 7} are generated. All of these functions are also used on some
generated input. The difference in performance of using memoization can be
seen below.

Time
Before memoization 4h 16m 27s
After memoization 21s

Table 4: The time it takes to run the tests before and after memoization was
implemented at the time. These times are taken from Github actions results.
No further comparisons was done since the speed of the parser generator was
not the main objective with this project.

A problem with this is it will end up taking a lot of memory because every
possible input string might end up being stored with its corresponding FIRST

11db564853c2fe4cd1c3d2839795738c56dbb209a0 is the SHA of the version
without memoization.

12daa9d6ff4640ca5683cec1d7956d2aa7ecd89c47 is the SHA of the version
with memoization.

Page 17 of 26

S → ε|a1S|a2S|a3S| · · · |anS

Figure 1: Grammar that generates every combination of its n terminals.

set. Since the FIRST and LAST implementation is only used on derivable
strings then the memory must be bounded by the grammar.

The worst case grammar one could use is a grammar which generates
every combination of terminals. This could occur but does not seem useful
so such a case seem unlikely to happen.

3.4 LLP collection of item sets
When constructing the LLP collection of items sets Algorithm 8 [5, p. 13]
is used. The actual Haskell implementation of algorithm 8 should match
the implementation, but some implementation details would be needed to be
explained. In the original Algorithm 8 it was said that.

step 3. (a): γ is the shortest prefix of Xδ such that γ ⇒∗ aω, a is the first
symbol of vj.

The way this could be solved is by doing a breadth first search (BFS) on
all the possible prefixes to see if the a can be derived. Then just choose the
shortest of the prefixes that can derive aω. The problem here is you would
need a condition for stopping the BFS such that it does not try to derive
something that can not appear.

An idea is to check if the first symbol of a given derivation has been
visited before, if so then skip the derivation. A problem that may occur
here is if Xδ = Y Y a and Y ⇒∗ ε then since Y is visited on the second
derivation then that path is not further explored. This was at some point
the used implementation in this project and was a cause of trouble It was
later realized step 3. had a mistake, and it should say something like.

step 3. (a): γ is the shortest prefix of Xδ such that γ ⇒∗ vjω.

But an easier idea was to create all prefixes of γ and compute the FIRSTk

of these prefixes. γ is then the shortest prefix where a ∈ FIRSTk(γ). This
implementation should is easy to comprehend and fast because of the use
of memoization in the FIRST. Due to this the Algorithm 8 was changed to
have a step with.

step 3. (a): γ is the shortest prefix of Xδ such that vj ∈ FIRSTk(γ).

Page 18 of 26

3.5 Parser
When the parser generator has created a table, this table will need to be
represented as code Futhark somehow. And a parallel bracket matching
algorithm to check the LLP configurations match. These problems will be
solved in this section.

3.5.1 String Packing

The first problem is how do we represent strings within Futhark. Futhark
does not have dynamic arrays and is not able to represent arrays of differ-
ent lengths in an array. This is because Futhark needs to be able to know
how much memory will be allocated. The reason, this is a problem, is the
function key_to_config in the parser acts as a table look up which returns
the corresponding LLP configuration. These LLP configuration may result
in differently sized pushdown stores or number of productions (α, ω, π).

This is actually not completely true since instead of using the LLP con-
figuration (α, ω, π) as is, the list homomorphisms in algorithm 18 [5, p. 18]
which results in the tuples (RBR(α)LBR(ωR), π) besides for the starting
pairs (ε,` w) where w ∈ T ∗ which becomes (LBR(ωR), π). This is done
such that step 2. from Algorithm 18 [5, p. 18] can be precomputed.

Since key_to_config is mapped over an array of (x, y) input pairs this
will result in the Futhark compiler not knowing how much memory needs to
be allocated. This is also a problem since in the parser generator terminals
and nonterminals are strings, so they may have different lengths.

To solve this problem string padding can be used. The way this is done
is every terminal string is assigned an index i ∈ {0, 1, . . . , |T | − 1} where
|T |−1 < 232−1. This is because the largest 32-bit value of 232−1 is used as
string padding. When dealing with a sequence of production then the indexes
i ∈ {0, 1, . . . , |P | − 1} where |P | − 1 < 232 − 1 for the same reason as for
terminal strings. When a string is made of nonterminals and terminals then
each nonterminal is are assigned an index from i ∈ {|T |−1, |T |, |N |+ |T |−1}
where 232− 1 ≤ i ≤ 264− 1. This is done since instead of assigning a specific
integer as being padding the non-recursive sum types from Futhark can be
used. This is a good choice since they are already used to label an element
on the pushdown store is a #left or #right bracket.

These considerations result in the following table look up function which
is created by the parser generator. This function does pattern matching on
the given input pair.

1 def key_to_config (key : ((u32), (u32))) : maybe ([]bracket, []u32) =
2 match key

3 case ((0), (1)) ->- #just ([#right 5, #right 1], [3])

Page 19 of 26

4 case ((0), (2)) ->- #just ([#right 5, #left 5], [1])

5 case ((0), (3)) ->- #just ([#right 5, #epsilon], [2])

6 case ((2), (1)) ->- #just ([#right 5, #right 1], [3])

7 case ((2), (2)) ->- #just ([#right 5, #left 5], [1])

8 case ((2), (3)) ->- #just ([#right 5, #epsilon], [2])

9 case ((3), (1)) ->- #just ([#right 1, #epsilon], [u32.highest])

10 case ((4294967295), (0)) ->- #just ([#left 1, #left 5], [0])
11 case _ ->- #nothing

The returned configurations are inside a Maybe-like type. So if at any point
#nothing is returned then an invalid string pair was returned and therefore
(x, y) was not an admissable pair. This table function above arises from the
following grammar where each subscript correspondx to the integers.

0. S ′
0 →`0 A1 a1 1. A1 → a2A1 2. A1 → b3 3. A1 → ε

3.5.2 Bracket Matching

Besides this the Futhark implementation matches Algorithm 18. A missing
piece is the parallel bracket matching which is not described in the LLP
paper [5, text]. The implementation used takes a lot of inspiration from the
implementation described on the Futhark [1]. The differences are a balancing
check is made as can be seen below.

1 def depths [n] (input : [n]bracket) : maybe ([n]i64) =
2 let left_brackets =
3 input

4 ||> map (is_left)
5 let bracket_scan =
6 left_brackets

7 ||> map (\b ->- if b then 1 else -1)

8 ||> scan (+) 0
9 let result =

10 bracket_scan

11 ||> map2 (\a b ->- b - i64.bool a) left_brackets

12 in if any (<0) bracket_scan ||| last bracket_scan !!= 0
13 then #nothing
14 else #just result

This is done using bracket_scan which must only contain positive val-
ues and the last value must be zero. If these predicates are not fulfilled
then it is known the brackets are not balanced. The returned result is the
bracket_scan returned such that it is adjusted for the left brackets being one
then the right. Here the non-recursive sum-type from Futhark are utilized
once again where #nothing is returned if an error occurs.

Something to note is the glue [5, p. 7] reduce could have been used instead
of algorithm 18 [5, p. 18]. This is a bad choice for two reasons, the first is
it is slow [5, p. 17]. The second reason is Futhark does not have dynamic
arrays and does not allow for using concatenation when using the built-in
reduce function.

Page 20 of 26

Assuming the number of processes used is the number of terminals then
the LLP(q, k) parsing algorithm using bracket matching is O(logn) where n
is the number of terminals in the input string [5, p. 19].

4 Testing

4.1 FIRST and FOLLOW
Unit testing with some property based testing are used to ensure the first and
follow sets are computed correctly by Algorithm 2.1 and 2.2. The structure
of the first and follow set tests is some small hard coded tests and tests which
assert the first and follow set definition is fulfilled. The small tests are meant
to be easy to comprehend and help guide the programmer with large errors.
While the first and follow set tests are used to assert the correctness.

4.1.1 Unit tests

The unit tests used to assert the correctness of the first and follow sets
are done by comparing the computed sets with precomputed sets of some
grammars. The existing results were taken from [4, pp. 58, 62, 63, 65] with
some small modifications to the results where ε is included in the first and
follow sets due to the LLP paper definition [5, p. 5]. These grammars are
complex enough to cover different possible properties of grammars which can
influence the sets. Such as nonterminals followed by each other and nullable
nonterminals.

4.1.2 Property based like testing

These test are like property based tests which tests for some property, but
they tested on random input. The property tested for is if the functions can
reconstruct the LLP paper definition of first and follow [5, p. 5].

FIRSTk(α) = {x : x ∈ T ∗ : α ⇒∗ xβ ∧ |x| = k}
∪ {x : x ∈ T ∗ : α ⇒∗ x ∧ |x| ≤ k}

FOLLOWk(A) = {x : x ∈ T ∗ : S ⇒∗ αAβ ∧ x ∈ FIRSTk(β)}

This can be done by implementing the naive implementation described later.
For the property based tests k ∈ {1, 2, 3, 4} is used for two grammars [4,
pp. 62, 63]. These tests could have been more extensive with more k values
or random grammars. This was never done because the naive first and follow
implementations becomes extremely slow for larger k.

Page 21 of 26

FIRSTk testing

The FIRSTk definition can be naively implemented by doing a breadth first
search on derivable strings for each nonterminal of a grammar. If the first
sets of all nonterminals are reproducible by Algorithm 2.1 then the FIRSTk

function is computed correctly for the given grammar. The reason for this is
you are able to compute any FIRSTk of a string in a grammar if you know
FIRSTk of any nonterminal.

FOLLOWk testing

The FOLLOWk definition can also be naively implemented by doing a bread-
th first search on derivable strings from the starting nonterminal. Every
time a nonterminal A occurs in the derivable string the FIRSTk function is
computed of the trailing symbols β. These sets are then used to construct the
FOLLOWk(A) set. If all FOLLOWk(A) are reproducible by Algorithm 2.2
then the FOLLOWk function is computed correctly for the given grammar.

4.2 LL(k)
To test the LL(k) parser, integration tests with some property based like
testing is used, since once again these tests are not random. The integration
testing comes in the form of ensuring that a working parser is created from
the first and follow sets.

One of the integration tests are creating LL(k) parsers with k ∈ {1, . . . , 5}
for a grammar [4, p. 45]. Then a parsable string is parsed with a known
production sequence. This is done to check if the parser can parse strings
correctly. This is the only test done which check for a correct sequence. A
better test would have been to compute the sequence order of every derivable
string and see if the parser produces the same sequence. This was never done
because it was not believed this kind of testing was needed at the time.

The property based like test only checks for if every leftmost derivable
string of a given length will result in a sequence. And every string that is
not left most derivable will result in an error.

4.3 LLP(q, k)

To assert the parser generators works as intended, integration tests with
property based testing is used. And some small hard coded tests are used to
help debug for larger problems. Besides these tests there are also the property
based tests which are meant as a way to guarantee the parser generator works
as intended.

Page 22 of 26

4.3.1 Unit tests

Some precomputed examples from the LLP paper [5] are used to test that
each algorithm arrives at the correct result. This is because there is not really
any easy way of implementing the PSLS definition. The second problem is,
that computing the LLP item collection by hand can be quite a daunting
task. Therefore, the LLP collection in Example 11 [5, p. 14] and the PSLS
table in Example 12 [5, p. 14].

Another test starts by constructing nine LLP(q, k) parsers where q, k ∈
1, 2, 3 using the grammar in Example 11 [5, p. 14]. These parsers are tested
by constructing all leftmost derivable strings of a given length and testing
if the parsers can parse all these strings. The parsers are all tested on all
strings of a given length which are not leftmost derivable strings and should
fail on all these strings. These parsers are also tested against a single string
to check if a hard coded production sequence can be reproduced.

4.3.2 Property based testing

For the property based testing, random LLP(q, k) grammars will be needed.
These are found by creating random grammars and checking if the parser
generator will create a parser.

Stuck testing

The first kind of property to test for, is if the parser generator is able to get
stuck in an infinite loop. This will need to be tested for since the parser gen-
erator uses fixed point iterations. To get an idea if the parser generator gets
stuck one thousand LLP(1, 1) grammars are generated and their parsers are
created. These grammars are randomly generated and have three terminals,
three nonterminals and six productions. If all of these parsers are not created
within 5 hours, then it is assumed the parser generator can get stuck.

Parsing testing

The property tested for is if an arbitrary LLP(q, k) parser is able to parse left-
most derivable strings of a given length and fail on any other string. Besides
this the production sequence computed also needs to match the sequence
used to derive the string that is being parsed.

This property would translate to let G = (N, T, P, S) be a LLP(q, k)
grammar, ϕ : T ∗ → S be a LL(k) parser and Π : T ∗ → S be a LLP(q, k)
parser. These parser functions generate the production sequence if the input

Page 23 of 26

can be parsed else the empty sequence is produced. The property tested for
is then13.

∀s ∈ T ∗ : Π(s) = ϕ(s)

These tests are done for 50 random LLP(1, 1) grammars, 50 LLP(2, 2) and
50 LLP(3, 3) grammars. Where the leftmost derivable strings are of length
20 or less and not leftmost derivable string are of length 6 or less.

Problems with this method

The LLP grammars are generated by rejecting grammars if they are not
LL(k), or they just have a single common left factor. Or if the infinite
loop property from Section 2.2.3 is fulfilled. The concern is if almost every
grammar just gets rejected.

When generating random grammars with three terminals, three nonter-
minals and six productions with a right-hand side with a length of at max
three. And the three of the productions must use the nonterminals as their
left-hand side. Because of this the grammars are not uniformly distributed,
but they are more likely to be useful. Using these specifications we see the
following percentage of random grammars are accepted as LLP.

Lookback Lookahead Acceptance Percentage
1 1 7.46%
2 2 9.43%
3 3 10.40%

Table 5: The percent of grammars accepted when trying to generate 1000
LLP(q, k) grammars.

As one can see when increasing the lookback and lookahead more grammars
are accepted which is expected due to the grammar class becoming larger. It
is assumed that the tests are working as expected because it does not seem
like that many grammars gets rejected.

13S ⇒∗
lm s means all leftmost derivable strings from the start of the grammar. ⇒∗

lm

allows only for left derivations and is reflexive and transitive.

Page 24 of 26

5 Conclusion
The LLP parser generator works due to it being thoroughly tested using mul-
tiple random grammars. But the parser generator does not work as intended
since it does reject grammars which may be LLP(q, k) because of the infinite
loop check. Nevertheless, the implementation is still acceptable.

The parser generator is missing a way of constructing the concrete syntax
trees. The time for this was never found because a multitude of problems
with the theory and implementation of the parser generator. This is most
likely due to the author of this paper being inexperience with parsing.

During this project it was also realized that there are two mistakes in the
LLP paper [5]. It is believed that the two counter examples shown in this
paper should convince a reader that there are mistakes in the algorithms.

The usability of the grammar class LLP(q, k) is at the moment unknown
for q > 1 and k > 1. It is known a LLP(1, 1) parser generator can be used
for JSON and a small C-like language [7]. These implementations come with
limitations, an example is JSON is not LLP(1, 1) [7, p. 60], so modifications
are made such that JSON can be parsed. The hope is that by creating a
LLP(q, k) parser this can help mitigate these limitations.

References
[1] Futhark Website Contributors. Matching parentheses. https://github.

com/diku-dk/futhark-website. [Online; accessed 31-May-2023]. 2023.
url: https://futhark-lang.org/examples/parens.html.

[2] Futhark Website Contributors. The Futhark Programming Lnaguage.
https://github.com/diku-dk/futhark-website. [Online; accessed
31-May-2023]. 2023. url: https://futhark-lang.org.

[3] Sestoft Peter and Larsen Ken Friis. Grammars and parsing with Haskell
Using Parser Combinators. Version 3. At the time of writing these notes
are used in the Advanced Programming course at the University of
Copenhagen. Sept. 2015.

[4] Mogensen Torben Ægidius. Introduction to Compiler Design. 2nd ed.
London: Springer Cham. doi: https://doi.org/10.1007/978-3-319-
66966-3.

[5] Ladislav Vagner and Bořivoj Melichar. “Parallel LL parsing”. In: Acta
Informatica 44.1 (Apr. 2007), pp. 1–21. issn: 1432-0525. doi: 10.1007/
s00236-006-0031-y. url: https://doi.org/10.1007/s00236-006-
0031-y.

Page 25 of 26

https://github.com/diku-dk/futhark-website
https://github.com/diku-dk/futhark-website
https://futhark-lang.org/examples/parens.html
https://github.com/diku-dk/futhark-website
https://futhark-lang.org
https://doi.org/https://doi.org/10.1007/978-3-319-66966-3
https://doi.org/https://doi.org/10.1007/978-3-319-66966-3
https://doi.org/10.1007/s00236-006-0031-y
https://doi.org/10.1007/s00236-006-0031-y
https://doi.org/10.1007/s00236-006-0031-y
https://doi.org/10.1007/s00236-006-0031-y

[6] Ladislav Vagner and Bořivoj Melichar. “Parallel LL parsing”. In: Acta
Informatica 44.1 (Apr. 2007), pp. 73–73. issn: 1432-0525. doi: 10.1007/
s00236-006-0032-x. url: https://doi.org/10.1007/s00236-006-
0032-x.

[7] Robin Voetter. “Parallel Lexing, Parsing and Semantic Analysis on the
GPU”. MA thesis. Leiden University, 2021.

[8] Wikipedia. LL parser — Wikipedia, The Free Encyclopedia. http://
en . wikipedia . org / w / index . php ? title = LL % 20parser & oldid =

1145098081. [Online; accessed 03-May-2023]. 2023.

Page 26 of 26

https://doi.org/10.1007/s00236-006-0032-x
https://doi.org/10.1007/s00236-006-0032-x
https://doi.org/10.1007/s00236-006-0032-x
https://doi.org/10.1007/s00236-006-0032-x
http://en.wikipedia.org/w/index.php?title=LL%20parser&oldid=1145098081
http://en.wikipedia.org/w/index.php?title=LL%20parser&oldid=1145098081
http://en.wikipedia.org/w/index.php?title=LL%20parser&oldid=1145098081

	Introduction
	Theory
	TEXT Parser Generator
	TEXT and TEXT
	LL Parsing

	TEXT Parser Generator
	LLP parsing
	The PSLS definition
	Infinite loop
	Determining if a grammar is LLP

	Implementation
	Structure
	Assumptions
	Memoization of FIRST and LAST
	LLP collection of item sets
	Parser
	String Packing
	Bracket Matching

	Testing
	FIRST and FOLLOW
	Unit tests
	Property based like testing

	TEXT
	TEXT
	Unit tests
	Property based testing

	Conclusion

