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Abstract

Futhark is a high-performance purely functional data-parallel array program-
ming language targeting parallel compute hardware. Futhark has backends
for several compute architectures and this thesis adds browsers by targeting
WebAssembly and threaded WebAssembly. These are browser technologies
which map better to the underlying hardware of devices, including multicore
CPUs.

A JavaScript API is developed for easily calling compiled Futhark Web-
Assembly libraries in the browser. The implementation and generated Web-
Assembly code is benchmarked for both browsers and Node.js, against the
Futhark sequential C and multicore C backends. The sequential WebAssembly
performs close to sequential C speeds. The parallel execution of threaded Web-
Assembly speeds up some example programs by a factor equal to the number
of physical CPU cores.
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CHAPTER 1
Introduction

The last two decades have seen a proliferation of consumer devices—laptops,
tablets, phones—with parallel computing capabilities with GPUs and multi-
core CPUs. A large portion of the software running on these devices runs in
the browser.

For decades, JavaScript has been the standard tool for programming in
the browser. JavaScript is ubiquitous but it suffers from inefficient execution.
Moreover, there is an increasing interest in compiling other programming lan-
guages to run in the browser and JavaScript is not optimal as a compilation
target in terms of code size and execution speed. Attempts to solve these issues
have led to the development of first asm.js and then WebAssembly, which acts
as a kind of assembly language for the browser. WebAssembly is compact and
executes at near native speeds and is now supported as a compilation target
for many major programming languages, including C, C++, and Rust. How-
ever, WebAssembly is single threaded and doesn’t utilize parallel computing
capabilites of the underlying hardware.

Development into utilizing parallelism is ongoing with efforts being made
both in the context of GPUs and multicore CPUs. One is WebGPU, a pro-
posed web standard and JavaScript API for calling GPUs in the browser. An-
other is threaded WebAssembly, an experimental extension to WebAssembly
that supports parallel execution on multicore CPUs using Web Workers and
provides an interesting compilation target for parallel programming languages
to run in the browser.

Futhark is a high-performance purely functional data-parallel array pro-
gramming language targeting parallel compute hardware, primarily GPUs.
More recently, the Futhark compiler has gained an additional backend target-
ing multicore CPUs.

This thesis develops backends for compiling Futhark to WebAssembly and
threaded WebAssembly for efficient, parallel execution in web browsers, to-
gether with a convenient and efficient JavaScript API for Futhark interoper-
ation with browser applications. In this way this thesis contributes towards
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extending high level and high performance parallel programming to modern
consumer devices.

Objectives

The objectives of this thesis are to:

• Survey technologies for high performance and parallel programming in
the browser.

• Design an API for interoperation between Futhark and browser applica-
tions.

• Implement Futhark backends that generate libraries that run efficiently
and in parallel in browsers.

• Evaluate the performance of these backends.

Thesis Structure

This thesis is organized with the following structure:

• Chapter 2, Background: Overview of the related work that this thesis
builds on.

• Chapter 3, WebAssembly: Explanation and analysis of WebAssembly as
a programming language and as a target language for the browser.

• Chapter 4, API Design: We develop an API for calling Futhark Web-
Assembly libraries from JavaScript.

• Chapter 5, WebAssembly Backend: Description of the implementation
of the WebAssembly backend. As well as a overview of the performance
bench-marked against the native C backend.

• Chapter 6, Parallel Execution in the Browser: Analysis of the facili-
ties and paradigms for parallel programming in the browser through
JavaScript and WebAssembly.

• Chapter 7, WebAssembly Multicore Backend: Description of the im-
plementation of the multicore WebAssembly backend. As well as an
overview of the performance benchmarked against the native multicore
C, and WebAssembly backend developed in Chapter 5.

• Chapter 8, Conclusion: Summary of the implementations and perfor-
mance of the backends and API developed. As well as a brief discussion
of future developments for Futhark targeting parallel compute in the
browser.



CHAPTER 2
Background

This chapter describes relevant background for the work in this thesis, namely
browser programming facilities and the Futhark programming language.

2.1 Programming Languages in the Browser
In the early days of web browsers, web pages would render differently across
browsers as web APIs were not standardized. Different browsers supported
different programming languages, e.g. Java applets and VBScript, creating
headaches for programmers who wanted their websites to render identically
across browsers. The first popular language for the browser was JavaScript,
but the implementations across browsers differed. Eventually the big vendors
converged on JavaScript releasing a standardized version called ECMAScript.

Huge investments have been made to increase the execution speed of
JavaScript in the browser. All the major browser vendors have optimized the
performance of their JavaScript engines, in particular V8 in Chrome and Spy-
derMonkey in Mozilla. Many approaches have been taken to make JavaScript
faster but they have all been fundamentally limited by the language design.

One of the approaches taken by the browser vendors was to define a subset
of the language asm.js and a convention for type hints, which were designed
for efficient execution by leveraging types and compiler tricks to allow ahead-
of-time compilation. It was intended as a target language for compilation of
statically typed programming languages. Emscripten [19] was developed to be
a C/C++ to asm.js compiler.

Google also introduced Google Native Client (NaCl) [18] as a way to bridge
the speed gap between running code in the browser, and natively. NaCl is a
sandbox for running compiled C and C++ code in the browser efficiently and
securely, independent of the user’s operating system [18]. However it struggled
to gain adoption due to its lack of portability as it was only supported by
Chromium based browsers.
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4 2.2 Parallel Programming in the Browser

The major browser vendors collaboratively designedWebAssembly (Wasm)
[4] to more comprehensively address the limitations of JavaScript as a target
language for the web. It is a portable low level byte code, designed for compact
representation, efficient compilation, and near native execution speeds. Web-
Assembly is gaining adoption and has been used for a variety of applications
especially as a target for compilation from C, C++ and Rust.

Google Earth [9] is an example of a major application that is adopting
WebAssembly. Google Earth renders a 3D representation of Earth based pri-
marily on satellite imagery. It started out as a desktop application, but in
2013 was ported to the web. It originally only ran in Chrome, as it was built
on NaCl. The developers tried to build it with asm.js, but found the binary
sizes of compiling over a million lines of code with Emscripten to be infeasibly
large. However with the creation of WebAssembly they were able to make a
high performance cross browser implementation of Google Earth due to the
speed and small binary sizes of WebAssembly [12].

Another example is TensorFlow [10], an open source machine learning li-
brary, originally written in C++. Due to the large eco-system of JavaScript
developers and its ability to run on the browser, the developers introduced
TensorFlow.js [14]. They have multiple backends including a WebAssembly
backend, which is 10-30x faster than their plain JavaScript backend [2]. What
is interesting about TensorFlow.js is that it shows how WebAssembly can be
used to create high performance libraries that can be called from the web.

One of the technologies that has greatly helped the adoption of WebAssem-
bly as a target language is the LLVM [8] compiler tool chain. Writing a full
compiler from scratch that supports multiple targets is a huge undertaking.
In order to have high performance backends for different target architectures
such x86 and ARM requires knowledge of many of the low level details of each
respective target. An alternative approach is for the compiler frontend of the
source language to take the source code and translate it to the LLVM internal
representation (IR). The LLVM compiler tool-chain can then generate high
performance code on all the most common computer architectures. Many of
the biggest languages are currently built with or have compiler implementa-
tions using LLVM. LLVM compiles from its IR to WebAssembly and therefore
languages that generate LLVM IR have an easy path to WebAssembly code
generation. Emscripten uses LLVM and can generate WebAssembly in addi-
tion to asm.js. It is a widely used compiler for generating WebAssembly.

2.2 Parallel Programming in the Browser
While WebAssembly has progressed the state of the art of single threaded
computation speed in browsers another avenue for execution speed is paral-
lelism. Browsers have facilities for parallel programming. Javascript supports
two different paradigms with web workers. Message passing enables parallel
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programming without shared memory. SharedArrayBuffer and atomics en-
able shared memory multithreading with thread synchronization. There is a
threaded WebAssembly proposal that adds atomic operations to the language,
and adds support for SharedArrayBuffers while relying on JavaScript’s web
workers to create and join threads. Emscripten can currently compile C with
POSIX threads to threaded WebAssembly. The Chrome and Firefox browsers
along with Node.js have experimental support for threaded WebAssembly.

2.3 Futhark
Futhark [6] [5] is a data parallel programming languages that can generate
high performance parallel code for both the CPU and GPU . Writing GPU
code and multicore CPU code is difficult as there are many low level details
required to make correct and optimal implementations. Futhark is a high level
functional programming language, which aims to do the heavy lifting for the
user.

Futhark programs are generally written with Second-Order Array Com-
binators (SOACs), which are similar to the filter, map, and reduce functions
commonly found in many functional programming languages. These functions
can be optimized to efficient parallel code. These combinators are expressive
and be combined to encode code complex programs. To see this in action
below is a Futhark implementation of matrix multiply:

let matmul [n][p][m] (xss: [n][p]f64) (yss: [p][m]f64): [n][m]f64 =
let dotprod xs ys = reduce (+) 0 (map2 (*) xs ys)
in map (\xs -> map (dotprod xs) (transpose yss)) xss

Here dotprod xs ys computes the dot product of two vectors xs and ys by
computing the pairwise products zs = map2 (*) xs ys and then summing
the products with reduce (+) 0 zs. In the last line the innermost map in
map (dotprod xs) (transpose yss) computes a row vector of the product
matrix and the outermost map generates all the rows.

This serves as an illustration of how a relatively involved operation can be
written using SOACs. Not only is the implementation short, it’s also fast.

This thesis is not going to explain the Futhark language in further detail.
Only very short Futhark functions will be used in examples and do not require
deeper understanding of the language.

Currently the futhark compiler has C backends generating Cuda, OpenCL,
and sequential C code. Recently a multicore C backend was added that gen-
erates parallel code using POSIX threads (pthreads) [15]. Futhark also has
two Python backends, one sequential and one using PyOpenCL. All the back-
ends can be compiled to libraries, making it possible to call Futhark from C
or Python applications. For this this thesis we build off of the sequential C
backend and the multicore C backend.
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CHAPTER 3
WebAssembly

This chapter gives an overview of the design and structure of the WebAssembly
programming language. We illustrate the instruction set with two simple hand
written WebAssembly modules. We show how functions and memory work,
and how to call a module from JavaScript. Most importantly we show how to
generate WebAssembly and JavaScript glue code with Emscripten and how to
work with Emscripten’s JavaScript API.

3.1 WebAssembly Module Structure
This section describes some of the lower level details of the WebAssembly pro-
gramming language. They illustrate some of WebAssembly’s characteristics
but they are not critical for understanding the rest of the thesis.

A WebAssembly file is commonly referred to as a module, and given a
.wasm file extension. WebAssembly also defines a text format that serves
to be a human readable version of the underlying binary format, much in
the same way assembly provides a human readable format for machine code.
The wat2wasm program from The WebAssembly Binary Toolkit1 compiles the
textual format to a binary module.

WebAssembly modules are segmented into sections. The segmentation of
these sections is done so that loading a WebAssembly file is as efficient as
possible. The sections are structured such that the byte code can be compiled
in a single pass, and in parallel. Furthermore the code can be parsed and com-
piled before the complete WebAssembly file has been downloaded, reducing
the instantiation time of a WebAssembly module.

WebAssembly supports the 4 number types of 32-bit and 64-bit integers,
i32 and i64, and floats, f32 and f64. These don’t map cleanly to JavaScript’s
number types but are useful for supporting number types for languages like
C/C++ and Rust, the languages it aims to be a target language for.

1https://github.com/WebAssembly/wabt
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A WebAssembly function has the following structure.

( func <signature> <locals> <body> )

The signature gives the function name, parameter types, and return types.
The locals are the local variables that will be used in the execution of the
function, and the body is the actual implementation of the function. A simple
WebAssembly example is the add function.

(module
(export "add" (func $add))
(func $add (param $a i32) (param $b i32) (result i32)

local.get $a
local.get $b
i32.add

)
)

The function signature of add specifies the two arguements a and b as i32
and specifies the return type result as i32. There are no locals. The function
body has three instructions. The instructions local.get $a and local.get
$b push the two arguments to onto the stack. The instruction i32.add pops
the two elements off the stack and pushes their sum. The function returns the
number on the stack.

The body of the function could be replaced with:

(i32.add (local.get $a) (local.get $b))

That is, WebAssembly allows the programmer to use a notation where ar-
guments to instructions are passed as parameters instead of manually being
placed on the stack.

3.2 Memory

A notion of memory is needed for writing more complex programs. In a lan-
guage like C, it is common practice to use pointers to locations in memory, or
for writing an array of values. Memory from the perspective of WebAssembly is
just an array of bytes that can be read from and written to. WebAssembly has
two essential functions for interacting with this array, namely the load.i32
and store.i32, for reading and writing to the array of bytes respectively.

As a motivating example, the following C code gives a simple implemen-
tation of a place prefix sum. (Again, this example is just for illustration and
not needed to understand the rest of the thesis.)
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void prefix_sum(int* arr, int size) {
for (i = 1; i < size; i++) {

arr[i] += arr[i-1];
}

}

The following code is a WebAssembly implementation of in-place prefix sum.

1 (module
2 (import "env" "memory" (memory $memory 1))
3 (export "prefixSum" (func $prefixSum))
4 (func $prefixSum (param $size i32)
5 (local $offs i32)
6 (local $acc i32)
7 (local $last i32)
8 (local.set $offs (i32.const 4))
9 (local.set $last (i32.mul (local.get $size) (i32.const 4)))
10 (local.set $acc (i32.load (i32.const 0)))
11 loop $forloop
12 (local.set $acc (i32.add (local.get $acc)

(i32.load (local.get $offs))))
13 (i32.store (local.get $offs) (local.get $acc))
14 (local.set $offs (i32.add (local.get $offs) (i32.const 4)))
15 (br_if $forloop (i32.ne (local.get $offs)

(local.get $last)))
16 end $forloop
17 )
18 )

For the implementation, a local variable accumulator is set to the first value
of the array and an offset is set to 0. A loop is then entered, where the element
at offset in the array is loaded with i32.load and added to the accumulator,
$acc. The result is stored with i32.store. The offset is increased by 4 bytes,
and then compared to the local variable $last. If it is not equal the loop goes
back to the loop on line 12, and repeats.

The most important details of the function implementation for understand-
ing WebAssembly’s interaction with memory are the load and store operations,
which use byte offsets to address memory. The memory is never explicitly ref-
erenced in the function because WebAssembly modules only have one declara-
tion of memory in the memory section, making the array of memory implicit.
Memory can either be imported from JavaScript, in which case the memory is
created in JavaScript and passed to WebAssembly on instantiation, or, alter-
natively, the memory can be exported from WebAssembly, in which case the
memory is created in WebAssembly on instantiation and can be accessed in
JavaScript afterwards. The memory is imported in line 2:
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(import "env" "memory" (memory $memory 1))

The ending, 1, sets the size of the memory heap to be 1 page of memory. For
WebAssembly 1 page corresponds to 64 kilobytes. Memory is always set to an
integer number of pages.

3.3 WebAssembly and JavaScript Interaction
Listing 1 shows how to load, instantiate, and call the add.wasm module from
JavaScript in a web page.

1 <html>
2 <head>
3 <script>
4 fetch('add.wasm')
5 .then(r => r.arrayBuffer() )
6 .then(r => WebAssembly.instantiate(r, { }))
7 .then(asm => console.log("4 + 6 =", asm.instance.exports.add(4,6)));
8 </script>
9 </head>

10 <body></body>
11 </html>

Listing 1: Invocation of add.wasm in web page

By design a WebAssembly module only interfaces with its environment
through function inputs and outputs, and through memory. The most clear
cut example of this is the lack of access to the DOM. WebAssembly does
not have direct access to Web APIs. However it can call imported JavaScript
functions. This facility allows it to interact with Web APIs. This simple design
feature is powerful. It is this feature that enables threaded WebAssembly as it
can leverage JavaScript’s ability to spawn web workers. This will be discussed
in greater detail in Chapter 6.

3.4 Emscripten
This section describes how to generate WebAssembly and JavaScript glue code
with Emscripten and how to work with Emscripten’s JavaScript API. This
material is critical for understanding the backend implementation in chapter
5.

As described in chapter 2, the popular Emscripten toolchain compiles
C/C++ to a WebAssembly module. It also generates JavaScript ”glue code”,
a phrase we use with the specific meaning of code that Emscripten generates to
encapsulate module instantiation and access through Emscripten’s JavaScript
API. Technically the library user can load the WebAssembly module directly
as in listing 1. However this is impractical for a couple of reasons. The module
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is constructed by Emscripten to import a series of system library functions to
access files and allocate memory etc. Emscripten’s glue code supplies all these
at instantiation time and hides this from the library user.

For many use cases, compiling code to a library is desirable. This way a
programmer can write source code in C/C++ that contains functions for com-
pute intensive parts of their application. They can then generate WebAssem-
bly modules that can be called from JavaScript, and offload the computation
to WebAssembly.

It is relatively straightforward to call simple C functions from JavaScript
when they are compiled with Emscripten. We just need to explicitly export
the functions at compile time.

If we have a simple C file add.c that contains an add function.

int add(int a, int b) { return a + b; }

We compile with Emscripten to a library while making sure to export the
function.

emcc add.c -o add.js -s MODULARIZE -s EXPORTED_FUNCTIONS=[_add]

We also use the MODULARIZE flag, to make the WebAssembly Module easier
to import. This is helpful because WebAssembly is loaded asynchronously.
With the MODULARIZE flag we are able to get the module as a promise.
The following code runs in Node.js:

var load_module = require('./add.js');
load_module().then((instance) => {
console.log(instance._add(4, 6));

});

The load_module is a factory function. Once the WebAssembly Module is
loaded we run the code in the callback. The actual logic for running the C
function is just the one line:

console.log(instance._add(4, 6));

The example library can also be loaded as a script in a web page and invoked
from JavaScript in the browser. This will be shown later in the Mandelbrot
example in Section 5.4.

Library functions compiled with Emscripten are easy to use when they
take integer arguments and have integer return types. However lots of C/C++
works with pointers. Emscripten models that with locations in a single mem-
ory region attached to the WebAssembly module. This memory region is
called the heap. Emscripten offers multiple views into the heap with a typed
array for each primitive element type, namely those supported by JavaScript
typed arrays. See Table 3.1. These typed array all share the same underlying
ArrayBuffer memory.
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Heap view JavaScript type
HEAP8 Int8Array
HEAP16 Int16Array
HEAP32 Int32Array
HEAP64 BigInt64Array
HEAPU8 Int8Array
HEAPU16 Uint16Array
HEAPU32 Uint32Array
HEAPU64 BigUint64Array
HEAPF32 Float32Array
HEAPF64 Float64Array

Table 3.1: Emscripten’s heap views and their JavaScript types

Typed arrays will play an important role in this thesis, both for interact-
ing with the Emscripten heap and for array parameters to compiled Futhark
functions. Typed arrays are useful because they represent number arrays com-
pactly and efficiently, and the ability for typed arrays to act as different views
of the same underlying ArrayBuffer can be used to avoid memory copies for
parameter passing in many cases.

To illustrate how to pass pointer arguments, consider the simple C string
function in listing 2 which takes two strings and return their concatenation
into allocated memory that the caller must free.

1 #include <string.h>
2 #include <stdlib.h>
3 char* concat(const char* a, const char* b) {
4 int alen = strlen(a);
5 int blen = strlen(b);
6 char* res = malloc(alen + blen + 1);
7 strcpy(res, a);
8 strcpy(res + alen, b);
9 return res;

10 }

Listing 2: C concat function

To use this function the caller will need to use the malloc and free system
library functions, so we export those alongside concat when we compile to a
library with Emscripten:

emcc concat.c -o concat.js -s MODULARIZE \
-s EXPORTED_FUNCTIONS=[_malloc,_free,_concat]

The Node.js program in listing 3 calls concat.
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1 var load_module = require("./concat.js");
2 load_module().then((instance) => {
3 var hello = "hello ";
4 var alen = hello.length;
5 var a = instance._malloc(alen + 1);
6 new TextEncoder().encodeInto(hello, instance.HEAPU8.subarray(a, a + alen));
7 instance.HEAPU8[a + alen] = 0;
8 var world = "world!";
9 var blen = world.length;

10 var b = instance._malloc(blen + 1);
11 new TextEncoder().encodeInto(world, instance.HEAPU8.subarray(b, b + blen));
12 instance.HEAPU8[b + blen] = 0;
13 var c = instance._concat(a, b);
14 var cend = instance.HEAPU8.indexOf(0, c);
15 console.log(new TextDecoder().decode(instance.HEAPU8.subarray(c, cend)));
16 instance._free(c);
17 instance._free(b);
18 instance._free(a);
19 })

Listing 3: Node.js call to Emscripten compiled concat function

The pointers a and b passed to _concat are locations in the Emscripten
heap, so the caller must first copy the strings to the heap for _concat to access
them. To find a place in the heap to place them, we call malloc twice and
then use the HEAPU8 heap view to write the strings into the allocated memory.
We zero terminate the a string with:

instance.HEAPU8[a + alen] = 0;

and write into the first alen bytes through:

instance.HEAPU8.subarray(a, a + alen)

It is another Uint8Array which is a view into the subarray of the heap that
holds the first alen bytes, up to and excluding the terminating zero. The
returned pointer, c, again points into the heap and we find the heap location
of the terminating zero with:

var cend = instance.HEAPU8.indexOf(0, c);

and then we get a view of the concatenated string with:

instance.HEAPU8.subarray(c, cend)

Finally, all the allocated strings are freed with calls to _free.
Emscripten’s function and heap API and compiler flags will play impor-

tant roles in the implementation of the WebAssembly backends for Futhark
in chapter 5 and 7.
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CHAPTER 4
API Design

The WebAssembly backends that we are going to develop will compile Futhark
functions to libraries for use in the browser. This section designs a JavaScript
API for programs in the browser to call the compiled library functions.

In order to make Futhark a practical language for writing libraries that
can be called in the browser it is important that it has a simple and efficient
API. As discussed in chapter 3 code that is compiled to WebAssembly modules
typically comes packaged with a JavaScript file. This file contains the library
functions that are exposed to the programmer, where internally these functions
handle the interaction with WebAssembly. This allows users of the library to
be oblivious of the fact that WebAssembly is being used under the hood,
much in the same way that some Python developers are oblivious that numpy
is running compiled C under the covers.

A successful API for calling Futhark in the browser will have the following
properties

1. It should be convenient, seamlessly integrating with the most commonly
used JavaScript number and array data types.

2. The API should be efficient both with respect to memory usage and
runtime speed.

3. Finally the API should minimize boiler plate code.

4.1 Comparing Futhark APIs
It is insightful to look at the APIs of other languages so that we can copy
the elements of the APIs that are effective and avoid the parts that are cum-
bersome or inefficient. These decisions are constrained by the limitations and
capabilities of the target language, which for us is JavaScript and WebAssem-
bly.

15
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An additional reason why it is important to observe the C API, is that the
WebAssembly backend builds off the sequential C backend. For this reason
our design choices for the API are limited to how we can wrap the C API
function calls behind JavaScript classes and functions.

The exposition will be example based. The first example is the minimal
program in listing 4 that takes a 32 bit integer and returns the successor.

entry increment (a : i32) = a + 1

Listing 4: Futhark increment function, increment.fut

The second example in listing 5 works with multidimensional array inputs
and outputs as well as a scalar input:

entry scale (scalar : f32) (matrix : [][]f32) =
map (map (scalar *)) matrix

Listing 5: Futhark scale function, scale.fut

The scale function multiplies each element of a matrix by a scalar, and
returns the scaled matrix.

4.1.1 C API
When increment.fut is compiled as a C library, the files increment.c and in-
crement.h are generated. The implementation and header files respectively.
Listing 6 is a C program that interfaces with the generated library.

1 #include <stdio.h>
2 #include "increment.h"
3
4 int main() {
5 // Initialize config and context
6 struct futhark_context_config *cfg = futhark_context_config_new();
7 struct futhark_context *ctx = futhark_context_new(cfg);
8
9 int32_t res;

10 futhark_entry_increment(ctx, &res, 42);
11 printf("%d\n", (int) res);
12
13 futhark_context_free(ctx);
14 futhark_context_config_free(cfg);
15 }

Listing 6: C code for interacting with the C API of the compiled program
increment.fut

At the top level the API works off of a context and a configuration,
futhark_context, and futhark_context_config. The configuration stores
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choices like debugging. The context manages global information and book-
keeping. Including logging and profiling, and a mutex to guarantee thread
safety when used from multiple threads. The API has functions to create
these at the beginning and free them at the end.

futhark_context_config_new
futhark_context_new
futhark_context_free
futhark_context_config_free

Futhark’s primitive types (bool, integers and floats) are represented by
corresponding C types.

For arrays futhark generates a C type for every type that appears as an
argument or result type in any entry point function in the library. It also
generates functions to create, access, and free arrays. For example for the
futhark array type [][]f32, the generated header file scale.h declares a type
futhark_f32_2d and functions futhark_new_f32_2d and futhark_free_f32_2d
for creating and freeing arrays of that type. Moreover the API generates func-
tions futhark_shape_f32_2d and futhark_values_f32_2d for getting the
shape (dimensions) and values of the futhark array respectively.

For each entry point function in the library a C function is generated,
which takes the futhark context, an output parameter for each type in the
result tuple, as well as an input parameter for each argument. The function
signature for the generated C function for scale.fut can be seen below.

int futhark_entry_scale(
struct futhark_context *ctx,
struct futhark_f32_2d **out0,
const float in0, const struct futhark_f32_2d *in1);

Listing 7 is a C program that calls futhark_entry_scale.
Memory management is manual. Both the input array created with futhark_new_f32_2d

and the output array returned from futhark_entry_scale are freed manu-
ally.

4.1.2 Python API

When scale.fut is compiled as a Python libray it generates a single Python
file scale.py. It contains a class that can be used to interact with the Python
methods.
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1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "scale.h"
4
5 int main() {
6 float scalar = 0.5;
7 float arr_2d[12] = {0, 1, 2, 3,
8 4, 5, 6, 7,
9 8, 9, 10, 11};

10
11 // Initialize config and context
12 struct futhark_context_config *cfg = futhark_context_config_new();
13 struct futhark_context *ctx = futhark_context_new(cfg);
14
15 // Turn array_2d into futhark type
16 struct futhark_f32_2d *fut_arr_2d = futhark_new_f32_2d(ctx, arr_2d, 3, 4);
17
18 // Initialize futhark result array
19 struct futhark_f32_2d *res;
20
21 futhark_entry_scale(ctx, &res, scalar, fut_arr_2d);
22
23 const int64_t* shape = futhark_shape_f32_2d(ctx, res);
24
25 float res_arr[shape[0] * shape[1]];
26 futhark_values_f32_2d(ctx, res, res_arr);
27 for (int i = 0; i < shape[0]; i++) {
28 for (int j = 0; j < shape[1]; j++)
29 printf("%f ", res_arr[i * shape[1] + j]);
30 printf("\n");
31 }
32
33 futhark_free_f32_2d(ctx, res);
34 futhark_free_f32_2d(ctx, fut_arr_2d);
35
36 futhark_context_free(ctx);
37 futhark_context_config_free(cfg);
38 }

Listing 7: C code for interacting with the C API of the compiled program
scale.fut

1 import numpy as np
2 import scale
3
4 scalar = 0.5
5 matrix = [[0, 1, 2, 3],
6 [4, 5, 6, 7],
7 [8, 9, 10, 11]]
8
9 np_matrix = np.array(matrix).astype("float32")

10
11 scale_class = scale.scale()
12 result = scale_class.scale(scalar, np_matrix)
13 print(result)

Listing 8: 64 bit multiplication with 128 bit casting

In order to invoke the python library we import the file. Then we in-
stantiate a scale_class by calling the scale() method. Finally we invoke
the method by calling the entry point function with a scalar input and a 2-
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dimensional numpy array. All primitive Futhark types conveniently map to
primitive numpy types. Numpy ndarray are made up of these primitive types
so passing them in as arguments in the API provides sufficient information.
We make sure that the numpy array has values of the correct type by calling
the astype function of numpy with f32, the numpy equivalent of the futhark
primitive f32. The entry point function logically returns a numpy ndarray
whose elements have type float32. Interestingly numpy scalars are returned
by the Python API if the return time is a scalar. However the entry point
function can both accept scalars as normal Python numbers or as numpy
scalars.

4.1.3 API Comparison

One of the features of the Python API that make it simpler is that it wraps the
context and configuration in a class. For the C backend the context needs to
be passed to every function call that interacts with Futhark specific functions.
The other big advantage of the Python API is that it utilizes the numpy library
which provides convenient classes for representing multidimensional arrays. C
does not have a clean representation of multidimensional arrays. This makes
the C API more verbose.

4.2 JavaScript API

When designing the JavaScript API we consider both usability and perfor-
mance.

JavaScript has one standard number, which is a 64 bit floating point num-
ber. This is typically used to encode all numbers. All the Futhark types u8,
u16, u32, i8, i16, i32, f32, f64, and bool except for u64 and i64 can be
encoded by a 64 bit float. Fortunately JavaScript recently introduced BigInt
in ES20201 to address this shortcoming of the language. With this there is a
way to represent every futhark primitive type with either standard JavaScript
number, boolean, or BigInt.

One problem with JavaScript is that it doesn’t have a standard package
with widespread adoption for scientific computing that gives an efficient encod-
ing of n-dimensional arrays. The standard JavaScript array are more reminis-
cent of lists and have similar semantics to the list type of Python. A problem
is that there is no way to efficiently validate the shape for n-dimensional arrays
and the types of its elements.

1ES2020 is the 2020 version of the JavaScript language specification [7]
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TypedArrays
The approach that many scientific JavaScript libraries take is to accept typed
arrays as arguments, as well as arguments for specifying the shape and di-
mensions of the typed arrays. Typed arrays are briefly discussed in chapter 3,
but as a reminder typed arrays are standard JavaScript types. There are 10
different typed arrays types, one for each of the 10 common numeric types.
These happen to correspond to Futhark’s scalar types, with the exception of
booleans. Typed arrays have a number of advantages:

• Type Enforcement : typed arrays only store the type that is specified
by their constructor.

• Memory Efficiency : typed arrays can store types with less than 64
bit precision more efficiently as they don’t need to use 64bit float to also
store high order bits. As an example a typed array of 8-bit integers takes
an eighth of the space compared to a regular array storing numbers.

• Ubiquity : Typed arrays are present in all standard JavaScript runtimes,
such as Node.js, and Chrome. They don’t need to be imported and are
often the return types of scientific libraries such as for image or graphics
processing

In order to maintain the most flexibility with our API design we choose to
both have a way to work with the API through simple JavaScript Arrays, as
well as through typed arrays. Typed arrays will have a little extra baggage to
carry along shapes.

Futhark primitive types for all types except i64, u64 and bool are repre-
sented by the standard JavaScript number type. i64 and u64 are represented
by the BigInt number type. bool is represented by the standard JavaScript
boolean type. The type conversion between Futhark types and JavaScript
types can be seen in listing 9.

All array values share the same structure API. They can be passed in
as n-dimensional arrays of their associated JavaScript type. Note that these
arrays must be regular, it is on the caller to enforce this. Alternatively we
provide a FutharkArray class which can be instantiated from typed arrays.
FutharkArray instances are also accepted by entry point functions. Users who
have a focus on (space and speed) efficiency should elect to use this over regular
JavaScript arrays. Users using a more efficient representation of their data
with typed arrays aren’t forced to convert into a less efficient representation.

Finally there are Opaque types, which don’t have a clean mapping from
Futhark to JavaScript. Instead they are represented with a FutharkOpaque
class. This class doesn’t have meaning outside of the context of being passed
from the output of one entry point to the input to another entry point with
the same type.
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Futhark Type JavaScript Type
i8 number
i16 number
i32 number
i64 BigInt
u8 number
u16 number
u32 number
u64 BigInt
f32 number
f64 number
bool boolean
[]i32 FutharkArray
[][]f64 FutharkArray
opaque FutharkOpaque

Listing 9: Type conversion table from Futhark types to primitive JavaScript
types

FutharkContext

FutharkContext is a class that contains information about the context and
configuration from the C API. It has methods for invoking the Futhark entry
points and creating FutharkArrays on the WebAssembly heap.

It is instantiated with the empty constructor.

var fc = new FutharkContext();

FutharkContext has methods for creating FutharkArrays, one method
for each futhark array type that appears as an argument to any entry point
function. Each method has the following signature

new_<type>_<n>d(typedArray, dim_1, ..., dim_n)

Working off of the example scale.fut, to create FutharkArray for a matrix
of [][]f32, we would make the following call.

var fc = new FutharkContext();
var typedArray = new Float32Array([0.5, 0.4, 0.3, 0.2, 0.1, 0.0]);
var futharkArray = fc.new_f32_2d(typedArray, 3, 2);
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Entry Points

Each entry point function in the compiled module has a method on the
FutharkContext. Scalar parameters are either BigInt numbers, regular JavaScript
numbers, or booleans. Array parameters can be either FutharkArrays or, for
convenience, JavaScript Arrays.

The method returns an array if the futhark return type is a tuple. Other-
wise it returns a single value.

Invoking the entry points of scale.fut looks something like this:

var fc = new FutharkContext();
var typed_array = new Float32Array([0.5, 0.4, 0.3, 0.2, 0.1, 0.0]);
var fut_arr = fc.new_f32_2d(typed_array, 3, 2);
var fut_arr_result = fc.scale(0.5, fut_arr);
console.log(fut_arr_result.toTypedArray(), fut_arr_result.shape());

As stated earlier entry points also allow JavaScript Arrays as inputs, pro-
vided they have the correct types and dimensions and are regular. So an
alternative approach with JavaScript arrays would look like this:

var fc = new FutharkContext();
var matrix = [[0.5, 0.4],

[0.3, 0.2],
[0.1, 0.0]];

var fut_arr_result = fc.scale(0.5, matrix);
console.log(fut_arr_result.toArray());

The second implementation is simpler but also less efficient as regular
JavaScript arrays require multiple levels of type conversion under the hood.

The fut_arr_result in both the examples is a FutharkArray. FutharkAr-
ray has methods for getting the underlying data out into basic JavaScript as
either a TypedArray or JavaScript Array.

We have omitted calls to free. Memory management will be discussed in
the next section.

FutharkArray

The FutharkArray allows us to get the underlying data from the WebAssembly
Heap to JavaScript. It provides the following methods:

• toArray() : Returns a JavaScript array with the correct dimensions.

• toTypedArray() : Returns a flat typed array of the underlying data.

• shape() : Gives the shape of the FutharkArray as an array of BigInt.

• futharkType() : Returns the futhark type of the elements as a string,
i.e. bool, u32, i8, etc.
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FutharkOpaques

For handling the opaque types we introduce the FutharkOpaque class. This
class has no methods, other than free, which will be discussed in the next
section. The opaque class does not have any meaning to the user outside of
the FutharkContext it is defined in. It is only useful for cases where an entry
point function on the context returns an opaque type and another entry point
function on the context accepts the opaque as input. For this reason there are
no additional methods on the class.

4.3 Memory Management
Unfortunately WebAssembly does not have garbage collection. This means
that the programmer is responsible for doing this manually. The JavaScript
API introduced 3 classes, FutharkContext, FutharkArray, and FutharkOpaque.
Each has a free method, which the API user must call manually to free un-
derlying memory on the Emscripten memory heap.

With this last information about memory management we have the full
picture of the JavaScript API. Our final look at the scale.fut example gives us:

var fc = new FutharkContext();
var matrix = [[0.5, 0.4],

[0.3, 0.2],
[0.1, 0.0]];

var fut_arr_result = fc.scale(0.5, matrix);
console.log(fut_arr_result.toArray());
fut_arr_result.free();
fc.free();

4.4 Summary
Our API is relatively concise but we do make some tradeoffs between con-
ciseness and efficiency. In particular we return arrays from entry points as
FutharkArrays rather than nested JavaScript arrays. We also provide an ad-
ditional factory method to create FutharkArrays from flat typed arrays. These
design choices favored efficiency at the expense of some complexity. The jus-
tification is that an efficient and complex API can be made simpler, whereas
a simple and inefficient API cannot be made efficient.

One drawback with our API design is that the caller has to free memory, by
calling free methods on the FutharkContext, FutharkArray, and FutharkOpaque
objects. However this is a pain point of working with WebAssembly as it does
not provide garbage collection.
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CHAPTER 5
WebAssembly Backend

This chapter describes the implementation of an additional Futhark backend
that generates WebAssembly and JavaScript code such that Futhark programs
can be compiled to libraries that can be run in the browser. The implementa-
tion is benchmarked in the Chrome browser, and in Node.js and against the
C backend.

The backend implementation takes outset in the existing futhark Sequen-
tial C backend and passes the generated C code to the Emscripten compiler for
the final compiler pass. Emscripten generates a WebAssembly module along
with JavaScript glue code. We generate additional JavaScript code to wrap
our API around Emscripten’s JavaScript API.

To illustrate the backend implementation working in practice we use the
WebAssembly backend to efficiently generate graphics for the Mandelbrot set
in a web page.

Finally we benchmark the Futhark backend to quantify its performance.
The benchmarks come from the futhark benchmark suite1, which are stan-
dardized benchmarks to test the performance of Futhark backends against
industry standards. The benchmarks show the WebAssembly, both when run
in the Browser and run on Node.js locally, performs between 13% to 67%
slower than the generated C running locally.

5.1 WebAssembly Code Generation
We will now describe the implementation of the WebAssembly backend for
Futhark.

We considered three choices for generating WebAssembly:

• Generating WebAssembly directly: This is the least attractive of all the
options. Writing low level code is time consuming and also inefficient, in

1https://github.com/diku-dk/futhark-benchmarks
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the sense that it would be a huge investment to capture the optimizations
expected of a modern compiler.

• LLVM IR: This is the most standard approach among compilers. How-
ever since Futhark doesn’t already generate LLVM IR utilizing this ap-
proach would effectively require a redesign of the compiler architecture.
This would be an interesting project, with possible positive implications
in more places than just a WebAssembly backend. However this would
be quite a large task, as the Futhark frontend wasn’t designed with this
specific intermediate representation in mind.

• Emscripten: Emscripten can simply take C source code generated from
the Futhark compiler. This approach would require the fewest modifi-
cations to the compiler. Futhark also aims to emit high performance
C code, and Emscripten aims to translate C to high performance We-
bAssembly code. Connecting the two compilers together is the approach
that is most logical.

We chose to go with the Emscripten approach. We started by running
Futhark’s generated C code through Emscripten and surfaced a handful of
issues that we describe in the following.

Futhark’s C backend generates over 2200 lines of C code when compiling
even a minimal function like the increment function from listing 4. This is
because it contains logic for option parsing, logic for parsing input and for-
matting output, and library functions for mathematical operations.

One issue was in platform specific code used for timing but on further in-
spection it turned out that this code was a relic and not actually used anywhere
in the compiler, and therefore could just be deleted.

Listing 10 gives the other function implementation that Emscripten couldn’t
compile.

1 static uint64_t futrts_mul_hi64(uint64_t a, uint64_t b)
2 {
3 __uint128_t aa = a;
4 __uint128_t bb = b;
5
6 return aa * bb >> 64;
7 }

Listing 10: 64 bit multiplication with 128 bit casting

The issue is that Emscripten and WebAssembly don’t support uint128
types. Instead an alternate implementation for calculating the high order bits
of 64 bit multiplication that doesn’t cast to uint128 numbers is used 2.

2The solution to this problem was found at https://stackoverflow.com/a/28904636
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1 static uint64_t futrts_mul_hi64(uint64_t x, uint64_t y)
2 {
3 uint64_t a = x >> 32, b = x & 0xffffffff;
4 uint64_t c = y >> 32, d = y & 0xffffffff;
5 uint64_t ac = a * c;
6 uint64_t bc = b * c;
7 uint64_t ad = a * d;
8 uint64_t bd = b * d;
9 uint64_t mid34 = (bd >> 32) + (bc & 0xffffffff) + (ad & 0xffffffff);

10 uint64_t upper64 = ac + (bc >> 32) + (ad >> 32) + (mid34 >> 32);
11 return upper64;
12 }

Listing 11: 64 bit multiplication without 128 bit casting

With the small modifications described to get the generated C to a state
where it can be compiled with the Emscripten compiler, Futhark programs
can be compiled to WebAssembly and run with Node.js as executables. Note
that this is specifically for executables and not C libraries. However we are
primarily concerned with getting Futhark running in the browser as a library
such that web developers can design high performance libraries in Futhark
and then call them from JavaScript in the browser.

5.2 Library Implementation

In order use the JavaScript and WebAssembly code that is generated by Em-
scripten as a library, the C library functions need to be exported during the
Emscripten compilation process. The library functions that need to be ex-
ported are the ones that the Futhark C backends emit into the C header file
when the futhark program is compiled as a library. Again this whole process
works almost out of the box when connecting Futhark’s C library code gen-
erator with the appropriate Emscripten command. However an issue is that
int64 types are hard to work with when they are provided argument types to
functions. numbers in JavaScript are 64-bit floating-point values. This means
that all 32 bit numbers can be represented in JavaScript, but not all 64 bit
numbers can be represented with full precision. By default Emscripten solves
this by passing two arguments to JavaScript functions, one for the low order
32 bits, and another for the high order 32 bits. Instead we take an alternative
approach offered by Emscripten with the WASM_BIGINT compiler flag. This
gets 64-bit integers working in C with the caveat that when the function is
called from JavaScript, the argument must be provided as a JavaScript BigInt.

With these fixes a programmer familiar with the semantics of the Em-
scripten heap has a workable WebAssembly library. Emscripten generates
two files when compiling C code. One is a WebAssembly module, which con-
tains the instructions for computing the functions described in the C source
code. The other file is JavaScript glue code, which is used to take care of
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loading the WebAssembly file, as well as handling any JavaScript calls that
the WebAssembly module might use.

The WebAssembly module has methods for each function that appears
in our .c file, plus some system library functions like malloc and free. To
call these functions from JavaScript we must tell Emscripten with the -s
EXPORTED_FUNCTIONS compiler flag to export them. The method names are
all prefixed with an underscore.

5.2.1 Interacting with C functions

Given all this we can now work with Futhark from JavaScript and do the
equivalent of listing 6. Listing 6 showed how to call Futhark’s generated C
library from the increment.fut example. After compiling the C library to
WebAssembly with Emscripten, the library can be called with the JavaScript
equivalent shown in listing 12.

1 var cfg = _futhark_context_config_new();
2 var ctx = _futhark_context_new(cfg);
3
4 var input = 42;
5 var out_ptr = _malloc(4);
6 _futhark_entry_increment(ctx, out_ptr, input);
7 var result = HEAP32[out_ptr >> 2];
8 _free(out_ptr);
9

10 console.log(result);
11
12 _futhark_context_free(ctx);
13 _futhark_context_config_free(cfg);

Listing 12: Working with raw Emscripten for the increment function

This is quite cumbersome for a function that simply takes a single integer
argument and returns a single integer. The program is basically a one to one
match of the C equivalent from listing 6, including passing around pointers,
which is unsafe and not idiomatic in JavaScript. The allocation and freeing of
out_ptr in lines 5 and 8 are even worse than the equivalent C. They are needed
because the output 32-bit integer parameter can only write to the Emscripten
heap and therefore the caller must explicitly allocate and free the 4 bytes, and
copy out the result from the heap using the HEAP32 heap view. This isn’t
the case in C because of the shared address space between the caller and the
library function, allowing the caller to pass a pointer to a stack allocated result
variable.

The picture gets even worse when the Futhark entry points accept and
return array arguments. These necessitate copying array contents to and from
the Emscripten heap, exacerbating the C like manual memory management
which is a poor fit in JavaScript.
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We now illustrate how to work with the more complex scale.fut from listing
7. As a reminder the futhark function takes a 2d array of floats and a scalar
float as input and returns a 2d array of floats that is element wise scaled by
the scalar.

1 var typed_array = new Float32Array([0.5, 0.4, 0.3, 0.2, 0.1, 0.0]);
2
3 var cfg = _futhark_context_config_new();
4 var ctx = _futhark_context_new(cfg);
5
6 var copy = copyToHeap(typedArray);
7 var in_ptr = _futhark_new_f32_2d(ctx, copy, 3n, 2n);
8 Module._free(copy);
9

10 var out_ptr = Module._malloc(4);
11 _futhark_entry_scale(ctx, out_ptr, 0.5, in_ptr)
12 _futhark_free_f32_2d(ctx, in_ptr);
13
14 var ptr = HEAP32[out_ptr >> 2];
15 Module._free(out_ptr);
16
17 var shape_ptr = _futhark_shape_f32_2d(ctx, ptr) >> 3;
18 var shape = Array.from(HEAP64.subarray(shape_ptr, shape_ptr + 2));
19
20 var values_ptr = _futhark_values_raw_f32_2d(ctx, ptr) >> 2;
21 var length = Number(shape[0] * shape[1]);
22 var values = HEAPF32.subarray(values_ptr, values_ptr + length);
23
24 console.log(values, shape);
25 _futhark_free_f32_2d(ctx, ptr);
26
27 _futhark_context_free(ctx);
28 _futhark_context_config_free(cfg);

Listing 13: Working with raw Emscripten

The JavaScript is as tedious as the original C code with respect to manual
memory management and, like in the previous example, needs to allocate
and free memory on the Emscripten heap to retrieve the out_ptr output
parameter. In this example the output parameter is an array pointer. Pointers
default to 32-bit signed integers in WebAssembly.

Yet another complication is error handling. In listings 12 and 13 we omitted
checking the return error code from the entry point functions and extracting
the error message.

These pain points were motivating reasons for the design of the API. Work-
ing with the raw functions from Emscripten is only accessible to programmers
with a strong understanding of memory in WebAssembly. This isn’t reason-
able as inter-operation between Futhark and JavaScript is a determining factor
in whether Futhark is a good language for writing code to run in the browser.
For Futhark to be practical the implementation details of the raw pointers to
the heap should hidden by a layer of abstraction. This is precisely what the
API designed in Chapter 4 accomplished.

In the following we will illustrate with examples how our Javascript API
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wraps the WebAssembly module and JavaScript glue code generated by Em-
scripten.

The simplest case is when all entry point inputs and outputs are scalar
as in the increment function. In this case the following FutharkContext class
meets the specification of the API.

1 class FutharkContext {
2 constructor() {
3 this.cfg = _futhark_context_config_new();
4 this.ctx = _futhark_context_new(this.cfg);
5 }
6 free() {
7 _futhark_context_free(this.ctx);
8 _futhark_context_config_free(this.cfg);
9 }

10 increment(in0) {
11 var out0 = _malloc(4);
12 _futhark_entry_increment(this.ctx, out0, in0);
13 var result0 = HEAP32[out0 >> 2];
14 _free(out0);
15 return result0;
16 }
17 }

Listing 14: FutharkContext class for the futhark increment function

The class has two fields cfg and ctx, that point to the config and context
and are created in the constructor by calling functions from the C API. Observe
how the increment methods successfully hides all the tedious details needed to
call the underlying exportedWebAssembly function _futhark_entry_increment.
The reason we can do this is because it has access to the ctx class field. With-
out a class this was something that the programmer was forced to pass around.
This is why the API was designed to access Futhark entry point functions as
methods on the FutharkContext class. The other important benefit of the
wrapper is that the results are simply returned instead of the cumbersome
heap allocation and copying required to call the WebAssembly function.

5.2.2 FutharkArray

The FutharkArray class represents any array regardless of dimension and el-
ement type, somewhat like Python ndarrays. Listing 15 below shows our
implementation.
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1 class FutharkArray {
2 constructor(ctx, ptr, type_name, dim, heap, fshape, fvalues, ffree) {
3 this.ctx = ctx;
4 this.ptr = ptr;
5 this.type_name = type_name;
6 this.dim = dim;
7 this.heap = heap;
8 this.fshape = fshape;
9 this.fvalues = fvalues;

10 this.ffree = ffree;
11 }
12 futharkType() { return this.type_name; }
13 free() { this.ffree(this.ctx, this.ptr); }
14 shape() {
15 var s = this.fshape(this.ctx, this.ptr) >> 3;
16 return Array.from(HEAP64.subarray(s, s + this.dim));
17 }
18 toTypedArray(dims = this.shape()) {
19 console.assert(dims.length === this.dim);
20 var length = Number(dims.reduce((a, b) => a * b));
21 var v = this.fvalues(this.ctx, this.ptr) / this.heap.BYTES_PER_ELEMENT;
22 return this.heap.subarray(v, v + length);
23 }
24 toArray() {
25 var dims = this.shape();
26 var ta = this.toTypedArray(dims);
27 return (function nest(offs, ds) {
28 var d0 = Number(ds[0]);
29 if (ds.length === 1) {
30 return Array.from(ta.subarray(offs, offs + d0));
31 } else {
32 var d1 = Number(ds[1]);
33 return Array.from(Array(d0), (x,i) => nest(offs + i * d1, ds.slice(1)));
34 }
35 })(0, dims);
36 }
37 }

Listing 15: Class FutharkArray

An instance is constructed with not only a pointer to the underlying
Futhark array on the Emscripten heap, but also type information and the
functions for manipulating the Futhark array itself. While this design choice
leads to many fields and constructor arguments it has the advantage that we
do not need to generate a class per array type.

The constructor and all the fields are effectively hidden from the API user
in that they are never needed to use the API. In other languages these fields
and methods would be private or otherwise hidden from the user. Unfortu-
nately JavaScript doesn’t provide information hiding facilities.

The fshape and fvalues functions are exported WebAssembly functions to
access the shape and contents of the underlying Futhark array in the Em-
scripten heap. Similarly, the ffree function is the function to free the ar-
ray. In the case of 2 dimensional f32 arrays, as in the scale.fut example,
these functions are _futhark_shape_f32_2d, _futhark_values_raw_f32_2d,
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_futhark_free_f32_2d, as can be seen in line 17 in Listing 16 below, where
the FutharkArray is constructed.

The heap argument in the constructor is the heap view corresponding to
the array element type e.g HEAPF32 corresponds to f32. The full mapping of
the heap views to Futhark types can be seen in table 3.1. The toTypedArray
method uses the heap view to return a heap subarray which is a view into the
heap (no underlying memory is copied).

The toArray function calls toTypedArray to get the view of the underlying
values. We construct a nested JavaScript array from the view, recursively.

1 class FutharkContext {
2 constructor() { ... }
3 free() { ... }
4 new_f32_2d_from_jsarray(array2d) {
5 return this.new_f32_2d(array2d.flat(), array2d.length, array2d[0].length);
6 }
7 new_f32_2d(array, d0, d1) {
8 console.assert(array.length === d0*d1);
9 var copy = _malloc(array.length << 2);

10 HEAPF32.set(array, copy >> 2);
11 var ptr = _futhark_new_f32_2d(this.ctx, copy, BigInt(d0), BigInt(d1));
12 _free(copy);
13 return this.new_f32_2d_from_ptr(ptr);
14 }
15 new_f32_2d_from_ptr(ptr) {
16 return new FutharkArray(this.ctx, ptr, 'f32', 2, HEAPF32,
17 _futhark_shape_f32_2d, _futhark_values_raw_f32_2d, _futhark_free_f32_2d);
18 }
19 scale(in0, in1) {
20 var out0 = _malloc(4);
21 var to_free = [];
22 if (in1 instanceof Array) {
23 in1 = this.new_f32_2d_from_jsarray(in1);
24 to_free.push(in1);
25 }
26 futhark_entry_scale(this.ctx, out0, in0, in1.ptr);
27 var result0 = this.new_f32_2d_from_ptr(HEAP32[out0 >> 2]);
28 _free(out0);
29 to_free.forEach(f => f.free());
30 return result0;
31 }
32 }

Listing 16: Class FutharkContext

Listing 16 gives the generated code for FutharkContext for the scale exam-
ple. There are three new functions for creating FutharkArrays. The first two,
new_f32_2d_from_jsarray and new_f32_2d, are those described in the API
design in chapter 4 for creating FutharkArrays from JavaScript nested arrays
and flat arrays. The third, new_f32_2d_from_ptr should be considered pri-
vate and is not meant to be invoked by the API user. It creates a FutharkArray
from a pointer to an underlying Futhark array on the Emscripten heap. The
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new_f32_2d_from_ptr method is also the only place where we invoke the
FutharkArray constructor and supply all its many arguments. It is used by
the two API methods and also by the entry point method wrapper to wrap
result arrays returned by the WebAssembly endpoint function.

The new_f32_2d method calls the underlying WebAssembly function
_futhark_new_f32_2d to create an underlying Futhark array on the Em-
scripten heap. To pass the array input it must be copied to the Emscripten
heap because _futhark_new_f32_2d expects a heap pointer. To do this we
must first allocate space (in bytes, therefore the array length is multiplied by 4,
the f32 element byte size) on the heap with _malloc, which returns a location
in the heap. Then the HEAPF32 heap view is used to write into that location.
Since HEAPF32 addresses the heap in 4 byte f32 chunks, the location needs to
be divided by 4. After the call the allocated copy of the input is freed with
_free.

The entry point method scale takes an array as its second argument and
returns an array. For the input array, we designed the API to allow either
passing in an already constructed FutharkArray or a JavaScript array. The
first is useful when you have the FutharkArray from the output of an entry
point, e.g. if you call scale twice:

fc.scale(2.0, fc.scale(0.5, [[1,2],[3,4]]));

It is also useful, to avoid unnecessary object construction, if you already have
multidimensional data represented in a flat array or typed array and you know
the shape. Then you can bundle this information efficiently in a FutharkArray
with new_f32_2d before calling scale:

// array is a flat array representing a 2x2 matrix
var fa = fc.new_f32_2d(array, 2, 2);
fc.scale(0.5, fa);

To support calling with a JavaScript nested array argument, scale first tests
whether the array argument is a JavaScript Array (not typed array). If it is
it calls new_f32_2d_from_jsarray to create the FutharkArray and the un-
derlying Futhark array on the Emscripten heap needed for the call to the
WebAssembly entry point function. The API user never sees this FutharkAr-
ray and thus cannot free it and therefore this must be handled internally and
we use to_free to remember that.

5.2.3 Opaques
As discussed in the API section we would like to wrap opaque inputs and
return types so that users of the library aren’t working with pointers. The
only other important consideration for opaques in terms of implementation is
that we also need a method for freeing their memory when they are no longer
used. Listing 17 contains the implementation of the FutharkOpaque class.
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1 class FutharkOpaque {
2 constructor(ctx, ptr, ffree) {
3 this.ctx = ctx; this.ptr = ptr; this.ffree = ffree;
4 }
5 free() { this.ffree(this.ctx, this.ptr); }
6 }

Listing 17: Class FutharkOpaque

Like FutharkArray, the API user does not need to call the FutharkOpaque
constructor. It is only called by our internal entry point method wrapper
code, namely to wrap opaque return values from the WebAssembly entry point
function. The only method that is of importance to the API user is free.

5.2.4 Error Handling
Up until now we have assumed that the entry point functions have run without
issue. Issues can arise when the arguments passed into an entry point function
don’t have matching dimensions.

Lets take a look at a simple implementation of dot product.

1 entry dotprod [n] (xs: [n]i32) (ys: [n]i32): i32 =
2 reduce (+) 0 (map2 (*) xs ys)

Listing 18: A Simple dot product Implementation

The n in the type signature of the method tells the compiler that the
sizes of xs and ys are the same. If we were to compile this into a C library
and call the entry point function with two futhark arrays of different lengths,
the function would return an error code of 1. At this stage we can find the
error message by calling futhark_context_get_error(). The function takes
a pointer to a futhark context as input and returns a string with the error
message.

In JavaScript it is common practice to throw an exception to exit a func-
tion that encounters an error. To implement this we first add a method
get_error() to the FutharkContext class:

1 get_error() {
2 var ptr = _futhark_context_get_error(this.ctx);
3 var end = HEAP8.indexOf(0, ptr);
4 var str = String.fromCharCode(...HEAP8.subarray(ptr, end));
5 _free(ptr);
6 return str;
7 }

Listing 19: Helper function for reading error message off the Context
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This function conveniently gets a view of the subarray from ptr to the
terminating zero character, and converts it into a JavaScript string and returns
said string. The C API requires the caller to free the error string. We can
then combine get_error with our calling of the WebAssembly entry point
function. Listing 20 shows this for the scale.fut library:

1 if (_futhark_entry_scale(this.ctx, out, in0, in1.ptr) > 0) {
2 _free(out0);
3 to_free.forEach(f => f.free());
4 throw this.get_error();
5 }

Listing 20: Error handling for scale

If the result is greater than 0 we know we have encountered an error, in
which case we also free all the memory that has been allocated in the current
run. And finally we throw the error by calling the get_error function we
defined in listing 19. This is all that is required to get the Futhark error
reporting facilities provided in C ported over to JavaScript.

5.2.5 Remaining details

Futhark entry points can return a single value or multiple values. For our
implementation if there is a single value we just return the value and if there
are multiple return values, we return an array of values.

The code generation from the compiler varies slightly from the code snip-
pets presented. This is because the code generation needs to work for an
arbitrarily number of input arguments and return values. For ease of ex-
planation we tried to omit the aspects of the code generation that weren’t
specifically insightful. Even though our code is generated by the compiler,
we put an emphasis on having a readable implementation. The big browser
vendors provide tools for developers to interactively debug their code in the
browser. For this reason it is practical to produce legible code.

For illustration, consider the following function (an artificial example to
exercise different scalar, array, and opaque types):

entry tuple (b: bool) (f: f64) (u: u16) (i: i64) (m: [][]f32)
= (b, f, (u, i), m[0])

The generated JavaScript code to wrap the WebAssembly entry point func-
tion in a FutharkContext entry point method is shown in Listing 21. The
code is somewhat readable, given the inherently complexity of the tasks it
accomplishes.
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1 tuple(in0, in1, in2, in3, in4) {
2 var out = [1, 8, 4, 4].map(n => _malloc(n));
3 var to_free = [];
4 var do_free = () => { out.forEach(_free); to_free.forEach(f => f.free()); };
5 if (in4 instanceof Array) {
6 in4 = this.new_f32_2d_from_jsarray(in4); to_free.push(in4);
7 }
8 if (_futhark_entry_tuple(this.ctx, ...out, in0, in1, in2, in3, in4.ptr) > 0) {
9 do_free();

10 throw this.get_error();
11 }
12 var result0 = HEAP8[out[0] >> 0]!==0;
13 var result1 = HEAPF64[out[1] >> 3];
14 var result2 = new FutharkOpaque(this.ctx, HEAP32[out[2] >> 2],
15 _futhark_free_opaque_8021f38c);
16 var result3 = this.new_f32_1d_from_ptr(HEAP32[out[3] >> 2]);
17 do_free();
18 return [result0, result1, result2, result3];
19 }

Listing 21: tuple entry point method

5.3 Compiler Pipeline

When putting all these pieces together and adding the modifications in the
compiler an important implementation observation is that the API only de-
pends on 3 things. The name of Futhark’s C library functions, these functions’
return types, and these functions’ arguments types. This greatly simplifies the
implementation. The function names, return types, and argument types are
needed for generating the runtime classes, and exporting the functions to the
emcc command. With this approach we only depend on Futhark’s C API,
which is a part of the compiler that is most stable and therefore will rarely
have to be adapted to deal with code changes in the intermediate representa-
tion of the compiler.

Emscripten provides facilities for combining the JavaScript glue code with
a library with the --post-fix and --js-library flags. This is convenient
as it reduces the number of files that are produced from running the futhark
wasm command.

Figure 5.1 illustrates the logical flow of the compilation of the WebAssem-
bly backend.

The source program is turned into Futhark’s intermediate representation,
and then into C source code. Our JavaScript API classes that the WebAssem-
bly backend generates only depend on the function names, argument types,
and return types, which can be taken from the intermediate representation.
At this stage both the C source code and the API are joined together with the
EMCC command, generating glue code with the attached API classes, and a
WebAssembly module.



5 WebAssembly Backend 37

Figure 5.1: Sequential WebAssembly backend compiler pipeline

EMCFLAGS="-s INITIAL_MEMORY=$((16777216 * 4))" futhark wasm --lib prog.fut

Listing 22: Example futhark wasm compile command

5.3.1 Emscripten Compiler Flags

The Emscripten compiler provides a large number of flags that effect the us-
age and the performance of the generated WebAssembly code. The backend
implementation uses only a few flags. The WebAssembly backend implemen-
tation includes a facility for the user to specify further compiler flags to pass
emcc, via the EMCFLAGS environment variable. This way the users of the
WebAssembly backend can add the flags that are best suited for their appli-
cations. As discussed previously in order for 64-bit integers to be handled
correctly, the backend needs to use the WASM_BIGINT flag. The other flag that
it defaults to is the O3 optimization level. Though this obfuscates the re-
sulting code, it comes with sizeable performance improvements over the other
optimization levels. Most browsers will have means to automatically pretty
print the obfuscated code.

The most important flag for users of the WebAssembly backend to consider
is the INITIAL_MEMORY flag. The memory flag in Emscripten defaults to 16
megabytes, but with performance heavy computation it is likely that this limit
will be exceeded. In these cases the user should manually set the memory
based on their needs. It is recommended to use less than 2 gigabytes as only
recently have virtual machines started to allow more than 2 gigabytes of heap
space. This means that using more memory than 2 gigabytes will likely not
be portable across browsers and with different WebAssembly engines.

Listing 22 shows an example of calling the backend with an additional
compiler flag to set the memory limit higher. The additional compiler flags
to Emscripten are passed through the environment variable EMCFLAGS. In
this case the memory is increased to 64 megabytes.
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5.4 Application
With the WebAssembly backend implemented as described above, it can now
be seen in action. One of the applications for high performance computing in
the browser is graphics. Figure 5.2 illustrates a Futhark program running in
the browser for visualizing the Mandelbrot set.

The full implementation of mandelbrot.fut and can be found in the ap-
pendix A. Taking a look at the function signature:

let main (screenX: i64) (screenY: i64)
(depth: i32) (xmin: f32)
(ymin: f32) (xmax: f32)
(ymax: f32): [screenY][screenX]i32 =

We note that the entry point function takes 7 input arguments. The first
two arguments screenX and screenY specify the dimensions of the output.

We firstly compile the mandelbrot.fut file as a library:

futhark wasm --lib mandelbrot.fut

This generates the files mandelbrot.js and mandelbrot.wasm. At this stage we
can write a HTML file to call the JavaScript API.

Listing 23 is a web page that takes 7 inputs from the user, one for each
of the arguments in the mandelbrot.fut entry point function. The user can
then click a button, which will then run the Mandelbrot computation and
visualization by calling the Futhark function.

In order to run the code in the browser, we need to launch a web server.
This can be done from Python with

python -m http.server

After running the server, we can go the web page in any modern browser. Put
in inputs and then press the button. Once the mandelbrot computation is
complete the result will render in the page.

Figure 5.2 shows the visualization once the function is done executing.
The example illustrates how Futhark code can be compiled into a WebAssem-
bly module that can be called in the browser. The WebAssembly module
offload the computationally heavy workload from the less efficient JavaScript
execution engine. The only Futhark specific code in listing 23 are lines 27-30:

var instance = await createFutharkModule();
var fc = new instance.FutharkContext();
var result = fc.main(screenX, screenY, depth, xmin, ymin, xmax, ymax);
var vals = result.toTypedArray();

The first line loads the WebAssembly module. The second line instantiates the
context. The third line runs the entry point function. And finally the fourth
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1 <!doctype html>
2 <html>
3 <label for="mandelbrot">Numbers for mandelbrot set!</label><br>
4 <input type="text" value="800" id="screenX" name="screenX"><br>
5 <input type="text" value="600" id="screenY" name="screenY"><br>
6 <input type="text" value="255" id="depth" name="depth"><br>
7 <input type="text" value="-2.23" id="xmin" name="xmin"><br>
8 <input type="text" value="-1.15" id="ymin" name="ymin"><br>
9 <input type="text" value=".83" id="xmax" name="xmax"><br>

10 <input type="text" value="1.15" id="ymax" name="ymax"><br>
11 <button id="action" onclick="myFunction()">Run Mandelbrot!</button>
12 <p>
13 <canvas id="canvas"></canvas>
14 </p>
15 <script src="mandelbrot.js"></script>
16 <script>
17 async function myFunction() {
18 // Get variables from input fields
19 var screenX = BigInt(parseInt(document.getElementById("screenX").value));
20 var screenY = BigInt(parseInt(document.getElementById("screenY").value));
21 var depth = parseInt(document.getElementById("depth").value);
22 var xmin = parseFloat(document.getElementById("xmin").value);
23 var ymin = parseFloat(document.getElementById("ymin").value);
24 var xmax = parseFloat(document.getElementById("xmax").value);
25 var ymax = parseFloat(document.getElementById("ymax").value);
26 // Call Futhark
27 var instance = await createFutharkModule();
28 var fc = new instance.FutharkContext();
29 var result = fc.main(screenX, screenY, depth, xmin, ymin, xmax, ymax);
30 var vals = result.toTypedArray();
31 // Set pixels for canvas
32 var data = new Uint8ClampedArray(vals.length * 4);
33 for (var i = 0; i < vals.length; i++) {
34 data[4*i+0] = (vals[i] & 0xFF0000) >> 16;
35 data[4*i+1] = (vals[i] & 0xFF00) >> 8
36 data[4*i+2] = (vals[i] & 0xFF)
37 data[4*i+3] = 255;
38 }
39 result.free();
40 fc.free();
41 // Make canvas and ctx
42 var canvas = document.getElementById('canvas');
43 canvas.width = Number(screenX);
44 canvas.height = Number(screenY);
45 var ctx = canvas.getContext('2d');
46 var imgdata = new ImageData(data, Number(screenX), Number(screenY));
47 ctx.putImageData(imgdata, 0, 0);
48 }
49 </script>
50 </html>

Listing 23: HTML file for calling mandelbrot.js

line converts the result FutharkArray to a standard JavaScript typed array.
Observe that the user of this library doesn’t need to be aware that there is
any WebAssembly under the covers.
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Figure 5.2: Caption

5.5 Benchmarking

The WebAssembly backend is benchmarked against the C backend to see how
competitive the execution speed is. The WebAssembly backend is both bench-
marked running in the browser with Chrome as well as running with Node.js.

• Chrome: benchmarking WebAssembly in Chrome gives details on how
WebAssembly performs in the browser, which is likely where the backend
will be deployed in practice.

• Node: benchmarking with Node.js gives details into how the WebAssem-
bly preforms when run as a backend language. This is interesting as it
gives details into the WebAssembly’s performance for use cases outside
of the browser.

The Futhark programs that are benchmarked come from the Futhark
benchmark suite, which are used for standardized benchmarks to test the
performance of all Futhark backends against industry standards. What is
interesting to look at is how the WebAssembly performs relative to the C
backend it is built on top of.
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Suite Dataset Size C WebAssembly Chrome

Accelerate Tunnel
1000 735 ms 1,219 ms 1217
2000 2,942 ms 4,889 ms 4,827 ms
4000 11,762 ms 19,693 ms 19,302 ms

Table 5.1: Caption

The Tunnel Benchmark shows that the WebAssembly backend takes ap-
proximately 65% performance penalty for running the benchmarks with We-
bAssembly relative to the sequential C backend. This performance penalty is
consistent as the dataset increases, which means that it is not a constant over-
head of launching or instantiating WebAssembly. WebAssembly when run in
Chrome and in Node.js have nearly identical performance, with the difference
never exceeding 2 percentage points.

Suite Dataset Size C WebAssembly Chrome

Accelerate Mandelbrot
1000 131 ms 149 ms 155 ms
2000 530 ms 602 ms 601 ms
4000 2,117 ms 2,403 ms 2446 ms

Table 5.2: Caption

For the mandelbrot benchmarks the WebAssembly backend has more com-
petitive execution speeds. The WebAssembly backend is consistently 13-14%
slower across all the sizes. Similarly to the tunnel benchmark, the relative per-
formance difference of the C backend and the WebAssembly does not change
with respect to the dataset sizes.

5.6 Testing
We validate our implementation against the Futhark test suite. It consists of
over 1500 test programs. We also use Node.js to run the tests locally. This
is because testing WebAssembly in the browser requires a fair deal of extra
machinery, and we cannot tap into Futhark’s existing test framework.

We have both validated our implementation when compiled as a server
and as an executable. Before the Futhark test infrastructure changed, we
validated our backend when compiled as an executable. This required small
tweaks to handle UTF-8 decoding issues with Node.js and Emscripten. After
the testing infrastructure changed to test Futhark programs in server mode.
This required implementing the Futhark server protocol in JavaScript, as well
a functionality for reading and writing data from Futhark’s binary format.
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CHAPTER 6
Parallel Execution in the Browser

Browsers have facilities for parallel programming. Javascript supports two dif-
ferent paradigms with web workers. Message passing enables parallel program-
ming without shared memory. SharedArrayBuffer and atomics enable shared
memory multithreading with thread synchronization. There is a threaded
WebAssembly proposal that adds atomic operations to the language, and adds
support for SharedArrayBuffers while relying on JavaScript’s web workers to
create and join threads. This chapter introduces all these concepts and illus-
trates them with examples.

6.1 Web Workers

Parallelism with JavaScript in browsers is achieved through web workers.
Web workers are extra threads of execution beyond the main thread. The
threads interact via message passing. Typically messages are passed through
the postMessage and onmessage. postMessage is used to send a message be-
tween threads and onmessage works as an event handler to receive messages
from threads.

Web workers are relatively heavyweight, and should not be created in large
numbers. They are expected to be long lived and have both high start and
high per instance memory cost [17].

The following example computes the Riemann integral of sine over an
interval from 0. The interval is broken up into subintervals which are computed
by separate workers.

43
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1 var num_workers = 4;
2 var result = 0;
3 var counter = 0;
4 workers = [];
5
6 for (var i = 0; i < num_workers; i++) {
7 workers.push(new Worker('worker.js'));
8 }
9

10 for (var i = 0; i < num_workers; i++) {
11 workers[i].onmessage = function (event) {
12 counter += 1;
13 result += event.data;
14 if (counter == num_workers) console.log(result);
15 }
16 }
17
18 for (var i = 0; i < num_workers; i++) {
19 workers[i].postMessage(i);
20 }

Listing 24: Main file that calls workers which handle the computation of Rie-
mann integral

The example code in Listing 24 spawns 4 worker threads in lines 5-7. It
sends each thread a message with their respective index in lines 18-20. It
asynchronously waits for messages from each of the worker threads with their
partial result and prints the final result when all the threads have sent a
message in lines 10-16.

1 var GRANULARITY = 1000000000;
2 var NUM_THREADS = 4;
3 var interval = 3.14;
4
5 onmessage = function (event) {
6 var index = event.data;
7 var bottom = index * (interval / NUM_THREADS);
8 var upper = bottom + (interval / NUM_THREADS);
9 var sum = 0;

10 for (var i = 0; i < GRANULARITY; i++) {
11 var x = bottom + (upper - bottom) / GRANULARITY * i;
12 sum += Math.sin(x);
13 }
14 var res = sum / GRANULARITY;
15 postMessage(res);
16 }

Listing 25: Worker thread logic for computing Riemann integral

The code in Listing 25 contains the implementation of the worker threads.
Once the thread receives a message from the main thread with their index,
they compute the partial Riemann integral over their respective quartile of the
interval adding the value of sine(x) as many times as specified by granularity.
Figure 6.1 shows the execution time of the code against a different number of
web workers.
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Figure 6.1: Execution time of Riemann integration for different thread counts.
Run on a Macbook Pro with 2,2 GHz 6-Core Intel Core i7

The code execution time in 6.1 is for the Reimann integral computed with
one billion sample values. For one worker thread the execution time was 11.11
seconds. For two threads the execution time was 6.8 seconds, which is nearly
double as fast. However as the number of threads increases the increase in
execution speed tapers off. Going from 8 to 12 cores only yields a marginal
increase in execution speed going from 2.45 second to 2.39. Once more than
twelve worker threads are exceeded, there is no longer a marginal increase
in speedup. This can be attributed to the physical limitation of threads on
the hardware the code was executed on. The number of logical cores on the
computer that executed this code was 12, meaning that any additional web
worker launched after the initial 12 must wait on the thread pool for another
to finish before it can be activated. In which case the overhead of launching
it is only detrimental to the complete execution time of the program

6.2 Shared Memory and Atomics
Web workers with message passing have some similarities in how parallelism is
executed with the Erlang programming language. Both of which use message
passing to coordinate parallel execution. However many other programming
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1 var num_workers = 9;
2 var n = 100;
3 var signal = new SharedArrayBuffer(2 * 4);
4 var elements = new SharedArrayBuffer(n*4);
5 var arr = new Int32Array(elements);
6 for (var i = 0; i < n; i++) {
7 arr[i] = i;
8 }
9 var prefix_sum = new SharedArrayBuffer(n * 4);

10 workers = [];
11
12 for (var i = 0; i < num_workers; i++) {
13 workers.push(new Worker('prefix.js'));
14 }
15 var counter = 0;
16 for (var i = 0; i < num_workers; i++) {
17 workers[i].onmessage = function (event) {
18 counter += 1;
19 if (counter === num_workers) {
20 console.log(new Int32Array(prefix_sum));
21 }
22 }
23 }
24 for (var i = 0; i < num_workers; i++) {
25 workers[i].postMessage({index : i,
26 num_workers,
27 signal,
28 elements,
29 prefix_sum
30 });
31 }

Listing 26: Main file that calls workers which compute prefix sum using shared
memory and atomics in parallel

languages and libraries also support and utilize shared memory. An exam-
ple of this is C/C++ and POSIX threads. Shared memory maps closely to
modern multicore hardware, and is faster for workloads that cannot efficiently
partition memory for mutually exclusive access from different threads of exe-
cution. However it comes at the cost of a new set of bugs in the shape of data
races, which is why languages such as Erlang and Futhark itself abstracts the
construct away from the programmer. JavaScript also offers shared memory
through SharedArrayBuffers. A SharedArrayBuffer points to a piece of linear
memory. The SharedArrayBuffer can be passed to multiple web workers who
can access the memory in parallel.

In principle safe access to shared memory can be coordinated with mes-
sage passing, but it’s far more efficient for fine grained synchronization to
use atomic operations, which again map efficiently to the underlying hard-
ware. Atomic operations make sure that predictable values are written and
read, that operations are finished before the next operation starts and that
operations are not interrupted [11]. The Atomics package in JavaScript con-
tains functions for performing atomic operations on SharedArrayBuffers. The
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Atomics package also includes wait and notify functions, like linux futex, wait,
and wake.

To illustrate shared memory and atomics the following example is an im-
plementation of prefix sum. It is a fundamental parallel algorithm which is

1 onmessage = function (event) {
2 var i = event.data.index;
3 var num_workers = event.data.num_workers;
4 var signal = new Int32Array(event.data.signal);
5 var elements = new Int32Array(event.data.elements);
6 var prefix_sum = new Int32Array(event.data.prefix_sum);
7 var n = elements.length;
8 var partitions = num_workers + 1;
9 var stride = n / partitions;

10
11 var prefix_sum_partition = function (idx, offset) {
12 prefix_sum[idx * stride] = elements[idx * stride] + offset;
13 for (var j = idx * stride + 1; j < (idx+1) * stride; j++) {
14 prefix_sum[j] = prefix_sum[j-1] + elements[j];
15 }
16 }
17
18 // First pass of algorithm
19 prefix_sum_partition(i, 0);
20
21 // Synchronization logic between workers
22 if (i === 0) {
23 // wait for other num_workers to finish
24 var finished = 0;
25 while (finished < num_workers - 1) {
26 Atomics.wait(signal, 0, finished);
27 finished = signal[0];
28 }
29 // Calculate the cumulative sums of the partitions
30 var x = 0;
31 for (var j = 1; j < partitions; j++) {
32 x += prefix_sum[j * stride - 1];
33 prefix_sum[j * stride] = x;
34 }
35 // notify other num_workers to restart
36 Atomics.store(signal, 1, 1);
37 Atomics.notify(signal, 1, num_workers-1);
38 } else {
39 // notify worker 0 that we are finished
40 Atomics.add(signal, 0, 1);
41 Atomics.notify(signal, 0, 1);
42 // wait for worker 0
43 while (Atomics.wait(signal, 1, 0) != "not-equal") {}
44 }
45
46 // Second pass of algorithm
47 prefix_sum_partition(i+1, prefix_sum[(i+1) * stride]);
48
49 postMessage("Done!");
50 }

Listing 27: Worker file for computing the prefix sum using shared memory
and atomics.
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used as a building block for many other parallel algorithms. The example
implements a shared memory 2 pass algorithm [1].

The code in Listing 26 spawns 9 worker threads. It sends a message to
each of the threads with parameters, some of which are shared array buffers.
This allows each of the threads to have access to shared memory. When each
thread has sent a message to indicate completion, the final result of prefix sum
is logged to the console.

The code in Listing 27 handles the actual execution of prefix sum. In
the first pass of the algorithm, each thread calculates the prefix sum of their
partition in the array, by calling the function prefix_sum_partition. Each
thread signals that they are done with their work in the first pass by using
the Atomics add, and notify functions. The first thread detects signal has
accumulated a response of num_workers - 1, by using the Atomics function
wait. At this point the the first thread calculates the cumulative sums of
partitions. At this stage it notifies the other other threads using the Atomics
store and notify. At this stage all threads calculate the final prefix_sum,
using the precomputed values. On completion each thread sends a message
back to the the main file using the postMessage to indicate they are done.

6.3 Threaded WebAssembly
There is a proposal to extend the WebAssembly specification with support
for threads, namely by leveraging web workers, shared memory, and atomics.
Chrome and Firefox and Node.js all have experimental support for threaded
WebAssembly. Emscripten supports compilation of C/C++ with pthreads to
threaded WebAssembly.

Threaded WebAssembly uses web workers to create and join threads. It
doesn’t natively invoke web workers but instead handles this by calling out
to JavaScript. Shared memory is accomplished by integrating SharedArray-
Buffer with WebAssembly’s paged memory model. WebAssembly is extended
with atomic operation instructions. Putting it concisely the additions of sup-
porting shared array buffers in WebAssembly and adding atomic operations
in WebAssembly was all that was needed to facilitate threaded WebAssembly.

A key observation is that WebAssembly does not natively allow for spawn-
ing of threads. This is actually taken care of by the runtime or compiler.
Specifically for Emscripten, compiling C code written with pthreads will gen-
erate three files. It will generate a WebAssembly file, and and two Javascript
files. One for the main glue code and other for worker glue code. The glue
code takes care of loading the WebAssembly module, populating the memory
with the required values, and integrating with the host system as the C code
would expect. The C function pthread_create is translated to Javascript and
not WebAssembly. It launches a Javascript Worker, passing it a shared array
buffer and the wasm module that it should run. The WebAssembly simply
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needs the shared array buffer and atomics to synchronize.

Figure 6.2: UML diagram showing flow of execution of threaded programs in
WebAssembly

The UML diagram in figure 6.2 demonstrates the execution flow of a par-
allel function written with pthreads in C, compiled by Emscripten, and run in
Javascript and WebAssembly. The javascript glue code calls the parallel We-
bAssembly function, which then calls an external Javascript function that is
used to emulate the functionality of pthread_create. This function launches
a new worker, sending it a message with the WebAssembly module, and a
shared array buffer, and resumes execution. This JavaScript worker code then
instantiates the WebAssembly module, calling the designated WebAssembly
module function. And then with these multiple WebAssembly modules run-
ning in parallel, they use atomic instructions native to WebAssembly to facil-
itate synchronization, as specified in the program.
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CHAPTER 7
WebAssembly Multicore Backend

This chapter details the extensions that are added to the Futhark compiler to
support a multicore WebAssembly backend. It also benchmarks the generated
WebAssembly-multicore code against the sequential WebAssembly backend.
It also compares the multicore C backend against the WebAssembly-multicore
backend running in the browser.

Fortunately only small adaptions had to be made to the WebAssembly
backend developed earlier, to get it running with Multicore. The Futhark
compiler has a backend that generates both Sequential C code as well as a
backend that generates multicore C code using POSIX threads. As discussed
Emscripten can translate multicore C code that uses POSIX threads to mul-
ticore WebAssembly that can run in parallel in the browser. The JavaScript
API developed in chapter 4 stays most unchanged, with only one small mod-
ification for the WebAssembly-multicore backend.

Though this thesis adds 2 backends to the 6 backends already present
in the Futhark compiler (4 C backends, and 2 Python backends), the added
complexity is relatively modest because of the high degree of reuse of code
between the two WebAssembly backends.

7.1 Implementation Structure
Below we discuss how to add a new futhark backend that can be invoked
from the command line with futhark wasm-multicore. It is structured very
similarly to the plain WebAssembly backend described chapter 4. Instead of
calling Emscripten on the Sequential C, we apply it to Futhark’s multicore C
backend. We utilize the JavaScript and WebAssembly runtime code written
in chapter 4, for the backend and add the necessary Emscripten compiler flags
required to enable Multicore WebAssembly. Figure 7.1 illustrates the structure
of the WebAssembly multicore implementation.

One of the key differences that can be seen in the figure 7.1 is that the
wasm-multicore backend produces 2 JavaScript files and 1 WebAssembly file
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Figure 7.1: WebAssembly-multicore compilation

as opposed to the Sequential Wasm backend which generates 1 JavaScript file
and 1 WebAssembly file. The second JavaScript file is the web worker glue
code.

7.2 Implementation Details
Here we discuss the series of steps that were needed complete the implemen-
tation.

7.2.1 Plumbing

We simply combine the multicore C compiler with the JavaScript code gener-
ation discussed in chapter 4, by calling the respective functions that contain
the meat of the logic, which have already been developed. The last thing of
note is that the flag -pthread is passed to runEMCC. This flag lets Emcc know
that our C code contains pthreads, and thereby compiles it correctly.

7.2.2 Multicore C code changes

The pthread C code generated by the multicore C backend used platform
specific implementations in the generated function getrusage_thread and
num_processors. For getrusage_thread it was possible to reuse the linux im-
plementation. For num_processors it was necessary to add an additional im-
plementation for the Emscripten platform. This was simply done by including
emscripten/threading.h and calling the function emscripten_num_logical_cores.

7.2.3 API Change

The multicore C backend exports one important additional function for setting
the number of threads the library will use:
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void futhark_context_config_set_num_threads(
struct futhark_context_config *cfg, int n);

futhark_context_config_set_num_threads does this by taking threads and
configuration as argument and then number of threads that the library will
use on the configuration. This information we would like to have when run-
ning our library. We adapt our API to pass an an optional argument to the
FutharkContext constructor:

1 class FutharkContext {
2 constructor(num_threads) {
3 this.cfg = _futhark_context_config_new();
4 if (num_threads) _futhark_context_config_set_num_threads(this.cfg, num_threads);
5 this.ctx = _futhark_context_new(this.cfg);
6 }
7
8 }

Listing 28: FutharkContext with optional argument

In the constructor in listing 28 we simply set the number threads to be the
argument given in the FutharkClass constructor. If no argument is given, it
defaults to emscripten_num_logical_cores. Surprisingly this was the only
adaption we needed to make in the API described in chapter 4.

7.2.4 Emscripten Invocation
The generated multicore C code uses the POSIX function pthread_create.
Emscripten aims to follow the POSIX standard closely, but in some places has
slightly different behaviour. This is the case for pthread_create, which is a
function that is used in the generated multicore C code.

When pthread_create() is called, if we need to create a new Web Worker,
then that requires returning the main event loop. That is, you cannot call
pthread_create and then keep running code synchronously that expects the
worker to start running - it will only run after you return to the event loop
[13]. In order to work around the API differences, the compiler flag
PTHREAD_POOL_SIZE=<integer> needs to be passed to the Emscripten com-
piler. This effectively creates the web workers before the main thread is called,
in which case create_pthread can just use an already spawned web worker.

7.2.5 Running in browser with HTTP
Running threaded WebAssembly in the browser is slightly more involved than
running standard WebAssembly. This is because threaded WebAssembly uses
SharedArrayBuffers. SharedArrayBuffers introduce a few security vulnerabil-
ities. For this reason browsers require us to set to HTTP headers when we
run our web server. We need to set the flags as follows:
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• Cross-Origin-Embedder-Policy (COEP) : require-corp

• Cross-Origin-Opener-Policy (COOP) : same-origin

The following listing 29 file can be used to run a web server with COEP
and COOP headers set:

We can run this Python file, to run threaded WebAssembly programs lo-
cally.

1 #!/usr/bin/env python3
2 from http import server # Python 3
3
4 class MyHTTPRequestHandler(server.SimpleHTTPRequestHandler):
5 def end_headers(self):
6 self.send_my_headers()
7 server.SimpleHTTPRequestHandler.end_headers(self)
8
9 def send_my_headers(self):

10 self.send_header("Cross-Origin-Embedder-Policy", "require-corp")
11 self.send_header("Cross-Origin-Opener-Policy", "same-origin")
12
13 if __name__ == '__main__':
14 server.test(HandlerClass=MyHTTPRequestHandler)

Listing 29: Python server implementation for setting COEP and COOP HTTP
Headers

7.2.6 Applications
In order to see the WebAssembly multicore code in action, we will use ray
tracing as a motivating example. Ray tracing is a technique in graphics, which
is used to simulate how rays of light bounce off objects. Ray tracing can be
used to create realistic, high definition pictures. Its a common technique used
in rendering and movies.

We are mainly concerned with the arguments and return type of the entry
point function. The entry point for raytracer.fut is defined as follows:

let main (nx: i64) (ny: i64)
(ns: i32) (nobj: i32)
: [ny][nx]argb.colour

The function takes nx and ny specifying the number of pixels we want our ray
tracer to cover. This ns specifies the number of samples we want per pixel.
Lastly nobj specifies the number of reflections per ray. The return type is a
grid of u32 numbers.

We can can compile the WebAssembly library with the following command

EMCFLAGS="-s INITIAL_MEMORY=2147418112 -s PTHREAD_POOL_SIZE=12" \
futhark wasm-multicore --lib raytracer.fut
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1 <!doctype html>
2 <html>
3 <button id="action" onclick="myFunction()">Run RayTracer!</button>
4 <p>
5 <canvas id="canvas"></canvas>
6 </p>
7 <script src="raytracer.js"></script>
8 <script>
9 async function myFunction() {

10 var screenX = 400n
11 var screenY = 400n
12 var ns = 50;
13 var nobj = 5;
14 var instance = await createFutharkModule();
15 var fc = new instance.FutharkContext(12);
16 // Call Futhark
17 var result = fc.main(screenX, screenY, ns, nobj);
18 // Get javascript values from futhark
19 var vals = result.toTypedArray();
20 // Set pixels for canvas
21 var data = new Uint8ClampedArray(vals.length * 4);
22 for (var i = 0; i < vals.length; i++) {
23 data[4*i+0] = (vals[i] & 0xFF0000) >> 16;
24 data[4*i+1] = (vals[i] & 0xFF00) >> 8
25 data[4*i+2] = (vals[i] & 0xFF)
26 data[4*i+3] = 255;
27 }
28 // Make canvas and ctx
29 var canvas = document.getElementById('canvas');
30 canvas.width = Number(screenX);
31 canvas.height = Number(screenY);
32 var ctx = canvas.getContext('2d');
33 var imgdata = new ImageData(data, Number(screenX), Number(screenY));
34 ctx.putImageData(imgdata, 0, 0);
35 result.free();
36 fc.free();
37
38 }
39 </script>
40 </html>

Listing 30: HTML file for creating ray trace visualization

With this command we are giving WebAssembly access to approximately
2 gigabytes and setting the number of threads to be run simaltaniusly to 12.
The result of this command will be three files: raytracer.js, raytracer.worker.js,
and raytracer.wasm. Listing 30 shows an example HTML page that calls the
compiled Futhark library.

The web page has a button, which runs a function. This function loads the
Futhark library, and instantiates FutharkContext. It then calls the Futhark
entry point with the arguments 400, 400, 50, and 5 for nx, ny, ns, and nobj
respectively. It proceeds to display the result on the page. With this HTML
file, compiled Futhark library, and the Python server file from 29 we can run
the code.
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We simply run the Python file (it launches a web server with the appro-
priate configuration), and then go to localhost:8000. Figure 7.2 shows the
state of the web page after the button has been clicked and it has finished
executing.

Figure 7.2: Ray Tracer Web Page

On average 40 percent of visitors to a web page leave if the page hasn’t
loaded in 3 seconds [3]. Ray tracing in the browser in the browser gives a 6
times speed up over running the sequential WASM. The web page took 2.955
seconds to render the ray tracing when running on a Macbook Pro with 2,2
GHz Intel Core i7 with 6 physical cores and 12 logical cores. In comparison
running the Sequential WebAssembly on the same 400 by 400 pixels, 50 sample
points and 5 object reflections took 17.74 seconds.
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7.3 Benchmark

We start by benchmarking against the familiar mandelbrot.fut program from
chapter 5. This time we benchmark the multicore WebAssembly in both
Chrome and Node.js against the multicore C backend. We use 12 threads
for each of the benchmark runs. The results can be seen in table 7.1. Again
these experiments are performed on a Macbook Pro with 2,2 GHz Intel Core
i7 with 6 physical cores and 12 logical cores.

Suite Dataset Size mc C mc Node.js mc Chrome

Accelerate Mandelbrot
1000 14.7 ms 39 ms 27 ms
2000 53 ms 103 ms 104 ms
4000 211 ms 412 ms 432 ms

Table 7.1: Mandelbrot benchmarks

Interestingly running in WebAssembly backend in Node.js and Chrome
takes about double as long as the multicore C backend for the mandelbrot
data. On further inspection when comparing the data to the data from the
original WebAssembly backend implementation, we only have a 6 times speed
up. Where the multicore has a 12 times speed up. The table 7.2 is the same
table as 5.2 from Chapter 5, copied here for convenience.

Suite Dataset Size seq C seq WebAssembly seq Chrome

Accelerate Mandelbrot
1000 131 ms 149 ms 155 ms
2000 530 ms 602 ms 601 ms
4000 2,117 ms 2,403 ms 2446 ms

Table 7.2: Benchmark results for sequential backends on mandelbrot dataset

When running the the raytracing example in 7.2 there was similarly only
a 6 times speed up even though ray tracing can be perfectly parallelized. This
motivates us to see the performance change of the multicore WebAssembly
backend with respect to the number of web workers being used.
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Figure 7.3: Benchmark results of execution time against the number of threads

The listing 7.3 plots the execution speed of raytracer.fut with different
numbers of threads. The right figure plots the number of threads against the
reciprocal of the execution speed. The linear growth up to six threads shows
perfect parallelization. However from 6 to 12 threads the plot is flat. This in-
dicates that no more parallelization is exploited after 6 threads. Interestingly 6
is the number of physical CPU cores on the laptop used for benchmarking. Ev-
idently hyper threading didn’t improve execution speed. The same behaviour
was observed in [16]. It’s important to note that both Node.js and Chrome
experienced the same affect. This is not surprising as both are implemented
on top of the same V8 engine from Google.

7.4 Summary
In this chapter we implemented the Futhark multicore WebAssembly back-
end. We only needed to make small tweaks to the existing API, to allow us
to set the number of threads for the context. We then use the backend to
render ray tracing, experiencing a 6 times speed up over the sequential We-
bAssembly backend. Finally we benchmark our backend and observe that
the parallelization is bounded by the number of physical CPU cores and not
logical cores.



CHAPTER 8
Conclusion

This thesis has presented the design and implementation of two new back-
ends for Futhark targeting WebAssembly and threaded WebAssembly, en-
abling efficient execution of sequential and parallel code in the browser. New
WebAssembly and threaded WebAssembly backends were developed for the
Futhark compiler to compile Futhark functions to WebAssembly modules that
run efficiently in the browser. Furthermore, to call the WebAssembly mod-
ules from the browser, a simple and efficient JavaScript API was developed
and illustrated with examples. The backends and API were implemented in
Haskell as additions to Futhark’s open source compiler and were benchmarked
to prove their efficiency and the performance gains that can be obtained with
multithreading on multicore computers. The utility of compiling Futhark to
WebAssembly was tested with Mandelbrot and ray tracing, two working visu-
alization programs that generate and display images in the browser.

The JavaScript API hides implementation details from the API user. It
does not expose any WebAssembly specific details. It can therefore be used
for future Futhark backends targeting different browser technologies such as
WebGPU. We also designed the API such that both the sequential and multi-
core WebAssembly backend were able to have large code reuse. Furthermore
the backend only depended on the C API of the Futhark C backend, which is
designed to be one of the most stable parts of the Futhark compiler. In that
way the code for the WebAssembly backends will be robust to future evolution
of the Futhark compiler.

We validate our implementation against the Futhark test suite. It consists
of over 1500 test programs. We also use Node.js to run the tests locally.
This is because testing WebAssembly in the browser requires a fair deal of
extra machinery, and we would not be able to tap into Futhark’s existing test
framework. We add a Futhark server protocol implementation for JavaScript
and functionality for reading and writing Futhark’s binary format, thereby
allowing us to run the Futhark testing framework.

We benchmarked the Futhark backends to quantify their performance. The
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benchmarks come from the futhark benchmark suite, which are standardized
benchmarks to test the performance of Futhark backends against industry
standards. The benchmarks show the WebAssembly, both when run in the
Browser and run on Node.js locally, performs between 13% to 67% slower
than the generated C running locally. These results show that the sequential
WebAssembly backend can perform at near-native speeds in the browser.

Comparing the threaded WebAssembly backend to the sequential We-
bAssembly backend, we found up to a 6 times speedup when using a CPU
with 6 physical cores on tasks that can be perfectly parallelized. We also
learned that we are bound by the number of physical cores, and not logical
cores due to the underlying implementation of the V8 engine used by Node.js
and Chrome.

In summary Futhark now runs in the browser with efficient single threaded
and parallel execution and a simple and efficient JavaScript API. This enables
high level and high performance parallel programming in the browser.



APPENDIX A
Source Code

A.1 GenericWASM.hs
1 {-# LANGUAGE QuasiQuotes #-}
2 {-# LANGUAGE TemplateHaskell #-}
3
4 module Futhark.CodeGen.Backends.GenericWASM
5 (
6 runServer,
7 GC.CParts (..),
8 GC.asLibrary,
9 GC.asExecutable,

10 GC.asServer,
11 JSEntryPoint (..),
12 emccExportNames,
13 javascriptWrapper,
14 extToString
15 )
16 where
17
18 import Data.FileEmbed
19 import Data.List (intercalate, nub)
20 import qualified Data.Text as T
21 import qualified Futhark.CodeGen.Backends.GenericC as GC
22 import Futhark.CodeGen.Backends.SimpleRep (opaqueName)
23 import qualified Futhark.CodeGen.ImpCode.Sequential as Imp
24 import Futhark.IR.Primitive
25 import NeatInterpolation (text)
26
27 extToString :: Imp.ExternalValue -> String
28 extToString (Imp.TransparentValue (Imp.ArrayValue vn _ pt s dimSize))

= concat (replicate (length dimSize) "[]") ++ extToString
(Imp.TransparentValue (Imp.ScalarValue pt s vn))�→

�→
29 extToString (Imp.TransparentValue (Imp.ScalarValue (FloatType Float32)

_ _)) = "f32"�→
30 extToString (Imp.TransparentValue (Imp.ScalarValue (FloatType Float64)

_ _)) = "f64"�→
31 extToString (Imp.TransparentValue (Imp.ScalarValue (IntType Int8)

Imp.TypeDirect _)) = "i8"�→
32 extToString (Imp.TransparentValue (Imp.ScalarValue (IntType Int16)

Imp.TypeDirect _)) = "i16"�→
33 extToString (Imp.TransparentValue (Imp.ScalarValue (IntType Int32)

Imp.TypeDirect _)) = "i32"�→
34 extToString (Imp.TransparentValue (Imp.ScalarValue (IntType Int64)

Imp.TypeDirect _)) = "i64"�→
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35 extToString (Imp.TransparentValue (Imp.ScalarValue (IntType Int8)
Imp.TypeUnsigned _)) = "u8"�→

36 extToString (Imp.TransparentValue (Imp.ScalarValue (IntType Int16)
Imp.TypeUnsigned _)) = "u16"�→

37 extToString (Imp.TransparentValue (Imp.ScalarValue (IntType Int32)
Imp.TypeUnsigned _)) = "u32"�→

38 extToString (Imp.TransparentValue (Imp.ScalarValue (IntType Int64)
Imp.TypeUnsigned _)) = "u64"�→

39 extToString (Imp.TransparentValue (Imp.ScalarValue Bool _ _)) = "bool"
40 extToString (Imp.OpaqueValue oname vds) = opaqueName oname vds
41 extToString _ = "Not Reached"
42
43 type EntryPointTyp = String
44
45 data JSEntryPoint = JSEntryPoint
46 { name :: String,
47 parameters :: [EntryPointTyp],
48 ret :: [EntryPointTyp]
49 }
50
51 emccExportNames :: [JSEntryPoint] -> [String]
52 emccExportNames jses =
53 map (\jse -> "'_futhark_entry_" ++ name jse ++ "'") jses
54 ++ map (\arg -> "'" ++ gfn "new" arg ++ "'") arrays
55 ++ map (\arg -> "'" ++ gfn "free" arg ++ "'") arrays
56 ++ map (\arg -> "'" ++ gfn "shape" arg ++ "'") arrays
57 ++ map (\arg -> "'" ++ gfn "values_raw" arg ++ "'") arrays
58 ++ map (\arg -> "'" ++ gfn "values" arg ++ "'") arrays
59 ++ map (\arg -> "'" ++ "_futhark_free_" ++ arg ++ "'") opaques
60 ++ ["_futhark_context_config_new", "_futhark_context_config_free",
61 "_futhark_context_new", "_futhark_context_free",
62 "_futhark_context_get_error"]
63 where
64 arrays = filter isArray typs
65 opaques = filter isOpaque typs
66 typs = nub $ concatMap (\jse -> parameters jse ++ ret jse) jses
67 gfn typ str = "_futhark_" ++ typ ++ "_" ++ baseType str ++ "_" ++

show (dim str) ++ "d"�→
68
69 javascriptWrapper :: [JSEntryPoint] -> String
70 javascriptWrapper entryPoints =
71 unlines [
72 jsServer,
73 jsValues,
74 classFutharkOpaque,
75 classFutharkArray,
76 classFutharkContext entryPoints
77 ]
78
79 jsServer :: String
80 jsServer = $(embedStringFile "rts/javascript/server.js")
81
82 jsValues :: String
83 jsValues = $(embedStringFile "rts/javascript/values.js")
84
85 classFutharkOpaque :: String
86 classFutharkOpaque =
87 T.unpack
88 [text|
89 class FutharkOpaque {
90 constructor(ctx, ptr, ffree) { this.ctx = ctx; this.ptr = ptr;

this.ffree = ffree; }�→
91 free() { this.ffree(this.ctx, this.ptr); }
92 }
93 Module['FutharkOpaque'] = FutharkOpaque;
94 |]
95
96 classFutharkArray :: String
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97 classFutharkArray =
98 T.unpack
99 [text|

100 class FutharkArray {
101 constructor(ctx, ptr, type_name, dim, heap, fshape, fvalues,

ffree) {�→
102 this.ctx = ctx;
103 this.ptr = ptr;
104 this.type_name = type_name;
105 this.dim = dim;
106 this.heap = heap;
107 this.fshape = fshape;
108 this.fvalues = fvalues;
109 this.ffree = ffree;
110 }
111 futharkType() { return this.type_name; }
112 free() { this.ffree(this.ctx, this.ptr); }
113 shape() {
114 var s = this.fshape(this.ctx, this.ptr) >> 3;
115 return Array.from(HEAP64.subarray(s, s + this.dim));
116 }
117 toTypedArray(dims = this.shape()) {
118 console.assert(dims.length === this.dim, "dim=%s,dims=%s",

this.dim, dims.toString());�→
119 var length = Number(dims.reduce((a, b) => a * b));
120 var v = this.fvalues(this.ctx, this.ptr) /

this.heap.BYTES_PER_ELEMENT;�→
121 return this.heap.subarray(v, v + length);
122 }
123 toArray() {
124 var dims = this.shape();
125 var ta = this.toTypedArray(dims);
126 return (function nest(offs, ds) {
127 var d0 = Number(ds[0]);
128 if (ds.length === 1) {
129 return Array.from(ta.subarray(offs, offs + d0));
130 } else {
131 var d1 = Number(ds[1]);
132 return Array.from(Array(d0), (x,i) => nest(offs + i * d1,

ds.slice(1)));�→
133 }
134 })(0, dims);
135 }
136 }
137 Module['FutharkArray'] = FutharkArray;
138 |]
139
140 classFutharkContext :: [JSEntryPoint] -> String
141 classFutharkContext entryPoints =
142 unlines [
143 classDef,
144 constructor entryPoints,
145 getFreeFun,
146 getEntryPointsFun,
147 getErrorFun,
148 unlines $ map toFutharkArray arrays,
149 unlines $ map jsWrapEntryPoint entryPoints,
150 endClassDef,
151 "Module['FutharkContext'] = FutharkContext;"
152 ]
153 where
154 arrays = filter isArray typs
155 typs = nub $ concatMap (\jse -> parameters jse ++ ret jse)

entryPoints�→
156
157 classDef :: String
158 classDef = "class FutharkContext {"
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159
160 endClassDef :: String
161 endClassDef = "}"
162
163 constructor :: [JSEntryPoint] -> String
164 constructor jses =
165 T.unpack
166 [text|
167 constructor() {
168 this.cfg = _futhark_context_config_new();
169 this.ctx = _futhark_context_new(this.cfg);
170 this.entry_points = {
171 ${entries}
172 };
173 }
174 |]
175 where
176 entries = T.pack $ intercalate "," $ map dicEntry jses
177
178 getFreeFun :: String
179 getFreeFun =
180 T.unpack
181 [text|
182 free() {
183 _futhark_context_free(this.ctx);
184 _futhark_context_config_free(this.cfg);
185 }
186 |]
187
188 getEntryPointsFun :: String
189 getEntryPointsFun =
190 T.unpack
191 [text|
192 get_entry_points() {
193 return this.entry_points;
194 }
195 |]
196
197 getErrorFun :: String
198 getErrorFun =
199 T.unpack
200 [text|
201 get_error() {
202 var ptr = _futhark_context_get_error(this.ctx);
203 var len = HEAP8.subarray(ptr).indexOf(0);
204 var str = String.fromCharCode(...HEAP8.subarray(ptr, ptr + len));
205 _free(ptr);
206 return str;
207 }
208 |]
209
210 dicEntry :: JSEntryPoint -> String
211 dicEntry jse =
212 T.unpack
213 [text|
214 '${ename}' : [${params}, ${rets}]
215 |]
216 where
217 ename = T.pack $ name jse
218 params = T.pack $ show $ parameters jse
219 rets = T.pack $ show $ ret jse
220
221 jsWrapEntryPoint :: JSEntryPoint -> String
222 jsWrapEntryPoint jse =
223 unlines
224 [ func_name ++ "(" ++ inparams ++ ") {",
225 " var out = [" ++ outparams ++ "].map(n => _malloc(n));",
226 " var to_free = [];",
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227 " var do_free = () => { out.forEach(_free); to_free.forEach(f
=> f.free()); };",�→

228 paramsToPtr,
229 " if (_futhark_entry_" ++ func_name ++ "(this.ctx, ...out, " ++

ins ++ ") > 0) {",�→
230 " do_free();",
231 " throw this.get_error();",
232 " }",
233 results,
234 " do_free();",
235 " return " ++ res ++ ";",
236 "}"
237 ]
238 where
239 func_name = name jse
240
241 alp = [0 .. length (parameters jse) - 1]
242 inparams = intercalate ", " ["in" ++ show i | i <- alp]
243 ins = intercalate ", " [maybeDerefence ("in" ++ show i) $

parameters jse !! i | i <- alp]�→
244 paramsToPtr = unlines $ filter ("" /=) [arrayPointer ("in" ++ show

i) $ parameters jse !! i | i <- alp]�→
245
246 alr = [0 .. length (ret jse) - 1]
247 outparams = intercalate ", " [show $ typeSize $ ret jse !! i | i

<- alr]�→
248 results = unlines [makeResult i $ ret jse !! i | i <- alr]
249 res_array = intercalate ", " ["result" ++ show i | i <- alr]
250 res = if length (ret jse) == 1 then "result0" else ("[" ++

res_array ++ "]")�→
251
252 maybeDerefence :: String -> String -> String
253 maybeDerefence arg typ =
254 if isScalar typ then arg else (arg ++ ".ptr")
255
256 arrayPointer :: String -> String -> String
257 arrayPointer arg typ =
258 if isArray typ
259 then " if (" ++ arg ++ " instanceof Array) { " ++ reassign ++ ";

to_free.push(" ++ arg ++ "); }"�→
260 else ""
261 where
262 reassign = arg ++ " = this.new_" ++ signature ++ "_from_jsarray("

++ arg ++ ")"�→
263 signature = baseType typ ++ "_" ++ show (dim typ) ++ "d"
264
265 makeResult :: Int -> String -> String
266 makeResult i typ =
267 " var result" ++ show i ++ " = " ++
268 if isArray typ
269 then "this.new_" ++ signature ++ "_from_ptr(" ++ readout ++ ");"
270 else
271 if isOpaque typ
272 then "new FutharkOpaque(this.ctx, " ++ readout ++ ",

_futhark_free_" ++ typ ++ ");"�→
273 else readout ++ if typ == "bool" then "!==0;" else ";"
274 where
275 res = "out[" ++ show i ++ "]"
276 readout = typeHeap typ ++ "[" ++ res ++ " >> " ++ show (typeShift

typ) ++ "]"�→
277 signature = baseType typ ++ "_" ++ show (dim typ) ++ "d"
278
279 baseType :: String -> String
280 baseType ('[' : ']' : end) = baseType end
281 baseType typ = typ
282
283 dim :: String -> Int
284 dim ('[' : ']' : end) = dim end + 1
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285 dim _ = 0
286
287 isArray :: String -> Bool
288 isArray typ = take 2 typ == "[]"
289
290 isOpaque :: String -> Bool
291 isOpaque typ = take 6 typ == "opaque"
292
293 isScalar :: String -> Bool
294 isScalar typ = not (isArray typ || isOpaque typ)
295
296 typeSize :: String -> Integer
297 typeSize typ =
298 case typ of
299 "i8" -> 1
300 "i16" -> 2
301 "i32" -> 4
302 "i64" -> 8
303 "u8" -> 1
304 "u16" -> 2
305 "u32" -> 4
306 "u64" -> 8
307 "f32" -> 4
308 "f64" -> 8
309 "bool" -> 1
310 _ -> 4
311
312 typeShift :: String -> Integer
313 typeShift typ =
314 case typ of
315 "i8" -> 0
316 "i16" -> 1
317 "i32" -> 2
318 "i64" -> 3
319 "u8" -> 0
320 "u16" -> 1
321 "u32" -> 2
322 "u64" -> 3
323 "f32" -> 2
324 "f64" -> 3
325 "bool" -> 0
326 _ -> 2
327
328 typeHeap :: String -> String
329 typeHeap typ =
330 case typ of
331 "i8" -> "HEAP8"
332 "i16" -> "HEAP16"
333 "i32" -> "HEAP32"
334 "i64" -> "HEAP64"
335 "u8" -> "HEAPU8"
336 "u16" -> "HEAPU16"
337 "u32" -> "HEAPU32"
338 "u64" -> "HEAPU64"
339 "f32" -> "HEAPF32"
340 "f64" -> "HEAPF64"
341 "bool" -> "HEAP8"
342 _ -> "HEAP32"
343
344 toFutharkArray :: String -> String
345 toFutharkArray typ =
346 unlines [
347 new ++ "_from_jsarray(" ++ arraynd ++ ") {",
348 " return this." ++ new ++ "(" ++ arraynd_flat ++ ", " ++

arraynd_dims ++ ");",�→
349 "}",
350 new ++ "(array, " ++ dims ++ ") {",
351 " console.assert(array.length === " ++ dims_multiplied ++ ",

'len=%s,dims=%s', array.length, [" ++ dims ++
"].toString());",�→

�→
352 " var copy = _malloc(array.length << " ++ show (typeShift ftype)

++ ");",�→
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353 " " ++ typeHeap ftype ++ ".set(array, copy >> " ++ show
(typeShift ftype) ++ ");",�→

354 " var ptr = " ++ fnew ++ "(this.ctx, copy, " ++ bigint_dims ++
");",�→

355 " _free(copy);",
356 " return this." ++ new ++ "_from_ptr(ptr);",
357 "}",
358 new ++ "_from_ptr(ptr) {",
359 " return new FutharkArray(this.ctx, ptr, "
360 ++ intercalate ", " ["'" ++ ftype ++ "'", show d, heap, fshape,

fvalues, ffree] ++ ");",�→
361 "}"
362 ]
363 where
364 d = dim typ
365 ftype = baseType typ
366 heap = typeHeap ftype
367 signature = ftype ++ "_" ++ show d ++ "d"
368 new = "new_" ++ signature
369 fnew = "_futhark_new_" ++ signature
370 fshape = "_futhark_shape_" ++ signature
371 fvalues = "_futhark_values_raw_" ++ signature
372 ffree = "_futhark_free_" ++ signature
373 arraynd = "array" ++ show d ++ "d"
374 arraynd_flat = if d > 1 then arraynd ++ ".flat()" else arraynd
375 arraynd_dims = intercalate ", " [ arraynd ++ mult i "[0]" ++

".length" | i <- [0..d-1] ]�→
376 dims = intercalate ", " [ "d" ++ show i | i <- [0..d-1] ]
377 dims_multiplied = intercalate "*" [ "d" ++ show i | i <- [0..d-1]

]�→
378 bigint_dims = intercalate ", " [ "BigInt(d" ++ show i ++ ")" | i

<- [0..d-1] ]�→
379 mult i s = concat $ replicate i s
380
381 runServer :: String
382 runServer =
383 T.unpack
384 [text|
385 Module.onRuntimeInitialized = () => {
386 var context = new FutharkContext();
387 var server = new Server(context);
388 server.run();
389 }
390 |]

Listing 31: Haskell source code for JavaScript wrapper code generation

A.2 mandelbrot.fut
1 let dot (r: f32, i: f32): f32 =
2 r * r + i * i
3
4 let multComplex (a: f32, b: f32) (c: f32, d: f32): (f32,f32) =
5 (a*c - b * d,
6 a*d + b * c)
7
8 let addComplex (a: f32, b: f32) (c: f32, d: f32): (f32,f32) =
9 (a + c,

10 b + d)
11
12 let divergence (depth: i32) (c0: (f32,f32)): i32 =
13 let (_, i) = loop (c, i) = (c0, 0) while (i < depth) && (dot c <

4.0) do�→
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14 (addComplex c0 (multComplex c c),
15 i + 1)
16 in i
17
18 let mandelbrot (screenX: i64) (screenY: i64) (depth: i32)
19 (xmin: f32) (ymin: f32) (xmax: f32) (ymax: f32):

[screenY][screenX]i32 =�→
20 let sizex = xmax - xmin
21 let sizey = ymax - ymin
22 in map (\y ->
23 map (\x ->
24 let c0 = (xmin + (f32.i64 x * sizex) / f32.i64

screenX,�→
25 ymin + (f32.i64 y * sizey) / f32.i64

screenY)�→
26 in (divergence depth c0))
27 (iota screenX))
28 (iota screenY)
29
30 let escapeToColour (depth: i32) (divergence: i32): i32 =
31 if depth == divergence
32 then 0
33 else
34 let r = 3 * divergence
35 let g = 5 * divergence
36 let b = 7 * divergence
37 in (r<<16 | g<<8 | b)
38
39 let main (screenX: i64) (screenY: i64)
40 (depth: i32) (xmin: f32)
41 (ymin: f32) (xmax: f32)
42 (ymax: f32): [screenY][screenX]i32 =
43 let escapes = mandelbrot screenX screenY depth xmin ymin xmax ymax
44 in map (\row ->
45 map (escapeToColour depth) row)
46 escapes

Listing 32: mandelbrot.fut source code

A.3 raytracer.fut
1 import "lib/github.com/athas/vector/vspace"
2
3 module vec3 = mk_vspace_3d f32
4 type vec3 = vec3.vector
5
6 -- A convenient alias so we don't have to indicate the fields all the
7 -- time.
8 let vec (x, y, z) : vec3 = {x,y,z}
9

10 type ray = {origin: vec3, direction: vec3}
11
12 let point_at_parameter (r: ray) (t: f32) =
13 vec3.(r.origin + scale t r.direction)
14
15 let reflect (v: vec3) (n: vec3) : vec3 =
16 v vec3.- (2 * vec3.dot v n `vec3.scale` n)
17
18 type refraction = #no_refract | #refract vec3
19
20 let refract (v: vec3) (n: vec3) (ni_over_nt: f32) : refraction =
21 let uv = vec3.normalise v
22 let dt = vec3.dot uv n
23 let discriminant = 1 - ni_over_nt*ni_over_nt*(1-dt*dt)
24 in if discriminant > 0
25 then #refract ((ni_over_nt `vec3.scale` (uv vec3.- (dt

`vec3.scale` n)))�→
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26 vec3.- (f32.sqrt discriminant `vec3.scale` n))
27 else #no_refract
28
29 let schlick (cosine: f32) (ref_idx: f32) =
30 let r0 = (1-ref_idx) / (1+ref_idx)
31 let r0 = r0*r0
32 in r0 + (1-r0)*(1-cosine)**5
33
34 import "lib/github.com/diku-dk/cpprandom/random"
35
36 module rnge = pcg32
37 module dist = uniform_real_distribution f32 rnge
38 type rng = rnge.rng
39
40 let rand : rng -> (rng, f32) = dist.rand (0,1)
41
42 let random_in_unit_sphere rng =
43 let new rng = let (rng, x) = dist.rand (-1, 1) rng
44 let (rng, y) = dist.rand (-1, 1) rng
45 let (rng, z) = dist.rand (-1, 1) rng
46 in (rng, vec(x,y,z))
47 let outside_sphere = vec3.quadrance >-> (>=1)
48 in iterate_while ((.1) >-> outside_sphere) ((.0) >-> new) (new rng)
49
50 type camera = { origin: vec3
51 , lower_left_corner: vec3
52 , horizontal: vec3
53 , vertical: vec3
54 , u: vec3, v: vec3, w: vec3
55 , lens_radius: f32}
56
57 let camera (lookfrom: vec3) (lookat: vec3) (vup: vec3) (vfov: f32)

(aspect: f32)�→
58 (aperture: f32) (focus_dist: f32) : camera =
59 let theta = vfov * f32.pi / 180
60 let half_height = f32.tan (theta / 2)
61 let half_width = aspect * half_height
62 let origin = lookfrom
63 let w = vec3.normalise (lookfrom vec3.- lookat)
64 let u = vec3.normalise (vec3.cross vup w)
65 let v = vec3.cross w u
66 in { lower_left_corner = origin vec3.-
67 (half_width * focus_dist `vec3.scale` u)

vec3.-�→
68 (half_height * focus_dist `vec3.scale` v)

vec3.-�→
69 (focus_dist `vec3.scale` w)
70 , horizontal = (2*half_width*focus_dist) `vec3.scale` u
71 , vertical = (2*half_height*focus_dist) `vec3.scale` v
72 , origin, u, v, w
73 , lens_radius = aperture / 2}
74
75 let get_ray (c: camera) (s: f32) (t: f32) (rng: rng) : (rng, ray) =
76 let {origin, lower_left_corner, horizontal, vertical, u, v, w=_,

lens_radius} = c�→
77 let (rng, p) = random_in_unit_sphere rng
78 let rd = lens_radius `vec3.scale` p
79 let offset = vec3.((rd.x `scale` u) + (rd.y `scale` v))
80 in (rng,
81 { origin = offset vec3.+ c.origin
82 , direction = vec3.(lower_left_corner +
83 (s `scale` horizontal) +
84 (t `scale` vertical) -
85 origin -
86 offset)})
87
88 type material = #lambertian {albedo: vec3}
89 | #metal {albedo: vec3, fuzz: f32}
90 | #dielectric {ref_idx: f32}
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91
92 type hit_info = {t: f32, p: vec3, normal: vec3, material: material}
93
94 type hit = #no_hit | #hit hit_info
95
96 type sphere = {center: vec3, radius: f32, material: material}
97
98 let sphere_hit {center, radius, material} (r: ray) (t_min: f32)

(t_max: f32) : hit =�→
99 let oc = vec3.(r.origin - center)

100 let a = vec3.dot r.direction r.direction
101 let b = vec3.dot oc r.direction
102 let c = vec3.dot oc oc - radius*radius
103 let discriminant = b*b - a*c
104 let try_hit (temp: f32) =
105 if temp < t_max && temp > t_min
106 then (#hit { t = temp
107 , p = point_at_parameter r temp
108 , normal = (1/radius) `vec3.scale` (point_at_parameter

r temp vec3.- center)�→
109 , material
110 })
111 else #no_hit
112 in if discriminant <= 0
113 then #no_hit
114 else match try_hit ((-b - f32.sqrt(b*b-a*c))/a)
115 case #hit h -> #hit h
116 case #no_hit -> try_hit ((-b + f32.sqrt(b*b-a*c))/a)
117
118 type obj = #sphere sphere
119
120 let hit [n] (objs: [n]obj) (r: ray) (t_min: f32) (t_max: f32) : hit =
121 (loop (hit, closest_so_far) = (#no_hit, t_max) for obj in objs do
122 let hit' = match obj
123 case #sphere s -> sphere_hit s r t_min closest_so_far
124 in match hit'
125 case #no_hit -> (hit, closest_so_far)
126 case #hit h -> (#hit h, h.t)).0
127
128 type scatter = #scatter {attenuation: vec3, scattered: ray}
129 | #no_scatter
130
131 let scattering (r: ray) (h: hit_info) (rng: rng) : (rng, scatter) =
132 match h.material
133
134 case #lambertian {albedo} ->
135 let (rng, bounce) = random_in_unit_sphere rng
136 let target = vec3.(h.p + h.normal + bounce)
137 in (rng, #scatter {attenuation=albedo,
138 scattered={origin = h.p, direction = target

vec3.- h.p}})�→
139
140 case #metal {albedo, fuzz} ->
141 let reflected = reflect (vec3.normalise r.direction) h.normal
142 let (rng, bounce) = random_in_unit_sphere rng
143 let scattered = {origin = h.p, direction = reflected vec3.+ (fuzz

`vec3.scale` bounce)}�→
144 in if vec3.dot scattered.direction h.normal > 0
145 then (rng, #scatter {attenuation=albedo,
146 scattered})
147 else (rng, #no_scatter)
148
149 case #dielectric {ref_idx} ->
150 let reflected = reflect r.direction h.normal
151 let attenuation = vec(1, 1, 1)
152 let (outward_normal, ni_over_nt, cosine) =
153 if vec3.dot r.direction h.normal > 0
154 then (vec3.map f32.neg h.normal,
155 ref_idx,
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156 ref_idx * vec3.dot r.direction h.normal / vec3.norm
r.direction)�→

157 else (h.normal,
158 1/ref_idx,
159 -vec3.dot r.direction h.normal / vec3.norm r.direction)
160 in match refract r.direction outward_normal ni_over_nt
161 case #refract refracted ->
162 let reflect_prob = schlick cosine ref_idx
163 let (rng, x) = rand rng
164 let direction = if x < reflect_prob then reflected else

refracted�→
165 in (rng, #scatter {attenuation, scattered={origin=h.p,

direction}})�→
166 case #no_refract ->
167 (rng, #scatter {attenuation, scattered={origin=h.p,

direction=reflected}})�→
168
169 let color (max_depth: i32) (objs: []obj) (r: ray) (rng: rng) : (rng,

vec3) =�→
170 let ((rng, _), (_, color)) =
171 loop ((rng, r), (depth, color)) = ((rng, r), (0, vec(1,1,1)))

while depth < max_depth�→
172 do match hit objs r 0.00001 f32.highest
173 case #hit h ->
174 (match scattering r h rng
175 case (rng, #scatter {attenuation, scattered}) ->
176 ((rng, scattered), (depth+1, attenuation vec3.* color))
177 case (rng, #no_scatter) ->
178 ((rng, r), (max_depth, vec(0,0,0))))
179 case #no_hit ->
180 let unit_direction = vec3.normalise r.direction
181 let t = 0.5 * (unit_direction.y + 1)
182 let color' = color vec3.*
183 (((1-t) `vec3.scale` vec(1, 1, 1)) vec3.+
184 (t `vec3.scale` vec(0.5, 0.7, 1.0)))
185 in ((rng, r), (max_depth, color'))
186 in (rng, color)
187
188 let random_object_at (a: f32) (b: f32) (rng: rng) : (rng, obj) =
189 let (rng, center) = let (rng, xd) = rand rng
190 let (rng, yd) = rand rng
191 in (rng, vec(a+0.9*xd, 0.2, b+0.9*yd))
192 let randp rng = let (rng, x) = rand rng
193 let (rng, y) = rand rng
194 in (rng, x * y)
195 let (rng, choose_mat) = rand rng
196 let (rng, material) =
197 if choose_mat > 0.95 then
198 (rng, #dielectric {ref_idx=1.5})
199 else
200 let (rng, x) = randp rng
201 let (rng, y) = randp rng
202 let (rng, z) = randp rng
203 let albedo = vec(x,y,z)
204 let (rng, fuzz) = rand rng
205 in if choose_mat > 0.8
206 then (rng, #metal {albedo, fuzz})
207 else (rng, #lambertian {albedo})
208 in (rng,
209 #sphere {center, radius=0.2, material})
210
211 -- From http://stackoverflow.com/a/12996028
212 let hash (x: i32): i32 =
213 let x = ((x >> 16) ^ x) * 0x45d9f3b
214 let x = ((x >> 16) ^ x) * 0x45d9f3b
215 let x = ((x >> 16) ^ x) in
216 x
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217
218 import "lib/github.com/athas/matte/colour"
219
220 let random_world (seed: i32) (n: i32) =
221 let mk_obj a b = let rng = rnge.rng_from_seed [seed, a ^ b]
222 in random_object_at (r32 a) (r32 b) rng
223 let span = -n..<n
224 let (rngs, objs) = map (\a -> map (mk_obj a) span) span
225 |> map unzip |> unzip
226 let rng = rnge.join_rng (flatten rngs)
227
228 let fixed_objs = [ #sphere {center=vec(0,-1000,0), radius=1000,

material=#lambertian {albedo=vec(0.5,0.5,0.5)}}�→
229 , #sphere {center=vec(0,1,0), radius=1,

material=#dielectric {ref_idx=1.5}}�→
230 , #sphere {center=vec(-4,1,0), radius=1,

material=#lambertian {albedo=vec(0.4,0.2,0.1)}}�→
231 , #sphere {center=vec(4,1,0), radius=1,

material=#metal {albedo=vec(0.6,0.6,0.5),
fuzz=0}}�→

�→
232 ]
233
234 let world = flatten objs ++ fixed_objs
235
236 in (rng, world)
237
238 let render (max_depth: i32) (nx: i64) (ny: i64) (nss: [ny][nx]i32)

(world: []obj) (cam: camera) (rngs: [ny][nx]rng) =�→
239 let sample j i (rng, acc) = let (rng, ud) = rand rng
240 let (rng, vd) = rand rng
241 let u = (f32.i64(i) + ud) / f32.i64(nx)
242 let v = (f32.i64(j) + vd) / f32.i64(ny)
243 let (rng, r) = get_ray cam u v rng
244 let (rng, col) = color max_depth world r

rng�→
245 in (rng, acc vec3.+ col)
246 let pixel j i = let rng = rngs[j,i]
247 let ns = (reverse nss)[j,i]
248 let (rng, col) = iterate ns (sample j i) (rng,

vec(0,0,0))�→
249 let col = ((1/r32 ns) `vec3.scale` col) |> vec3.map

f32.sqrt�→
250 in (rng, argb.from_rgba col.x col.y col.z 0)
251 in tabulate_2d ny nx pixel |> reverse
252
253
254 let main (nx: i64) (ny: i64) (ns: i32) (nobj: i32):

[ny][nx]argb.colour =�→
255 let lookfrom = vec(13,2,3)
256 let lookat = vec(0,0,0)
257 let dist_to_focus = 10
258 let aperture = 0.1
259 let cam = camera lookfrom lookat (vec(0,1,0)) 20 (f32.i64 nx /

f32.i64 ny)�→
260 aperture dist_to_focus
261 let (rng, world) = random_world (i32.i64 nx ^ i32.i64 ny ^ ns) nobj
262 let rngs = rnge.split_rng (nx*ny) rng |> unflatten ny nx
263 let nss = replicate ny (replicate nx ns)
264 in render 50 nx ny nss world cam rngs |> map (map (.1))

Listing 33: raytracer.fut source code, originally taken from https://github.
com/athas/raytracinginoneweekendinfuthark
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