
University of Copenhagen
Computer Science Department

The Worlds Best Futhark Formatter
Authors: Therese Lyngby & William Henrich Due

Advisor: Troels Henriksen
Submitted: November 3, 2024

Abstract

This report details the extension of a rudimentary formatter for the
programming language Futhark. The formatter is described, imple-
mented and its correctness asserted. The formatter is judged to be
correct, if it it does not destroy the original syntax tree of a program,
formatting a program a second time does not change the output, and
if all comments in the program have the same order before and after
formatting.

Furthermore, the formatter should retain the original layout of
the program, that is if a term spans a single line it should continue
to span a single line, and if a term spans multiple lines, it should
continue to span multiple lines. Finally after formatting a program
comments should be placed close to terms they were next to in the
original program.

Page 1 of 20

1 Introduction
This project implements a code formatter for the programming language
Futhark [2]. The formatter should be able to take a Futhark program and
make it “pretty”. However, as prettiness is highly subjective, we shall de-
fine some properties the formatter must have in order to produce, in our
opinion, nicely formatted programs. Some of these properties can be tested
and guarantee the correctness of the formatter. Other properties are used as
heuristics for inserting comments in such way as to preserve their context in
the original program.

The formatter should be similar to the Haskell formatter Ormolu1, in the
sense that it should be nonconfigurable, and allow the user some control of
layout by not forcing some piece of code to be spread over multiple lines or
force some code to fit on a single line. Instead, if the piece of code that was
written on a single line stays it must stay on a single line, and the same for
a piece of code written across multiple lines.

The design of the formatters interface is based on the Haskell library
PrettyPrinter [1] and the formatter from the article “A Prettier Printer” by
Philip Wadler [3]. The Wadler article was a great inspiration on how to
handle multi-line and single-line formats. Another inspiration was looking
at how Ormolus monad for formatting is defined to see if something similar
to this could be used.

The implementation can be found in the Futhark repository2 at the path
src/Futhark/Fmt/. The formatter can be used by using the newest nightly
build or by compiling the newest version of the master branch. The command
to use the formatter is $ futhark fmt and the formatter works correctly in
accordance to the CI tests we have made.

2 Theory
To design and implement a formatter: A frame of theory behind the programs
and formatters is needed.

2.1 Programs
First a definition of what a program and what a term is in the context of
formatting.

1https://github.com/tweag/ormolu
2https://github.com/diku-dk/futhark

Page 2 of 20

https://github.com/tweag/ormolu
https://github.com/diku-dk/futhark

Definition 2.1 (Set of Programs). The set of Futhark programs P is a set
of byte sequences that can be parsed and expressed as a syntax tree.

Definition 2.2 (Term). A term t is a sub-tree in the syntax tree resulting
from parsing a program p corresponding to some syntactical construct in the
Futhark grammar. Every term t has a corresponding span of bytes in p.

Another definition that is needed is the notion of a layout of a term in a
program. This is needed to format specific parts of a program in a style that
only fits on a single line or spans over multiple lines.

Definition 2.3 (Layout). A term in a syntax tree of a program p ∈ P has
either a single-line or multi-line layout.

• A term spanning over a single line is singlel-ine.
• A term spanning over two or more lines is multi-line.

A property of this notion of layout in regards to nested terms in a syntax
tree can then be realized.

Proposition 2.1. If t is a term in the syntax tree of a program p ∈ P then:

• If t is single-line then any sub-term of t is single-line.
• If t is multi-line and is a sub-term of t′, then t′ is multi-line.

Proof. If t is single-line then any sub-term must also be single-line since you
can not fit two or more lines in a single line. And if t is multi-line and is a
sub-term of a term t′, then t′ is multi-line since you can not fit two or more
lines into a single line.

This property is useful because for any given term with a layout then if it is
single-line then it only has to play nicely with other single-line layouts in it.
While something like multi-line formatting has to account for sing-line and
multi-line but it only has to work well inside a multi-line layout. It also helps
knowing that nested terms does not change the layout of a current term.

Programs may also contain comments which can not be represented in
the syntax tree of a Futhark program.

Definition 2.4 (Comment). A comment ci is a piece of documentation in a
program p ∈ P which do not effect the syntax tree.

• A comment has a single line number it belongs to i ∈ N.
• Every comment is placed at the end of a line.

Page 3 of 20

• Every comment has a corresponding span of bytes in p.

Because comments are always a the end of a single-line then they cannot
appear inside a single-line. And they will only appear some where before a
line. These comments as aforementioned does not exists in the syntax tree
and only exists as a sequence that somehow has to be inserted in a formatted
document.

These comments also has to be placed correctly in relation to the original
code. The definition of location is as follows:

Definition 2.5 (Location Relation). A comment is either located before or
after a term t in the syntax tree of a program p:

• c is located before t if the span of bytes corresponding to c comes before
the span of bytes corresponding to t.

• c is located after t if the span of bytes corresponding to c comes before
the span of bytes corresponding to t.

2.2 Formatter Properties
When asserting the correctness of a formatter then it should always produce
correct programs. That is any formatted program should produce the same
output for any input as the original program. Furthermore, this format-
ter should produce syntactical equivalent programs to the original program.
Such a definition 2.6 is weaker, allows the formatting of ill-formed programs,
and makes the property computable.

Definition 2.6 (Nondestructive). A formatter f : P → P is said to be
nondestructive if the syntax tree of p is equivalent to the syntax tree of f(p)
regardless of the layout of each term in respect to the program.

The formatter must not change already formatted code. This definition is
partly needed to assert if something has already been formatted. Such that if
the original program is equivalent to the formatted program then the program
must already be formatted. This property is known as idempotence 2.7 and
we wish to find a formatter f such that it is idempotent under function
composition.

Definition 2.7 (Idempotence). A formatter f : P → P is said to be idem-
potent if for any p ∈ P it holds that f(p) = f(f(p)) = (f ◦ f)(p).

Page 4 of 20

The formatter must also retain the structure of comments. The comments are
not included in the syntax so it is not easily defined what correctly placed
comments are. At least the formatter should not change the ordering of
comments 2.8 given in the original program.

Definition 2.8 (Comment Order). The formatter f : P → P is said to
retain comment order if for any p ∈ P the sequence of comments (cn)n∈N in
p is element wise equivalent to the sequence of comments (c′n)n∈N in f(p).

As comment explains the surrounding code, they should ideally be inserted
into the syntax tree close to the terms, they were placed next to in the original
program. We distinguish between two different types of comment placement:

Definition 2.9 (Prepended Comments). A prepended comment c in pro-
gram p, must be placed on its own line without any code, and typically give
context to the code immediately below the comment.

Definition 2.10 (Trailing Comments). A trailing comment c in program p,
must be placed at the end of a line, which also contain bytes corresponding
to a term t in p, and typically give context to aforementioned code.

Because prepended comments give context to code after the prepended com-
ment, and trailing comments give context to code before the trailing com-
ment in order to optimally retain the context of comments, we also want our
formatter to obey the following property:

Definition 2.11 (Type of Comment Placement). A formatter f : P → P
retain Type of Comment Placement, if for every comment c in program p:

• If c is a prepended comment in p, then c is also a prepended comment
in f(p)

• If c is a trailing comment in p, then c is also a trailing comment in f(p)

To simplify the decision of when to add a comment, and to further preserve
the context of it, we added the following restriction on the placement of
comments:

Definition 2.12 (Restricted Comment Order). A formatter f : P → P is
said to retain Restricted Comment Order, if it retains Comment Order and
for any p ∈ P the following also holds: For every comment c in p and every
term t in p

• If c is located after t in p, then c is also located after t in f(p)

Page 5 of 20

• If c is located before t in p, then c is also located before t in f(p)

A nondestructive formatter allows for the possibility to compare the layout
of each term. The formatter must not intrude on the layout choices of the
user. And the formatter must be able to use the layouts of terms to format
them correctly. So if you have a sequence of terms with certain layouts then
the formatter should be able to use this information to construct correctly
formatted programs.

Definition 2.13 (Layout Invariant). Given a program p ∈ P , a nonde-
structive formatter f : P → P , a term t in the syntax tree of p and its
corresponding term t′ in the syntax tree of f(p). If the layout of any t is
equivalent to t′ then the layout invariant is fulfilled.

3 Design
In this section we will discuss how our design uses and intents on fulfilling
specific properties.

3.1 Formatting
Haskell has a library PrettyPrinter [1] which will be used for formatting the
actual code. It can be used to print tree like structures like Futhark pro-
grams. This library supports things such as being able to format by specific
document width. We will not be using this feature since this formatter should
retain the same layout as the user has used. Therefore we would not want
to split something that is single-line into multi-line or vice versa.

The library also has helpful functions for aligning, indenting, and nesting
text which will be used. We use this library even thought it is overkill
because it can efficiently format the text, and it is already part of the Futhark
repository.

3.2 Formatting Monad
To format Futhark programs a monad is needed to make the code that does
the actual formatting comprehensible. The goal is to make some of the
formatting process implicit such that when writing a formatter for a specific
term it is easy to read. The goal is the user should not have to handle small
details.

• Implicit comment insertion when needed.

Page 6 of 20

• Allow for copying from the original file.

• Adaptive formatting.

This monad is a combination of a reader monad and a state monad which
is created using monad transformers from the library mtl. The name of
this monad is FmtM and when its computed value is a Doc string from Pret-
tyPrinter then we call the synonym type for Fmt. Fmt can be seen as a
monadic string which can be formatted using PrettyPrinter-like functions.
This monadic string should then take care of the aforementioned concerns.

3.2.1 Reader Monad

The environment of the reader monad part only consists of the Layout which
describes what formatting strategy should be used.

data Layout = SingleLine | MultiLine
This is part of the environment since the layout can only be changed in
future computations. This is due to Proposition 2.1 then the layout of sub-
terms can only change to single-line as the formatter traverses downwards
the syntax tree.

3.2.2 State Monad

The state monad should contain:

1. [Comment]: A list of comments that is popped from as comments are
inserted during formatting.

2. Maybe Comment: A pending comment which can be inserted as a trail-
ing comment.

3. Maybe LastOutput: The last thing which was printed which is either:

4. ByteString: The byte string containing the unformatted program.
data Last = Line | Space | Text

The goal with state is to when ever a location of a term is known then it
is possible to add comments before the term is printed. Or use the location
of the term to determine wether a comment should be added as being a
trailing comment to the term. And the last output can then be used to
determine if a comment should be printed with a line before it. Lastly the
byte string is used to copy from the original code specific substrings. All of

Page 7 of 20

this information should be hidden from the user and should be handled by
the exposed primitives. Ormolu also has things like pending comments and
a symbol for the last output printed.

3.3 Primitives
We have a bunch of primitive functions for formatting which mirrors how
PrettyPrinter works but monadic variances. For instance something like:

sep :: [Fmt] -> Fmt -> Fmt
The first argument is concatenated (in the order they are given) with the
second argument separating each element.

The moment this gets interesting is in relation to the Layout environment
modifies some of these primitive functions. There are two special kind of
primitive functions which are:

line :: Fmt
indent :: Int -> Fmt -> Fmt

In something like the PrettyPrinter line would insert a line character and
indent would indent a expression by some amount of spaces. But since Fmt
is monadic and contains information about the layout two different strategies
can be used for formatting line and indent depending on what the layout
is. We choose here that line should become a space and indent should
not indent at all in a SingleLine layout. Meaning that in an ideal world
you would only have to define your MultiLine format and depending on
the Layout in the environment then the transformation of removing indent
and turning line into spaces should do the rest. This ends up being very
natural in some cases, if you consider something like Futharks sum types. A
multi-line layout could be defined as followed:

sep (line <> "|" <> space) (map fmt tes)
Here <> is concatenation, space is just a space and map fmt tes is a list of
formatted type constructors in the sum type. If the constructors are #foo,
#bar, and #foobar, then in Figure 1 it can be seen how this definition will
be formatted in relation to a specific layout.

#foo | #bar | #foobar

(a) Formatted using single-line Layout.

#foo
| #bar
| #foobar

(b) Formatted using multi-line Layout.

Figure 1: The formatting of sum types in different layouts.

Page 8 of 20

This case works out great since the single-line layout looks great while only
having to think of the multi-line layout. There are more complicated cases
where a single-line and multi-line formats are not easily unifiable. Such a
case happens when formatting tuple literals in figure 2.

(a, b, c)

(a) Formatted using Singleline Layout.

(a
,b
,c)

(b) Formatted using Multiline Layout.

Figure 2: The formatting of tuple literals in different layouts.

If one wanted to naturally just define the multi-line layout from sub-figure
2b then the resulting single-line version would be (a,b,c) which is wrong
in relation to what we wanted. The solution here is to introduce the binary
operation:

(<|>) :: Fmt -> Fmt -> Fmt
Where s <|> m means if in a single-line layout choose s and if in a multi-
line layout choose m. This operation is defined with a lower precedence than
concatenation <>. Now using this, we can then define the tuple like so.

Listing 1: Tuple formats with different separator.
"(" <>

sep ("," <> space <|> line <> ",") (map fmt tes)
<> ")"

Since the tuples only differ in their separator then "," <> space <|> line
<> "," can just be used for the separator. It might also be the case that it

is difficult to realize if some format designed for multi-line printing overlaps
somehow with a single-line design. In some cases it might be unclear how
they differ and where <|> should be inserted. Luckily, there is always a
trivial solution to have two completely different designs. Since <|> always
either chooses between single-line and multi-line, then it can be used as the
outermost operation to just choose between two different formats depending
on layout.

Listing 2: Tuple formats defined with no overlap.
("(" <> sep ("," <> space) (map fmt tes) <> ")")
<|>
("(" <> sep (line <> ",") (map fmt tes) <> ")")

Page 9 of 20

The idea is this should give the user the ability to get the best of both worlds
in regards to if a given multi-line to single-line transformation feels natural or
not. We can also realize some algebraic rules for our <|> operator in relation
to indent and line which allows for simplifications of Fmt.

a <|> a = a
space <|> line = line
a <|> indent i a = indent i a

There are also distributive laws such that <|> can be factored inside sub-
expressions.

a <> b <|> a <> b' = a <> (b <|> b')
a' <> b <|> a' <> b = (a <|> a') <> b
sep s as <|> sep s' as = sep (s <|> s') as
align a <|> align a' = align (a <|> a')
nest i a <|> nest i a' = nest i (a <|> a')
indent i a <|> indent i a' = indent i (a <|> a')

Meaning it would be possible to mechanically go from the tuple format which
completely separates the single-line and multi-line formats in Listing 2 to the
original format where only the separator was the difference in Listing 1.

Also note that you can distribute over each element in the list as in
sep s as. Since sep is just a shorthand form for:

a1 <> s <> a2 <> s <> a3 <> ... <> s <> aN
For this design to work then the user who is writing the formatter of some
term should then use something like local to update the environment to
match the layout of the current term.

3.4 Comments
The formatter uses the Futhark parser to build the syntax tree of a pro-
gram, which is when turned back into formatted program text. Since com-
ments are not part of the syntax tree, we get these separately as a list with
parseFutharkWithComments. The list of comments, sorted in order of ap-
pearance, is passed as part of the initial state when running the FmtM monad.
After formatting the syntax tree, the comments need to be inserted into the
formatted program. As discussed in sub-section 2.2, the formatter must do
this in way, that retain Restricted Comment Order and Type of Comment
Placement.

Our initial idea for comment insertion was based on a heuristic for whites-
pace in parsers: After parsing a token all trailing whitespace must be con-
sumed. This lead us to the heuristic, that every time a term is formatted,
all prepended comments must be consumed. We defined the function:

Page 10 of 20

addComments :: Located a => a -> Fmt -> Fmt
which given the located term a and its Fmt, selects a local layout according
to the original layout of a, pops all comments located before a from the list of
comments in the FmtM state, formats them, and prepends them to the format
of a.

3.4.1 Trailing Comments

This simple approach retain Restricted Comment Order, but not Type of
Comment Placement, as all comments are treated as prepending. In order to
also treat trailing comments, we got inspiration from Ormolu, which defines
a similar function, located3. This lead us to define the function

setTrailingComment :: (Located a) => a -> FmtM ()
Which checks whether the top comment c in the list of comments in the
FmtM state is located on the same line as a. If so, the formatter cannot
immediately append c behind the format of a, as a may be a single-line sub-
term in a larger term, which continues afterwards on the same line. Instead
the formatter stores c as a pending comment in the state of FmtM, and waits
until next time the hardline primitive is called.

As line becomes an actual line, once it is called, the formatter is guaran-
teed that no more code may follow on the same line. Therefore it can safely
prepend any pending comment to the format of newline. Note that since
there may be only one comment on a line, there can never be more than one
pending comment.

3.4.2 Prepended Comments

Now that the formatter handles trailing comments, we discover another flaw
in our design: Since the formatter also call addComments, while formatting
sub-terms, the formatter is not guaranteed that prepended comments start
on a new line. As a result some comments, which where prepending in p
become trailing comments in f(p). This is bad because the formatter now
treats trailing comments differently, meaning it may format the program
differently, breaking Idempotence, if applied a second time.

Since the formatter must retain Restricted Comment Order, the formatter
must add the prepending comments on a line by themselves before formatting
the term a. However the formatter should also not add unnecessary newlines.
Therefore we define the data type

3https://hackage.haskell.org/package/ormolu-0.7.7.0/docs/
Ormolu-Printer-Combinators.html

Page 11 of 20

https://hackage.haskell.org/package/ormolu-0.7.7.0/docs/Ormolu-Printer-Combinators.html
https://hackage.haskell.org/package/ormolu-0.7.7.0/docs/Ormolu-Printer-Combinators.html

data LastOutput = Line | Space | Text | Comm
which indicates, which primitive was last used to output format. Each time
any of the primitive functions are called, lastOutput is updated in the FmtM
state. In the state lastOutput is of type Maybe LastOutput, where Nothing
indicates that nothing has been output yet. As part of formatting the

prepended comments, the formatter adds a newline, if lastOutput is not
Nothing or Just Line.

3.4.3 Drawback of Restricted Comment Order

The Restricted Comment Order property does unfortunately have the draw-
back, that comments placed between the sub-terms of a term t may break
the formatting of t as shown in Figure 3.

...
let x = foo (
bar (

...

(a) Before formatting without comment.

...
let x =
foo (bar (

...

(b) After formatting without comment.

...
let x = foo (
-- example comment
bar (

...

(c) Before formatting with comment.

...
let x =
foo (
-- example comment
bar (

...

(d) After formatting with comment.

Figure 3: Formatting broken by comment

We have decided that this is acceptable in the interest of simplifying com-
ment reinsertion while keeping the original context of the comment, since the
format still looks decent.

3.5 Layout Invariant
One of the properties we want our formatter to fulfill is the Layout Invariant
2.13. Here something like adaptive primitive functions helps fulfill the layout
invariant. It makes it so that lines can not be inserted into a term that should
be formatted in a single-line style. It also does not allow for indents since
this is not something that is often not wanted:

Page 12 of 20

line <|> space = space
indent i a <|> a = a

This does not help to guarantee that multi-line layouts always become multi-
line. So the layout invariant should be fulfilled by the user who writes the
formatter.

As aforementioned this property allows for a design such that the user
can format code as single- or multi-line depending on what the user has
written. It also has another reason since fulfilling this invariant currently
helps doing better formatting. A example of this is if you want to format
declarations. Consider if you have a bunch of declaration. Then something
you may want to is you would want to separate single-line terms by a single
line and multi-line terms by two lines like in Figure 4.

def a =
1

def b = 2

def c = 3

(a) Before formatting.

def a =
1

def b = 2
def c = 3

(b) After formatting.

Figure 4: Formatting declarations.

Consider if you did not follow the layout invariant and wanted to format def
a = 1 as a single-line instead of a multi-line. Well then when formatting

each declaration you would have to inspect wether it actually ends up being
single-line or multi-line. Meaning you would have to inspect the structure of
def a = 1 and propagate the result of if the formatted codes layout is multi-
line or single-line. We sadly do not have such an mechanic in our formatter.
Therefore, we simply inspect what the layout of the original program is and
choose the formatting by this. This results in if def a = 1 is formatted
as single-line when it is multi-line then this would break idempotence 2.7.
Therefore, not fulfilling the layout invariant will result in the code in figure
5.

Page 13 of 20

def a = 1

def b = 2
def c = 3

(a) After formatting the code from sub-
figure 4b where functions become single-
line.

def a = 1
def b = 2
def c = 3

(b) After formatting sub-figure 5b.

Figure 5: Formatting declarations to single-line can break idempotence.

This problem could probably had been solved by having a Fmt type that also
contain information about if it was single-line or multi-line by propagating if
a line was used in some Fmt. But instead we just utilize the layout invariants
since that should ideally always be fulfilled.

4 Testing
This section describes how the correctness of the formatter is asserted.

4.1 Methodology
The formatter implementation should fulfill the three properties described
in section 2.2: Idempotence, Nondestructive, and Comment Order. Only
these properties are tested since they are important for the correctness of the
formatter. While the other properties are deemed to not be as important for
the correctness or might be hard to test for. These properties are tested using
property-based testing. Instead of using a generator to generate Futhark
programs, we use the collection of, at the time of writing, 2305 test programs
in the Futhark repository to assert, that the formatter fulfills the properties.
This gives us a higher degree of confidence in the correctness of our formatter
than a handful of unstructured unit tests would. Since we here assert that
the properties of the formatter in regards to arbitrary programs is fulfilled
with greater confidence.

We believe this testing method is not ideal since the formatting of each
term must play nicely with every other term and each term can be single- or
multi-line. Meaning we end up with a lot of cases where possibly different
combinations of terms and layouts can go wrong. Furthermore, testing for
our specified properties does not help us determine the aesthetic quality of
our formatter, which we test separately on a small scale. We believe all these
tests suffices to establish, that our formatter have our desired properties and

Page 14 of 20

roughly formats according to our desired aesthetic. Therefore we are decently
confident in the correctness of our formatter.

4.2 Nondestructive
This test is done by using futhark hash, which takes a program and calcu-
late its hash. The hash is calculated using the Futhark pretty printer, which
prints the syntax tree as a sting and hashes it.

In the tests we simply compare the computed hash of our program p and
the computed hash of the formatted program f(p). The test may falsely
pass since two different futhark programs may have the same hash. As this
is highly unlikely, we judge this as acceptable. It would had been nice, if
the syntax tree generated by the parser also somehow contained comments,
similar to how it contains documentation. This test would then also assert
that comments are placed correctly in relation to specific terms.

4.2.1 Token Stream

Initially, we sought to test the nondestructive property of the formatter by
comparing the token stream produced by futhark tokens before and after
applying the formatter to a program. However, during testing we discovered,
that the Futhark parser removes certain information while building the syn-
tax tree, which results in changes to the tokens produced before and after
formatting.

An example is chained let bindings. Here the futhark syntax optionally
allow the keyword in before every chained let binding. The optional in is
not visible in the syntax tree produced by the futhark parser, and as a result
our formatter removes all optional uses of in, leaving only the in in the
innermost let binding as shown in figure 6.

let a = 1 in
let b = a * a
in b

(a) Before formatting.

let a = 1
let b = a * a
in b

(b) After formatting.

Figure 6: Formatting removes certain in tokens.

As the in tokens are optional, their removal only changes the token stream,
not the syntax tree produced by the parser. The change is therefore nonde-
structive. We switched to comparing program hashes, which are calculated

Page 15 of 20

based on the syntax tree produced by the parser. Thus in tokens can be
added or removed without causing the test to fail.

4.2.2 Simplifying Literals

The nondestructive test also accounts for cases where literals are simplified,
such as when hexadecimal integers are turned into decimal integers. The
literals are turned back into their proper format then printed by the pretty
printer. It is highly likely, that expressing an integer in two different formats
will yield different hashes. As a result the test checks, that our formatter
does not simplify literals, but retain the format specified by the user.

4.3 Idempotence
To test that our formatter is idempotent we simply format a Futhark program
once f(p) and asserts that it is unchanged if we format it once more f(p) =
f(f(p)). We do this with our formatter and cmp(1). As we compare the
two produced files byte by byte, there is no leeway in whitespace or hidden
characters.

4.4 Comment Order
We use futhark tokens to extract every token from the original program
and the formatted program. Using grep(1) we get only the tokens represent-
ing comments. Again with cmp(1), we compare the comment tokens before
and after formatting the program. This test sadly do not help assert, that
comments are placed correctly in regards to specific terms.

4.5 Aesthetic
In order to assert that the formats produced by the formatter actually match
our desired aesthetics, we wrote a few short test programs p, stored in the
tests_fmt directory. In the subdirectory expected we wrote equivalent test
programs p′ following our desired format. We compare the formatted test
programs f(p) to their expected output p′ to check that f(p) = p′. This is
not the case for extra_equals.fut, which we will discuss later.

Overall this test could benefit from longer test programs following more
outlandish formats. Currently there are only a limited number of short test
programs, all written in a style close to our preferred format. Therefore
the test is not that interesting, as it hardly poses any actual challenge to
the formatter. Two more interesting programs are trailingComments1 and

Page 16 of 20

trailingComments2, which check the placement of comments after format-
ting. The other test programs primarily focus on terms, we discovered had
information loss in the parser as described in subsection 4.2.

4.5.1 Redundant Information

In the case of chained let bindings, programs without the optional in key-
words were neater, and therefore we find programs formatted without them
to be the more aesthetic choice. However there are cases, where the for-
matter, due to information loss, ends up adding redundant information to
formatted programs, which we think is undesirable. An example of this is
pattern matching on a record.

Futhark record expressions consists of comma separated field expressions,
which may take two different forms in the Futhark grammar. One form, f,
is a simplification of the other, f = e, for cases where the expression e is a
variable defined in scope with the same name as the field f4. When parsing
record patterns both forms are represented with the same type of node in the
syntax tree. As a result our formatter always follow the f = e form turning
record patterns with field expressions of the f form into the form f = f like
in figure 7

let {a} = {a = 1}
in a

(a) Before formatting.

let {a = a} = {a = 1}
in a

(b) After formatting.

Figure 7: Formatting adds redundant information

Test programs like tests_fmt/extra_equals already more or less follow
our desired format, but contain terms with parser information loss. They
are meant to assert, that no redundant information is added to the program
by the formatter. However, since we believe the best solution to the parser
information loss is to extend the parser by for example making the form of
the field expressions of a record pattern clear in the syntax tree, our formatter
currently adds redundant information to programs like extra_equals, and
as a result the test fail.

4https://futhark.readthedocs.io/en/stable/language-reference.
html#f1-f2-fn?

Page 17 of 20

https://futhark.readthedocs.io/en/stable/language-reference.html#f1-f2-fn?
https://futhark.readthedocs.io/en/stable/language-reference.html#f1-f2-fn?

4.6 Result
All of our property-based tests passes, and most of our test programs formats
into our desired style. A known exception is pattern matches on records,
which we believe is most effectively solved by an update of the Futhark
parser. We also have other known issue like sum type constructors not having
a location for comment placement and missing tokens in let binding but these
are also Futhark related. Furthermore, looking through a subset of the files
produced during the property-based testing, we see that their formats also
end up looking decent. We wish we had more diverse Futhark programs,
which would allow us to cover more edge cases, but with time the Futhark
repository will likely get more programs for testing. We also do not know for
certain if we cover every edge cases but it would be nice to have a greater
confidence.

5 Discussion
In this section we will discuss the formatter in relation to comments and our
adaptive function.

5.1 Adaptive Functions
We are quite happy with how the adaptive functions which switch from single-
line multi-line. It ended up working quite nicely to write some multi-line
design and it turn into a single-line design which looked good. There have
been brought up cases where a single-line and multi-line design does not work
that great together. The current tuple design (by the advisor of this project)
has defined the single-line format:
("(" <> sep ",␣" xs <> ")")
<|>
(align $ "(" <+> sep (line <> "," <> space) xs </> ")")
Here rewriting this as a combined format becomes a bit much to comprehend.

align $ "(" <> ("" <|> space) <>
sep (("" <|> line) <> "," <> space) xs

<> ("" <|> line) <>")"
You could define some helper definition to make things easier on the eyes:

a <:/> b = a <> ("" <|> line) <> b
a <:+> b = a <> ("" <|> space) <> b
nline = "" <|> line

Page 18 of 20

Which gives us the definition:
align $ "(" <:+> sep (nline <> "," <> space) xs <:/> ")"

This might just also be annoying for the reader that they have to understand
a bunch of small helper functions. Another annoyance is there are multiple
ways of using <|> to create a format design which creates multi-line and
single-line designs. The authors of this paper believe this is fine because
<|> gives you the option to choose how you wanna write the way to format
something. We believe that <|> should allow to help with redundant single-
line and multi-line formats. And we do admit that this design does not
always show its best side.

5.2 Comments
We do not believe that comment formatting is that great, a huge problem
is the user of the formatter is the one who decides where the comments are
placed. Ideally the formatter should place the comments itself and the user
should not have to think about it. A problem where the user has to place
comments is when something like sep is used. A problem that can happen
is with the following code:

sep ("," <> line) (map fmt as)
If map fmt as add comments before each term then the formatting could
result in something like.

a
, -- Comment
b

Because a comment to the term b meaning it will be added after the sep-
arator. The solution to this is having special function called sepComments
which takes a located list of elements and then adds the comments before
the separator. This is not ideal but it seems like this is one of the only cases
where we have odd comment placement.

6 Conclusion
To the authors knowledge the formatter works correctly in the sense that it
does not produce incorrect code and fulfills the properties given. The code
is also deemed “pretty” by the authors in most cases. There are still some
formatting problems and we are unsatisfied with with how the comment
insertion works. If we had more time we would had wanted to improve the
code for inserting comments such that the user had to think less of them.

Page 19 of 20

Overall we see this project as a success but there are still problems which
will have to get improved or solved with time.

References
[1] Michael Gersh. prettyprinter. https://hackage.haskell.org/package/

prettyprinter. Version 1.7.1. 2021.
[2] The Futhark Hackers. Futhark. url: https://github.com/diku-dk/

futhark.
[3] Philip Wadler and Joyce Kilmer. “A prettier printer”. In: 2002. url:

https://api.semanticscholar.org/CorpusID:63096807.

Page 20 of 20

https://hackage.haskell.org/package/prettyprinter
https://hackage.haskell.org/package/prettyprinter
https://github.com/diku-dk/futhark
https://github.com/diku-dk/futhark
https://api.semanticscholar.org/CorpusID:63096807

	Introduction
	Theory
	Programs
	Formatter Properties

	Design
	Formatting
	Formatting Monad
	Reader Monad
	State Monad

	Primitives
	Comments
	Trailing Comments
	Prepended Comments
	Drawback of Restricted Comment Order

	Layout Invariant

	Testing
	Methodology
	Nondestructive
	Token Stream
	Simplifying Literals

	Idempotence
	Comment Order
	Aesthetic
	Redundant Information

	Result

	Discussion
	Adaptive Functions
	Comments

	Conclusion

