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Abstract

We present a series of dataflow dependent program transformations that reduce mem-
ory transfers between a GPU and its host, and show how the problem of minimising
memory transfers to the host amounts to finding minimum vertex cuts in a series of
data dependency graphs. We provide a specialised algorithm to solve these minimisa-
tion problems, based on the Ford-Fulkerson max-flow algorithm, and detail techniques
to model conditional execution and loops in a pure functional programming language.

We present our work in context of the array programming language Futhark, in
whose compiler we have implemented our techniques. Empirical evaluation of 27
benchmark programs on four GPUs show mean speedups of 1.17–1.58, heavily skewed
by significant improvements to a few programs.
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INTRODUCTION

1 Introduction

Futhark [1] is a purely functional, statically typed, data-parallel array programming
language designed to be compiled to efficient parallel code for execution on general-
purpose GPUs via OpenCL [2] and CUDA [3]. It is meant to be used for the compute-
intensive, data-parallelisable parts of applications written in other languages and fea-
tures a heavily optimising ahead-of-time compiler that generally allows programmers
to not deal with the low-level details of how to write efficient GPU code [4].

A Futhark program compiled to run on a GPU does not exclusively run on the GPU.
Instead the execution is done in a back-and-forth collaboration between the CPU and
the GPU with the CPU orchestrating tasks to run on the GPU as a co-processor. A key
decision in the design of Futhark’s compiler is thus where individual parts of com-
piled programs should be run. By default all parallel operations of Futhark compiled
programs are performed on the GPU while all sequential work happens to be done on
the CPU. This split happened due to ease of implementation, coincidentally benefit-
ing from CPUs generally having superior single-threaded performance to GPUs, but
suffers from the communication costs of exchanging data among the two.

In this thesis we explore how moving some of the sequential work to the GPU can
reduce memory transfers and speed up the execution of compiled Futhark programs,
subject to the constraint that not all work can be migrated. Our focus will be the run-
time behaviour of GPU accelerated code generated by the OpenCL [5] and CUDA [6]
Futhark compiler backends, which share a common compiler optimisation pipeline.
Benchmarks and discussions that involve specific runtime implementation details will
be in context of v0.21.10 of the language and its compiler.

In section 2 we present the principles of CPU/GPU communication and how they
relate to the mostly asynchronous runtime of a Futhark program. We explain why
synchronous communication, particularly blocking inter-device memory transfers, is
problematic from a performance viewpoint, and demonstrate the performance poten-
tial of reducing such by moving some sequential work to the GPU.

In section 3 we describe a small language that resembles a subset of the internal
compiler representation of Futhark programs. We use this later to facilitate discussions
of the concrete problem and to describe program optimisations.

In section 4 we present an automatic program transformation that reduces inter-
device memory transfers. We show how the problem of minimising inter-device mem-
ory transfers can be modelled as a graph problem, and present a variant of the Ford-
Fulkerson method [7] that effectively solves it. We then describe a series of optimising
program transformations that moves sequential work to the GPU based on said model.
We end the section with a walk-through of how each language construct is modelled
and transformed.

In section 5 we present and discuss experimental test results that quantify the im-
pact of our presented optimisations. We provide aggregated benchmark results for
the futhark-benchmarks [8] benchmark suite that is endorsed by the Futhark project and
provide microbenchmarks as rationale for a specific transformation.

In section 6 we provide two ways that our work can be expanded upon to further
reduce the occurrence of inter-device memory transfers. We conclude the thesis with a
summary of our most important findings and contributions.
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BACKGROUND

2 Background

2.1 The runtime of a Futhark program

It is difficult to generalise the exact nature of communication that occurs between a
CPU and a GPU as considerable hardware variance exists. For instance, the latency
and overhead of communicating with a GPU that shares memory with the CPU and is
integrated on the same circuit die is considerably different from communicating with
a discrete graphics card via a PCIe bus, both in regards to the link itself and whether
data transfers demand copying. Due to the variance there is no general concept of
efficient zero-copy shared memory that program code running on both pieces of hard-
ware simultaneously can access, and so the Futhark runtime issues explicit commands
to copy data from one piece to the other. How the Futhark runtime does this differs
between its OpenCL and CUDA backends but the underlying approach is very similar.

Both OpenCL and CUDA exposes a pipelined programming model in which com-
mands to the GPU are enqueued with a driver and executed asynchronously [2][3].
For this thesis only in-order GPU pipelines are relevant, which means that enqueued
commands appear to execute in the order they are submitted. For many driver imple-
mentations, particularly those under CUDA, commands do execute in that order [3].
There are no ordering guarantees for commands enqueued to different pipelines. The
command types we will consider are the execution of GPU functions, so-called kernels,
and host-device, intra-device, and device-host memory transfers. We use host to refer
to the CPU and its associated RAM, and device to refer to the GPU and its associated
memory. Whether the memory subsystems in practice overlap is unimportant.

The pipelined programming model is useful as its asynchronous nature allows the
host thread(s) and GPU to work in parallel. While the device is doing work, the host
can perform other tasks such as prepare more work for the GPU or consume trans-
ferred results. It also allows more efficient utilisation of the device and interconnecting
hardware. For instance, the driver can send commands to the GPU in batches to amor-
tise bus communication overhead, increasing throughput at the cost of latency, and
different phases of different commands in the pipeline can be performed concurrently,
in theory allowing one command to be sent to the GPU while another is being exe-
cuted. We note that the latency between a command being enqueued and the start of
its actual execution may be quite long, subject to the hardware and driver implemen-
tation. The OpenCL specification only promises the eventual execution of enqueued
commands [2, p. 17] and GPUs are generally optimised for throughput, not latency.

The part of a Futhark program that runs on the host executes sequentially in a sin-
gle thread, which both is responsible for pipelining GPU work, managing memory,
handling errors, and evaluating the non-parallelised aspects of the source program.
Only a single in-order GPU pipeline is used. In the immediate representation all pro-
gram data is represented as scalars (booleans, floating-point numbers, and integers)
and arrays of these. As an implementation detail, arrays are stored on device, but their
sizes are known to the host, as it allocates them. Kernels can read and write scalars
to arrays and can accept scalar arguments provided by the host, but cannot return a
result. Results can thus only be communicated by writing them to arrays, which later
can be read by the host. Futhark uses a uniqueness type-system to support in-place
updates of arrays while maintaining purity.

Listing 1 shows an example of a simple Futhark program that normalises a vector
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2.1 The runtime of a Futhark program BACKGROUND

entry vector_norm [n ] (A : [n ] f32 ) : [n ] f32 =
l e t pow2 = map (\x −> x*x ) A
l e t sum = reduce ( + ) 0 pow2
l e t len = f32 .sqrt sum

in map (\a −> a / len ) A

Listing 1: Vector normalisation in Futhark.

of n 32-bit floating point numbers. Its map and reduce functions and their lambda
arguments are compiled to code that execute as kernels. A and pow2 are arrays that
reside on device. reduce computes a single-element array of type [1]f32 whose only
element it reads to the host and returns, to be bound as the scalar variable sum. The
square root of sum is then computed and passed as an argument to the kernel that
executes the final map expression. The arrays that each kernel return results via are
allocated before kernel execution and are also passed as kernel arguments.

Implementation-wise, all array reads performed on the host are done using syn-
chronous operations. This means that the read required to bind sum in Listing 1 must
wait for the map and reduce kernel1 to finish after which the host incurs the inter-
device communication cost of reading the produced scalar. Since the host performs no
useful work while waiting for the transfer to complete, program execution suffers as
its degree of parallelism is reduced. What is worse, while the memory transfer occurs
the GPU pipeline will be empty (we assume that no out-of-order execution occurs) and
only when the read completes can len be computed and the next map kernel launch
be initiated. The deeper the execution pipeline and the longer the start execution la-
tency, the more this will hurt. By performing a blocking operation the host thus not
only delays itself but also stalls device execution which is responsible for the vast ma-
jority of hardware threads that contribute to parallel program execution. If no other
process or thread uses the GPU, system-wide GPU utilisation will drop.

The host also writes most scalars to arrays using blocking operations, with similar
synchronisation costs. The primary exception is direct copying between arrays via
slicing, which is implemented as an asynchronous intra-device memory transfer. Here
slicing refers to an operation that returns an array-typed view of an existing array.
The slice A[2 :5] of A = [1 , 2 , 3 , 4 , 5 , 6] equals [3 , 4 , 5]. In many cases the compiler
can optimise the write of an individually read scalar into an asynchronous slice copy,
turning A[0] ← B[7] into A[0 :1] ← B[7:8]. The OpenCL backend also implements an
optimisation that makes writing a scalar constant an asynchronous operation2.

The runtime may also perform synchronous operations when allocating memory
from the device driver but this is relatively uncommon due to a free list mechanism that
enables memory reuse. From a performance viewpoint these are thus of less interest
compared to the reads and writes that always block. We will not spend any effort on
optimising memory allocation further.

1The Futhark compiler fuses these two operations into a single kernel.
2Based on feedback and starting with v0.21.11, this optimisation is now also implemented in the

CUDA backend. v0.21.11 is the version that introduces the optimisations presented by this thesis.
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2.2 An optimisation idea

One way to avoid the theoretical performance slowdown of synchronisation would be
to make all data transfers asynchronous. The CUDA documentation however hints
that the data transfers themselves may limit performance, stating that “applications
should strive to minimize data transfer between the host and the device” [3, sec. 5.3.1].
In the same section it also mentions that it is better to batch many small transfers into a
one large transfer due to overhead that each transfer incurs. Instead of making the data
transfers between host and device asynchronous we will therefore instead examine
how they can be reduced in number.

Two techniques already utilised by the Futhark compiler is common subexpression
elimination (CSE) and sinking. CSE removes duplicate computations, replacing them
with already computed results. At its most basic it can transform an expression such
as A[i] + A[i] into let x = A[i] in x + x, where A[i] reads the ith element of array A.
In some cases the compiler can also eliminate reads from arrays with known contents.

Sinking moves an array read that only is used within one branch of an if expression
into that branch. For example, the code fragment

l e t x = A [ 0 ]
in i f A [ 1 ] == 0 then x+2 e lse 42

can be transformed into

i f A [ 1 ] == 0 then A [ 0 ]+2 e lse 42

thereby eliminating the A[0] read in the best case (when A[1] is not zero) while main-
taining the same number of reads in the worst case. The worst case would suffer if x
was used in the branches of multiple if statements and moved into each of them.

While both techniques are capable of eliminating some blocking memory transfers,
neither are capable of optimising the blocking read that occurs in Listing 1. The issue
is not under which conditions the vector length is computed but where it is computed.
The amount of work done by the host, i.e. computing a square root, is not proportional
to the cost of reading its argument.

A suggestion found in the CUDA Performance Guidelines [3, sec. 5] is to move
computations from host to device such that the intermittent transfers are avoided. This
idea has merit and is orthogonal to already implemented techniques. Consider the fol-
lowing pseudo code transformation of the Listing 1 vector normalisation program

entry vector_norm ’ [n ] (A : [n ] f32 ) : [n ] f32 =
l e t pow2 = map (\x −> x*x ) A
l e t S = reduce ’ ( + ) 0 pow2
l e t L = gpu { f32 .sqrt S [ 0 ] }

in map (\x −> x / L [ 0 ] ) A

Listing 2: Proposed optimisation of Listing 1.

where reduce’ is a modified reduce that returns [1]f32 instead of reading its element;
gpu {e} executes the expression e on device as a single-threaded kernel, returning the
result of e in an array; and the kernel usage of len is replaced with L[0], reading the
vector length from device memory rather than receiving it as a scalar argument. Now
all program evaluation is done on the device, leaving the host just to administrative
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Figure 1: How much faster vector_norm’ is compared to vector_norm when exe-
cuted on an array of ten million 32-bit floating-point numbers. The bars indicate the
speedup for four different hardware configurations. For details about the hardware
and benchmarking method, see section 5.

tasks, and the synchronous transfer is eliminated. When all allocations can be served
by the free list, no mid-program synchronisation should occur at all.

Empirical evidence supports the worth of this idea. When benchmarking the List-
ing 1 program and a manually optimised version that corresponds to Listing 2 on a
variety of data centre and consumer grade hardware we obtain a speedup of 1.08–1.54
(see Figure 1). This is significant and indicates that it is worth aggressively optimising
data transfers away via code migration.

Blocking writes can also be transformed by means of migration. An update expres-
sion such as A with [i] = x, which synchronously writes x to the ith index of A, can
be turned into A with [i:i+1] = gpu { x } which is an asynchronous slice copy from
an asynchronously populated single-element array. Unfortunately, micro benchmarks
indicate that in the simple case, the overhead of the added kernel launch degrades per-
formance. The transformation only appears profitable when the same scalar is to be
written two or more times, allowing reuse of its intermediate single-element array, or
two kernels can be merged into one, such as to transfer two scalars to device at once.

Rather than pursuing a write optimisation based on these conditions it can be ob-
served that writes to arrays in Futhark programs often depends on array reads. This is
based on the futhark-benchmarks [8] benchmark suite, endorsed by the Futhark project
and taken to be a realistic sample of Futhark programs, wherein all array writes in
non-test code follow the pattern, even in external library dependencies. This means
that if array reads are minimised by migrating dependent expressions to device, then
most writes can simultaneously be optimised since their write arguments already will
be present on device.
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LANGUAGE

3 Language

Before describing an algorithm that can drive a program transformation that reduces
memory transfers via migration it is useful to define a language to operate upon. The
language we describe in this section mimics a subset of the intermediate language
representation used in the Futhark compiler, albeit simplified for conciseness. The lan-
guage is in Administrative Normal Form [9], which means that all expression operands
are constants or variables. Barring some builtin operators it is a monomorphic first-
order language without recursive data types, and as such it is far more restrictive than
the language used in examples given in section 2. The purpose of the language is to
support presentation of the techniques used in the optimisation, not showing every
instance of applying the techniques to the actual intermediate language.

3.1 Syntax

The following grammar describes the abstract syntax of our language. We let x be
a meta-variable that ranges over all language variables, let f be a meta-variable that
ranges over all possible function bindings, and let int ∈ Z, m ∈ N, and n ∈ N+.

program ::= decl1 ... decln

decl ::= stm | def f = fn

stm ::= let x1, ..., xn = e

fn ::= λ x1 ... xn→ e

se ::= int | true | false | x

e ::= stm1 ... stmn in e | se1, ..., sen | f se1 ... sen | ¬ se | se1 + se2 | se1 ≤ se2
| if x then e1 else e2 | loop x1 = se1, ..., xn = sen form do e
| [se1, ..., sem] | x[dims] | x with [dims]← se | copy x | iota se1 se2 se3
| replicate [se1, ..., sem] se |map fn x | reduce fn se x | gpu e

form ::= for x < se | for x1 in x2 | while x

dims ::= dim1, ..., dimn

dim ::= se | se1 : se1 + se2

Furthermore let n, r ∈ N+. The types of our language is then given by the grammar:

τ ::= int | bool | [se]τ | τ1 → ...→ τn+1, ..., τn+r

3.2 Semantics and type constraints

The semantics and type rules of our language are mostly conventional. The primary
exception is that some expressions may produce more than one value, which can be
understood as them producing a tuple that immediately is unpacked. Additionally
kernel expressions such as reduce and gpu produce array-typed values even when
their inner expressions produce scalars, and array variables may alias each other, which
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means that their values are views of the same data. The x with [dims] ← se expression
invalidates x and all its aliases, essentially unbinding them to forbid future use. It
semantically produces a new array with no aliases.

In the following we give a formal description of the language. A reader should feel
free to skip ahead and merely reference the individual descriptions if the meaning of a
language construct later proves unclear. The definitions we make in the next paragraph
will be used however, and should thus not be skipped.

Let τ(s) be the type of s. Value v of type τ(v) ∈ {int,bool} is a scalar, while it is
an array if its type is τ(v) = [z]τR for some int typed constant or variable z, and some
scalar or array type τR. The full type of an array might be [x][y][10]int, which denotes
an integer array of rank three, each dimension respectively of length x, y, and 10. We
denote x to be its outer dimension. The type τ1 → ... → τn+1, ..., τn+r is for functions
that take n arguments and produce r values.

Let Ai denote the ith row of some array A, and let vi(e) be the ith value produced
by the expression e. When vi(e) = w then τ(vi(e1)) = τ(w). The runtime semantics and
type constraints for each language rule is then given by:

• program is a sequence of top-level declarations, at least one function and any
number of variable bindings. Variable bindings may depend on previous dec-
larations in the sequence. Function bindings may depend upon any top-level
declaration. A program is run by passing arguments to one of its functions.

• let x1, ..., xn = e is a statement that binds xi to vi(e).

• def f = fn binds f to the function fn. We have τ(f ) = τ(fn).

• λ x1 ... xn → e is some function fn that accepts n arguments. We have τ(fn) =
τ1 → ...→ τn+1, ..., τn+r such that τ(xi) = τi and τ(vj(e)) = τn+j .

• se is a subexpression which either evaluates to a constant value or a previously
computed value:

– int is an integer constant; v1(int) = int. Its type is τ(int) = int.

– true is a boolean constant; v1(true) = true. Its type is τ(true) = bool.

– false is a boolean constant; v1(false) = false. Its type is τ(false) = bool.

– When x is bound to w, v1(x) = w.

• stm1 ... stmn in e evaluates to e in an environment with the variables bound by the
stm1 ... stmn statements. We have τ(vi(stm1 ... stmn in e)) = τ(vi(e)).

• se1, ..., sen evaluates to the respective subexpressions, i.e. vi(se1, ..., sen) = v1(sei).

• When f is bound to λ x1 ... xn → e with type τ1 → ... → τn+1, ..., τn+r then f
se1 ... sen evaluates to e in an environment where xi is bound to sei. Results have
types τ(vj(f se1 ... sen)) = τn+j and the function arguments are constrained such
that τ(sei) = τi.

• ¬ se evaluates to true if v1(se) is false, otherwise false. Types are constrained such
that τ(¬ se) = τ(se) = bool.

• se1+ se2 evaluates to v1(se1)+ v1(se2). We have τ(se1+ se2) = τ(se1) = τ(se2) = int.
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• se1 ≤ se2 evaluates to true if v1(se1) ≤ v1(se2), otherwise false. The corresponding
type rules are τ(se1 ≤ se2) = bool and τ(se1) = τ(se2) = int.

• if x then e1 else e2 evaluates to e1 when v1(x) is true, otherwise to e2.

We have τ(x) = bool and τ(vi(if x then e1 else e2)) = τ(vi(e1)) = τ(vi(e2)).

• loop x1 = se1, ..., xn = sen form do e iteratively evaluates e until some condition
ceases to hold, each time updating the environment of bound variables based on
the values e produced. For iteration k = 0, the loop parameter xi is bound to sei.
For iteration k > 0, xi is bound to vi(ek−1) i.e. the values produced by e in iteration
k − 1. When the condition no longer holds the loop expression produces the
values x1, ..., xn. Thus τ(xi) = τ(sei) = τ(vi(e)) = τ(vi(loop x1 = se1, ..., xn = sen
form do e)). The condition and other variables depend upon the loop form:

– When form is for xI < seN the loop repeats v1(seN) times. In each iteration
the variable xI is bound to k. We have τ(xI) = τ(seN) = int.

– When form is for xR in xA then xA binds an array of type [seN ]τR and the loop
repeats v1(seN) times. In each iteration the variable xR is bound to the kth
row of xA with semantics corresponding to let xR = xA[k]. We have τ(xA) =
[seN ]τR and τ(xR) = τR.

– When form is while xc the loop repeats for as long as v1(xc) is true. xc is one
of the variables x1, ..., xn that are bound by the loop.

• [se1, ..., sem] evaluates to an array with an outer dimension of m. If A = [se1, ..., sem]
then Ai = sei and τ(A) = [m]τR, implying τ(sei) = τR. The array has no aliases.

If every sei is a constant, then the operation is allocation plus a single asyn-
chronous intra-device memory transfer. Otherwise, the operation is allocation
of an array A followed by m writes that correspond to A with [i − 1] = sei for
each 1 ≤ i ≤ m. Note that indices are zero-based.

• x[dims] evaluates to the subset s = D (v1(x); dims) of the array bound to x with
rank r ≥ n. We have τ(x) = [z]τR. Recall that m ∈ N, n ∈ N+. The functionD then
identifies a subset of the array bound to x, given by

D(A; dim1, ..., dimn) =


Ai for n = 1, dim1 is se, i = v1(se)
D(Ai; dim2, ..., dimn) for n > 1, dim1 is se, i = v1(se)
sf,l(A; dim2, ..., dimn) dim1 is se1 : se1 + se2,

f = v1(se1), l = v1(se2)

where all se terms that occur in dims are of type int, and sf,l(A; dim1, ..., dimm)
identifies the array-typed slice A′ of A given by

A′
i =

{
Af+i for m = 0

D(Af+i; dim1, ..., dimm) for m > 0
(for 0 ≤ i < l)

If τ(s) ∈ {int,bool} and x[dims] is evaluated on the host, then the operation
is synchronous, involving an expensive device-host memory transfer that stalls
execution. When evaluated on device, no inter-device communication occurs, the
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read can be considered cheap, and any latency involved in data fetching affects
just the local device thread. When evaluated by a parallel kernel the cost can be
considered negligible.

If τ(s) = [z]τR then s is an array of rank equal to the count of se1 : se1 + se2 terms
in dims, with respective dimensions of length se2, s aliases x, and the operation
has constant work complexity irrespective of where it is evaluated.

• x with [dims] ← se evaluates to the array bound to x, with the contents of v1(se)
written to the corresponding indices of s = D (v1(x); dims). We have τ(s) = τ(se)
and τ(x with [dims] ← se) = τ(x). Afterwards neither x nor any variable that x
directly or indirectly aliases (incl. aliases of aliased values) may be used before
being rebound. Binding a variable to an array aliases it.

Operation-wise the expression updates the underlying memory in-place. If τ(se) ∈
{int,bool} then the operation is an expensive host-device memory transfer when
evaluated on the host. When se is a variable the memory transfer is synchronous;
when it is a constant the memory transfer may or may not be asynchronous.
When se is an array then the operation is performed asynchronously, involving
no memory transfers with the host.

• copy x evaluates to an array that equals v1(x) but which has no aliases. It follows
that τ(copy x) = τ(x) = [z]τR. When evaluated on the host, copies are created
using asynchronous intra-device memory transfers that can exploit the inherent
parallelism of data copying.

• iota se1 se2 se3 evaluates to an array A where Ai = s · i + b for 0 ≤ i < t and
t = v1(se1), b = v1(se2), s = v1(se3). We have τ(iota se1 se2 se3) = [se1]int and
τ(se1) = τ(se2) = τ(se3) = int. When evaluated on the host the array computation
is parallelised by an asynchronous kernel. The array has no aliases.

• replicate [se1, ..., sem] see evaluates to an array of at least rank m with dimension
i ≤ m being of length sei. All rows of dimension m equals v1(see). The array has
no aliases and has type [se1] ... [sem] τ(see) where τ(sei) = int. When evaluated on
the host the array rows are populated in parallel by an asynchronous kernel.

• map fn x applies the function fn of type τa → τb to every row of the array bound
to x, evaluating to a new array of type [z]τb containing the results. The type of x
is [z]τa. When evaluated on the host the array rows are computed in parallel by
an asynchronous kernel. The produced array has no aliases.

• reduce fn se x reduces a monoid to a single element. The variable x binds an array
A of type [z]τe that holds z elements, fn is an associative binary function of type
τe → τe → τe , and ϵ = v1(se) is the neutral element of the monoid, also of type τe.
The expression evaluates to an array R of type [1]τe where R0 = RA(z) and

RA(z) =

{
ϵ if z = 0

fn (RA(z − 1), Az−1) otherwise

When evaluated on the host the computation in done in parallel by an asyn-
chronous kernel. The produced array has no aliases.

12



OPTIMISATION

def double_sum = λA , sq →
l e t d = l e t sum = i f sq

then loop s = 0 for i in A do s+i
e lse l e t R = reduce (λa , b → a+b ) 0 A

in R [ 0 ]
in sum + sum

in gpu d

def double_sum = λA , sq →
l e t sum = i f sq

then l e t x = loop s = 0 for i in A do
l e t t = s+i in t

in x
e lse l e t R = reduce (λa , b → l e t p = a+b in p ) 0 A

l e t r = R [ 0 ]
in r

l e t d = sum + sum
l e t B = gpu d

in B

Figure 2: Transforming a function to abide to Assumption 1. Top: Original representa-
tion of double_sum. Bottom: Transformed representation where every computation
is done by a statement. double_sum has type [n]int → bool→ [1]int.

• gpu e evaluates e within an asynchronous, single-threaded kernel, producing an
array for every value produced by e such that vi(gpu e)0 = vi(e). The type of
vi(gpu e) is [1] τ(vi(e)). The produced arrays have no aliases.

4 Optimisation

While the program transformation that we are about to present also can be used to
optimise the initial computation of top-level program variables, in this thesis we will
only discuss the optimisation in the context of top-level functions. Since a program
is run by invoking one of these, their semantics must not be altered. We limit the
optimisation to how each top-level function individually can be transformed, subject
to the constraints of their type signatures.

Assumption 1. To simplify our descriptions we assume that the expression e that oc-
curs in the fn term and in if, loop, and gpu expressions always will be of the form

stm1 ... stmm in se1, ..., sen or just se1, ..., sen

and that the expression form stm1 ... stmm in e otherwise does not occur. It is trivial to
transform a program to abide to these restrictions and so no generality is lost. Figure 2
provides an example. For conciseness we will still use the full language in examples.

In a program abiding to Assumption 1, all computations of a function are done by
statements that will be evaluated on either host or device. Statements that will be eval-
uated on device are grouped into constructs that represent kernels, such as reduce and

13
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gpu; we will simply call them ”kernels” and overload the term. In Figure 2 the trans-
formed statement let p = a+b in p is the only statement that is evaluated on device;
the inner expression of gpu d merely evaluates to d, which is computed on host.

The variables bound by a statement logically reside in the same space (and kernel,
if any) as that statement, either host or device. A statement may freely use variables
that reside on the host3 or in the same kernel as itself, but to use a value outside the
kernel that computes it, that kernel must return the value in an array, and the usage
site must read it from that array. This is a logical consequence of how kernels and
variable scopes work. We use the phrase “return in an array” to emphasise that all
kernel return values are communicated via arrays. While a device statement thus freely
may use values computed on the host, it takes significant effort for a host statement to
use values computed on device.

If all uses of a host read h = A[i] are within kernels, the device-host memory trans-
fer can be prevented by inlining h into each of those kernels. That is the code fragment

l e t h = A [i ]
l e t B = map (λx → x ≤ h ) A
l e t C = map (λx → x + h ) A

can be transformed into

l e t B = map (λx → l e t h = A [i ] in x ≤ h ) A
l e t C = map (λx → l e t h = A [i ] in x + h ) A

This increases the number of device array reads but these do not stall execution and
are generally much cheaper than inter-device memory transfers. If h is used by a set of
host statements the host read can be prevented by also moving all of those to device,
but then all host usages of their results must in turn be considered. The minimisation of
host reads is thus a global optimisation problem: Select a set of host statements to move
to device such that a minimum number of device values are used by host statements.

It is not possible to move all statements to device as some statements only can be
initiated from the host due to compiler limitations. We say that such statements are
host-only but will also use the term for statements that merely are infeasible to move.
Most compiler limitations stem from the constraint that device memory is allocated by
the host, which means that the backing memory of all arrays created by a kernel must
be allocated before that kernel can be launched. This in turn requires the sizes of the
respective arrays to be known in advance.

We likewise designate all kernel evaluated statements as being device-only, assum-
ing their intended device execution to be optimal. We note that gpu expressions do
not naturally occur in the intermediate Futhark representation that we study, and that
it thus generally is not possible to reduce inter-device memory transfers by migrating
statements from device to host. Since variables reside in the same space as the state-
ment that binds them, by extension a variable bound by a host-only or device-only
statement is itself respectively host-only or device-only.

3Free in terms of the intermediate representation. The free variables of a kernel construct will be
passed as arguments to the actual kernel function that is generated. This is generally cheap but not free.
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4.1 Graph representation

To determine which statements of a given function that should be migrated from host
to device we construct a directed graph G = (V,E) where vertices are host variables
with incoming edges from the scalar values they are computed from. We use the term
”variable” loosely to also mean its vertex representation and only represent variables
that meaningfully contribute to the problem, subject to later definition.

An edge a → b in such graph signifies that if the scalar value a resides on device,
then either a must be transferred to the host (at great cost) or b must be computed on
device, requiring its host statement to be migrated. There exists no outgoing edges
from array-typed variables as migrated arrays can be made available to the host with-
out any memory transfer. This is exemplified and explained in detail by Figure 3.

Any host variable that directly depends upon a device value via an array read, such
as let x = A[0], receives an edge from a distinct synthetic vertex s that represents the
dependency. We call s a source as it is the source of an inter-device memory transfer
that we wish to prevent, and we use the term synthetic vertex to denote a vertex with
no variable representation in our language.

We only add a variable to the graph if it may be reached from a source as its mi-
gration otherwise can be foreseen to be unnecessary. Constants are trivially excluded.
Device variables bound within kernels are irrelevant to the problem as they are con-
sidered device-only, already reside on device, and are inaccessible to host statements.
Intra-kernel device variables are thus excluded, as demonstrated by Figure 4.

Some scalar variables bind values that must be made available to the host. To model
this constraint we replace all outgoing edges from such a variable with a single edge
to a synthetic vertex t, which we call a sink. We do not add new edges from a vertex
that already has an edge to a sink as any edges beyond the sink-connecting one are
pointless: If the variable resides on device, then it must be read to the host, and so
none of its dependents need be migrated to use it. We connect scalar variables to sinks
if they are used as the operands of host-only statements or are returned by the top-level
function. The latter is demonstrated by Figure 5.

In subsection 4.5 we go into detail with how statements of each kind of expression
is graphed, but to formalise the problem and present the algorithm that drives the
migration analysis it suffices to provide Definition 1 and Statement 1.

Definition 1. We define the set E to include any statement that does not compute an
expression of the form:

• se1, ..., sen

• if x then e1 else e2

• loop x1 = se1, ..., xn = sen form do e

• gpu e

We leave the E-membership of statements that evaluate stm1 ... stmn in e expressions
be undefined due to Assumption 1.
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l e t x = A [ 0 ]
l e t B = [ 1 ,x ]
l e t Bs = r e p l i c a t e [ 3 ] B

(a)

l e t B ’ = gpu l e t x = A [ 0 ] in [ 1 ,x ]
l e t B = B ’ [ 0 ]
l e t Bs = r e p l i c a t e [ 3 ] B

(b)

s x B

(c)

Figure 3:
(a) In this code fragment x depends on the device value read by A[0], which entails a
device-host memory transfer. The memory transfer can be prevented by migrating let
x = A[0] to device but then either x must be transferred to the host, costing a memory

transfer to no avail, or B must be computed on device. If let B = [1 ,x] is moved then
B can be made available to the host without any memory transfer (see below), and
therefore it receives no outgoing edge in (c) despite Bs depending upon it.

(b) By migrating the statements that compute x and B a device-host memory transfer
can be prevented completely. The expression B’[0] evaluates in constant time without
any inter-device communication and creates a slice of B’ that corresponds to B.

(c) A graph representation of (a) where s represents the device value read by A[0].
Neither A nor Bs is represented by virtue of not depending on a scalar variable, which
means that no memory transfer possibly can be prevented by migrating them.

def sum_cmp = λA →
l e t S = reduce (λa , b → l e t p = a+b in p ) 0 A
l e t s = S [ 0 ]

in map (λx → l e t c = x ≤ s in c ) A

(a)

s s

(b)

Figure 4: (a) A small function that compares integers to their sum and (b) its graph
representation. sum_cmp has type [n]int → [n]bool. The source vertex s represents
the device value read by S[0], which causes an inter-device memory transfer. The
device-only variables a, b, p, x, and c are excluded from the graph as they already
reside on device and no host statement can depend on them but via an array read.
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def add = λA , x →
l e t a = A [ 0 ]
l e t b = a + x
l e t c = A [ 1 ]
l e t d = b + c

in d

(a)

s1 a b

s2 c

d t

(b)

Figure 5: (a) A small function that adds three integers and (b) its graph representation.
add has type [2]int → int→ int. The function arguments A and x are not represented
in the graph as none of them are reachable from a source vertex. The vertices s1 and s2
are source vertices that represents the device values read by A[0] and A[1]. The vertex
t is a sink that requires d to be made available to the host, to be used as a result. If the
statements that bind variables a, b, c and d were migrated to device, the number of
device-host memory transfers would be reduced from two to one.

Statement 1. Let Fe ⊆ V be vertices that correspond to variables that the expression e is
computed from, and let Fe only contain source vertices and scalar variables that have no edge
to a sink. When the E statement let x1, ..., xn = e is graphed it then holds that:

1. The variables x1, ..., xn are all added to V if and only if Fe ̸= ∅.

2. The edges added to E for each variable xi is those given by {u→ xi | u ∈ Fe}.

The variables bound by non-E statements directly correspond to constants or variables
bound by other statements and thus must be considered for migration on their own.
For our needs and purposes all host-only variables are bound by E statements with no
direct dependence on device values. Since all scalar operands of host-only statements
are connected to sinks, no edge will exist to a host-only variable. This makes them
unreachable from a source, and thus they are not included in the graph.

4.2 Problem statement and basic solution properties

We can now formally define our optimisation problem:

Statement 2. Given a graph representation G = (V,E) of a top-level function, partition the
vertices V into two disjoint sets, D and H , such that D contains all source vertices, H contains
all sink vertices, and the vertices in D with an edge to a vertex in H is a minimum vertex cut
denoted C = (D,H), which secondarily minimises D.

That is we want to minimise the number of vertices in D with an edge to a vertex
in H , subject the given partitioning constraints, and such that D is as small as possible.
This corresponds to minimising the number of inter-device memory transfers while
migrating as few statements to device as possible, thereby keeping the overhead of
running kernels small and exploiting that the host generally can perform sequential
work faster than the device. We refer to D as the device set of a solution, and refer to H
as its host set. We identify a solution by its vertex cut C = (D,H) which contains the
members of D that have an edge to a vertex in H . We emphasise that C is a set.
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Solution properties

Given a solution C = (D,H) to an instance of the Statement 2 graph problem, the set
of E statements to move to device are those that bind a variable represented by a vertex
in D. Statements of ungraphed variables remain where they reside, and so host-only
statements will stay on the host. The graphing of non-E statements that we describe in
subsection 4.5 is done such that C also provide a solution for reads that they depend
upon. The criteria for their migration differ though.

Note that all variables bound by an E statement will be a subset of either D or H ,
so all variables bound by such statement will agree as to whether the statement should
remain on host or be moved. Theorem 1 states this formally.

Theorem 1. Let C = (D,H) be a solution to the minimisation problem G, and let the set B
be the vertices of all variables bound by any single E statement. Then B cannot intersect both
D and H and thus must be a subset of one of them.

Proof. Let F be the subset of D that the vertices in B each has an ingoing edge from,
and assume that B intersects both D and H . Because B intersects D and D is minimum,
F cannot be empty. Because B intersects H then F must also be a subset of C, and since
C and D are both minimum then B must be disjoint from D.

This a contradiction as we assumed B to intersect D, so the assumption must be
false. We conclude that the set of variables bound by any single E statement cannot
intersect both D and H and thus must be a subset of exactly one of them.

In subsection 4.1 we gave rationale for why a number of vertices may be excluded
from the graph representation but did so without any formal proofs. In the following
we argue that the partitioning of all excluded variables is predetermined, amounting
to them remaining where they currently reside. We start by showing that any vertex
not reachable from a source vertex will belong to H , which allows them to be excluded.

Lemma 1. Let C = (D,H) be a solution to the minimisation problem G. Then every vertex in
D can be reached from a source vertex.

Proof. Assume that some vertex v ∈ D could not be reached from any source vertex,
and let X be the set of all vertices in D that can reach v, incl. v itself. Then all vertices
in X could be moved to H without increasing the size of the minimum vertex cut C,
the partitioning would be valid since X contains no source vertex, and we would have
|D \X| < |D|. This implies that |D| is not minimum, and C can thus not be a solution.
We have found a contradiction, so v cannot exist, and we conclude that every vertex in
D thus must be reachable from some source vertex.

Corollary 1. Any variable in G that no source vertex can reach will be a member of H .

It can also be shown that a solution C = (D,H) to the minimisation problem G is
unique. This allows us to refer to the solution to any instance of Statement 2, not just
one. More importantly, upon verifying a candidate solution to some problem G we can
argue that any algorithm that solves G will produce that solution. The uniqueness of a
solution is given by Lemma 2.

Lemma 2. Let C = (D,H) be a solution to the minimisation problem G = (V,E). Then C is
the only minimum vertex cut that satisfies the partitioning constraints and also minimises |D|.
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Proof. Assume for the sake of contradiction that an alternative solution C ′ = (D′, H ′)
exists such that (D′, H ′) is a valid partitioning of V , C ′ is a minimum vertex cut in G,
|D′| is minimum, and C ̸= C ′.

From C ̸= C ′ it follows that D ̸= D′, and since D and D′ are both minimum and
thus of the same size, neither D nor D′ can be a subset of the other. Their intersection
I = D ∩D′ is not empty either as both device sets must contain all source vertices, and
source vertices must exist since C = (∅, V ) otherwise would be the only solution.

Let J = D′ \ I . Since every vertex in D′ by Lemma 1 can be reached by some source
vertex in I , and C is the vertex cut (D,H) with J ⊂ H , then all vertices in J can be
reached from vertices in C ∩ I . We note that J cannot be empty as that would imply
D′ = I and thus D′ ⊆ D, which would be a contradiction.

The set C ∩ I can be partitioned into two sets, X and Y , such that X ⊆ C ′ and
Y ̸⊆ C ′. It follows that no member of Y has an edge to a vertex in H ′, and all vertices
in J can be reached via edges from vertices in Y . If the latter was not the case, then
some vertices in J ⊂ D′ could only be reached from members of X , and thus C ′, which
would contradict that C ′ and D′ are minimum.

Figure 6: A visual representation of the sets D′ and D.

Now consider the set of all vertices with an edge from J to H ′, that is J ∩ C ′, and
compare its size to |Y |:

• If |J ∩ C ′| < |Y | then (D ∪ J,H \ J) is a smaller vertex cut than C, which thus
cannot be minimum.

• If |J ∩ C ′| > |Y | then (D′ \ J,H ′ ∪ J) is a smaller vertex cut than C ′, refuting that
C ′ is minimum.

• If |J ∩ C ′| = |Y | then it follows from the minimality of |D′| that J must be empty.

Every possible outcome leads to a contradiction so we conclude that the initial assump-
tion must be wrong. C is therefore the only solution to G.

Corollary 1 and Lemma 2 imply that if C = (D,H) is the solution to G = (V,E)

where V excludes any vertices Ĥ that cannot be reached from a source vertex, then
C ′ = (D,H ∪ Ĥ) is the solution to G = (V ∪ Ĥ, E), and vice versa. We can thus find a
solution to the smaller problem of the two and trivially find the solution to the other.

Next, we prove that the solution to a graph without additional edges from sink-
connected vertices also yields the solution to a graph where those edges and connected
vertices are included. This allows exclusion of the non-sink edges.
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Theorem 2. Let C = (D,H) be a solution to the graph problem G = (V,E), let t be a meta-
variable for any sink in V , and let T = {v | (v → t) ∈ E} be all vertices with an edge to a
sink. Then C ′ = (D,H ∪ V ∗) is the solution to the problem G′ = (V ′, E ′), where V ⊆ V ′ and
E ⊆ E ′, under the assumption that no vertex in V ∗ = V ′ \ V is a source vertex, and each edge
in E∗ = E ′ \ E is of the form v → u for v ∈ (T ∪ V ∗) and u ∈ V ′.

Proof. To prove that C ′ is the solution to G′ we must prove three things:

1. That C ′ is a valid partitioning of V ′.

2. That C ′ is a minimum vertex cut in G′.

3. That no minimum vertex cut exists in G′ with a device vertex set smaller than D.

(1) Since C = (D,H) is a valid partitioning of V and V ∗ contains no source vertices
then C ′ = (D,H ∪ V ∗) is trivially a valid partitioning of V ′.

(2) Since C = (D,H) is a minimum vertex cut in G, to prove that C ′ = (D,H ∪ V ∗) is
a minimum vertex cut in G′ it is sufficient to show that none of the edges added by
E∗ is from a vertex in X = D \ C.

Let v → u be any edge in E∗. If v ∈ H ∪ V ∗ then it trivially holds that v ̸∈ X .
Otherwise v ∈ D which implies v ∈ T and the existence of some edge v → t. Since
t ∈ H for C to be a valid partitioning of V we must have v ∈ C and thus v ̸∈ X .

We picked v → u to be any edge in E∗, so none of the edges in E∗ is from a vertex
in X = D \ C. Therefore C ′ must be a minimum vertex cut in G′.

(3) Compared to G we have only added vertices and edges to G′, not removed any.
Since D is minimum in regards to C it must thus also be minimum in regards to C ′.

Having proved (1), (2), and (3) we use Lemma 2 to conclude that C ′ = (D,H ∪ V ∗) is
the unique solution to G′.

Since (a) every scalar operand of all host-only statements receives an edge to a sink;
(b) no edge exists from an array variable; and (c) none of the host-only statements that
we consider have an edge from a source, then all host-only variables will be members
of H if included. This insight allows all host-only variables to be excluded from the
graph, and because all host-only statements for our needs and purposes are E state-
ments, then they will be excluded, by Statement 1. Statement 2 thus need not include
any constraints on the partitioning of host-only variables.

If we expand Statement 2 to constrain device-only variables to be partitioned into D
we can make a similar argument in regards to the redundancy of adding intra-kernel
device variables to the graph. Being device-only, all intra-kernel device variables K
must be placed in D, and because no host statement can use an intra-kernel device
variable as operand, it can be shown that the host set will be invariant to the inclusion
of K. A full proof is not possible without first specifying graphing rules for intra-
kernel device variables, which we consider to be out of scope. We therefore leave the
reader with the intuition that it is the transfer of kernel results that matter, not the
computations that produce them.

It is beneficial to reduce the optimisation problem by excluding vertices and edges
with no impact on a solution, if not to speed up finding a solution then to reduce
the space requirements for representing the graph. Reducing the graph size usually
translates to more efficient lookup in underlying implementation data structures.
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ENUENX ERU ERX

Figure 7: The possible subset memberships of an edge and transitions between them.
Red states denote reversal and a dashed outline denotes exhaustion.

4.3 Routing-based migration analysis

The Statement 2 optimisation problem G = (V,E) can be expressed as a max-flow
problem and solved using the Ford-Fulkerson method [7], which is based on reversing
edges along paths going from a single source to a single sink. By the max-flow min-cut
theorem [7] solving such problem also gives a minimum (edge) cut, which can be trans-
lated into a solution to G if applied on a particularly engineered graph. The graphing
of loop expressions that we show in subsection 4.5 however requires solving isolated
subgraphs of the graph problem while building it, and so it is generally not possible to
apply the method once and solve the problem in one go. The Ford-Fulkerson method
can be used but if done naively the edges of subproblems will be revisited when parent
problems are solved.

To avoid this inefficiency we propose an algorithm that can be shown to be a variant
of Ford-Fulkerson for flow networks where multiple sources and sinks exist, such that
attempting to find any sink from each source in isolation is as efficient as pathfinding
from a single source to a single sink, irrespective of order. We will not present it as a
max-flow algorithm however but describe it in terms of the concrete problem at hand.

Algorithm

The Statement 2 optimisation problem G = (V,E) can be solved using an algorithm
based on reversing edges along paths going from source vertices to sink vertices. We
propose an algorithm where these paths are found using depth-first search (DFS), and
since DFS will be repeated for each source vertex we propose caching its failures.
Specifically, when DFS fails to find a sink in a subgraph reached via some edge we
mark that edge as exhausted. No sink can be reached via an exhausted edge, and any
subsequent search attempt can skip pathfinding along such edge.

In addition to marking edges as exhausted, we also mark edges that have been
reversed, amounting to partitioning E into four subsets:

• ERU contains the reversed edges of E that are unexhausted.

• ERX contains the reversed edges of E that are exhausted.

• ENX contains the non-reversed edges of E that are exhausted.

• ENU contains the non-reversed edges of E that are unexhausted.

The edges described by subsection 4.1 are all non-reversed, unexhausted edges belong-
ing to ENU. The possible state transitions of an edge is given by Figure 7, where the
arrow from ERU to ENU denotes that reversing a reversed edge restores it to its origi-
nal, non-reversed state. We consider (a → b) ∈ ENU to be distinct from (a → b) ∈ ERU,
based on state, so parallel edges are allowed in G.

We define the following unions of E subsets to easily denote the presence or ab-
sence of individual marks:
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• ER = ERU ∪ ERX contains all reversed edges of E.

• EX = ERX ∪ ENX contains all exhausted edges of E.

We define VS to be the set of all source vertices in V , and define VT to be the set of all
sink vertices in V . We describe our algorithm in terms of a derived graph G′ = (V ′, E ′)
created by the mapping G(G) but will later show how G can be operated upon directly.

Definition 2. The graph G′ = (V ′, E ′) derived from G = (V,E) is given by G(G).

G(G) = G((V,E)) = (V ′, E ′)

V ′ = {vin | v ∈ V } ∪ {vout | v ∈ V }
E ′ = E ′

RX ∪ E ′
NX ∪ E ′

NU ∪ E ′
RU

E ′
RU = {ain → bout | (a→ b) ∈ ERU}∪

{vout → vin | ∃x : (v → x) ∈ ERU, v ̸∈ VT}
E ′

RX = {ain → bout | (a→ b) ∈ ERX}∪
{vout → vin | ∃x : (v → x) ∈ ERX, v ̸∈ VT}∪
{sout → sin | ∃x : (x→ s) ∈ E, s ∈ VS}

E ′
NX = {aout → bin | (a→ b) ∈ ENX}∪

{vin → vout | ∄x : (x→ v) ∈ ER, ∄y : (v → y) ∈ E \ EX}
E ′

NU = {aout → bin | (a→ b) ∈ ENU}∪
{vin → vout | ∄x : (x→ v) ∈ ER, ∃y : (v → y) ∈ E \ EX}

The mapping G, given by Definition 2, splits each vertex v ∈ V into two, vin and vout,
with a single edge connecting the two. When no edges have been reversed, all edges
to v go to vin, all edges from v go from vout, and the edge vin → vout exists.

We will use vin and vout to denote specific vertices in V ′ that uniquely can be identi-
fied from the v ∈ V that they were created from. Given vin or vout in V ′ we may likewise
refer to their origin vertex v ∈ V . Based on Definition 2, to mirror the definitions made
for G, we define sets of derived edges that are reversed or exhausted:

E ′
R = E ′

RU ∪ E ′
RX E ′

X = E ′
RX ∪ E ′

NX

We also define derived sets of sources and sinks, given by:

V ′
S = {sin | s ∈ VS} V ′

T = {tin | t ∈ VT}

The original graph G = (V,E) can obtained from G′ by its left inverse mapping G−1(G′).

Definition 3. The left inverse of G is G−1 which merges vin, vout for each v ∈ V :

G−1(G′) = G−1((V ′, E ′)) = (V,E)

V = {v | vin ∈ V ′}
E = ERX ∪ ENX ∪ ENU ∪ ERU

ERU = {a→ b | (ain → bout) ∈ E ′
RU}

ERX = {a→ b | (ain → bout) ∈ E ′
RX}

ENX = {a→ b | (aout → bin) ∈ E ′
NX}

ENU = {a→ b | (aout → bin) ∈ E ′
NU}
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s1 s2 s3 s4

a b c d

e f g h i

j k l m n
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t u v w

t1 t2 t3

(a)

s1 s2 s3 s4

s1 s2 s3 s4

f g j k

f g j k

m p s t

m p s t

in in in in

out out out out

in in in in

out out out out

in in in in

out out out out

(b)

a b a b a b a b

(a→ b) ∈ ENU (a→ b) ∈ ENX (a→ b) ∈ ERX (a→ b) ∈ ERU

Figure 8: (a) Some graph G, (b) the internal edges between selected vertices in G(G),
and (bottom) a legend of edge types. The routes s1 7→ t2 and s4 7→ t3 have been
created in G, but the subsequent routing attempt from s3 failed. No routing attempt
has yet been made from s2 but the efforts made to route s3 have significantly reduced
the problem to a search of just a few edges.
The highlighted vertices showcase seven distinct edge configurations that are repre-
sentative of the combinations that may arise during routing. In (b) their internal edges
are shown along those of the sources and sinks; the tin → tout edge is for all three sinks.
The most interesting vertices are m, f, g, and p; the vertices j, k are minor variations.

The basic building block of our algorithm is ROUTE (Algorithm 1) which given some
source vertex s ∈ VS attempts to find some path p = sin ⇝ tin in G(G) that ends at any
tin ∈ V ′

T. If found it reverses all edges along p. We call the reversed path tin ⇝ sin a
route, denoted sin 7→ tin. An equivalent route s 7→ t is produced in the origin graph.

Figure 8 shows a graph after three calls to ROUTE and lists the edges that can arise
between ”in” and ”out” vertices as a result of diverse edge configurations in E. Upon
reconstructing G′′ = G(G) from G = G−1(G′) it can be observed that some internal
edges may be exhausted even though they never were traversed in G′. Since G′ ̸= G′′

does not generally hold, then G is not an inverse mapping of G−1.
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Algorithm 1 The ROUTE function attempts to find a path in G(G) from the source vertex
sin to some sink tin, reversing the edges along the path sin ⇝ tin if found.
The P function used by ROUTE’ maps vertices with edges currently being searched to
the depth that they were encountered. It is used to register cycles and allows detection
of exiting a cyclic subgraph such that participating edges can be exhausted.

1: function ROUTE(G, s)
2: G′ ← G(G)
3: s′ ← the vertex sin ∈ G′.V ′ that was created from s
4: (G′, )← ROUTE‘(G′, s′,P , 0) where P(v) = ϵ and ϵ ̸∈ Z
5: return G−1(G′)
6: end function
7:
8: function ROUTE‘(G′, v, P , d)
9: if v ∈ G′.V ′

T then
10: return (G′, found) ▷ Path found.
11: else if P(v) ̸= ϵ then
12: return (G′, (P(v), ∅,P)) ▷ Cycle detected.
13: end if

14: let P ′
0(u) =

{
d if u = v

P(u) otherwise
15: U ← {u | u ∈ G′.V ′, (v → u) ̸∈ G′.E ′

X} ▷ Determine adjacent vertices.
16: (n, f)← (|U |, failed)
17: for k = 1, ..., n do
18: u← kth vertex in U ▷ The set U is ordered.
19: (G′, r)← ROUTE‘(G′, u,P ′

k−1, d+ 1)
20: if r = found then
21: G′ ← G′ with the edge v → u reversed
22: return (G′, found)
23: else if r = failed then
24: G′ ← G′ with the edge v → u exhausted
25: let P ′

k = P ′
k−1

26: else if r = (dc, Ec,Pc) then ▷ Handle detected cycle.
27: E ′

c ← Ec ∪ {v → u}
28: if f = failed then
29: f ← (dc, E

′
c,Pc)

30: else if f = (df, Ef, ) then
31: f ← (min(dc, df), E

′
c ∪ Ef,Pc)

32: end if
33: let P ′

k = Pc

34: end if
35: end for
36: if f = (df, Ef, ) and d = df then ▷ Backtracking out of cycle.
37: G′ ← G′ with every edge in Ef exhausted
38: f ← failed
39: end if
40: return (G′, f)
41: end function
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When ROUTE has been invoked on every source vertex s ∈ VS of some complete
graph G, a solution can be obtained by RESOLVE(G, VS), given by Algorithm 2. It as-
signs the device set of a solution to be every v ∈ V where vin can be reached from a
source vertex in G(G).

Algorithm 2 The function RESOLVE produces a solution C = (D,H) to the optimisation
problem G provided ROUTE has been invoked for every source vertex in G.VS. The
solution is given as (D,C,H) where C contains all vertices of the minimum vertex cut.

Require: G is the result of repeated calls to ROUTE( , s), once for each s ∈ G.VS.
1: function RESOLVE(G)
2: G′ ← G(G)
3: D′ ← {v | ∃(sin ⇝ v) ∈ G′, s ∈ G.VS} ▷ All vertices reachable from a source.
4: D ← {v | vin ∈ D′}
5: C ← D \ {v | vout ∈ D′}
6: H ← G.V \D
7: return (D,C,H)
8: end function

SOLVE in Algorithm 3 provides a full solution by combining ROUTE and RESOLVE,
and Figure 9 shows the intermediate states of a small graph as SOLVE operates upon it.
While routing is done in the derived graph, for conciseness the path searches described
by Figure 9 are given in terms of the origin graph. The full traversal done in G(G) to
produce Figure 9b is

s1in → s1out → ain→ aout→ ein → eout → hin → hout→ jin → jout → t2in

and the cycle encountered to produce Figure 9c is:

hin → eout→ jin → hout → hin

Algorithm 3 The function SOLVE produces a solution to the graph problem G.

1: function SOLVE(G)
2: G← ROUTE-MANY(G,G.VS)
3: return RESOLVE(G)
4: end function
5:
6: function ROUTE-MANY(G, S)
7: for each s ∈ S do
8: G← ROUTE(G, s)
9: end for

10: return G
11: end function

In the following subsections we prove the correctness of SOLVE, analyse its asymp-
totic time and space complexity, and provide guidance as to how it efficiently can be
implemented.
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s1 s2 s3

a b c

d e f
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(a)

s1 s2 s3
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i j k

t1 t2

(b)

s1 s2 s3

a b c

d e f
g h

i j k

t1 t2

(c)

s1 s2 s3

a b c

d e f
g h

i j k

t1 t2

(d)

a b a b a b a b

(a→ b) ∈ ENU (a→ b) ∈ ENX (a→ b) ∈ ERX (a→ b) ∈ ERU

Figure 9: The intermittent states of a small graph being solved. The edges of vertices
are visited in clockwise order. The sources are attempted routed in order s1, s3, s2.
(a) The original graph as passed to SOLVE.
(b) A route is immediately found by traversing s1 → a→ e→ h→ j→ t2.
(c) A sink is found by traversing reversed edges, effectively rerouting s1 to t1 and form-
ing a new route s3 7→ t2. The search backtracks from the edges c→ f→ k, which are
exhausted; encounters and escapes the cycle h→ e→ j→ h; and then finds a sink by
traversing e→ i→ t1. The cycle is not exhausted as it has edges left to explore.
(d) The routing attempt from s2 fails. The search traverses all edges of the graph, ex-
cept c → f → k, which are exhausted, and {t1 → i, t2 → j} which are unreachable.
The only edge that is available from ein is to aout; the vertices of j and h are only avail-
able once e is reached via the edge iin → eout. The edges between the vertices e, a, d,
g, and i form two cycles which only are exhausted once search backtracks from ein.
SOLVE finds the solution (D,C,H) = ({s1, s2, s3, a, ..., k}, {i, j}, {t1, t2}) based on the
vertices that can be reached from s2in .
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Proof of correctness

SOLVE performs N routing attempts over N iterations to solve the graph problem G =
(V,E), where N = |VS|. Let G′

k denote the state of the derived graph G′ = (V ′, E ′) after
the kth iteration with k = 1, 2, ..., N , and let G′

0 = G(G) be its original state.
Each routing attempt involves a depth first search that starts from a source vertex

s ∈ V ′
S and terminates at the first sink vertex t ∈ V ′

T that it encounters. This produces a
search path upon success, denoted p = s ⇝ t. It follows that t is the only sink vertex in
p, and since sources and sinks are distinct, s ̸= t. This implies that p never is empty.

With search paths defined we provide Theorem 3 to prove that the exhaustion
scheme of Algorithm 1 ensures that no sink can be reached via an exhausted edge.

Theorem 3. Let e ∈ E ′ be some edge a→ b. When ROUTE backtracks to a via e and all edges
reachable via b have been exhausted, then e is marked exhausted. This implies that no sink is
nor can become reachable via e.

Proof. Assume that at any point in time some sink could be reached via an exhausted
edge, and let t be the first such sink. Let e be some exhausted edge a → b on any
path that leads to t, and let X be the set of vertices that can be reached from b by only
traversing exhausted edges. We will show that t cannot exist.

No vertex can become a sink after it has been created, and an edge to some vertex
u can only be marked exhausted if u is not a sink and all edges from u are exhausted.
It follows that t cannot be a member of X . This implies that some vertex v ∈ X has
a non-exhausted edge g to some vertex w ̸∈ X through which t can be reached, and g
must have been added after the last edge to v was exhausted. It follows that when g
was added all existing edges from v was exhausted.

The algorithm never creates edges however, only reverses them, so g must have
been an edge from w to v that was reversed. The only way g could be reversed however
is if a search path was found via g and that is impossible since v is not a sink, all edges
from v was exhausted, and ROUTE never traverses exhausted edges.

The edge g thus cannot exist, which means t cannot be reached via e and hence
cannot exist either. We assumed t to be the first sink that could be reached via any
exhausted edge and if the first such sink does not exist then inductively no subsequent
sink can either. In conclusion it is impossible to reach a sink via any exhausted edge.

A corollary to Theorem 3 is that failed routing attempts are irrecoverable.

Corollary 2. Once ROUTE(G, s) has failed to find a search path from s, no future attempt from
s can succeed, irrespective of the outcome of any ROUTE(G, s′) call later made. All edges from
sin will have been exhausted, so the failure is irrecoverable.

Next we study the properties of routes and the search paths that create them. We
will use this to establish formal observations that can be used to show that Algorithm 3
is invariant to the order that source vertices are attempted routed.

A route r = s 7→ t in G′
k is a path from a source vertex s to some sink vertex t which

is reached by only traversing in the opposite direction of reversed edges. Routes are
formed when the edges along search paths are reversed, and they cannot share edges
since reversing a reversed edge returns it to its original, non-reversed state. Every
reversed edge thus belongs to exactly one route in G′

k. Figure 9 provides examples,
particularly step (b)→ (c) that shows one route being undone to form two new.
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Because every vertex u ∈ V ′ either is the vin or vout vertex for some v ∈ V , every
route through u also goes through the internal edge that connects it with its twin. Since
routes share no edges and each vertex pair only has one internal edge, then routes
cannot share vertices either. Seeing that routes are created along search paths and do
not overlap in any way, it follows that the end vertex t of a route is its only sink.

A search path p = s⇝ t traverses vertices via alternating segments of non-reversed
and reversed edges. We define a non-empty (sub)path a ⇝ b that only traverses non-
reversed edges to be an addition segment, symbolically written a ▶ b, and define a non-
empty (sub)path c⇝ d that only traverses reversed edges to be a removal segment, writ-
ten c ▷ d. Reversing the edges of an addition segment creates new route edges while
reversing the edges of a removal segment eliminates edges from an existing route.

The first edges along any search path sin ⇝ tin is sin → sout → uin for some vertex
uin, which means that every search path starts with an addition segment. No edge goes
to sin in G′

0 so no edge can exist from sin if sin → sout is reversed.
A search path p furthermore cannot end with a removal segment. To see why, con-

sider that a removal segment is a path in the opposite direction of some route r = s 7→ t,
that the only sink vertex in r is t, and that routes do not overlap. Therefore if p traverses
a ▷ b then b cannot possibly be a sink vertex, and p therefore cannot possibly end there.

It follows that any search path p = s ⇝ t can be generalised to be an addition
segment s ▶ a0 followed by m ≥ 0 overlapping segment subsequences ai−1 (▷ bi ▶ ai),
where am = t. That is

p = s ▶ a0 (▷ b1 ▶ a1) ... (▷ bm ▶ am) for m ≥ 0 (1)

Let s = s0 = b0. When p is reversed its ith subsequence can be understood as
splitting some existing route ri = si 7→ ti into a source fragment si 7→ bi and a sink
fragment ai−1 7→ ti, which the route fragment si−1 7→ bi−1 is extended to. This forms the
route si−1 7→ bi−1 7→ ai−1 7→ ti. The addition segment bi ▶ ai extends the disconnected
source fragment si 7→ bi to a sink, either via the sink fragment ai 7→ ti+1, if i < m, or
directly to t. Figure 9 demonstrates the reversal of s1in ▶ t2in and s3in ▶ hin ▷ eout ▶ t1in .

Observation 1. Succeeding to find a search path from some source vertex s ∈ V ′
S and reversing

its edges creates a route from s and possibly alters a number of existing routes.

1. Every source vertex with a route to a sink in G′
k is also routed to a sink in G′

k+1.

2. Every sink vertex that terminates a route in G′
k also terminates a route in G′

k+1.

3. For every iteration k that a search path is found the number of routes in G′
k will be one

greater than in G′
k−1.

Corollary 3. The number of routes in G′
k increases monotonically with k.

Whenever a search begins traversing reversed edges to find a sink it can be under-
stood as an attempt to backtrack a previous search to connect its source differently. The
route r that the previous search created blocks the path to a sink that otherwise could
be reached from the current search origin s, and since it is unknown whether any free
path from s to a sink remains it is worth to first check whether r can be routed dif-
ferently such that the blockade disappears. If the search backtracks from the reversed
edges then no alternative sink for r exists in that part of the graph and the blockade is
unavoidable. Rerouting an existing route may involve rerouting other routes.
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Observation 2. Attempting to create a route from some source vertex s will fail iff

1. no sink vertex is reachable from s in G′
0, or

2. all paths to sinks reachable from s in G′
0 are blocked by other routes, and the existing

routes cannot be routed differently to avoid this.

Corollary 4. A routing attempt from some source vertex s will fail iff there exists no way to
simultaneously form routes from s and all the origins of existent routes.

We are now ready to show that Algorithm 3 is invariant to the order that source
vertices are attempted routed. Lemma 3 is lengthy, so here is a breakdown:

1. We will first partition V ′
S into four subsets XR, XU, YB, YC and show that routing

attempts from XU always will succeed, while routing attempts from YC always
will fail. These two subsets are thus invariant to the routing order.

2. We will then show that the successful routing from a member of XR comes at
the cost of failed routings from members of YB and consider alternative routing
orders. We will pick a source vertex from YB and a particular source vertex from
XR, and show that only one of them successfully can be routed, that the one to
succeed is the one to be attempted routed first, and that the outcomes of rout-
ing attempts from all other source vertices are invariant to the relative routing
order of these two vertices. We then generalise this insight to any routing order,
proving that the respective sizes of XR and YB is invariant to the routing order.

3. We will conclude that the number of routes M = |XR| + |XU| that can be created
in G′ is invariant to the routing order.

Lemma 3. The number of routes M that can be created in G′ is invariant to the order that
routing attempts are made.

Proof. Assume that a routing attempt has been made from every source vertex in G′,
and consider the state G′

N . The set V ′
S can then be partitioned into two disjoint sets

X = {s ∈ V ′
S | ∃t : s 7→ t, t ∈ V ′

T}
Y = V ′

S \X

such that X contains all source vertices that a route starts at, and Y is the remaining
source vertices were no route starts. We further partition X into

XR = {s2 ∈ X | ∃s1 : s1 ⇝ s2, s1 ∈ Y }
XU = X \XR

based on whether its source vertices can be reached from a vertex in Y , and we likewise
partition Y based on whether its vertices can reach a vertex in X :

YB = {s1 ∈ Y | ∃s2 : s1 ⇝ s2, s2 ∈ X}
YC = Y \ YB

The set YB is all source vertices from which a routing attempt failed due to condition
(2) of Observation 2, and XR is intuitively the set of source vertices with a route that
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directly or indirectly caused these blockades. We will show that irrespective of which
order the source vertices are attempted routed to create G′

N , the sizes of XR, XU, YB, and
YC remain the same.

The routing attempts from members of YC failed but were not blocked by any
routes. This corresponds to failure by condition (1) of Observation 2, which means
that no sink ever can be reached from members of YC, not even in G′

0. All routing at-
tempts from members of YC are thus predetermined to fail and never be blocked, which
implies that YC is invariant to the order of routing attempts.

By definition XU contains exactly those source vertices that successfully were routed
without blocking any other routing attempts from succeeding, which implies that ev-
ery member of XU is routed to a sink that no member of XR ∪ Y can reach in G′

0. Since
the algorithm only fails a routing attempt if no alternative routing of existing routes
can avoid it (Observation 2), then the members of XU can always be (re)routed to a
sink that no member of the other sets can reach, and membership of XU is thus in-
variant to the routing order. It also follows that no member XR ∪ Y can be routed to
such a sink, nor ever can be, and thus will remain excluded from XU. The subset XU is
therefore invariant to the routing order.

Remaining are the sets XR and YB, which are not invariant to the routing order. Let
O denote the order that routing attempts were made to reach the state G′

N , let s′ be any
source vertex in YB, and let s be the source vertex in XR which was routed last of all
those reachable from s′. This implies that

1. the route from s, denoted r, blocked the routing attempt from s′ at some vertex a.

2. the path s′ ⇝ a exists.

3. r is the route r = s 7→ a 7→ t where s, a, t are distinct.

4. the only vertex shared by r and s′ ⇝ a is a.

5. s was attempted routed before s′ was.

It also follows that the search path from s, denoted p, was of one of the following types:

1. p = s ▶ a ▶ t.

2. p = s ▶ a ▶ b ▷ c⇝ t′.

3. p = s ▶ a ▷ c⇝ t′.

4. p = s ▶ b ▷ c⇝ t′, and some route r̂ = ŝ 7→ c 7→ b 7→ a 7→ t existed.

Now assume that some state G′
N is reached using the modified routing order R

where the routing attempt from s′ is postponed or advanced any number of iterations
but the relative order of all other attempts remains as in O. Let k(v) denote the iteration
number in which the source vertex v is attempted routed under R, and let the sets XR,
YB, XU, and YC be defined as before, albeit with vertex memberships according to R.

Since the outcome of a routing attempt is independent of any future routing at-
tempts, the routing outcomes for all v with k(v) < k(s′) remain unchanged. If k(s) <
k(s′) the attempt from s will thus still create r, and because r is the last route created
that blocks s′, the attempt from s′ will still fail. Seeing that a failed attempt reverses no
edge in G′ the routing outcomes for all v with k(v) > k(s′) also remain the same. All
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routing outcomes therefore stay the same, and no difference between O and R can be
observed in G′

N .
Let us next consider the case of k(s′) = k(s) − 1 that corresponds to when s′ is

attempted routed right before s:

• If the path s′ ⇝ a exists then one of the following search paths can be found from
s′, corresponding to traversing the tail of the search path that creates r when
k(s) < k(s′):

1. s′ ⇝ a ▶ t

2. s′ ⇝ a ▶ b ▷ c⇝ t′

3. s′ ⇝ a ▷ c⇝ t′

• If the path s′ ⇝ a does not exist then some of its edges are missing. The path
s′ ⇝ a exists when k(s′) = k(s) + 1, so s′ ⇝ a must be incomplete because the
edges along the search path from s, denoted p, have not been reversed.

Since a is the only vertex that was shared by r and s′ ⇝ a, then none of the
missing edges can exist along r. It follows that p must be of type (2), (3) or (4),
generalised as p = s ▶ x ⇝ t′, and it must be the reversal of edges along x ⇝ t′

that creates all the missing edges of s′ ⇝ a.

This implies that x⇝ t′ contains the reverse of at least one edge in s′ ⇝ a, which
means that x ⇝ t′ and s′ ⇝ a share at least two vertices. Let y be the first such
shared vertex that would be encountered when traversing along the path s′ ⇝ a.
Since it is the first shared vertex, the path s′ ⇝ y exists, and since it is shared, the
path y ⇝ t′ also exists. The search path s′ ⇝ y ⇝ t′ can thereby be found.

We see that the routing attempt from s′ succeeds whenever k(s′) = k(s) − 1 but that it
does so by reversing edges along the search path that could be used to route s.

We will show that successfully routing s′ must cause the routing attempt from s to
fail but that the routing attempts from all other source vertices are unaffected. Let

• KA
def
= {v ∈ XR | k(v) < k(s)} be as determined under any R with k(s′) > k(s).

• KB
def
= {v ∈ XR | k(v) < k(s)} be as determined under R with k(s′) = k(s)− 1.

When k(s′) = k(s) − 1 the routing attempt from s′ not only succeeds but also occurs
after the attempt from every other v with k(v) < k(s). Since the routing attempt from
s′ has no effect on prior attempts it follows that

KB = KA ∪ {s′}

By Corollary 4, because KB is proof that there exists a way to create routes from each
v ∈ KB, the set {v ∈ XR | k(v) < k(s)} remains the same under any R with k(s′) < k(s).
When k(s′) > k(s) the routing attempts from all v ∈ YB with k(v) < k(s) fail because
members of KA block their path. Seeing that KA ⊂ KB it follows that these failures will
happen no matter when s′ is attempted routed.

In summary, the routing outcomes of all v with k(v) < k(s), v ̸= s′, remain the same
irrespective of k(s′), and the routing attempt from s′ succeeds whenever k(s′) < k(s).

Routing s′ fails when k(s′) = k(s) + 1, and by Corollary 4 this implies that there is
no way to create routes from all v ∈ KA ∪ {s, s′}, irrespective of routing order. Since
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all routing attempts from v ∈ KA ∪ {s′} succeed when k(s′) < k(s), then the routing
attempt from s must fail whenever k(s′) < k(s).

Barring s and s′, when k(s′) = k(s) − 1 the route r′ = s′ 7→ a 7→ t blocks and fails
the exact same routing attempts that creating r = s 7→ a 7→ t would have. This can be
shown by considering each of the route fragments s 7→ a, a 7→ t, and s′ 7→ a:

• s 7→ a: Routes from s and s′ are mutually exclusive, which means that all alterna-
tive sinks that r or r′ possibly can be rerouted to exists beyond a. If r′ = s′ 7→ a 7→
t is created instead of r = s 7→ a 7→ t, all routes that s 7→ a would have blocked
thus still cannot reach a sink.

The change along s 7→ a would neither cause any new routes to become blocked,
as blockades are caused by reversed edges and no new edge would become re-
versed along s⇝ a.

• a 7→ t: The sink fragment a 7→ t is the same irrespective of whether s 7→ a 7→ t or
s′ 7→ a 7→ t is created. How this fragment interacts with later routing attempts is
thus unaffected.

• s′ 7→ a: Creating r not only blocks the routing attempt from s′ but also all routing
attempts that r′ possibly could block. Therefore, when the source fragment s′ 7→ a
is created, no additional routes can possibly become blocked, and since creating
r′ blocks the only path to a sink via a like r would, then no fewer routes can
become blocked either.

Since a routing attempt that would fail cannot be enabled to succeed by the prior
creation of a route, the routing outcome for every v with k(v) > k(s) thus remains
unaffected when k(s′) = k(s)− 1, and by Corollary 4 thus also for all k(s′) < k(s).

We have proved that the routing outcomes for all source vertices but s and s′ re-
main the same irrespective of when s′ gets routed, and that the first of s and s′ to be
attempted routed will succeed and block the other, causing it to fail. The sizes of |XR|
and |YB| thus remain unchanged no matter how much s′ is postponed or advanced.

Since any routing order of XR ∪ YB members can be created by repetitively per-
forming this modification, and the members of XU ∪ YC can be interspersed into this
relative order anywhere, in any order without any effect on the routing outcomes, then
it follows that the sizes of |XR| and |YB| are invariant to the total routing order.

We have M = |X| = |XR|+ |XU| and thereby conclude that the number of routes M
that can be created in G′ is invariant to the routing order.

Corollary 5. M is the maximum number of simultaneous routes that possibly can exist in G′,
and G′

N contains that many routes.

When Algorithm 3 is interpreted as a max-flow algorithm for flow networks with
edges of equal capacity, Corollary 5 corresponds to showing that Algorithm 3 produces
a maximum flow through such a network. We can therefore use the max-flow min-
cut theorem [7] to prove that SOLVE produces a minimum cut in G′

N and use this as a
stepping stone to prove that it also solves the Statement 2 problem G. Before providing
a minimum cut proof based on the max-flow min-cut theorem we define what a cut is,
and from that what a minimum cut is.

Definition 4. Let (S, T ) be any partition of G′ such that V ′
S ⊆ S and V ′

T ⊆ T . The cut
C = (S, T ) is then the set of edges from vertices in S to vertices in T , and a minimum
cut of G′ is a cut with size less than or equal to any other cut in G′.
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Lemma 4. Let C ′ = (D′, H ′) be a partition of V ′ where D′ contains all vertices that can be
reached from source vertices in G′

N , and H ′ = V ′ \D′. Then C ′ is a minimum cut of G′ where
|D′| ≤ |S| for every minimum cut C = (S, T ) of G′.

Proof. Corollary 5 states that G′
N contains the maximum number of possible routes M .

This implies that no more search paths can be found, and thereby that no sink vertex
can be reached from a source vertex. All source vertices of V ′ will hence be in D′, all
sink vertices will be in H ′, and by definition this makes C ′ a cut of G′

N .
Because the sink vertices are unreachable it must also be that C ′ is empty, which

makes it minimum, and because D′ contains just the vertices that can be reached from
source vertices, no set of vertices can be moved from D′ to H ′ without increasing the
size of |C ′|. This means that C ′ is a minimum cut of G′

N where |D′| too is minimum,
that is |D′| ≤ |S| for every minimum cut C = (S, T ).

A search path starts from a source vertex and ends at sink vertex. A search path
found in iteration k of SOLVE thus passes through all possible cuts of G′

k−1 an odd
number of times, and when its segments are reversed, the net effect in G′

k is that the
size of every cut is reduced by one.

To be specific, a search path may cross through any particular cut multiple times
but the number of crosses from S to T vertices will be odd and the number of crosses
from T to S will be one less. When the edges along the search path are reversed, an
odd number of edges are thus eliminated from that cut but one fewer edges are also
added. In total a cut of one fewer edges is produced.

Since M edges have been removed from all cuts to produce G′
N , every cut in G′

N

corresponds to a cut that is M edges larger in G′
0. It follows that C ′ also identifies a

minimum cut in G′
0 = G′ for which |D′| remains minimum.

Furthermore and most important, the set C ′ stated by Lemma 4 corresponds to a
solution to the original Statement 2 problem G = (V,E).

Theorem 4. Let C ′ = (D′, H ′) be a partition of V ′ where D′ contains all vertices that can be
reached from source vertices in G′

N , and H ′ = V ′ \D′. Then C = (D,H) is a solution to the
graph problem G, where D = {v | vin ∈ D′}, the vertex members of C is D \ {v | vout ∈ D′},
and H = V \D.

Proof. To prove that C is a solution to G we must prove three things:

1. That C is a valid partitioning of V .

2. That C is a minimum vertex cut in G.

3. That no minimum vertex cut exists in G with a device set smaller than D.

For each count we will use the properties of C ′ that were established by Lemma 4.

(1) If a vertex in V ′ is a source then it is the sin vertex created from some source vertex
s ∈ VS. Similarly, if a vertex in V ′ is a sink then it is the tin vertex created from some
sink vertex t ∈ VT. Since all source vertices are in D′, all sink vertices are in H ′,
(D′, H ′) is a partitioning of V ′, and every v ∈ V corresponds to exactly one vin ∈ V ′,
then (D,H) must be a valid partitioning of V .
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(2) Consider G′
0. For the cut C ′ = (D′, H ′) to be minimum and also minimise |D′| then

every edge in C ′ must be an internal edge between two vertices vin, vout created
from some v ∈ V . If any of them was of the kind uout → vin for some u, v ∈ V then
|D′| could be reduced by replacing uout → vin with uin → uout.

Every edge in C ′ thus uniquely corresponds to a vertex v ∈ V such that vin ∈ D′,
vout ∈ H ′, and thus v ∈ D with one or more edges to vertices in H . If v had no edge
to a vertex in H then vout would only have edges to vertices in D′, contradicting
that C ′ could be minimum. The (edge) cut C ′ can thus be mapped to the vertex cut
C = (D,H), and vice versa, with |C ′| = |C|. Since C ′ is minimum, so must C be.

(3) Assume that |D| is not minimum. Some other minimum vertex cut Ĉ = (D̂, Ĥ)

is then a solution to G with |D̂| < |D|. The cut in G′ that corresponds to Ĉ is
Ĉ ′ = (D̂′, Ĥ ′), given by D̂′ =

{
vin | v ∈ D̂

}
∪
{
vout | v ∈ D̂ \ Ĉ

}
and Ĥ ′ = V ′ \ D̂′.

All source vertices are in D̂′, all sink vertices are in Ĥ ′, and the size of D̂′ is

|D̂′| = 2|D̂| − |Ĉ|
= 2|D̂| − |C|
< 2|D| − |C|
= |D′|

which implies that C ′ did not minimise |D′|. This is a contradiction, so the assump-
tion must be false, and |D|must be minimum.

Having proved (1), (2), and (3) we conclude that C = (D,H) is a solution to G. It is
evident from (2) that the vertex members of C is D \ {v | vout ∈ D′}.

We note that RESOLVE of Algorithm 2 computes the exact sets D′, D,C,H stated by
Theorem 4, assuming its argument to be G−1(G′

N), which indeed is what SOLVE passes.
SOLVE(G) thus correctly computes a solution to the problem instance G of Statement 2.

Time and space complexity

Because the exhaustion and cycle detection scheme ensures that no edge is visited
twice by the same routing attempt, in the worst case a single ROUTE call can be done in
O(E) time. We describe the techniques and data structures that allow this in section 4.3.

Only |C| paths can be found, so each edge can only be traversed and reversed |C|
times before being exhausted. After |C| paths have been found, each edge will thus at
most be traversed once more for a total of |C|+1 times. This implies that SOLVE always
terminates, with a time complexity of O(E C). The size of C is bounded by

0 ≤ |C| ≤ min(|VS|, |VT|) (2)

with |VS| > |VT| being typical for Futhark programs4. A graph will often be relatively
small as a result of insignificant variables being excluded, and the graph will usually
consist of multiple strong components. In practice the cost of each routing attempt is
thus limited by the size of the most heavily connected component in G.

4The observations we make here are based on futhark-benchmarks [8].
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The space complexity of the algorithm is O(V + E), accounting for the space re-
quired to maintain a call stack, track cycles, and delay the exhaustion of participating
cycle edges. Since no vertex in G is without an edge, and every edge is shared by two
vertices, it holds that |V | ≤ 2|E|. This means that the space complexity of the algorithm
can be expressed as O(E).

Efficient implementation

The outgoing edges from a vertex can be stored as linked adjacency lists, one for each
possible edge state (recall Figure 7). This allows storage, iteration, and state change
of edges at a constant cost per edge. If the exhaustion of some edges in an adjacency
list are delayed until a cycle is exited, then all remaining edges of that list will be
delayed and exhausted at once, voiding the need for random access. Since routes do
not overlap, at most one outgoing edge from a vertex can be in ER, and so the linked
lists for ERU and ERX can simply be a single edge and a flag stating whether that edge
is exhausted.

Vertices can be stored in an array, hash table, or other data structure that allows
lookup in constant time. The function P can be implemented in a similar fashion with
updates done in-place within a single, mutable data structure. The number of vertices
is fixed and known, allowing efficient allocation.

The algorithm can work directly on G without manifesting the derived graph G′.
The underlying idea is to track which kind of edge a vertex v is visited by, and based
on that determine whether the corresponding vin or vout vertex is visited.

• If v is accessed by a non-reversed edge, then vin is visited. If v has an outgoing
edge e in ER then e is the only accessible edge as the edge vin → vout must be
reversed, and no two routes share a vertex. If e does not exist, then the edges in
the ENU and ENX adjacency lists are available.

• If v is accessed by a reversed edge, then vout is visited. Because a reversed edge
exists to vout, then the edge vout → vin must exist in ER. This means that all edges
of v are accessible.

The state of the internal edge between vin and vout can thus be determined solely from
the adjacency lists of v and the edge used to visit v. Furthermore, because

• the edge v → t is the only edge to some sink t and the only edge from v,

• v → t becomes reversed and t unreachable when a route is created to t, and

• t ∈ H by definition,

then t need not be manifested in the graph. It is sufficient to mark that v is connected
to some sink and then terminate pathfinding when finding a vertex with such mark.

RESOLVE can be implemented as a single traversal of G by using a visitation set to
avoid traversing an edge twice and avoid cycles. Any vertex that can be reached will be
in D, and any vertex with an outgoing edge in ER that only is visited by a non-reversed
edge belongs to C.
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4.4 Migration

The graph representation G of a top-level function f and its partition (D,C,H) =
SOLVE(G) provides a model of which statements in f that should be migrated to min-
imise inter-device memory transfers. To optimise f based on this model we propose a
simple approach where each statement flagged for migration first is transformed into a
standalone gpu kernel, and when all flagged statements have been migrated, a second
program transformation merges gpu kernels to produce larger kernels.

The purpose of the merge transformation is to reduce the overhead of running ker-
nels and to keep intermediate results in GPU registers, reducing memory transactions.
GPU memory transactions are much cheaper than synchronous inter-device memory
transfers but more expensive than any operation that only involves GPU registers [3].
A benefit of the two-phase design, in addition to its simplicity, is that it also optimises
any existing gpu kernels present in f .

We migrate statements into single-threaded rather than multi-threaded kernels to
preserve compute and memory resources. Most statements which depend on device-
host memory transfers are simple scalar operations that cannot benefit from a multi-
threaded setup. The drawback then is that all work must be done by that single thread,
and so it is inefficient to migrate statements that otherwise could be computed in par-
allel. These and other limitations that we later describe can be solved by a richer lan-
guage, amounting to more advanced code generation in Futhark, but for the scope of
this thesis we consider them language restrictions to work around.

Migration of non-kernel E statements

We show how each kind of statement is migrated in subsection 4.5 but the overall
technique can be described in terms of some non-kernel E statement S of the form
let x1, ..., xn = e. Assume that x1 ∈ D, which implies that S should be migrated. Let
o1, ..., ok be the k ≥ 0 scalar variable operands of e that have been migrated to device
and no longer are available to the host, and let o′i be a single-element array that stores
the value of oi. Furthermore let a1, ..., ar be the subset of x1, ..., xn for which ai ∈ C or
τ(ai) = [z]τ , and let a′i denote the array with an outer dimension of one that will be
made to store the device computed value of ai. Then S is migrated by rewriting it from

l e t x1, ..., xn = e

into

l e t x′
1, ..., x

′
n = gpu l e t o1 = o′1 [ 0 ]

. . .
l e t ok = o′k [ 0 ]
l e t x1, ..., xn = e

in x1, ..., xn

l e t a1 = a′1 [ 0 ]
. . .
l e t ar = a′r [ 0 ]

Listing 3: Generic transformation to migrate some non-kernel E statement.

such that all operands of e are bound before it is evaluated, and all variables of S that
still are to be used on host, or that are arrays, are rebound on the host. It holds that
a′i ∈ {x′

1, ..., x
′
n}, and thus that ai rebinds the value assigned to one of x1, ..., xn.

36



4.4 Migration OPTIMISATION

l e t a = A [ 0 ]
l e t b = A [ 1 ]
l e t c = a + b
l e t B = [a , c ]

l e t a ’ = gpu l e t a = A [ 0 ] in a
l e t b ’ = gpu l e t b = A [ 1 ] in b
l e t c ’ = gpu l e t a = a ’ [ 0 ]

l e t b = b ’ [ 0 ]
l e t c = a + b in c

l e t B ’ = gpu l e t a = a ’ [ 0 ]
l e t c = c ’ [ 0 ]
l e t B = [a , c ] in B

l e t B = B ’ [ 0 ]

Figure 10: Concrete migration of four non-kernel E statements. Top: Non-transformed
code where a, b, c, B ∈ D, implying that their statements should be migrated. Bottom:
Rewritten code where the four statements have been rewritten into gpu kernels, such
that all variables but B are made unavailable to the host but no inter-device memory
transfer occurs.

Figure 10 provides a concrete example that involves four non-kernel E statements.

Rewriting of kernel statements

Kernel statements are generally not migrated but may depend upon host variables
that are. The program transformation must therefore rewrite kernels such that any
migrated variable is rebound before attempted use.

Pick any of the three kernel constructs of our language

• map (λ x1 ... xn→ e) x

• reduce (λ x1 ... xn→ e) se x

• gpu e

and consider its term e. Due to Assumption 1 it will be of the form:

stm1 ... stmm in se1, ..., ser or just se1, ..., ser

Let m be the number of statements in e, with m = 0 if e is of the form se1, ..., ser. Let
o1, ..., ok be the k ≥ 0 scalar variable operands of statements and expressions nested in
e where oi has been migrated to device and no longer is available to the host, and let o′i
be the single-element array that stores the device computed value of oi.
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def sum_cmp = λA →
l e t S = reduce (λa , b → l e t p = a+b in p ) 0 A
l e t s = S [ 0 ]

in map (λx → l e t c = x ≤ s in c ) A

def sum_cmp = λA →
l e t S = reduce (λa , b → l e t p = a+b in p ) 0 A
l e t s ’ = gpu l e t s = S [ 0 ] in s

in map (λx → l e t s = s ’ [ 0 ]
l e t c = x ≤ s in c ) A

Figure 11: Concrete kernel rewrite of a map statement. Top: The sum_cmp function
from Figure 4 where s is the only variable in D. Bottom: Transformed function where
let s = S[0] has been migrated and the map kernel has been rewritten accordingly.

If k = 0 then e is not rewritten. Otherwise e is rewritten into

l e t o1 = o′1 [ 0 ]
. . .
l e t ok = o′k [ 0 ]
stm1

. . .
stmm

in se1, ..., ser

Listing 4: Generic rewrite of the inner expression of a kernel.

where stm1 ... stmm only occurs if m > 0.
Figure 11 provides a concrete example of how the inner expression of a map kernel

is rewritten to deal with a migrated operand. It can be observed that the transforma-
tion is suboptimal however, as it makes the map kernel use a copy of S[0] rather than
S[0] itself. The copy is unnecessary, so the gpu kernel that is executed to produce it is
wasteful. A functional equivalent that avoids this work is given by Listing 5.

def sum_cmp = λA →
l e t S = reduce (λa , b → l e t p = a+b in p ) 0 A

in map (λx → l e t s = S [ 0 ]
l e t c = x ≤ s in c ) A

Listing 5: Optimal rewrite of sum_cmp from Figure 4, such that S[0] is not copied.

In subsection 4.5 we discuss why we migrate array reads such as s, but for now we
note that the inefficiency mostly will manifest when kernel expressions are the only
dependents of such read. The merge transformation that we present next will typically
make its overhead insignificant, if not eliminate it entirely.
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The merge transformation

Consider the following sequence of statements that corresponds to migrating two state-
ments to device, with some variables of the former statement being rebound.

l e t x′
1, ..., x

′
n = gpu stm1 ... stmp

in se1, ..., sen
l e t a1 = a′1 [ 0 ]
. . .
l e t ar = a′r [ 0 ]
l e t x′

n+1, ..., x
′
n+m = gpu stmp+1 ... stmp+q

in sen+1, ..., sen+m

We have x′
i = [sei], a′j ∈ {x′

1, ..., x
′
n} and thus that aj equals one of se1, ..., sen. This allows

the two gpu kernels to be merged, even if the latter kernel depends on aj or some x′
i

bound by the former statement, as demonstrated by this basic rewrite:

l e t x′
1, ..., x

′
n+m = gpu stm1 ... stmp

l e t x′
1 = [ se1 ]

. . .
l e t x′

n = [ sen ]
l e t a1 = a′1 [ 0 ]
. . .
l e t ar = a′r [ 0 ]
stmp+1 ... stmp+q

in se1, ..., sen+m

l e t a1 = a′1 [ 0 ]
. . .
l e t ar = a′r [ 0 ]

Listing 6: Generic merging of two gpu kernels.

The merged gpu kernel performs redundant work, but this can easily be remedied with
simplification rules driven by the following observations, subject to Assumption 2.

1. Any usage of aj by stmp+1 ... stmp+q can be replaced with some sei. This allows
each introduced let aj = a′j[0] kernel statement to be eliminated.

2. Any usage of a variable x bound by some statement let x = x′
i[0] in stmp+1 ... stmp+q

can be replaced with sei. This allows the let x = x′
i[0] statement and thus a memory

transaction to be eliminated. If x′
i has no other uses, which is the case when both

kernels were introduced by migration, then let x′
i = [sei] can also be removed.

3. Any host variable x′
1, ..., x

′
n or a1, ..., ar that only was used by the second gpu ker-

nel can be eliminated. If the host variable x′
i is eliminated, then the corresponding

term sei must also be eliminated from se1, ..., sen+m. This can lead to a reduction
in array allocations and memory transactions that store results.

4. When the merged kernels have been introduced by migration it is quite possible
that they read the same element from some array, corresponding to a shared de-
pendency on some scalar variable whose computation has been moved to device.
By applying CSE (common subexpression elimination) those duplicate computa-
tions can be eliminated, further reducing memory transactions.
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Assumption 2. For the sake of simplicity we assume that the second kernel of a merge
does not contain an x with [dims]← se statement that invalidates any of the bindings
x′
1, ..., x

′
n introduced by the former statement.

Assumption 2 can be made guaranteed to hold by making merges conditional upon it.
Since two gpu kernels can be merged, logically any sequence of gpu kernels with in-

terspersed host bindings can be merged. The merge transformation would thus merge
all four kernels of Figure 10 into one, producing the program shown in Listing 7.

l e t B ’ = gpu l e t a = A [ 0 ]
l e t b = A [ 1 ]
l e t c = a + b
l e t B = [a , c ] in B

l e t B = B ’ [ 0 ]

Listing 7: The merge transformation applied to the migrated statements of Figure 10.

We assume that a, b, and c only were used to compute B, meaning that no other state-
ment depends on a’, b’, and c’. This allows them to be eliminated after the merge, thus
eliminating the wasteful copies that migrating let a = A[0] and let b = A[1] caused.

Reordering statements to maximise merging

Some gpu kernels within a statement sequence stm1 ... stmn may be separated by other
statements than mere host rebindings of computed results. To minimise the total num-
ber of kernels within a sequence the merge transformation thus reorders the state-
ments, clustering them into alternating groups of non-gpu and gpu expressions, sub-
ject to dependency constraints.

Imagine an infinite sequence of buckets (Figure 12), incrementally numbered from
zero, with every bucket acting as a FIFO queue of ordered statements. Let every even
bucket be designated to contain non-gpu statements, and let every odd bucket be des-
ignated to contain gpu statements. The reordering goal of the merge transformation is
then to place every statement stmi of the sequence stm1 ... stmn into a bucket, such that

1. every bucket used only contains statements that it is designated for.

2. no statement is placed before the binding of one of its operands, unless the bind-
ing is of a gpu computed result and the statement is placed in the same bucket as
that gpu kernel. This is only possible if the given statement is a gpu statement.

3. no statement that invalidates variables is placed before a statement that uses such
variable. Only statements that evaluate x with [dims]← se expressions do this in
the language we study.

4. no gpu statement invalidates the binding of another statement in its bucket.

5. as few buckets contain gpu statements.

With such grouping of statements, the kernels of each gpu bucket can be merged into a
single kernel, and an updated sequence of statements with a minimum of gpu kernels
can be obtained by emptying the buckets in their incremental order. Restriction (4)
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Figure 12: An infinite sequence of buckets.

ensures that Assumption 2 will hold when kernels are merged. The original sequence
stm1 ... stmn already abides to restrictions (2) and (3).

Let Bi be the variables bound by statements in the ith bucket, let Fi be all the free
variables of statements in the ith bucket, and let Ri ⊆ Bi be all variables that are re-
bindings of results computed by gpu kernels in the (i − 1)th bucket. Let Ck be the set
of variables invalidated by the kth statement in the sequence stm1 ... stmn, and let Ok

be the set of all its free variables (its operands). Algorithm 4 then gives a solution to
the reordering problem.

Algorithm 4 A solution to the reordering problem.

1: for k = 1, ..., n do
2: i←∞
3: blocked← false
4: while i > 0 and not blocked do
5: i← i− 1
6: blocked← Bi ∩Ok ̸= ∅ or Fi ∩ Ck ̸= ∅ ▷ Ensure (2) and (3).
7: end while
8: if stmk is a gpu statement then
9: if i is even then ▷ Ensure (1).

10: if i ̸= 0 and Bi ∩Ok ⊆ Ri and Fi ∩ Ck = ∅ then ▷ Exception of (2).
11: i← i− 1
12: else
13: i← i+ 1
14: end if
15: else if Fi ∩ Ck ̸= ∅ then
16: i← i+ 2 ▷ Ensure (4).
17: end if
18: else
19: i← 2 ⌊(i+ 1)/2)⌋ ▷ Ensure (1).
20: end if
21: place stmk in the ith bucket
22: end for

Algorithm 4 is a greedy algorithm that moves each gpu statement across as many
groups of non-gpu statements as possible, and each non-gpu statement across as many
groups of gpu statements as possible, subject to restrictions (2)–(4). Since no statement
can be moved to a prior group in the produced sequence, its number of groups is
minimum. It follows that when each gpu group is merged, the number of gpu kernels
in the produced sequence becomes minimum.

The results produced by the merge transformation are good but not optimal. A
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more complicated kernel merge procedure can remove the need for Assumption 2 and
restriction (4), which for some programs can lead to a reduction in gpu kernels. Should
such a reduction occur within a tight loop, the improvement may be noteworthy.

The algorithm does neither consider the number of results produced by each gpu
kernel. This means that other minimum solutions may exist where merged kernels
return fewer results, such that fewer allocations and memory transactions occur.

Reducing the cost of wasteful copying

Recall that the scalar read let s = S[i] will be rewritten to let s’ = gpu S[i] if s ∈ D
even if S[i:i+1] remains available for use by all migrated statements that depend on
s. If any host computation c depends on s and is migrated to device, then Algorithm 4
will ensure that they are merged unless c has some other indirect dependency on s via
a non-gpu statement. If all dependents of s are merged into the same kernel, then s’
will be eliminated. Otherwise, since c depends upon s and S[i] thus must be read, the
only overhead that their merged kernel incurs is a memory transaction to write s to
s’. The noticeable overhead to schedule and run a kernel is paid for by the work of c,
which is assumed to be useful since it depends upon a read.

More generally the majority of the overhead associated with producing s’ will be
negated if gpu S[i] is merged with any kernel that does useful work. The host will
incur some overhead in order to allocate and prepare s’ but often such work will oc-
cur while the GPU performs work, and the work of the host will not be part of the
critical execution path. Since s’ is a single-element scalar array that most likely can be
allocated from the free list, its allocation can mostly be assumed to be insignificant.

4.5 Graph creation and migration rules

In this section we provide explicit graph creation and migration rules for each section 3
statement/expression pair that Assumption 1 allows.

We give a generic template for each kind of statement S where the variables it binds
are denoted x1, ..., xn and its operands are o1, ..., om. In some cases we have m = n. We
provide a template for how S is transformed when migrated and describe the criteria
for its migration, usually that x1 ∈ D. The basis for the migration is some representa-
tion in the migration graph, which we also show.

When S is graphed, each operand oi shown in the graph representation of S might
not exist, or it might be array-typed or have an edge to a sink. In either case the edge(s)
shown from oi should not be added when graphing S. Unless otherwise noted, each
variable xi bound by S should only be added to the graph if it actually would receive
one of the edges shown. We use s to denote a source vertex, and t to denote a sink.

In the migration template we use o′i to denote the single-element array that stores
oi, assuming oi has been migrated to device and no longer is available on the host.
Since migrated arrays are rebound on host, as discussed in section 4.4, o′i never stores
an array. If oi is a constant or is bound on the host, the corresponding let oi = o′i [0]
statement should be excluded when rewriting S. For conciseness we do not show the
let xi = x′

i [0] statements that should be added after a gpu statement to rebind migrated
variables that are in C or which are arrays. We refer the reader to section 4.4 for details.
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Direct assignment

A statement that evaluates a se1, ..., sen expression corresponds to n statements that
each binds one variable. In that view such statement can be graphed and migrated as
n individual E statements, such that each variable xi receives an edge from operand
oi, and each assignment only is migrated if xi ∈ D. It is beneficial to migrate the
assignments separately to allow independent reordering by the merge transformation.

In the actual intermediate representation of Futhark the statement is restricted to
n = 1, which allows it to be handled as any E statement. Even so the statement will
never actually occur as prior program transformations have eliminated xi, replacing
any usage of xi with oi. A wasteful copy of o′i will thus not occur.

For completeness we present graphing and migration rules below.

l e t x1, ..., xn = o1, o2, ..., on

l e t x′
1 = gpu l e t o1 = o′1 [ 0 ] in o1

l e t x′
2 = gpu l e t o2 = o′2 [ 0 ] in o2

...
l e t x′

n = gpu l e t on = o′n [ 0 ] in on

o1

x1

o2

x2

on

xn

...

...

Scalar operations

Any variable x that binds the result of a basic scalar computation is graphed with an
edge from each operand. The computation is migrated when x ∈ D and rewritten as
any other non-kernel E statement. Below we give explicit rules for +, ≤, and ¬ state-
ments. They are indicative of how to handle any binary or unary scalar operation.

l e t x1 = o1 + o2

l e t x′
1 = gpu l e t o1 = o′1 [ 0 ]

l e t o2 = o′2 [ 0 ]
l e t x1 = o1 + o2 in x1

o1 o2

x1

l e t x1 = o1 ≤ o2

l e t x′
1 = gpu l e t o1 = o′1 [ 0 ]

l e t o2 = o′2 [ 0 ]
l e t x1 = o1 ≤ o2 in x1

o1 o2

x1
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l e t x1 = ¬o1

l e t x′
1 = gpu l e t o1 = o′1 [ 0 ]

l e t x1 = ¬o1 in x1

o1

x1

Function applications

The application of some function f produces n values from m operands, leading to the
binding of n variables. Since applying f is a single unit of work, if any of the operands
are migrated and remains on device then all n values must be computed and be bound
on device. Migrating a function application to avoid one memory transfer thus gives
n new subproblems to consider, as reflected by the graph representation below.

l e t x1, x2, ..., xn = f o1 ... om

l e t x′
1, x

′
2, ..., x

′
n =

gpu l e t o1 = o′1 [ 0 ]
. . .
l e t om = o′m [ 0 ]
l e t x1, x2, ..., xn = f o1 ... om

in x1, x2, ..., xn

o1

x1 x2

om

xn

...

...

Theorem 1 guarantees that all variables of a statement will be partitioned the same, so
we determine migration based on the first variable being bound, that is if x1 ∈ D.

Not all function applications can be migrated however. If the definition of f uses
any host-only statements then the application of f is also host-only5, and we connect
each scalar operand oi to a sink. This makes the variables x1, x2, ..., xn unreachable from
a source, excluding them from the graph.

For more fine-grained migration it is often possible to inline the statements of the
function being applied, or to use function derivations that are specialised to which
arguments that reside on device. We get fine-grained handling for free as the Futhark
compiler aggressively inlines user-defined functions to the point where only use of
simple, built-in math functions (pow, sqrt, ...) typically remain.

Array scalar reads

The statement let x1 = x2 [o1, ..., om ] evaluates an instance of the general indexing ex-
pression x2[dims] where none of the terms in dims identifies a slice. We assume that m
equals the rank of the array bound to x2 such that the produced value is a scalar.

Operationally such instance causes a device-host memory transfer when evaluated
on the host, for which reason we connect a source to x1. We also add edges to x1 from
each of the indexing operands. The statement is migrated if x1 ∈ D.

5In reality any function that declares an array-typed variable is host-only under Futhark, even func-
tion arguments that are unused. This is due to memory allocation limitations.

44



4.5 Graph creation and migration rules OPTIMISATION

l e t x1 = x2 [ o1, ..., om ]

l e t x′
1 = gpu l e t o1 = o′1 [ 0 ]

. . .
l e t om = o′m [ 0 ]
l e t x1 = x2 [ o1, ..., om ] in x1

s1 o1

x1

om...

It can be observed that x′
1 equals the slice x2 [o1 : o1+1, ..., om : om+1] and thus may

be wasteful to copy. There are three reasons why we migrate x1 and create x′
1 anyway:

1. An x with [dims] ← se statement may invalidate x2. If x1 is used beyond that
point, a copy is required.

2. By making a copy we do not keep any references to x2, possibly allowing its
memory to be reused earlier. This is beneficial to avoid out-of-memory failures
but also enables more allocations to be served by the free list. Allocation requests
that cannot be served from the free list are expensive and may entail synchroni-
sation, which we seek to avoid.

3. If any of the operands have been migrated, then the slice cannot be created on
host. The slice equivalent also cannot be returned from a gpu kernel, as that
would copy it. Avoiding the copy would thus entail duplicating the computation
of x1 to every site where x1 is used. If x1 is used as operand by some other scalar
array read, then x1 would also need to be recomputed at each of their usage sites.

It is possible to device a more advanced transformation that takes these constraints
into account to introduce fewer wasteful copies. Seeing that the merge transformation
presented in subsection 4.4 often makes the overhead of wasteful copies insignificant
we have not deemed this venue to be worth exploring, expecting the complexity of a
solution to outweigh its gains.

Array slicing

The statement let x1 = x2[dims] produces a slice of the array x2 whenever dims contains
fewer terms than the rank of x2 or at least one term is of the type se1 : se1 + se2. Let S
be a concrete instance of such statement, let o1, ..., od be its operands that correspond to
se2 terms, and let od+1, ..., om be all its other operands.

The statement S executes in constant time as it merely creates a view of the memory
that backs x2. Since a gpu kernel copies its return values into arrays we must only
migrate S if we can guarantee that x1 will not be returned. Otherwise, if such copy
were to happen we would have changed the asymptotic cost of S from constant to
linear, and we might run out of memory if enough simultaneous copies are created.

Our model is not strong enough to describe this constraint and so we generally
must assume that if S is migrated then x1 will be returned from some kernel produced
by the merge transformation. For this reason we connect each indexing operand of S
to a sink, thus ensuring that S is not selected for migration.
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l e t x1 = x2[dims]

Not migrated on its own.

o1

t1

o2

t2

om

tm

...

...

Note that S is not host-only; it is perfectly fine to evaluate on device, provided we
can guarantee that its slice is not returned by a kernel. When considering the migration
of loops and if statements this can sometimes be guaranteed, allowing those parent
statements to be migrated along with S and other child statements. We delay a discus-
sion of the implications of such parent migration but note that the operands o1, ..., od
are size variables, as they appear in the type of x2. This has implications for memory
management and the conditions under which a parent statement can be migrated.

When x1 would contain just a single array element, implying that all its dimensions
are of length one, then S can be graphed with an edge from every operand to x1 and
be migrated like any other E statement. Such array costs as much to copy as a scalar.

Array scalar writes

The statement let x1 = x2 with [o1, ..., om]← om+1 evaluates an instance of the general
expression x2[dims]← se where none of the terms in dims identifies a slice. We assume
that m equals the rank of the array bound to x2, such that om+1 is a scalar.

Operationally such an instance performs an in-place update of x2 in constant time,
which causes a host-device memory transfer when evaluated on the host. Because the
cost of the operation is sublinear to the size of the updated array we must ensure that
x1 is not copied by being returned from a gpu kernel. This is very similar to situation
just discussed for array slice statements, and the solution is the same; we connect each
indexing operand to a sink.

l e t x1 = x2 with [o1, ..., om] ← om+1

Not migrated on its own.

o1

t1

o2

t2

om

tm

...

...

The observant reader will note that no sink is added to om+1, which means that
migration may make it unavailable. Should this happen however, then the array o′m+1

that contains om+1 will instead be available, so we can rewrite the statement into:

l e t x1 = x2 with [o1, ..., om : om + 1] ← o′m+1

This turns the scalar write into a single-element slice write, which allows us to keep
om+1 on device. Even better it turns the synchronous host-device memory transfer
of om+1 into an asynchronous intra-device memory transfer. As discussed in subsec-
tion 2.2 our hope is that this often will happen such that the write aspect of the state-
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ment need not be considered. We disregard the case where om+1 is a constant since
some implementations of the runtime can transfer those asynchronously.

We note that the Futhark compiler already contains a form of this optimisation that
performs the rewrite when om+1 is the result of an array scalar read and o′m+1 can be
represented as some slice of that array. The array o′m+1 in our case will thus not be a
wasteful copy that was created by migrating a scalar array read.

The Futhark compiler also contains optimisations that eliminate writes to single-
element arrays. We therefore do not provide alternative graphing and migration rules
for the case where x1 could be copied at the cost of a scalar.

Array slice writes

The statement let x1 = x2 with [dims]← x3 evaluates an instance of the general expres-
sion x2[dims]← se where x3 binds an array. Operationally x2 is updated in-place using
one or more asynchronous intra-device memory transfers that copy data from x3.

In the general case we must block all migration of the statement to preserve its
asymptotic cost. Unless x3 contains just a single element we consider it to be host-only,
and either way we connect every operand that occurs in dims to a sink.

l e t x1 = x2 with [dims] ← x3

Not migrated on its own.

o1

t1

o2

t2

om

tm

...

...

The rationale for connecting the operands to sinks is to prevent x1 from being re-
turned from a kernel and copied, which would incur a cost linear to the size of x2; the
work done by the statement is linear to the size of x3, and thus smaller. We assume
that the write to x2 would have been eliminated if x2 and x3 were of the same size.

The rationale for making the statement host-only is to ensure that the intra-device
memory transfers are serviced by the device driver, and not by a gpu kernel. An intra-
device memory transfer can be serviced via heavily optimised, built-in device kernels
that exploit the inherent parallelism of data copying. A single-threaded gpu kernel can
meanwhile only copy the elements from x3 one at a time.

When x3 is a single-element array however, then the data copy cannot benefit from
any parallelism. Since the copy can be performed sequentially without loss we allow
such instances of the statement to be migrated as part of a parent statement.

Array literals

The array literal statement let x1 = [o1, ..., om ] binds an array that consists of the operands
o1, ..., om. This allows for a rather straightforward graph representation where each
operand oi simply receives an edge to x1, such that x1 is migrated if any of its operands
are. Because x1 is an array it can be rebound on the host essentially for free.

There is more to the problem though. When the operands are scalar-typed and at
least one operand is a variable, then the runtime populates the array one element at
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a time at the cost of m host-device memory transfers. In the CUDA implementation
of Futhark, each of these memory transfers will be synchronous and thus particularly
expensive. Under OpenCL the transfer of constants will be done asynchronously, and
thus somewhat cheaper; they will still be expensive though.

It can be observed that each of the inter-device memory transfers will become
an intra-device memory transfer—a plain memory transaction—if the array literal is
selected for migration and is created by a kernel. Communication will be reduced
as the m memory transfers become one kernel task, and since kernels execute asyn-
chronously, each of the writes will likewise become asynchronous. Because constants
are embedded into the program code of kernels, constant operands will neither waste-
fully be sent to the device every time the array literal statement is evaluated.

We can ensure that the statement gets migrated by connecting a source vertex to x1.
Because no outgoing edges are added from array variables, no route can be found from
that source vertex, and so the array literal statement and no other will be migrated.
Since the migration is guaranteed we need not add edges from the operands.

When the operands are array-typed or all operands are scalar constants, then the
array is exclusively populated by means of asynchronous intra-device memory trans-
fers. These are generally cheaper than gpu kernels and can populate the array more
efficiently, as previously discussed. We therefore do not flag such instances for migra-
tion but treat them as host-only, provided they contain more than one scalar element.

The concluding rules for array literal migration is shown below. A statement is mi-
grated if x1 ∈ D, or, equivalently, one of the operands is a scalar variable.

l e t x1 = [ o1, ..., om ]

l e t x′
1 = gpu l e t o1 = o′1 [ 0 ]

. . .
l e t om = o′m [ 0 ]
l e t x1 = [ o1, ..., om ] in x1

s1

x1

iff some oi is a
scalar variable

If statements

For programs that involve conditional execution it is generally impossible to design
an ”optimal” migration transformation as the behaviour that manifests depends on
unknown and differing program inputs. When optimising if statements and loops
we will thus aim to reduce the worst case number of inter-device memory transfers,
expecting that the observed average runtime performance will improve.

When dealing with if statements this means that we will allow the program trans-
formation to reduce reads into conditional branches but also out of them, and if we can
prevent a branch condition from being read to host we will allow entire if statements
to be migrated. To clarify our intent, we provide example transformations of four code
fragments in Figure 13–16.

Migration restrictions While the if statement in example Figure 13 is rather simple
we allow arbitrarily complex if statements to be migrated, provided (among others)
that its branches contain no host-only statements and bind no size variables. Size vari-
ables (those that occur in array types as variable dimensions) must be bound on the
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l e t c = A [ 0 ]
l e t x = i f c then [ 1 , 2 ] e lse [ 2 , 3 ]

l e t c ’ = gpu A [ 0 ]
l e t x ’ = gpu l e t c = c ’ [ 0 ]

in i f c then [ 1 , 2 ] e lse [ 2 , 3 ]
l e t x = x ’ [ 0 ]

Figure 13: Migrating a whole if statement. The read of c is eliminated by migrating
the entire if statement, which is feasible because its array result can be rebound on the
host for free. The merge transformation can merge the kernels that produce c’ and x’.

l e t x = A [ 0 ]
l e t y = A [ 1 ]
l e t z = i f c then 4 2

e lse l e t s = x + y in s

l e t x ’ = gpu A [ 0 ]
l e t y ’ = gpu A [ 1 ]
l e t z = i f c then 4 2

e lse l e t s ’ = gpu l e t x = x ’ [ 0 ]
l e t y = y ’ [ 0 ]

in x + y
l e t s = s ’ [ 0 ] in s

Figure 14: Delaying reads into a branch. Two reads are reduced to one read, or none
(when c is true). In the transformed fragment the merge transformation would merge
the kernels that produce x’ and y’. We assume that x and y are used by some kernel
not shown, such that they are migrated but cannot be sunk into the false branch of the
if statement.

l e t x = A [ 0 ]
l e t y = i f c then A [ 1 ] e lse 4 2
l e t z = x + y

l e t x ’ = gpu A [ 0 ]
l e t y ’ = i f c then gpu A [ 1 ] e lse [ 4 2 ]
l e t z ’ = gpu l e t x = x ’ [ 0 ]

l e t y = y ’ [ 0 ]
in x + y

l e t z = z ’ [ 0 ]

Figure 15: Delaying a read out of a branch. Between one and two reads is reduced to a
single read. The result of the false branch must also be migrated. In the transformed
fragment the merge transformation would merge the kernels that produce x’ and z’.
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l e t x = i f a then A [ 0 ] e lse 4 0 4
l e t y = i f b then A [ 1 ] e lse 4 2
l e t z = x + y

l e t x ’ = i f a then gpu A [ 0 ] e lse [ 4 0 4 ]
l e t y ’ = i f b then gpu A [ 1 ] e lse [ 4 2 ]
l e t z ’ = gpu l e t x = x ’ [ 0 ]

l e t y = y ’ [ 0 ]
in x + y

l e t z = z ’ [ 0 ]

Figure 16: Delaying reads out of two branches. Zero, one, or two reads may occur in
the original program but one read, no more, no less, will occur in the transformed pro-
gram. Whether this opportunistic transformation pays off depends on the probability
that both a and b is true.

host before new arrays with dimensions their size can be created. This is a necessity
for the host to allocate appropriately sized memory buffers. Hence when an if state-
ment calculates the size of an array that it creates, that if statement cannot be migrated.
For simplicity we block migration if any size variables are bound, such that their actual
use need not be considered. For the language we describe there is no real need to track
size variables, as any statement that creates a variably sized array also is host-only. The
actual intermediate representation of Futhark however contains some obscure expres-
sions where this distinction is relevant. It should be rather self-explanatory why an if
statement that evaluates a host-only statement cannot be migrated.

Another restriction on the migration of if statements is that they only return scalars
or copyable arrays. An array of one scalar is as efficient to copy as that scalar and is thus
considered copyable. The arrays returned by a statement are otherwise copyable if the
copying of an equal or larger number of equally sized array elements would be pre-
vented by migrating that statement. For ease of implementation, in practice we only
consider a multi-element array to be copyable if its backing memory is guaranteed to
have been initialised by a migratable array literal, created as part of the producing ex-
pression. Listing 8 provides an example with two nested if statements where the inner
statement could be migrated but not the outer.

l e t a = [ 1 , 2 , x ]
l e t b = i f c then a

e lse l e t d = i f e then [ 1 , x , 3 ]
e lse l e t f = [ 1 , 2 , 3 , 4 , 5 ]

l e t g = f [ 0 : 0+3 ]
l e t h = g with [ 0 ] ← x

in h
in d

Listing 8: An example of copyable arrays. The array bound to d is copyable since all
its possible values originate from within the returning if statement. The array bound
to b is not copyable since a is bound outside the branch that returns it.
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l e t x1, ..., xn =
i f c then stm1 ... stmp in y1, ..., yn

e lse stm1 ... stmq in z1, ..., zn

y1

x1

z1 yn

xn

zn

c

...

...

Figure 17: Graphing rules for if statements. The statements stm1 ... stmp and
stm1 ... stmq are graphed as any other statements. When p or q is zero the respec-
tive in term does not appear. Migration is blocked by connecting c to a sink.

Finally an if statement may only be migrated if a read reduction can be obtained,
that is a reduction of device-host memory transfers. Migrating the if statement moves
all its bound variables to device, so avoiding the read of the branch condition only
pays off if none of the bound scalar variables transitively will cost a read to use. In this
regard the subproblem of migrating an if statement is similar to that of migrating a
function application. It differs however since we consider if statements as whole sub-
graphs, not single units of work, and only statements for a subset of those subgraphs
will actually evaluate.

Modelling Accurately modelling the mutually exclusive nature of branches trans-
forms the minimisation problem into a combinatorial optimisation problem that our
proposed solution in subsection 4.3 cannot handle. We believe that the combinato-
rial optimisation problem might be NP-hard and thus infeasible to solve for arbitrarily
large programs. To stay within what our proposed algorithm can handle we therefore
conservatively assume that both branches of each if statement are evaluated, modelling
the problem as if the rewrite of Listing 9 had occurred.

l e t x1, ..., xn = i f c then stm1 ... stmp in y1, ..., yn
e lse stm1 ... stmq in z1, ..., zn

stm1 ... stmp

stm1 ... stmq

l e t x1 = fif c y1 z1
. . .
l e t xn = fif c yn zn

Listing 9: Conceptual, functionally equivalent rewrite that our model builds on. The
function application fif c y z produces y if c is true, otherwise z.

To graph an if statement we graph each statement of its branches as if they had
been hoisted out of the if statement. Afterwards we graph the binding of variable xi

as assignment of branch return value yi or zi depending on branch condition c, such
that using xi entails a memory transfer if the computation of either operand c, yi, zi is
migrated. We visualise these graphing rules in Figure 17.

Migration If c becomes unavailable to the host due to migration, that is c ∈ D \ C,
then the entire if statement need to be migrated and is rewritten like a non-kernel E
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def two_branches = λA , a , b , i →
l e t x = i f a then A [ 0 ] e lse 4 2
l e t y = i f b then A [ 1 ] e lse i
l e t z = x + y

in z

l e t v ’ = 4 2
def two_branches = λA , a , b , i →

l e t x ’ = i f a then gpu A [ 0 ] e lse v ’
l e t y ’ = i f b then gpu A [ 1 ] e lse gpu i
l e t z ’ = gpu l e t x = x ’ [ 0 ]

l e t y = y ’ [ 0 ]
l e t z = x + y in z

l e t z = z ’ [ 0 ]
in z

Figure 18: Moving alternate branch results to device. The function two_branches of
type [2]int → bool→ bool→ int→ int is transformed such that its worst case num-
ber of reads is reduced from two to one. The values of 42 and i are moved to device
by different means.

statement (see section 4.4 and Figure 13). When c ∈ C then c will be rebound on the
host which permits fine-grained migration of branch statements based on the model.
This keeps as much work possible on the host, within the constraints, which we hope
is more efficient. When a restriction forbids the migration of an if statement as a whole
we connect its branch condition c to a sink, thus ensuring that c will not appear in D\C
and that the if statement hence will remain on host.

When an if statement is not migrated as a whole, the computation of individual
variables returned by either of its branches may still be migrated. Let yi and zi be the
ith value returned by the respective branches of some if statement, to be bound to the
variable xi. When each of yi and zi either is a constant or variable that remains bound
on the host then no rewrite is needed of xi, yi and zi.

If either yi or zi is migrated and no longer remains bound on the host, then its
respective storage array y′i or z′i is returned in its place. If only one of yi or zi has been
moved to device, then we also store and return the other in a single-element array
such that the branches converge. The result will then be that the value of xi has been
migrated to device and now is stored in the array returned in its place. We replace xi

with x′
i. Note that {yi, zi}∩ (D \C) ̸= ∅ implies xi ∈ D. Figure 18 provides an example.

When moving some value v to device to satisfy type constraints we must ensure
that we do not introduce any new (synchronous) host-device memory transfers. If v is
a constant then we can bind let v′ = [v] as a top-level variable binding and return v′ in
place of v. When v is a variable we generally cannot store it once, ahead of time. We
therefore add the statement let v′ = gpu v at the end of the branch that returns v and
returns v′ in its stead. Figure 18 exemplifies both techniques.

Discussion A consequence of the inaccurate modelling of branches is that some state-
ments needlessly may be migrated to device to minimise the worst case number of
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def inaccurate = λA , c →
l e t z = i f c then l e t x = A [ 0 ] in x + 7

e lse l e t y = A [ 1 ] in y + 5 0 5
in z

def inaccurate = λA , c →
l e t z ’ = i f c then gpu l e t x = A [ 0 ] in x + 7

e lse gpu l e t y = A [ 1 ] in y + 5 0 5
l e t z = z ’ [ 0 ]

in z

Figure 19: A shortcoming of the branching model. The function inaccurate has type
[2]int → bool→ int. Because both branches are taken according to the model, the
reads that occur in the branches will be ”reduced” out of the if statement. In reality
the worst case number of inter-device memory transfers remain the same, namely one,
and redundant overhead is incurred to compute the branch additions on device.

device-host memory transfers. Figure 19 shows one example of this. We note that this
is not a flaw with Algorithm 3 as the device set of the graph indeed becomes mini-
mum—it is just that the model that was built did not reflect the actual program.

The choice to reduce reads into if branches is rather non-controversial. The worst
case number of reads is minimised, and the best case is improved further, similar to
the sinking technique mentioned in subsection 2.2. Reducing reads through a set of
branches may be suboptimal if the branches in practice rarely are taken, but the over-
head of intermittent gpu kernels will be paid by the read reduction they secure.

This leaves a discussion of the design decision to reduce reads out of if statements.
When reads are reduced out of both branches of an if statement, as in Figure 19, or
when the read of one branch is reduced with a read outside the if statement, as in
Figure 15, then the transformation cannot cause extra inter-device memory transfers.
When we reduce reads out of single branches of multiple if statements, as in Figure 16,
we gamble that at least one branch doing a read would be taken, such that no new reads
occur. The more branches that we reduce reads from, the more likely it is that at least
one of them would have manifested a read.

Our hope when reducing a read out of a branch is that that branch represents a
non-exceptional case of the program logic. The simple bounds-checking case of if i
≤ n + −1 then A[i] else x, where A has type [n]int, is one motivating example. When
the price of an incorrect guess only is overhead to run gpu kernels, and not an increase
in synchronous memory transfers, then we can guess wrong more often than not and
still see an improvement on average. We may even be consistently wrong for some if
statements, even at the cost of synchronous transfers, and still obtain a mean reduction
from successfully predicting other if statements on the execution path.

While the experimental results we present in section 5 support that reducing reads
out of branches can be a good idea, further study is required to determine whether our
approach is too aggressive. We hope that program slowdowns will be uncommon and
insignificant but would not be surprised to see it happen for some program inputs.
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Loops

Like with if statements there generally is no optimal way to optimise loops as their
evaluation tend to depend on program inputs. However, whereas an if statement
evaluates to either of its two branches once, a loop evaluates its single ”branch” k ≥ 0
times which makes it more likely that the branch is taken than not. This gives an
optimisation objective much different from if statements as we want to reduce reads
out of loops as much possible, and definitely do not want to manifest any new reads
inside of them. We also want to reduce a read of one iteration with one that occurs in
the next iteration, potentially itself, and in some circumstances we want to migrate the
whole loop to device, despite GPUs tending to be a poor fit for branch-heavy code.

For-in rewrite The read done by a for−in loop can produce a synchronous device-
host memory transfer every iteration. The read is inseparable from the loop though,
and so only allows a choice between migrating the entire loop or not. To obtain more
fine-grained handling we rewrite for−in loops into for loops by the transformation

loop y1 = o1 , . . . , yn = on for xR in xA do
stm1 ... stmm

in z1, ..., zn

loop y1 = o1 , . . . , yn = on for k < N do
l e t xR = xA [ k ]
stm1 ... stmm

in z1, ..., zn

where the outer dimension of xA is N. We perform the rewrite before we build our mi-
gration model, to allow the sinking optimisation to make the read conditional. When
xR is a scalar and sinking occurs the transformation yields a best-case reduction in
inter-device memory transfers just by itself. The mean overhead of any gpu kernel we
introduce to migrate the binding of a sunk xR likewise decreases.

Initial graphing By rewriting for−in loops we are left with just two loop forms to
handle: for loops and while loops. These are very similar, as shown below.

l e t x1 , . . . , xn =
loop y1 = o1 , . . . , yn = on for k < N do

stm1 ... stmm

in z1, ..., zn

l e t x1 , . . . , xn =
loop y1 = o1 , . . . , yn = on while yc do

stm1 ... stmm

in z1, ..., zn

To allow our model of either loop form to reduce reads between iterations we build
a cyclic subgraph Ĝ where each loop parameter yi receives an edge from both oi and
zi. The variable zi is typically bound by stm1 ... stmm which depends on y1, ..., yn.

The cyclic graph accurately reflects the cyclic dependencies of inter-loop statements
but does not allow irrelevant variables to easily be excluded from the model. We solve
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l e t e = n + −1
l e t v = A [ 0 ]
l e t l = v ≤ m
l e t w , p =

loop c = l , i = 0
while c do

l e t i ’ = i + 1
l e t a = i ’ ≤ e
l e t c ’ =

i f a
then l e t v ’ = A [i ’ ]

l e t l ’ = v ’ ≤ m
in l ’

e lse f a l s e
in c ’ , i ’

s1

v

l

c

i

i’

a

c’

s2

v’

l’

Figure 20: The initial state of the cyclic subgraph for a loop that finds the index of
the first array element larger than some threshold. In pseudo code the code fragment
corresponds to loop i = 0 while i < n ∧ A[i] ≤ m do i+1 for some non-empty array A
of type [n]int.

the problem by assuming that each yi will become reachable from a source vertex via
zi, thereby adding yi to the graph even if oi is ungraphed or connected to a sink. If
we predict wrong, the redundant vertices and edges will never be traversed by Algo-
rithm 1 and thus do not directly increase the difficulty of the optimisation problem.
We do not add yi if it is array-typed as no edge then can be received from either oi or
zi. When each loop parameter of potential relevance has been added, the statements
stm1 ... stmm are graphed as normal. We do not add the for loop variable k to the graph
as it is constrained to the type int and thus must reside where the loop evaluates.

The variables N and yc that are used as loop conditions are likewise type con-
strained, so if these variables are moved to device, a loop relying on either must be
migrated as a whole. Seeing that these are the only loop operands that are type con-
strained we let their membership in D\C be the condition on which loops are migrated.
If we find that a loop cannot or must not be migrated, to be discussed later, we connect
its concrete N or yc to a sink.

When the loop body has been graphed, and N or yc if needed has been connected
to a sink, then we add the respective edges zi → yi on the condition that zi ̸= yi. For
reasons we present later we connect zc to a sink if yc is connected to one, meaning the
edge zc → yc sometimes need not be added.

In Figure 20–23 we provide examples of what the loop subgraph Ĝ may look like
at this stage. The examples include free variables that need to be graphed before their
loops. All vertices that are external to the loops are shown in grey. Vertices for state-
ment variables x1, ..., xn have not yet been graphed and are thus absent. In Figure 24 we
show two variants of the exemplified while loops where the loop condition variables
have been connected to sinks.
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l e t n = A [ 0 ]
l e t a = A [ 1 ]
l e t b = A [ 2 ]
l e t c = loop x = a for i < n

do l e t y = x + b
l e t z = fhost y i
in z

s1

n

t1

s2

a s3

bx

y

t2

Figure 21: The initial state of the cyclic subgraph for a loop that computes a scalar over
n iterations. The function fhost is host-only so n has been connected to a sink.

l e t S , s =
loop B = A , x = 0 for i < n

do l e t v = B [i ]
l e t s ’ = x + v
l e t C = B with [i ] ← s ’

in C , s ’

x s1

v

s’

Figure 22: The initial state of the cyclic subgraph for a loop that computes (sub)sums.
The arrays A, B, and C have type [n]int.

l e t d = B [ 7 ]
l e t c = 1 ≤ n
l e t t , i , v =

loop c ’ = c , i ’ = n , v ’ = 0
while c ’ do

l e t i” = i ’ + −1
l e t x = A [i”]
l e t a = d ≤ v”
l e t b = 1 ≤ i”
l e t c” = i f a then f a l s e

e lse b
in c” , i” , x

s1 s2

x d

c’

i’

v’

i”

a b

c”

Figure 23: The initial state of the cyclic subgraph for a loop that finds the last value in
A that is larger than some threshold d. The type of A is [n]int.
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(a) Figure 20 variant.

s1 s2

x d

c’

i’

v’

i”

a b

c”

t1

t2

(b) Figure 23 variant.

Figure 24: Variants of Figure 20 and Figure 23 where the loop condition has been con-
nected to a sink.

Inter-loop routing A source vertex that occurs within the subgraph Ĝ does not repre-
sent a single inter-device memory transfer but arbitrary many, equal to the k iterations
the loop will make. They should thus only be routed to sinks that also occur within
Ĝ, corresponding to an equal multiplicity of required host uses. If no such usage can
be found we want to reduce the transfers out of the loop, expecting the prevented
transfers to outnumber any new reads we cause.

To make our model abide to these constraints we make a routing attempt from each
source vertex in Ĝ before any dependency edges exist to variables outside the loop.
Concretely we invoke ROUTE-MANY(G,S) of Algorithm 3 to alter the state of our graph
G while it still is under construction, passing the set S of newly added source vertices
that occur within Ĝ. This produces a minimum worst case solution in respect to the
loop whose determination we delay until RESOLVE is invoked for the entire graph. The
source vertices in S should not be attempted routed again later but if they are, the
exhaustion of edges will ensure that no new sink will be found outside the loop. The
set S excludes source vertices that were processed when child loops were graphed.

After ROUTE-MANY has been called it is important that no edges are added, re-
moved, or reversed within Ĝ. Whether a while loop is host-only thus must be de-
termined before routing occurs, such that yc can be connected to a sink. When the
subgraph source vertices have been attempted routed, we graph the statement vari-
ables x1, ..., xn such that each xi receives an edge from yi, subject to normal exclusion
rules. Figure 25 shows the updated state of the Figure 20–24 graphs.

Post loop reduction If fewer routes are created in Ĝ than there are source vertices
then a read reduction may occur across iterations, as is the case in Figure 25c. This
means that some loop return values may be migrated and thus must be read from
device to be used by host statements outside the loop. To model this problem we
connect a source vertex to each statement binding xi whose associated yi will exist in
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Figure 25: Loop subgraphs after the statement variables have been graphed.
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D. This corresponds to connecting a source vertex to every xi for which xiin is reachable
from a subgraph source vertex in the derived graph G′. This can be computed in O(Ê)

time using memoisation techniques, where Ê is the set of edges that are outbound from
vertices in Ĝ.

Loop isolation We also must manipulate the graph such that Algorithm 3 does not
cause a reduction that increases the number of reads within the loop. To ensure this we
consider every free scalar variable v with one or more edges to vertices in Ĝ. The loop
arguments o1, ..., on are counted among these free variables. If v can reach a sink within
Ĝ, then we connect v to a sink, thereby ensuring that it cannot be reduced into the loop.
Otherwise, we exhaust all edges from v to vertices in Ĝ, and add an edge from v to each
statement variable x1, ..., xn that it can reach. We note that the pathfinding required to
make these changes can be done in the same pass that determines which statement
variables the source vertices can reach. The time complexity remains O(Ê) as only
V̂ ≤ 2Ê edges can exist to members of Ĝ = (V̂ , Ê).

Figure 26 shows the updated state of the Figure 20–24 graphs after additional source
and sink vertices have been added. Figure 26b exemplifies how the graph transforma-
tion avoids manifesting a new read inside the loop. If a and b had not been connected
to sinks the algorithm would have moved a, b, x, and y to device, manifesting a read
within the loop to rebind y.

Figure 26d meanwhile demonstrates a situation where we do allow a read to be
reduced into a loop. A read already occurs within the loop, so reducing that one with
an external one does not cause any increase in memory transfers. In this particular case
the overhead of doing so is small as x and a already will be migrated, which means
that no extra kernels will have to be run to facilitate a reduction.

In the variant of Figure 26f a reduction is also allowed within the loop, but in this
case an extra kernel execution will be required each iteration. The computation of
variables x, d, v’, a, and v will be migrated if no sink can be reached via v when s2
is attempted routed or a route from s2 is mutually exclusive with another. Due to the
inaccurate modelling of if branches, in principle a reduction might not actually occur.

We connect each free variable v directly to the x1, ..., xn vertices it can reach to sup-
port pathfinding through the loop subgraph without actually visiting its edges, which
we know no sink can be reached by. Without the bypass edges we would have to un-
exhaust the exhausted edges in Ê for a routing attempt to traverse the loop, and the
O(E C) asymptotic time complexity of Algorithm 3 would no longer hold. By exhaust-
ing the existing edges into Ĝ we ensure that not even non-exhausted subgraph edges
will be visited by future routing attempts, which is a small optimisation.

We can implement ROUTE such that bypass edges are ignored, and we can assign a
subgraph tag to each vertex such that the processing of parent loops ignores the edges
into child loops. For all purposes but RESOLVE the graph representation of a loop will
then appear as a single statement with edges from operands to bound variables, with
some operands being connected to sinks.

When we exhaust edges into Ĝ and leave its inner edges be exhausted we might
come to violate the invariant that no sink can be reached via an exhausted edge. This
would happen if a sink later became reachable from one of x1, ..., xn. Since we add
bypass edges however, the respective sinks will also become reachable from the free
variables of the loop, and if ROUTE’ backtracks and exhausts the last bypass edge from
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Figure 26: Loop subgraphs after extra source and sink vertices have been added.
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such free variable, none of the sinks can be reached. While Theorem 3 thus in general
will not hold when a loop has been graphed, Corollary 2 will still. As far as the overall
proof of correctness goes, this is what matters. It can also be shown that the bypass
edges have no effect on which vertices RESOLVE can reach.

Final graphing To finish the graphing of a loop we make one last change to its sub-
graph by connecting its loop condition (N or yc) to each statement variable xi. Con-
cretely this means that a loop only will be migrated to avoid reading the loop condition
if a reduction can be had, similar to as was done for if statements. Figure 27 shows the
state of the Figure 20–24 loop subgraphs after this final change has been made.

Migration To migrate (part of) a loop we use the same techniques as were described
for if statements. If the loop condition N or yc is a member of D \ C we migrate the
whole loop and rewrite it like a non-kernel E statement (see section 4.4). Otherwise,
we perform fine-grained migration of child statements according to the model, after
which we consider each tuple (xi, yi, oi, zi) of variables.

• If yi ∈ H then it holds that {oi, zi} ⊂ H ∪ C, which implies that bindings for
both oi and zi exist on host. The loop was not migrated as a whole so the loop
condition must also be in H ∪ C. Since all other variables with an edge to xi also
can reach yi, then xi ∈ H . If xi was in the device set, then so would yi be.

No special rewriting is thus needed.

• If yi ∈ C then it must be a vertex where one route blocks another from reaching
a sink. Since the only two vertices that have edges to yi are zi and oi, and loop
source vertices are routed before external source vertices, then it must be a route
via zi that blocked the routing attempt through oi. This means all three vertices
are reachable from some source via oi, and so {yi, oi, zi} ⊂ D, which means that
the storage arrays o′i and z′i exist.

Since xi is unreachable from yi, no bypass edges have been added to it. This
means xi only can have an edge from yi, and maybe the loop condition (which is
in H ∪ C), and so it follows that xi ∈ H .

To rewrite the four variables, we replace the loop parameter binding yi = oi with
y′i = o′i, substitute the return value zi with its storage array z′i, and rewrite the
variable binding xi to x′

i. At the beginning of the loop we then rebind yi as let yi
= y′i[0], and immediately after the loop statement we rebind xi as let xi = x′

i[0].

Because we connect both of yc and zc to sinks when migration of a while loop is
to be blocked, then yc cannot become a vertex where one route blocks another,
and so yc ̸∈ C. Since the only edge to yc will be from oc (if any) then for |D| to be
minimum we must have yc ∈ H . This means that yc is guaranteed to be available
on the host and not be rewritten when migration has been blocked.

• If yi ∈ D \ C then at least one of oi and zi is also in the device set for D to be
minimum; yi has no direct edge from a source. Since yi ̸∈ C then it must also
hold that xi ∈ D.

To rewrite the four variables, we replace the loop parameter binding yi = oi with
y′i = o′i, substitute the return value zi with z′i, and rewrite the variable binding
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Figure 27: Final state of the loop subgraphs after all manipulation is complete.
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xi to x′
i. If the storage array o′i does not exist because oi ∈ H then we create it

by binding either let o′i = [oi] or let o′i = gpu oi before the loop. We do the same
for z′i before the end of the loop. The location of binding and choice of migration
method is the same as was discussed for if statements.

In Listing 10 and Listing 11 we show the rewrite that would be done for Figure 20 and
Figure 22. The other examples would either be rewritten like Listing 10, would not be
rewritten, or have no deterministic rewrite based on the available information.

Migration restrictions We now return to the discussion of when the loop condition
should be connected to a sink such that the loop by guarantee stays on host. The three
restrictions of if statements still make sense, and we thus block migration if the loop

• contains any host-only statements.

• binds any size variables.

• returns a non-copyable array.

In practice every multi-element array will be non-copyable since none of the initial
loop parameter values originate from within the loop. Furthermore, because most of
the statements that bind arrays are considered host-only, then a loop will generally be
blocked from migrating unless it only performs scalar work.

Discussion Considering the design goals and intended use cases of Futhark we ex-
pect it to be rare for a sequential loop to only perform scalar computations and be
long-running. Should such loop occur it is likely better to either rewrite it into some
sequence of parallel operations that exploits available data-parallelism, or to write this
part of the application in a language that excels at sequential execution. Based on this
we suggest not blocking any loops from migrating solely on the ground that they are
loops, even though their device execution may be slower. If migrated loops are short
and simple then they should cost less than a synchronous device-host memory transfer.

A for loop always run for a fixed number of iterations, which usually corresponds
to a size variable or an argument provided as program input. This means for loops
probably rarely will be selected for migration, and so choosing whether to indiscrimi-
nately block their migration or allow it is likely a choice of no significant impact.

Allowing a while loop to migrate can meanwhile make a significant impact if its
loop condition involves a scalar array read that depends on a loop parameter. By not
connecting yc to a sink, such loops will generally flag themselves for migration to pre-
vent a read from occurring every iteration. Figure 27a and Figure 27d are examples of
this, with the rewrite that results from Figure 27a being showcased by Listing 10.

In our work we have aimed to aggressively minimise the worst case number of
inter-device memory transfers and thus synchronisations, assuming that the cost of
running gpu kernels was insignificant compared to the cost of a synchronous memory
transfer. While this generally may be the case we are not convinced that this assump-
tion holds when statements are migrated inside loops to reduce external reads.

Additional gpu kernels are not always run when a read is delayed into a loop
however. The whole loop may be migrated, making it beneficial to allow a reduc-
tion through or into it, and extra kernels that otherwise are added might be merged
with existing ones, reducing their overhead significantly. It will take further study to
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l e t e = n + −1
l e t v ’ = gpu l e t v = A [ 0 ] in v
l e t l ’ = gpu l e t v = v ’ [ 0 ] in v ≤ m
l e t w ’ , p ’ =

gpu l e t v = v ’ [ 0 ]
l e t l = l ’ [ 0 ]
l e t w , p = loop c = l , i = 0 while c do

l e t i ’ = i + 1
l e t a = i ’ ≤ e
l e t c ’ = i f a then l e t v ’ = A [i ’ ]

l e t l ’ = v ’ ≤ m
in l ’

e lse f a l s e
in c ’ , i ’

in w , p

Listing 10: The Figure 20 code fragment, rewritten. We assume that v, l, and w have no
further use. Whether to rebind p depends on further use. The merge transformation
would merge the three gpu kernels and eliminate v’, l’, and w’.

l e t x” = [ 0 ]
l e t S , s ’ =

loop B = A , x ’ = x” for i < n
do l e t v ’ = gpu l e t v = B [i ] in v

l e t s” = gpu l e t x = x ’ [ 0 ]
l e t v = v ’ [ 0 ]
l e t s ’ = x + v in s ’

l e t C = B with [i :i+1 ] ← s”
in C , s”

Listing 11: The Figure 22 code fragment, rewritten. Whether to rebind s depends on
further use. The merge transformation would merge the gpu kernels and eliminate v’.
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determine under which circumstances it is better to manifest a read than migrating
loop statements, and from that develop a more appropriate model. We hope that our
model is ”good enough” as is.

Copy

The statement let x1 = copy x2 makes a copy of the array x2. Since no operands are
scalar-typed, no graph representation is needed. Array copying from the host is done
using asynchronous intra-device memory transfers that can exploit the inherent par-
allelism. To preserve the cost model of the statement we therefore consider it to be
host-only, provided the copied array contains more than one scalar.

l e t x1 = copy o1

Not migrated on its own.
No representation.

Iota

The statement let x1 = iota o1 o2 o3 produces an array of size o1. When evaluated on host
the array is asynchronously created by a parallel kernel. To preserve its cost model, we
consider the statement to be host-only. The operand o1 is a size variable.

l e t x1 = i o t a o1 o2 o3

Not migrated on its own.

o1

t1

o2

t2

o2

t2

Replicate

The statement let x1 = replicate [o1, ..., om] om+1 produces an array whose ith dimension
has length oi. All rows of the mth dimension will equal om+1. The array is created by a
parallel kernel when the statement evaluates on host, so we consider the statement to
be host-only, again to preserve its cost model. The operands o1, ..., om are size variables.

l e t x1 = r e p l i c a t e [o1, ..., om] om+1

Not migrated on its own.

o1

t1

o2

t2

om

tm

...

...
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We do not graph the dependency to om+1 as a replicate statement can be trans-
formed to handle the case where om+1 is migrated and the storage array o′m+1 is bound
in its stead. To be specific, when om+1 is a scalar variable that has been migrated to
device, then let x1 = replicate [o1, ..., om] om+1 can be rewritten into:

l e t x′
1 = r e p l i c a t e [o1, ..., om] o′m+1

l e t x1 = x′
1 [ 0 : 0 + o1 , . . . , 0 : 0 + om , 0 ]

When om = 1 and m > 1 a simpler rewrite is also possible:

l e t x1 = r e p l i c a t e [o1, ..., om−1] o′m+1

In the case of om = 1 and m = 1 we can rewrite the replicate to be a copy of om+1:

l e t x1 = gpu l e t om+1 = o′m+1 [ 0 ] in om+1

Using a gpu kernel instead of copy is a small micro optimisation that also allows ker-
nel reduction via the merge transformation, albeit at the cost of lost semantics. Other
rewrites are also possible if every dimension is of length one, in which case we need
not treat the statement as host-only.

Parallel kernels

Parallel kernel statements such as let x1 = map f1 x2 and let x1 = reduce f1 o1 x2 are
by their nature host-only; an intrinsically parallel operation cannot be run by a single-
threaded kernel like gpu e. We do not consider free variables of the f1 function argu-
ment to be operands of the kernel statements, and thus do not connect those to sinks.
If a free function argument variable gets migrated we perform the kernel rewrite de-
tailed in section 4.4.

l e t x1 = map f1 x2

Not migrated on its own.
No representation.

l e t x1 = reduce f1 o1 x2

Not migrated on its own.

o1

t1

Single-threaded kernels

The statement let x1, ..., xn = gpu let stm1 ... stmm in y1, ..., yn evaluates the given state-
ments on device. The gpu statement only indirectly depends on host variables via
these kernel statements and thus has no graph representation.

A gpu statement is host-only in the sense that the runtime cannot execute a gpu
kernel within another kernel. We do not consider it to be host-only however as it can
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be rewritten to not block the migration of a parent statement. Concretely if the parent
of a gpu statement is migrated into a kernel, then we rewrite the child gpu kernel into:

stm1

. . .
stmm

l e t x1 = [y1 ]
. . .
l e t xn = [yn ]

Afterwards the simplification rules discussed for the merge transformation (section 4.4)
can be used to eliminate xi bindings that only are used as x[dims] expression operands.

l e t x1, ..., xn = gpu e

Not migrated on its own.
No representation.

5 Benchmarks

To quantify the impact of our automatic program transformations as implemented in
the Futhark compiler we provide experimental test results in two forms. First we
present microbenchmark results that demonstrate the validity of always migrating ar-
ray literals that contain at least one scalar variable. Second we present aggregated
benchmark results for futhark-benchmarks [8], which is a benchmark suite endorsed by
the Futhark project. We take these to be a representative sample of Futhark programs
and use them to discuss the effectiveness of some of our optimistic transformations.

For both sets of benchmarks we provide results for four different hardware con-
figurations that span a variety of hardware designs and driver implementations. Two
configurations amounts to older consumer hardware while the other two represents
data centre grade hardware of recent design. The four configurations are:

• NVIDIA A100 is a dedicated data centre grade GPU from 2020 with CUDA and
OpenCL support. Benchmarks were measured on a AMD EPYC 7352 equipped
Linux installation, with ECC mode disabled.

• AMD Instinct MI100 is a dedicated data centre GPU from 2020 with OpenCL
support. Benchmarks were measured on the same Linux driven host hardware
as the NVIDIA A100.

• AMD Radeon Pro 560 is a dedicated mobile graphics chip from 2017 with OpenCL
support. Benchmarks were measured on a macOS driven MacBook Pro from
2017, equipped with Intel i7-7920HQ.

• Intel HD Graphics 630 is a graphics chip from 2016 with OpenCL support, in-
tegrated into Intel i7-7920HQ. Benchmarks were measured on the same macOS
driven host hardware as the AMD Radeon configuration.
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All benchmarks we present were measured with futhark-bench [10] and are the mean
values of at least 100 runs, or 1000 runs for data centre grade configurations. A warm-
up run was made for each benchmark before collecting measurements. We have remea-
sured each benchmark at least once to verify that reported results are representative.

5.1 Micro-benchmark of array literals

We use the following two pieces of Futhark code to demonstrate the performance bene-
fits of migrating array literals where at least one element is a scalar variable. Listing 12
measures the effect when array literals of two scalars are migrated, and Listing 13 mea-
sures the effect when array literals of ten scalars are migrated.

loop (A , v ) for i < 1 0 0 0 do
( [ 1 , v ] , v + 1 )

Listing 12: Migration benchmark for array literals of two scalars, incl. one variable.

loop (A , v ) for i < 1 0 0 0 do
( [ 1 , v , 0 , 1 , 1 , 1 , 0 , 0 , 1 , 1 ] , v + 1 )

Listing 13: Migration benchmark for array literals of ten scalars, incl. one variable.

It is not possible to benchmark the effect with just one element as such literals are
rewritten into replicate expressions. We create 1000 arrays per run for three reasons:

1. By measuring the creation of 100,000 or more arrays we achieve statistical robust-
ness.

2. We reduce measurement inaccuracies by forming units of meaningful work. If
we only measured the creation of one array literal per run a significant portion
of the measured time would be external overhead, such as end-of-run GPU syn-
chronisation to ensure all scheduled work have completed.

3. If we only created one array per run, each array creation would immediately be
followed by end-of-run synchronisation and we would not observe any benefits
from creating them asynchronously.

We alter the value of the scalar variable each iteration to prevent the compiler from
eliminating the loop.

Benchmark results are reported by Figure 28. We observe significant speedups
across all measured hardware configurations, the smallest improvement being of factor
two and the largest being of factor eleven.

Discussion

The results in Figure 28 supports the hypothesis that migrating array literals with at
least one scalar variable operand is advantageous.

Since we have prevented a number of writes equal to the number of array elements
it makes sense to assume that the speedup exhibits linear growth. For the benchmarks
run under CUDA each of the n prevented writes would be synchronous; correspond-
ingly we see a speedup close to n.
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Figure 28: Speedup obtained by migrating array literals with a scalar variable operand.

For the benchmarks run under OpenCL we find that the speedup for one syn-
chronous and one asynchronous write by far surpasses 20% of the speedup for one
synchronous and nine asynchronous writes. This supports our hypothesis that syn-
chronous inter-device memory transfers are more expensive than asynchronous ones.

That they remain less than 60% however also supports the hypothesis that any
memory transfer in itself is costly and thus is to be avoided. We take this to be an
indication that it is worth to reduce memory transfers by program transformation and
not simply making them asynchronous by improved code generation.

5.2 futhark-benchmarks

futhark-benchmarks [8] contains Futhark implementations of various existing, published
GPU benchmarks. Since its programs are written by independent authors and repre-
sent problem types that Futhark should be good at, and thus likely will be applied
to, we take it to be a representative sample of typical Futhark programs. By provid-
ing benchmark results for complete programs we demonstrate the practical impact our
transformations can have. If our hypotheses regarding aggressive worst case minimi-
sation of reads do not hold or our cost model has flaws, then we would expect some
benchmarks to slow down.

To facilitate a meaningful discussion we do not present results for benchmark pro-
grams that are unaffected by our work. Our results can thus not be used to estimate
the average speedup of typical programs, only those that our transformations affect.
For the 27 benchmark programs we do present results for, results are further aggre-
gated; each program is benchmarked with up to multiple data sets, and considering
each input separately is not fruitful to our discourse.

The results we present in Figure 29–32 are average speedups across respective
benchmark data sets, with slowdowns marked in red. Some of the benchmarks can-
not consistently be run on all hardware configurations, for which reason some of the
figures report results for fewer than 27 programs. The reader should be aware that the
y-axes vary. The mean speedup reported by each figure is an aggregate of the already
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Figure 29: Aggregated benchmark speedups for NVIDIA A100 under CUDA. The
mean speedup across the 27 programs is 1.17.

Figure 30: Aggregated benchmark speedups for AMD Instinct MI100 under OpenCL.
The mean speedup across the 27 programs is 1.4.
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Figure 31: Aggregated benchmark speedups for AMD Radeon Pro 560 under OpenCL.
The mean speedup across the 26 programs is 1.48.

Figure 32: Aggregated benchmark speedups for Intel HD Graphics 630 under OpenCL.
The mean speedup across the 19 programs is 1.58.
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aggregated program speedups and not of the individual data sets.
In the plots we see similar trends but also significant differences. For all hardware

configurations we can find the crypt, keys, and srad benchmarks in the top five of
most sped up programs, with trace frequently occurring as well. While fft can be
found in the top six of the OpenCL configurations it is the fourth worst under CUDA,
seeing a small slowdown. Similarly a small slowdown occurred for the pathfinder
benchmark under Intel HD Graphics 630 while small, yet noticeable speed ups oc-
curred under the other architectures.

The general trend is that a few programs saw significant speedups, skewing the
reported means, and that many other programs saw small or insignificant improve-
ments. Relatively speaking no program saw any significant slowdown.

Relative measurements can be misleading however, hiding significant costs or gains.
In Table 1 we show the top four slowdowns and gains for each hardware configuration,
in absolute terms. For the OpenCL based benchmarks, all slowdowns are shown. For
CUDA the remaining slowdowns are -61.62µs, -15.86µs, -15.49µs, -4.59µs, and -3.15µs.
The -61.62µs slowdown is for the particlefilter benchmark and the -4.59µs is the
insignificant slowdown of fft that likely can be attributed to noise.

In absolute terms only the slowdowns occurring for Intel HD Graphics 630 are sig-
nificant, and it is interesting that poseidon-bench appears among the slowdowns
for all four configurations. The program myocyte also reappears once, albeit with a
much smaller slowdown.

In absolute terms NVIDIA A100 under CUDA was least affected by our transfor-
mations, while AMD Radeon Pro 560 was the most. For every configuration the gains
outweigh the slowdowns, although only by a small margin for Intel HD Graphics 630.
The benchmark programs keys and srad reappear as top ranking beneficiaries of our
transformations. The LocVolCalib, driver-knn, ray, and smoothlife programs
also appear repeatedly.

Discussion

The transformation of srad, LocVolCalib, driver-knn, smoothlife, nbody-bh,
ray, and fft produced the largest absolute gains, and yet their rewrites were among
the most simple, following a similar pattern: A kernel statement computed one or more
results, typically within a loop, and another kernel used those results, potentially after
a few scalar computations had been performed.

In each case the reads and scalar computations were migrated into gpu kernels,
which the merge transformation reduced to a single kernel. In about half of the pro-
grams, no intermediate computations were done, and wasteful copies were created. In
these cases those wasteful copies were clearly not a problem, but the usage pattern may
be common enough to warrant getting rid of the inefficiency anyway. It is noteworthy
that the largest savings were obtained with a simple subset of our work.

The particlefilter program followed a similar pattern except that reads were
reduced from reduce kernels in mutually exclusive if branches before being used by a
third kernel. Allowing to reduce reads out of if statements thus proved useful. A read
was also reduced into a for loop and caused a rather long sequence of inter-loop scalar
statements and math function applications to be migrated. It might have been better
if this read had been blocked from migrating, even though it lead to no increase of
inter-loop gpu kernels. It is probably the cause of the small -61.62µs slowdown under
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NVIDIA A100 (CUDA)
-613.97µs heston32.fut 1573.07µs keys.fut
-228.89µs poseidon-bench.fut:arity8 2478.40µs srad.fut
-131.69µs poseidon-bench.fut:arity11 3837.48µs LocVolCalib.fut
-102.55µs smoothlife.fut 36171.22µs driver-knn.fut

AMD Instinct MI100 (OpenCL)
-2107.57µs poseidon-bench.fut:arity11 9619.57µs particlefilter.fut
-162.37µs nn.fut 30381.57µs ray.fut

-81.06µs tunnel.fut 50896.89µs driver-knn.fut
-33.44µs backprop.fut 178237.85µs smoothlife.fut

AMD Radeon Pro 560 (OpenCL)
-1390.20µs poseidon-bench.fut:arity11 38320.28µs LocVolCalib.fut
-790.35µs myocyte.fut 306614.48µs ray.fut

-11.88µs hashcat.fut 333133.43µs nbody-bh.fut
33.84µs fluid.fut 430191.53µs smoothlife.fut

Intel HD Graphics 630 (OpenCL)
-220724.13µs myocyte.fut 21931.07µs keys.fut
-23349.88µs poseidon-bench.fut:arity11 23081.89µs fft.fut

-377.10µs pathfinder.fut 72450.26µs srad.fut
2.00µs tunnel.fut 103813.69µs LocVolCalib.fut

Table 1: Top four slowdowns and gains for each configuration, in absolute terms.

CUDA. The program exhibited the fourth largest absolute gain on the AMD Instinct
MI100 however, and was sped up by factor 1.2. It cannot be determined whether the
loop rewrite aided to obtain this result or worked against it.

The most significant speedup was obtained for keys, which improved by a factor
of 13 on the Intel HD Graphics 630. It was also among the top-ranked programs by
absolute gain, even though its concrete gains were on the small side. Several factors
makes the program atypical but also interesting: It is an entirely sequential program
that consist of array scalar reads, scalar writes, loops, if statements, and scalar com-
putations. It uses no kernel statements. When transformed the reads are reduced out
of if statements, several while loops are migrated to device, and all reads and writes
of scalars are eliminated from the host by rewriting scalar writes into slice writes. We
are excited to observe a full array of techniques working together but do not expect the
finding to generalise well; the program does not benefit from the GPU in any way.

tracewas sped up by 1.3–2.64, solely by migrated three four-element array literals
to device. This means that their condition-less migration has practical significance.

The crypt program consistently appeared in the top three by speedup. The trans-
formations performed on the program however boils down to migrating eight scalar
reads to device, half of which are wastefully copied. This is done once, outside a loop.
That a significant speedup was achieved is likely because its two map statements were
applied to small arrays, which means that the work done by the GPU was insignificant
and that a large part of the program run time thus came from the overhead of those
eight reads. We have reservations regarding how representative this program is.

Our cost model is unable to explain the slowdowns that occurred for the myocyte,
poseidon-bench, and pathfinder programs. The only transformations done to
poseidon-bench were of top-level variables. We expect these to be initialised with
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the runtime and therefore they should not effect the benchmarks; yet clearly they do,
indicating a flaw in our cost model for Futhark.

For myocyte the transformations migrate three scalar reads inside three distinct if
statements that are guarded by the same condition. No kernels are introduced outside
these branches. The compiler then eliminates those if statements, and the wastefully
migrated reads are combined into one kernel by the merge transformation. We believe
that the cause of the slowdowns might be a compiler bug as the if statements are spe-
cial fallback branches that protect unsafe code. This could mean that the transformed
program operates on arbitrary data.

For pathfinder our transformations rewrote a for−in loop such that the corre-
sponding scalar read could be sunk. No other change occurred. A 1.02–1.25 speedup
resulted on the dedicated GPUs, attesting to the usefulness of sinking, but somehow
this change caused a factor 0.98 slowdown on the Intel HD Graphics 630. Further study
is required to understand why this is.

The heston32 program saw slight speedups under the dedicated OpenCL config-
urations but a slight slowdown under CUDA. The slowdown under CUDA was caused
by a single data set that was slowed down by factor 0.6. This is the only significant
slowdown of any single benchmark data set. The transformations made two rewrites:
In one branch a loop was rewritten to prevent reading the initial and updated values
of a loop parameter, thus preventing a read from manifesting every iteration. This ap-
pears to have been a beneficial change. The second change made was preventing four
reads of reduce results by migrating those and a significant number of intermediate
computations that map kernels depended upon. We believe this might be the cause.

To prevent the four reads, 223 scalar statements were moved to device, producing
74 values to be read by kernels. Twenty of the migrated statements were sqrt com-
putations. The merge transformation really shone as the migrated statements were
merged into a single gpu kernel, eliminating 226 gpu kernels and reducing their array
reads to just those of the four reduce results. It might however be that preventing those
four reads came at too high a cost. From Figure 28 it appears like memory transfers in
general might be cheaper under CUDA than OpenCL.

In summary we did not see any slowdown manifest from migrating whole loops,
and we only saw benefit from allowing reductions out of if statements. Most gains fol-
lowed from simple migration of scalar operations interspersed between GPU kernels
but each of the other transformations we presented also saw use, except the replicate
rewrites. We did not find conclusive evidence as to whether it is better to allow or
block the reduction of reads into loops. The slowdowns we observed were mostly
insignificant or indications of implementation flaws, thus supporting the theoretical
underpinnings of our work.
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6 Future work and conclusion

6.1 Future work

Our work can be expanded upon in two ways to further reduce memory transfers.

Probabilistic vertex cuts

We have aimed to migrate no more statements to device than are necessary, corre-
sponding to finding the minimum vertex cut that minimises |D|. In reality other min-
imum vertex cuts might exists where the reduced reads have smaller probability of
manifesting, such that it is worth to migrate more statements. A motivating example
would be the code fragment

l e t a = A [ 0 ]
l e t b = A [ 1 ]
l e t c = a + b
l e t d = c + 4 2
l e t e = i f x then d e lse 4 3
l e t f = fhost e

where C = ({a, b, c}, {d, e, f}) is the minimum vertex cut that causes the least state-
ments to be migrated but C ′ = ({a, b, c, d}, {e, f}) is a minimum vertex cut that allows
the resulting read to be sunk and made conditional. In this case the overhead of also
migrating d would be insignificant as no extra gpu kernels would have to be run.

Non-copying gpu kernels

In the language we described, a gpu kernel always copies its results to new arrays, even
array-typed values. This makes their semantics and implementation simple; allowing
array slices to be returned without copying have far-reaching implications for memory
management and kernel scheduling.

If it is known in advance which array a gpu kernel will return, and the array have no
aliases, then the array need not be copied however. The host will know its location in
device memory, can manage its memory, and can pass it to subsequent kernels before
its contents have been written. It is thus possible to return migrated array literals
without copying them. If replicate or iota statements were migrated, the arrays they
produce could likewise be returned without additional copying.

The real significance is that array scalar writes of the form let x1 = x2 with [o1, ..., om]
← om+1 then can be migrated without altering its cost model, and any reads that its
indexing operands depend upon need not be read to host. We note that such indexing
pattern can be found in futhark-benchmarks, which means that a no-copy optimisation
represents real potential for memory transfer reductions.

Another significant implication is that any scalar array write induced memory trans-
fer then also can be prevented, simply by migration.

6.2 Conclusion

We have demonstrated a series of dataflow dependent program transformations that
move sequential CPU computations to the GPU, such that device synchronisation is
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reduced and the worst case number of device-host memory transfers is minimised. To
drive the transformations we developed a graph-based cost model, showed how such
model can support conditional and loop-based computations, and presented a variant
of the Ford-Fulkserson method that efficiently solves the modelled problem.

Experimental results generally show modest speedups in programs affected by our
transformations but also that significant, manyfold speedups are possible. Because our
model was tailored to the Futhark programming language and its purely functional
semantics it is uncertain to what degree our techniques and results generalise. With
that said our work appears to be a useful contribution to the domain it was intended
and shows that automatic optimisation of inter-device communication can be fruitful.
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