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Abstract
An interpretation of interval trees and range trees in the programming
language Futhark. Through the theory of centered interval trees and
k-dimensional range trees, this report will explore and conclude on a

data-parallel approach, an evaluate how e�cient such an implementaion
performs against a naive approach.
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1 Introduction

This report documents the theory and the data-parallel implementations of
interval trees and range trees, or more speci�cally, centered interval trees
and k-dimensional range trees (we are mostly looking at the 2-dimensional
case, the dimensional generalization should be considered a novelty).

Futhermore, we will cover the performance of the before mentioned trees and
attempt to analyze when a tree performs better than a brute force solution. In
other words, how many queries does it take to justify the amount of time spent
constructing a tree compared to the amount of queries the speedup would save?

In the real world, range trees are famous for being a structure that supports
k-dimensional queries on databases. Interval trees do have use cases, though
they may be more of a niche.

The full implementation can be found on GitHub1.

2 Background

2.1 Futhark

To understand the why the challenges presented in this project pose complica-
tions, we �rst have to understand the purpose of the programming language of
Futhark. Futhark is a statically typed, data-parallel, and purely funcitonal array
language in the ML family, and comes with a heavily optimising ahead-of-time
compiler that presently generates either GPU code via CUDA and OpenCL, or
multi-threaded CPU code [4].

The strengths of Futhark lies in its simplicity, its speed, and its ability
to generate, normally tedious to write, parallel code, using primitive opera-
tions that promise such parallelization. Within Futhark, we call these SOACs:
Second-Order Array Combinators, which the compiler will know how to exploit
to generate parallel code.

The limitations of Futhark lies in what it lacks. Futhark is quite simple,
which leads to some problems as the need for more complex programs arise.
Mainly, in the scope of this project, Futhark's lack of support for recursion, for
pointer structures and for irregular nested parallelism. These limitations make
way for new techniques to substitute these lacking funcitonalities. Two such
techniques, which we will be making use of in this project, are function-lifting

and array-�attening.

2.1.1 SOACs

All complex operations must be carried out using a combination of primitive
functions, which promise some parallel execution. Primitive functions being
built-in functions in the Futhark compiler, that has some form of possible par-
allelization. For instance, the SOAC map has the identity map : (α → β) →

1https://github.com/Victoriast8/futhark-range-trees
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[n]α → [n]β, transforming each element individually using a passed function.
This is an example of parallelization using SOACs, as the compiler knows that
each map call operates on each element individually, making it possible to assign
each index its own thread (or rather allocates chunks/blocks, but this is besides
the point) and in this manner assign n threads to an array of size n when map

is called. In this way, the function completes in very little time, as long as it
has the resources to parallelize e�ciently.

Every function built inside of the Futhark compiler is exposed in the docu-
mentation2 together with its asymototic work and span.

2.1.2 Flattening Arrays

Why do we need to �atten? The answer is simple - Futhark does not support
irregular nested arrays (and by extension, irregular nested parallelism). For
this reason, we are forced to use �attened arrays, when nested irregular arrays
become unavoidable. Presenting trees as nested arrays would not be an option
either, as irregular nested parallelism is not supported (nested array might also
exhibit bad locality, but that is besides the point).

Using the �attening technique, a single array can represent the whole data
set, as long as we keep track of the segment sizes or indices of where the �at
array splits into subarrays. It is then possible to prede�ne new functions based
on primitives, that operate on segmented data. When �attening, one usually
has some nested, recusive or pointer structure to start with to �atten from, and
then uses this version to �atten; this could be represented as a morphing of
[n][m] -> [n*m], assuming [n][m] is regular.

[n][m]α
flat−−→ [n*m]α

This expression hides one important detail, which is that �at arrays can be

irregular. This means that each segment does not have to be of size m, but can
have its own size, completely independent from neighboring segments.

To keep track of each segment inside of a �at array, we make use of a shape

array, which contains the size of each segment in order. Here's an example:

array: [[0], [1, 2], [3, 4, 5], [], [6]]

flat array: [0, 1, 2, 3, 4, 5, 6]

shape array: [1, 2, 3, 0, 1]

2.1.3 Function-lifting and �attening

When it comes to �attening, functions also play a role. Imagine having a nested
irregular array and presenting it as �at data. A �attened function would be
the equivalent of instead of applying map with some function f on some nested
array arr, then apply some �at function fflat on the �at representation of arr.
When handling �at arrays, we are theoretically dealing with nested arrays, or

2speci�cally SOACs can be found here: https://futhark-lang.org/docs/prelude/doc/

prelude/soacs.html
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in other words, arrays of multiple dimensions, but represented as a single array.
This means that to de�ne a segmented operation, a function that operates on
segmented data/�at arrays, we �rst have to de�ne a version of said function,
such that it operates on nested arrays. This is what is called function lifting:

f : [n]α → [n]β
lift−−→ fL : [m][k]α → [m][k]β

fL : [m][k]α → [m][k]β
flat−−→ fL

flat : [m*k]α → [m*k]β

The second step is then to �atten the lifted function, such that it operates on
�at arrays instead of nested arrays.

2.1.4 Pointer-Structures in Futhark

As mentioned, Futhark does not support pointer-structures. This means that
to keep track of references, we have to get creative.

One way to keep track of references between data is using an array, which
keeps track of reference indexes, as mentioned by Troels Henriksen in [5]. The
general idea looks something like this:

value: [0,1,2,3,4,5,6]

reference: [0,0,0,1,1,2,2]

0

2

65

1

43

This idea is what is solely used as pointer-references in this project, as this also
bundles very nicely with �at arrays, as one can simply used a combined type
consisting of both information and index-referencing, where one element points
to the index of another element in the same array.

The example from before conveys the idea of parent-pointers. In this project,
we concern ourselves with child-pointers; where parent-pointers are used by
nodes to refer to which node it itself belongs to, child-pointers denote which
nodes belong to a node. Child-pointers can represent the previous example as
follows:

value: [0,1,2,3,4,5,6]

lc: [1,3,5,-1,-1,-1,-1]

rc: [2,4,6,-1,-1,-1,-1]

Where lc denotes a node's left-child index and rc denotes a node's right-child
index. A value of −1 means there exists no child. If a node has no children, it
is considered a leaf.
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3 Interval trees

This section brei�y explains the theory behind interval trees, how they are
de�ned, how they are constructed and queried. The implementation of interval
trees in Futhark will also be explained and analysed.

3.1 Theory

3.1.1 What is an Interval Tree?

An interval tree is a datastructure which represents a collection of 1-dimensional
intervals. Interval trees have di�erent ways of being expressed: As explained in
the Wikipedia article for interval trees [8], there is:

� the naive approach (basically just two BSTs, no better than brute
force),

� the augmented map, which is an augmented, slightly modi�ed, BST.
This is usually what is referred to as interval trees, e.g. in [7] [3, chapter
17.3],

� the centered interval tree.

Going forward, we will only be discussing the centered interval tree, as this
is the type of interval tree that has been used throughout this project. With
these clari�cations in place, we can move on discover how an interval tree is
constructed and queried.

Say we have a set of intervals I, each consisting of a smaller start value xstart

and bigger end value xend and we would like to query a point p to see how many
intervals in I where p lies within. In other words, count every interval where
xstart ≤ p ≤ xend holds. Figure 1 visualizes a simple example of this.

But then, how do one de�ne a datastructure using intervals? Idea: Create a
BST, which stores two sets of overlapping intervals, one set by sorted xstart

and one set sorted by xend and a point xmid that overlaps the intervals in each
node. Intervals where xend < xmid or xstart > xmid are then recusively put in
separate nodes, left or right according to which direction the interval is located
with respect to xmid. This leads to the centered interval tree as described
by Wikipedia in [8], resulting in a binary tree where each node contains:

� A center point (xmid)

� A pointer to a subtree that contains all intervals less than xmid (xmid >
xend holds for all elements in that subtree)

� A pointer to a subtree that contains all intervals greater than xmid (xmid <
xstart holds for all elements in that subtree)

� All intervals overlapping xmid sorted by xstart

� All intervals overlapping xmid sorted by xend
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x-axis

Figure 1: Visualization: Intervals in I and point p (red). Note that the intervals
lie on a line, but has been shifted up/down, so we can distinguish between start-
and end-points. One can observe the vertical line drawn from point p, slicing
through intervals, indicating overlaps (blue intervals overlap with p).

3.1.2 Construction

Constructing an interval tree, requires the calculation of xmid, the creation of
two subtrees for non-overlapping interval if they exist, and the storage of 2k
intervals, k being the number of intervals overlapping xmid. xmid should be
chosen as some sort the midpoint of the evaluated intervals. The way we chose
xmid, is to take the smallest xstart in the sample of Ii and the biggest xend in
the sample of Ii and �nd the midpoint between these two points, where Ii are
the intervals considered for any node ni. xmid can then be written as:

xmid = min (Ii) +
max (Ii)−min (Ii)

2

Taking the average of Ii would be just as valid. For reference, Figure 2 shows a
visualization of a centered interval tree.
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Figure 2: Visualization of the conecpt of a centered interval tree from the
lecture slides of Carnegie Mellon University on Interval Trees [2]. The blue
lines represent some overlapping point xmid of each gray box, each gray box
represents a node.

Algorithm 1 Construct (Ii)

Input. A set of intervals Ii.
Output. The root of an interval tree.

1: �nd xmid using Ii
2: de�ne (left, center, right) using xmid to partition Ii for intervals, where

left = xend < xmid ∈ Ii, center = xstart ≤ xmid ≤ xend ∈ Ii, right =
xmid < xstart ∈ Ii

3: lc = Construct(left)
4: rc = Construct(right)
5: (sbs,sbe) = sort center by xstart and xend for e�cient queries
6: return node ni = {xmid, lc, rc, sbs, sbe}

In Algorithm 1 we see the overall idea behind �Construct,� the algorithm for con-
structing a centered interval tree similarly to what is described by Wikipedia
[8].

3.1.3 Querying

When querying a centered interval tree, one can do it in more than one way,
but they all share the same general approach: As described in Algorithm 2, at
any node ni we do a check for our query-point p < xmid, as this implies that
∀xend ∈ ni, p < xend, or ∀xstart ∈ ni, p > xstart if p > xmid. Simply put, we
only have to check start- or end-points, based on the di�erence between p and

8



xmid of ni. Knowing this, and knowing we have intervals sorted by start- and
end-point stored in ni, compare p to xmid: If p < xmid then choose sbs (sorted
by start xstart), else if p ≥ xmid then choose sbe (sorted by end xend). Then,
for this node ni, we go through the chosen set sorted on xstart or xend furthest
from the midpoint xmid reporting overlapping intervals, until p falls outside of
an interval or all intervals have been reported. Finally, run recursively on left-
child (lc) if p < xmid, or on right-child (rc) if p > xmid, or stop if the child
does not exist.

Algorithm 2 Query (p,ni)

Input. A query-point p and a node ni.
Output. Intervals that overlap with p.

1: remember: ni = {xmid, lc, rc, sbs, sbe}
2: �nd direction; on which side of xmid does p lie?
3: acc = assume p < xmid is true; run through and report intervals sorted by

xstart (sbs): Else, report intervals sorted by xend (sbe).
4: subquery = assume p < xmid is true; Query (p,lc) if lc exists: Else, Query

(p,rc) if rc exists
5: return acc + subquery

3.2 Implementation

The implementation of centered interval trees in Futhark can be seen in full
on Github3.

This section will cover some of the code concerning interval trees, but not
all. The most non-trivial steps have been included and discussed in the report.

3.2.1 Construction

Constructing a centered interval trees is rather simple:

1 -- the keyword 'Maybe ' in Haskell

2 type opt 'v = #some v

3 | #none

4

5 -- representing tree nodes with the following types

6 type point = f64

7 type child = opt i64

8 type interval = (point ,point)

9 type node = {m: point , slice: (i64 ,i64), left: child , right: child}

Listing 1: Type de�nitions for interval trees.

Listing 1 shows type de�nitions that forego the implementation of interval trees.
These remind us, how a node is represented in an interval tree: A midpoint m
(xmid), a slice as intervals stored in a node will almost always be irregular and

3https://github.com/Victoriast8/futhark-range-trees/blob/main/trees/interval_

tree.fut
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have to be stored separately, a left child index pointer and a right child index
pointer.

An interval is de�ned as two points, xstart and xend, and in this imple-
mentation, points are de�ned as f64s, but this type could be arbitrary with a
lt operator.

1 -- parameters for loop:

2 -- 1. work; dictates what data needs processing

3 -- 2. shape of work; dictates the sizes of each subarray in 'work '

4 -- 3. accumulator; accumulates the resulting nodes and sorted

intervals

5 -- 4. number of nodes; simply a constant. Could be replaced with '

length acc.0' where 'non ' is used

6 -- 5. initial offsets; keeps track of each subarray 's offset from

previous iterations

7 loop (wrk , wrk_shp , acc , non , iv_off)

8 = (iv, [(i32.i64 n)], ([] ,[] ,[]), 0, 0)

9 while !(null wrk) do

Listing 2: loop call and parameters for interval tree.

In Listing 2, one can observe the use of a loop. By why is this the case? Are
loops not notoriously slow and fully sequential in Futhark? Yes, indeed they
are. Recall that recursion is not supported in Futhark - the way to go about this
is to parallelize the implementation in a di�erent way. Instead of recursion we
�nd another way to construct trees by using the SOACs de�ned within Futhark
to achieve some parallelization.

The way we construct an interval tree by the use of a loop, is in our case
with a top-down, breadth-�rst approach, creating one level of nodes at a time.
Looking back at Listing 2, the �rst parameter wrk is the information for all
nodes that is to be created represented as �at data at a depth h, where h is the
current iteration of the while-loop. Keeping track of a �at data array, also
requires keeping track of its shape, hence another loop parameter wrk_shp.
acc is the accumulating value, accumulating nodes and intervals of work that is
�nished processing. non stands for number of nodes, iv_off stands for interval
o�set and are both omissible, as they represent the amount of stored nodes and
intervals respectively. The length of acc is equally valid and is probably better
to use, as to prevent unnecessarily many loop parameters.

1 -- step 1. create mid values for partition

2 let min = sgmScan (\x y -> if x < y then x else y)

3 f64.highest flags (map (.0) wrk)

4 let max = sgmScan (\x y -> if x > y then x else y)

5 f64.lowest flags (map (.1) wrk)

6 let mid = map (\i -> min[i] + 0.5 * (max[i] - min[i])) ends

Listing 3: The calculation of segmented xmid.

Listing 3 shows the calculation of xmid values for each segment; for each new
node. Making use of a segmented scan, the min and max is located at the end
of each segment, and afterwards a map over the ends allows for direct access to
these values and simple indexing for the calculation of each segment's midpoint.
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The segmented scan makes use of a previously calculated array flags, which is
an array with the same size as wrk with non-zero values at the start index of
each segment.

1 -- step 2. do the partition2L

2 let flg_scn = map (+( -1)) (sgmScan (+) 0 flags flags) -- in other

words , the index of the segment

3 let ((split1 ,split2),(_,pwrk)) = flat_res_partition2L

4 (\t -> t.1.1 >= mid[t.0] && mid[t.0] >= t.1.0)

5 (\t -> mid[t.0] > t.1.1)

6 (0 ,(0.0 ,0.0)) (wrk_shp ,(zip flg_scn wrk))

7 let (_,pwrk) = unzip pwrk

Listing 4: Segmented partition2 (splits each segment up into three parts, based
on two comparison functions).

In Listing 4 observe the use of flat_res_partition2L. This is as the name
suggests, a lifted partition2 that works on �at arrays. In the context of cre-
ating interval trees, the �at partitioning partitions each segment (each queued
node) into three parts: One part where all intervals have both its xstart and
xend to the left of xmid (λ on line 5); one part where all intervals overlap with
xmid (λ on line 4); one part where all intervals lie to the right of xmid, both
xstart and xend is > xmid (here is no λ - these intervals implicitly failed both
previous partitions).

The de�nition of flat_res_partition2L can be seen in Listing 14, from
line 85 to line 91. The �at partition2 call is de�ned as two �at partitions
(partitionL), which can be found right above on line 58 to line 78.

1 -- accumulate results

2 let sbs_acc = sort_by_key (.0) (f64.<=) done -- sorted by start

3 let sbe_acc = sort_by_key (.1) (f64.<=) done -- sorted by end

4 let cent_offsets = scanExcl (+) 0 cent_length

5 let islice = map2 (\off len ->

6 ((i64.i32 (off + iv_off)), i64.i32 len)

7 ) cent_offsets cent_length

8 let new_acc =

9 (concat acc.0

10 (map3 (\p i (l,r) -> create_node p i l r) mid islice

children),

11 concat acc.1 sbs_acc ,

12 concat acc.2 sbe_acc)

13 let new_off = iv_off + (last cent_offsets) + (last cent_length)

Listing 5: Accumulation of results at the end of a depth iteration of the interval
tree loop.

Creation of nodes and sorted intervals is shown in Listing 5. Line 8-12 shows the
accumulation of nodes and stored intervals, sorted by xstart and xend respec-
tively, with variable names sbs (sorted by start) and sbe (sorted by end). The
calculation of the interval slice (indexing of stored intervals, belonging to a given
node) happens on line 5-7, using the segmented o�set, the segment length and
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the loop parameter, interval o�set iv_off. Remember that segments were pre-
viously partitioned, so here there are only intervals satisfying xstart ≤ p ≤ xend,
which in the code is also referred to as center intervals.

The tree loop runs at most lg n times and at least 1 time, if either no
intervals overlap or if all intervals overlap at a single point. The work here is
then very simple to analyze, as sorting �nished intervals is the worst-case work
when we have a single node with O(n lg n) run time, and otherwise the SOACs
dominate the work with O(n). Remember lg n for the loop, and we get a work
of:

W (Construction) = O(n lg n)

Which matches [8] and [2].
The span uses the same line of reasoning, but with O(lg n) for both sorting

and SOACs, times the lg n for the worst-case loop, giving of a span of:

S(Construction) = O(lg n · lg n) = O(lg2 n)

3.2.2 Querying

1 def count (p : point) (t : tree) : i64 =

2 let new_child_idx (n : child) : i64 =

3 match n

4 case #some idx -> idx

5 case #none -> -1

6 -- loop traverses tree

7 let (_,cnt) = loop (i,acc) = (0,0) while i >= 0 do

8 let current = t.tNodes[i]

9 let (istart , ilen) = (current.slice.0, current.slice .1)

10 let dir = p <= current.m

11 let (new_i , ivs , startidx , ldir) =

12 if dir then (new_child_idx current.left ,

13 t.tStartSortedIntervals , istart , 1)

14 else (new_child_idx current.right ,

15 t.tEndSortedIntervals , istart+ilen -1, (-1))

16 in if ilen <= 0 then (new_i ,acc) else

17 -- loop counts # of hit intervals

18 let (_,sum) = loop (idx ,iacc) = (startidx ,0)

19 while ilen > iacc

20 && (if idx >= 0 && idx < istart+ilen then

21 p >= ivs[idx].0 && p <= ivs[idx].1

22 else false) do

23 (idx+ldir ,iacc +1)

24 in (new_i ,acc+sum)

25 in cnt

Listing 6: count counts the number of overlaps between a given point p and a
centered interval tree t.

The entire code for interval tree queries is shown in Listing 6. The query acts
exactly as described by CMU and Wikipedia [8] [2], while being fully sequential.
This query algorithm is impossible to parallelize, as it consists of a single tree
traversal plus counting intervals. A loop is necessary for the traversal of the
tree (outer loop). However, one may wonder: Why ever use a loop for counting
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node intervals? It is ine�cient and can be parallelized using a map. The coun-
terargument is to imagine querying a point p that lies outside of most intervals.
Using a loop in this case, completely skips the inner loop, as the algorithm
counts from one of the sorted ends (as described in Algorithm 2), which also
means as soon as p does not overlap one intervals, it will lie outside of the rest
of the considered intervals, due to them being sorted. This is precisely why we
wanted to sort the centered intervals in the �rst place, by both xstart and xend,
as to avoid querying as many intervals as possible.

Taking a look at the complexity, reveals a complexity very much like a BST:
For the outer loop we always get lg n iterations (one full traversal, assuming
lg n depth). Then for the inner loop, we get exactly k repetitions, where k is
the amount of intervals our query-point p overlaps with. This gives us a work
and span (as this query is fully sequential they are the same) of:

W (Query) = S(Query) = O(lg n+ k)

And this matches both the logic and complexity described in [8] [2].
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4 Range trees

4.1 Theory

Problem: Given a k-dimensional box and a set ps k-dimensional points, how
do we in an e�cient way �nd the points contained in the box? Idea: Create a
k -dimensional range tree for optimal queries!

How do we de�ne a range tree? To start with, let us consider the simple
1-dimensional case. What is a one dimensional range tree? Consider the set of
one-dimensional points:

ps = {0, 1, 2, 3, 4, 5, 6}

The conventions of a range tree are, that all points in a set of points, let us
say ps, are represented as leaves in a BST, and internal nodes represents the
largest value in the left subtree (why this is the case, will become apparent in
the query algorithm). Here is a 1D range tree, build on ps:

3

5

64

54

1

2

32

0

10

In a range tree an internal node has the following properties:

nrangetree = {p, P (n), lc, rc, (associated)}

Where p is the smallest value of the left subtree, P (n) denotes the canoni-
cal subset of node n and lc/rc denotes the left- and right-child respectively.
associated is the associated structure, which is not relevant for the one-
dimensional case. But what is the canonical subset P (n) of a node n? The
canonical subset P (n) is the set of points (leaves) that can be found in both
subtrees lc and rc. The canonical subset is also used to quickly report hits
when querying, and for building associated structures, when dealing with higher
dimensional range trees

When adding dimensions to the range tree, it becomes slightly more compli-
cated. Let us say we need to represent a 2-dimensional range tree. The general
idea is to construct a 1-dimensional range tree on the x-coordinate and simultan-
iously construct an associated structure in each node sorted on the y-coordinate,
which is also a 1-dimensional range tree.

If we were to add more dimensions, let us say we would like to construct a
k-dimensional range tree, simply extend the 2-dimensional range tree, such that
each node in the associated structure of the �rst tree also contains an associated
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structure, but this structure is sorted on the z-coordinate. Continue this kind
of tree-nesting, until you have k nested associated structures sorted on all k
dimensions, then you have a k-dimensional range tree.

4.1.1 Construction

Algorithm 3 ConstructKDRangeTree (ps,cd)

Input. A set ps of k-dimensional points and a current dimension cd.
Output. The root of a k-dimensional range tree.

1: if cd < k then subtree = ConstructKDRangeTree(ps,cd+ 1)
2: sps = sort ps by cd
3: �nd median xmid in sps

4: (spsleft, spsright) = split sps at xmid

5: lc = ConstructKDRangeTree(spsleft,cd)
6: rc = ConstructKDRangeTree(spsright,cd)
7: return node ni = {xmid, sps, lc, rc}

The construction algorithm 3 is actually rather simple. The algorithm for k-
dimensional range trees simply requires recursive construction of a right and
left subtree, in addition to the creation of an associated structure, if the current
dimension cd is not equal to the total dimension k of the points. The split point
xmid is quickly found as the median index rounded up.

There is one step in algorithm 3 which is not optimal: As mentioned by Mark
de Berg et al. in Computational Geometry [1, p. 108, l. 5�16] presorting on the
y-coordinate prevents sorting ps for each in line 2, and makes the construction
of the associated structure take linear time. This means that presorting makes
the construction take O(n lg n) time (lg n nodes times n for the construction of
a subtree), instead of O(n lg n · lg n) time (sorting takes O(n lg n) time, do this
for lg n nodes). [6, video 4/6] also suggests that using the merge-step of the
merge-sort, one can sort by the y-coordinate by merging lc and rc element-by-
element, obtaining the same construction time of O(n lg n). Please note, this
paragraph is only true for 2D range trees, kD range trees have the construction
time of O(n lgk−1 n) with presorting on every dimension and O(n lgk n) without
presorting.
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4.1.2 Querying

Algorithm 4 KDRangeQuery (b,t,cd)

Input. A k-dimensional box b, a k-dimensional range tree t and the current
operating dimension cd.
Output. The reported points of tree t that lie in box b

1: �nd vsplit
2: if vsplit is a leaf, check if the stored point should be reported
3: else
4: v = vsplit.lc
5: while v is not a leaf do
6: if b.0cd ≤ v.pcd then
7: v = v.lc
8: if Equals(cd, k) then ReportCanonicals(v.rc)
9: if cd < k then acc = acc+ KDRangeQuery (b,v.rcasso,cd+ 1)
10: else v = v.rc
11: if v is a leaf, check if store point should be reported
12: Similarly, repeat the while-loop for the right path, and report canonical

subsets/run recursively on associated structures in left subtrees, when the
algorithm moves to a right subtree.

*This algorithm is based on the 2DRangeQuery algorithm mentioned in [1, p.
108]

vsplit is the point where a vertex v has the property b.0cd ≤ v.pcd ≤ b.1cd, which
means when the point of the vertex v.pcd is inbetween the points of the box b
in the current dimension cd.

Important note for algorithm 4; a box is a representation of two k-dimensional
points; the convention for these two points is the �rst point must contain the
smallest value in every dimension. For instance, in a 2-dimensional window
(box), the �rst point is de�ned as the lower left corner, while the second point is
the upper right corner of the box, as the lower x- and y-value usually is presented
this way on a graph.

How do kd-trees and range trees di�er? One may �nd it important to
note the distinction between a kd-tree and a range tree, as the ideas could seem
identical. A kd-tree stores points, by separating points using k -dimensional axes
to partition points, making use of linear storage, but has a O(

√
n + k) query

time. In contrast, range trees requires O(n lgd−1 n) storage for a k -dimensional
range tree, where querying takes O(lgd n+ k) time. For further explanation, [1,
chapter 5] [6, video 1-5] describes kd-trees and range trees in more detail.
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4.2 Implementation

The implementation of k-dimensional range trees in Futhark follows algorithm
3 strictly. The full implementation of construction and querying can be found
on GitHub4.

4.2.1 Construction

To elaborate on some of the design choices that were made as a consequence of
implemeting data-parallel construction of range trees: Range trees in Futhark
are actually by nature really simple to implement, due to the �at data interact-
ing nicely with the working sets of child-recursion. Remember that there is no
recursion in Futhark - this means that the recursive behaviour has to be acco-
modated by loops. This is in practice also where the data-parallelization comes
into play, as we can group recursive calls as segmented work, such that multiple
nodes can be constructed at the same time in parallel, by calling SOACs which
the compiler know how to optimize and parallelize e�ciently.

In short, the implementation for construction was chosen as a top-down,
breadth-�rst (depth-�rst) style. To elaborate, this means that for each level
of depth in a range tree t, we create every node at that depth at the same
time, while also preparing for the next iteration of nodes, as we are of course
making use of a loop. This means that a for construction, the range tree loop
run O(lg n) times. And this holds true, even when constructing k-dimensional
associated structures, as this implementation simply adds associated subtrees
to the working set, creating associated structures in parallel with its parent
structures.

1 type opt 'v = #some v

2 | #none

3 type child = opt i64

4 type point [d] = [d]f64

5 type box [d] = (point [d],point [d])

6 type node [d] = {m : point [d],

7 slice : (i64 ,i64),

8 subtree : child ,

9 left : child ,

10 right : child}

Listing 7: Custom types in range tree implementation.

Listing 7 shows type de�nitions for the k-dimensional range tree. A point is de-
�ned as an array, due to this being the only way to represent a k-/d-dimensional
point consistently, while supporting more than a single dimension. Also, the di-
mension constructor [d] allows for the de�nition of a particular dimension,
which is favorable in the range_tree module, as the compiler will allow us to
only accept input of the same, arbitrary dimension, which is quite satisfying.

The type opt 'v is used as the keyword �Maybe� in haskell. This allows the
representation of �Nothing� in Haskell or #none in Futhark, comparable to using

4https://github.com/Victoriast8/futhark-range-trees/blob/main/trees/range_

tree.fut
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integers where for instance a negativ value represents the absence of a value.
A node is represented as a point m, with the canonical subset slice, an

associated structure root-index subtree, and left/right child-indexes. In
the module k_range_tree, a node n in a k-dimensional range tree will have
subtree = #none when the node n is part of is the kth (last) associated struc-
ture, and n will have left = #none and right = #none if and only if n is a
leaf.

1 loop (wrk , wrk_shp , wrk_dim , acc) =

2 (ps ', [(i32.i64 n)], [1i32], ([] ,[]))

3 while !(null wrk) do ...

Listing 8: The range tree loop and its parameters.

Listing 8 shows the loop and its parameters between iterations, in other words
which properties that goes between the calculation of nodes of di�erent depths.
This includes the wrk array, which stands for work and is the �at data that needs
processing. wrk_shp is simply the shape (size of each segment) of wrk. wrk_dim
assigns each segment a working dimension, as to keep track of when we should
stop adding d+1 dimensional associated structures. And lastly acc is of course
the accumulated result. Make note that acc contains two values, as we not only
need to accumulate treeNodes, but also treeCanonicals, as Futhark does not
support irregular arrays we need to represent the canonical subset in a separate
array. This is also why slice = (i64,i64) in the de�nition of node in Listing
7, as we indicate the segment of canonicals this node has ownership of. slice

can be seen as slice = (start-index, length-of-canonical-segment).

1 let medians =

2 map (\shp ->

3 if shp < 2 then 1 else shp - (shp)/2

4 ) wrk_shp

5 let (new_shp ,new_dim) = zip3 wrk_shp medians wrk_dim

6 |> filter (\(shp ,_,_) -> shp > 1)

7 |> map (\(s,i,d) -> [(i,d) ,(s-i,d)])

8 |> flatten

9 |> unzip

Listing 9: Calculation of new work (not associated structures).

Listing 9 shows the calculation of median indexes: In Futhark, division of inte-
gers always round down. Line 3 then always lets the median be bigger, if the
shape is odd, which is how the implementation is described in [1]; if the number
of nodes is odd, let the left subtree have the additional element.

The new shape new_shp is then calculated by �rst removing leaves and halv-
ing the sizes of the shape, as seen in the map in line 7. This is particularly nice,
as we do not have to modify the actual work except for removing leaves; the
shape dictates which trees to build, so for creating children, we simply split each
segment into two equally sized segments. The dimension new_dim follows, as
each segment still needs a dimension to accompany it.
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1 let new_sub_wrk =

2 zip3 wrk seg seg_dim

3 |> filter (\(_,_,dim) -> (i64.i32 dim) < d)

4 let (sub_wrk ,_,_) = sort_by_key (\e -> e)

5 (\x y -> if x.1 == y.1

6 then x.0[x.2] <= y.0[y.2]

7 else x.1 < y.1

8 ) new_sub_wrk |> unzip3

Listing 10: Segmented sort of spawned associated structures.

In Listing 10 we see the queueing of associated work. This is done by having
the work with its corresponding shape index, together with its corresponding
dimension. This makes it possible to filter o� kth dimensional work, as this
it is the �nal layer of associated structures, and then duplicating every working
set of points, using a segmented sort to sort by segment, or if the segment is
equal, then sort by coordinate in the working dimension.

Other parts of construction includes storing canonical subsets and predicting
child indexes and associated structure indexes.

The work of the construction algorithm isO(lg n) iterations for the loop, with
the most expensive call being the call to sort_by_key, which in this case is a call
to merge_sort. merge_sort has a work of O(n lg n), which gives us a total work
of W (Construction) = O(n lg2 n). But we forgot one thing - merge_sort is only
called when associated structures are to be queued, which means that the real
work depend on the amount of dimensions we queue work for. This end up giving
us work identical to the theoretical asymptotics, W (Construction) = O(n lgk n),
as each iteration queues n nodes per size of the previous dimension, taking lg n
iterations means having lg n sorted work with 2 dimensions, lg n · lg n = lg2 n
for three dimensions, and so on. Multply this with the work of sorting, and
we get the work as mentioned before; W (Construction) = O(n lg n · lgk−1 n) =
O(n lgk n)

The span of data-parallel construction of k-dimensional range trees, comes
out to be the span of number of iterations, which again is O(lg n) times the most
costly operation. merge_sort should have a span of O(lg n), which matches the
span of other operations, such as filter; however again we are creating a lot of
work per dimension. This means that merge_sort again should have the highest
span, using the same argumentation as for the work, the amount of work we
produce ends up as lgk−1 n. The span in total comes out to be iterations times
merge_sort complexity: S(Construction) = O(lg n · lgk−1 n) = O(lgk n). One
important note to this; if we are only dealing with a 1-dimensional range tree
(just a BST) the span will actually be S(Construction) = O(lg2 n), as the most
expensive operation will no longer be merge_sort. We can then write the actual
span as: S(Construction) = O(lgk n+ lg2 n)

4.2.2 Querying

There is not much to say about the query algorithm which has not already been
said. The main idea is to �nd a vsplit that splits the path of a querying win-
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dow/box, such that the smaller value of the window is smaller than the point
in vsplit and the bigger value is bigger than the point in vsplit. Then report
left and right canonical subsets or the associated structure for further querying,
depending on the dimension. Repeat until no more vsplits are left and all left-
/right reporting has �nished.

1 loop (queue ,typ ,dim ,acc) =

2 ([t.tNodes [0]] ,[0] ,[1] ,0)

3 while !(null queue) do ...

Listing 11: Query loop and parameters.

In Listing 11, we see the loop parameters. The query is fully sequential and
consists of a queue, which dictates upcoming work. typ and dim contains infor-
mation about the type of work and dimension to operate in, of the same index
in queue. acc accumulates once again (in this case, reporting the number of
points inside the query window. A query reporting the actual point coordinates
has also been implemented in exactly the same fashion, just accumulating points
instead of incrementing a counter).

Note that typ; 0 is �nding vsplit; 1 is reporting on the left subtree; 2 is
reporting on the right subtree. When handling �nding a vsplit, a right search
and left search is queued, unless vsplit is a leaf node, which in that case queues
nothing. A left and right search can queue lg n associated structures each, or
none at all, which makes it possible to queue lg n · vsplit.

The work of querying vary vastly, depending on the size of the querying window.
With a very small window, we have the work of W (Query) = O(lg n), no matter
the dimension of the queried range tree. As described in [1, chapter 5.4, The-
orem 5.9, p.110] th recurrence for querying a d-dimensional range tree involves
seaching in a �rst-level tree, which as mentioned before takes O(lg n) time, and
querying a logarithmic number of (d− 1)-dimenional range trees. Hence,

Qd(n) = O(lg n) +O(lg n) ·Qd−1(n)

As our query algorithm is both identical to the one in [1] and their logic hold
for our implementation, we can copy their complexity analysis. Remember: our
query is fully sequential, making both work and span: W (Query) = S(Query) =
O(lgd n+ k), where k is the number of reported points.

4.2.3 Shortcomings (possible improvements)

Duplicate coordinates was mentioned in [1] as a problem, thus using general
sets of points was an imposed solution. This project has not revealed exactly
why this is problematic, and duplicate, randomly generated 64-bit numbers did
not seem to pose any problems for the implementation. However, we �nd it
appropriate to inform that this may/may not cause some unforeseen incidents,
as duplicate dimensional points have been completely ignored throughout the
range tree implementation, so one may need to keep this in mind going forward.
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The algorithm asymptotics are as mentioned in the theory section for range
trees, not optimal. As we are neither presorting on every coordinate nor merging
the canonical subsets of a node's children, we retain the construction time of
O(n lgk n) instead of the possible O(n lgk−1 n).

The original plan was to also do also do a bottom-up implementation of the
range tree construction in Futhark, as to see if this concern of worse asymp-
totics made any di�erence in practice. Due to the complexity of a bottom-up
implementation, this was unfortunately not done in time.

A simpler alternative may have been to duplicate and presort on each di-
mension of each point for construction, and zip/represent each presort as �at
data with a constant o�set. This is purely a trail of thought, if there was one
thing we wish we had asked Troels to share his thoughts on, this would probably
have been it.

Data-parallel query As this project's focus has been on data-parallel con-
struction of interval trees (and by this point, also range trees), the data-parallel
query was never a requirement for this project. However, it should be quite
a simple implementation and might be interesting, especially for higher dimen-
sions (as higher dimensions creates more work, it gives way for more parallelism).
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5 Validation testing

Validation testing plan The general testing plan has been the following:

1. Create the program and have it pass the compiler.

2. Test on small datasets and inspect values manually. Usually inspecting
values manually is a little overkill as the program usually can be set up
to do this for you. However using the opaque types that come with the
Futhark modules, one does not simply reference or match on intrinsic
values of these types within a program. So this was the solution; using
the $ futhark repl to inspect output.

3. Test on large (and numerous) datasets. If this fails, return to step 2 with
the knowlegde of where the big dataset failed.

But how do we validation test? How can we be sure that our so called opaque

types actually represents a tree as described in this report? The trick is, that we
can't. A tree is an abstract representation, as long as the subfunctions return
the expected results (in our instance, just Query), the tree construction should
be valid as long as it uphold the expected asymptotics for run time and storage.

So the validation plan is to compare to a brute force query, or in
other words compare the result of running an interval tree and range tree query
against a simple implementation, which goes through and counts all overlapping
points/intervals on the same set of data which the tree is built upon.

1 def brute_count [n] (p : point) (iv : [n]interval) : i64 =

2 map (\(l,h) -> if p >= l && h >= p then 1 else 0) iv |> reduce (+)

0

3 -- ==

4 -- entry: validate_itree1D_count

5 -- nobench random input { [100000] f64 [100000] f64 } output { true }

6 -- nobench input

7 -- { [0f64 ,100f64 ,100f64 ,42f64]

8 -- [93f64 ,100f64 ,10000f64 ,73 f64]

9 -- }

10 -- output { true }

11 entry validate_itree1D_count [n] (iv1 : [n]f64) (iv2 : [n]f64) :

bool =

12 let iv = zip iv1 iv2

13 let p = ((last iv).0 + (last iv).1) *0.5 -- mostly targeted at

random datasets

14 let t = itree1D.many iv

15 let traversal = itree1D.count p t

16 let brute = brute_count p iv

17 in brute == traversal

Listing 12: Validation of interval trees.
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1 def brute_query [n][d] (b : box [d]) (ps : [n]point [d]) : i64 =

2 map (\p ->

3 if (map3 (\p lo hi ->

4 p >= lo && p <= hi

5 ) p b.0 b.1

6 |> all (\t -> t)) then 1 else 0

7 ) ps |> reduce (+) 0

8 -- ==

9 -- entry: validate_rtree2D_query

10 -- nobench input { [1.0 ,1.0] [5.7 ,5.8]

[[1.1 ,2.2] ,[3.3 ,4.4] ,[5.5 ,6.6] ,[7.7 ,8.8]] }

11 -- output { true }

12 -- nobench random input { [2]f64 [2]f64 [64][2] f64 } output { true

}

13 entry validate_rtree2D_query [n][d] (b1 : point [d]) (b2 : point [d

]) (ps : [n]point [d]) : bool =

14 let b = fix_box b1 b2

15 let brute = brute_query b ps

16 let t = k_range_tree.build ps

17 let traversal = k_range_tree.count b t

18 in (brute == traversal)

Listing 13: Validation of range trees.

Both validation tests make use of the brute_query or brute_count. This
brute force implementation makes use of a map to check each element and a
reduce to collect all hits. The Futhark compiler was assumed to know how
to fuse these together, as the map → reduce was tested to be either faster or
equally fast to looping over each element sequentially. Also note the small
datasets on line 3-10 in Listing 12 and line 8-12 in Listing 13. To run the small
datasets, clone the GitHub repository5 and navigate to the /trees subdirectory
and run $ futhark test interval_tree_tests.fut for interval tree testing
and $ futhark test range_tree_tests.fut for range tree testing.

If you wish to run the validation of big datasets, these have also been set up
with a Makefile in the same directory:

� make validate_1D_count generates dataset of sizes 216, 217..., 220 and
validates them by printing a boolean, stating if the brute force solution
was equal to the tree function. If you are unsure of what this means, a
output of true means success.

� make validate_KD_query generates windows of 2, 3, 4 dimensions and
datasets (points) of 216, 217 2-dimensional points and 2, 3, 4-dimensional
points of size 210. The semantics are the same as for the big dataset test
for the interval tree.

At the time of writing this, one thing to be vary of is the KD_query failing
validation from the syntax of calling the entry point. But this only happens
sometimes, know this may be an issue if you decide to try validation yourself.

5https://github.com/Victoriast8/futhark-range-trees
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6 Benchmarking

This section will cover the benchmarking regarding interval trees and range
trees.

6.1 Benchmarking plan

The plan for benchmarking will be the following:

1. Benchmark the creation of trees when created sequentially, on multiple
CPUs and on the GPU.

2. Benchmark sequential querying trees of di�erent sizes.

3. Benchmark sequential brute force counting/querying.

The interesting thing here will be the di�erence in querying time on di�erent
input sizes and the di�erence between sequential and parallel tree-construction.

Input sizes have been chosen as a result of previous benchmarking - for
optimal query comparison and to observe the change in tree construction, both
relatively small and somewhat big datasets could prove interesting. For range
trees, sizes 210, . . . , 218 was chosen, as any bigger value makes the sequential
tree construction take incredibly long. Interval tree input size is slightly bigger;
210, . . . , 220 as these are generally quicker to build. Please note that not all
inputs are used for tree construction, only the big datasets. Small datasets
(such as 210) are used for query comparison.

If you wish to run these benchmarks yourself, the Makefile in the trees

subdirectory contains the commands used for benchmarking (and generating
datasets, but those are run automatically before benchmarking). These com-
mands are:

� make bench_1D_count benchmarks interval tree creation with backends
C, multicore and cuda, while benchmarking interval overlap count with
backend C.

� make bench_range_tree benchmarks range tree creation with backends
C, multicore and cuda, while benchmarking 2D range querying with back-
end C.

6.2 Benchmarks

Benchmarks were performed on the hendrixgate GPU cluster on the machine
hendrixgpu05fl, using a Titan RTX with 48+ CPUs and 8 GPUs.
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#intervals sequential multicore (CPU) cuda (GPU)
216 132.3 57.8 8.8
217 256.5 99.2 11.0
218 557.9 179.9 12.8
219 1275.3 354.1 17.1
220 2743.2 718.0 27.4

Table 1: Benchmark results for interval tree creation in milliseconds ms.

#intervals interval tree count brute force count
210 1 1
211 3 2
212 6 4
213 9 8
214 15 16
215 27 31
216 53 65
217 108 136
218 209 261
219 421 558
220 896 1556

Table 2: Benchmark results for counting overlapping intervals in microseconds
µs.

#points sequential multicore (CPU) cuda (GPU)
216 4.768 1.925 0.043
217 7.997 3.110 0.079
218 17.599 6.359 0.173
210 0.020 0.020 0.009
210 (3-dim) 0.154 0.116 0.014
210 (4-dim ) 0.893 0.374 0.021

Table 3: Benchmark results for range tree creation in seconds. Notice that the
last three trees has the same number of input points, but di�er in dimensions.
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#points range tree query brute force query
210 47 5
211 52 8
212 57 13
213 65 21
214 68 41
215 77 83
216 83 168
217 89 330
218 95 675

Table 4: Benchmark results for 2D range queries in microseconds µs.

6.3 Discussion

Range tree benchmarks exhibits a good speedup, when constructed in par-
allel. The following can be conducted from observing Table 3 and Table 4:

� During tree creation, the multicore backend exhibits a ∼ 2.4− 2.8x times
speedup over the sequential backend, which seems to grow as the datasets
get bigger.

� During tree creation, the cuda backend exhibits an excellent speedup of ∼
100x times speedup compared to the sequential backend, and a ∼ 36−45x
speedup compared to the multicore backend, with speedups decreasing as
datasets get larger.

� When querying, using a range tree for querying becomes faster than brute
force approximately when the amount of points that needs querying is
≥ 215.

� Brute queries scales linearly as expected (datasets increase in powers of
two and so does brute force query time), while range tree queries becomes
slightly longer (5− 10µs) when the dataset doubles in size.

� Tree creation seem to take approximately double the time, as the dataset
doubles in size.

� To amortize the cost of creating a tree of size 218 using cuda, one would
have to query (675− 95)x = 173060 ⇒ x = 298.38 times, rounding up to
299 sequential queries, in order to justify creating a data-parallel range
tree.

Were these results expected? We would argue yes, a speedup was de�nitely ex-
pected, though not of this magnitude. One reason for this speedup being so big,
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is probably the work of this particular range tree implementation not being very
optimized, while the implementation has a good span (meaning a lot of paral-
lelization is possible). This would explain the massive speedup, as the sequential
backend would be slowed drastically, while the cuda backend has the opportu-
nity to cut a lot of corners (initialize a lot of parallelism). This speculation
is based mostly o� of the work-span analysis in the range tree implementation
section.

The range query does seem a little �shy, as it does not seem to slow down.
However one thing the range query does particularly well, is sort away points
that lie outside of a query-window. Combine this with the fact that the query-
window is chosen as a constant to prevent calculations during the benchmark,
and we may realize that maybe this query-window was poorly chosen. In
hindsight, a more thought through approach should have been taken. Choosing
both complete misses and complete overlaps would accomodate worst and best
case queries.

Interval tree benchmarks exhibits some speedup, when constructed in par-
allel. Some derivations of Table 1 and Table 2 are:

� During tree creation, the multicore backend exhibits a ∼ 2.3− 3.8x times
speedup compared to the sequential backend.

� During tree creation, the cuda backend exhibits a ∼ 15 − 100x times
speedup compared to the sequential backend and a ∼ 6.5 − 26.2x times
speedup compared to the multicore backend.

� Interval tree queries seem to run slightly faster than brute force counts.
Supplying a little extra data here - running query benchmarking on a local
machine yields approximately exactly ∼ 2x speedup when using interval
trees. This benchmark might contain some noise.

� To amortize interval tree construction, going o� of a data-parallel con-
struction using the GPU of input size 220, we get that we need to conduct
(1556 − 896)x = 27400 ≈ 41.5 queries, or rounded up, after 42 queries it
would be more bene�cial to create and query an interval tree, rather than
use naive query.

Were these results expected? The construction speedup was expected, but why
the query has a speedup of ∼ 2x is not clear. Maybe it just so happens that
lg n+ k tends toward n

2 ? Like in the case with the range tree, perhaps the huge
speedup mostly comes from the fact that tree construction takes quite a bit
of work, while having a good span, allowing for a good amount of parallelism.
However one can not deny, that the interval tree runs quite a lot faster on
the GPU and on the CPU. If you would like to observe the speed di�erence, I
reccommend running the benchmarks yourself, as described in the benchmarking
plan section.
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7 Conclusion

Despite somewhat de�cient benchmarking, and implementation shortcomings,
we have managed to create the datastructures of interval trees and range trees
in a data-parallel fashion. We have made use of �at arrays, function lifting,
loops accomodating for recursion, and more, to achieve a program that runs,
validates, and reacts well to running on the GPU.

8 Future work

What is the next step in the direction of this project? Here are some suggestions,
based on the path this project shed light upon.

Data-parallel query As mentioned in the shortcomings of the range tree
implementation, a data-parallel query could be interesting to implement. Higher
dimensional range trees would bene�t from a data-parallel query, as �spawning
more work� that can be parallelized would be the key to achieving a speedup,
and the higher the dimension, the more vsplit and in turn the more left and
right searches are created. For two dimensions however, this would probably
not have a signi�cant impact.

Improvements to range trees Once again, as mentioned in the range tree
shortcomings section, our range tree implementation is not optimal. Too much
sorting is the current implementation's issue, creating a �bottom-up� version
or a �presorted on all dimensions� version should prove faster. Naturally, this
would be the �rst step if there were more time in this project. Do however
note that such an implementation is theorized by us, to be quite the bit more
challenging to implement in Futhark than the current version, due to di�ering
logic (the implementations would look very di�erent).

Fractional cascading would surely be the second step to improve range trees.
As mentioned by both [6] [1], fractional cascading is a technique to speed up
query time or storage complexity, and as far as we recall, does not come with a
cost.
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9 Code listings

A section for additional code listings that are too big to comfortably weave into
the report.

1 -- This listing is ALL of helper.fut except for THIS comment.

2 import "../lib/github.com/diku -dk/sorts/merge_sort"

3 -- helper functions

4

5 -- intertwines two arrays - as = [1,2,3], bs = [4,5,6]; intertwine

as bs = [1,4,2,5,3,6]

6 def intertwine [n] 't (as : [n]t) (bs : [n]t) : [n*2]t =

7 map2 (\x y -> [x,y]) as bs |> flatten

8

9 def sort_by_key [n] 't 'k (key : t -> k) (dir : k -> k -> bool) (xs

: [n]t) : [n]t =

10 merge_sort_by_key key dir xs

11

12 -- Typical exclusive scan

13 def scanExcl [n] 't (op : t -> t -> t) (ne: t) (arr : [n]t) : [n]t

=

14 scan op ne (map (\i -> if i > 0 then arr[i-1] else ne) (iota n)

)

15

16 -- Typical (inclusive) segmented scan

17 def sgmScan [n] 't (op : t -> t -> t)

18 (ne : t) (flg : [n]i32) (arr : [n]t)

19 : [n]t =

20 let flgs_vals =

21 scan (\(f1,x1) (f2 ,x2) ->

22 let f = f1 | f2 in

23 if f2 > 0 then (f, x2)

24 else (f, x1 `op` x2)

25 ) (0,ne) (zip flg arr)

26 let (_, vals) = unzip flgs_vals

27 in vals

28

29 -- Segmented (inclusive) scan on type i32 with operator '+'

30 def sgmSumInt [n] (flg : [n]i32) (arr : [n]i32) : [n]i32 =

31 let flgs_vals =

32 scan ( \ (f1, x1) (f2,x2) ->

33 let f = f1 | f2 in

34 if f2 > 0 then (f, x2)

35 else (f, x1 + x2))

36 (0,0) (zip flg arr)

37 let (_, vals) = unzip flgs_vals

38 in vals

39

40 -- Makes a flag array: Given a shape and values to insert as the

flag -value.

41 def mkFlagArray 't [m]

42 (aoa_shp: [m]i32) (zero: t) --aoa_shp

=[0,3,1,0,4,2,0]

43 (aoa_val: [m]t ) : []t = --aoa_val

=[1,1,1,1,1,1,1]
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44 let shp_rot = map (\i->if i==0 then 0 --shp_rot

=[0,0,3,1,0,4,2]

45 else aoa_shp[i-1]

46 ) (map i32.i64 (iota m))

47 let shp_scn = scan (+) 0 shp_rot --shp_scn

=[0,0,3,4,4,8,10]

48 let aoa_len = shp_scn[m-1]+ aoa_shp[m-1] --aoa_len= 10

49 let shp_ind = map2 (\shp ind -> --shp_ind=

50 if shp==0 then -1 --

[-1,0,3,-1,4,8,-1]

51 else ind --scatter

52 ) aoa_shp shp_scn --

[0,0,0,0,0,0,0,0,0,0]

53 in scatter(replicate (i64.i32 aoa_len) zero)--

[-1,0,3,-1,4,8,-1]

54 (map i64.i32 shp_ind) aoa_val -- [1,1,1,1,1,1,1]

55 -- result: [1,0,0,1,1,0,0,0,1,0]

56

57 -- Lifted partition

58 def partitionL 't [n] [m]

59 (condsL: [n]bool) (dummy: t)

60 (shp: [m]i32 , arr: [n]t) :

61 ([m]i32 , ([m]i32 , [n]t)) =

62 let begs = scan (+) 0 shp

63 let flags = mkFlagArray shp 0i32 (map (+1) (map i32.i64 (iota

m)))

64 let outinds= map (\f -> if f==0 then 0 else f-1) flags |>

sgmSumInt flags :> [n]i32

65

66 let tflgs = map (\ c -> if c then 1 else 0) condsL

67 let fflgs = map (\ b -> 1 - b) tflgs

68

69 let indsT = sgmSumInt (flags :> [n]i32) tflgs

70 let tmp = sgmSumInt (flags :> [n]i32) fflgs

71 let lst = map2 (\b s -> if s > 0 then indsT[b-1] else -1i32)

begs shp

72 let indsF = map2 (\i v -> lst[i]+v) outinds tmp

73

74 let inds = map4(\c indT indF sgmind ->

75 let offs = if sgmind > 0 then (i64.i32 begs

[sgmind -1]) else 0i64

76 in if c then offs + (i64.i32 indT) - 1i64

77 else offs + (i64.i32 indF) - 1i64

78 ) condsL indsT indsF outinds

79

80 let fltarr = scatter (replicate n dummy) inds arr

81

82 in (lst , (shp ,fltarr))

83

84 -- Lifted partition2. There are some shortcomings , namely the

repeated partition on an aldready partitioned segment

85 def flat_res_partition2L 't [n] [m]

86 (p1 : t -> bool) (p2 : t -> bool)

87 (dummy : t) (shp : [m]i32 , arr : [n]t)

88 : (([m]i32 ,[m]i32), ([m]i32 , [n]t)) =

89 let (split1 , (_,ps)) = partitionL (map p1 arr) dummy (shp , arr

)

30



90 let (split2 , (_,ps ')) = partitionL (map p2 ps) dummy (shp , ps)

91 in ((split1 ,split2),(shp ,ps '))

92

93 -- Flat/segmented replicate of bools. Never use this function ,

unless 'ns' reduces to >=1i64:

94 -- ns - is a shape array. Convention: foreach segment: replicate ns

[i] ms[i]

95 def flat_replicate_bools [n] (ns : [n]i64) (ms : [n]bool) : []bool

=

96 let scn = scanExcl (+) 0 ns

97 let inds = map2 (\n i -> if n>0 then i else -1) ns scn

98 let size = (last scn) + (last ns) -- DPP slides use '(last inds

)'. This is wrong. Consider the last element of 'ns' is 0.

99 let vals = scatter (replicate size false) inds ms

100 let flgs = scatter (replicate size 0) inds ns

101 in sgmScan (||) false (map i32.i64 flgs) vals

102

103 -- Flat/segmented replicate for i32

104 def flat_replicate_i32 [n] (ns : [n]i64) (ms : [n]i32) : []i32 =

105 let scn = scanExcl (+) 0 ns

106 let inds = map2 (\n i -> if n>0 then i else -1) ns scn

107 let size = (last scn) + (last ns)

108 let vals = scatter (replicate size 0) inds ms

109 let flgs = scatter (replicate size 0) inds ns

110 in sgmScan (+) 0 (map i32.i64 flgs) vals

Listing 14: All helper functions. If in doubt, refer to this listing with a line
number. The most recent version of helper.fut can be found here.
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