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Abstract

The recent introduction of denoising diffusion probabilistic models has led to a
surge in the field of AI. While text-to-image models such as OpenAI’s DALL-E
2 have recieved widespread public attention, many scientific fields are looking
towards the technology as well. Researches in the field of protein design recently
demonstrated that such models could be used for protein generation, achieving
results comparable to state-of-the-art models. In this thesis, we show how a
diffusion model can be implemented in Futhark, and compare our results to an
equivalent model implemented using the PyTorch library.
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1 Introduction

This thesis combines the fields of parallel programming, machine learning and
protein design. The following subsections provide brief overviews of the most
important components of the thesis, concluding with a listing of our contribu-
tions.

1.1 Futhark

Futhark [9] is a purely functional, data-parallel, array language. While most
people in the field of computer science have an idea of what constitutes a purely
functional language, the concepts of data-parallelism and array languages are
less common, and so we provide a quick overview.

Data-parallelism is the paradigm of parallelizing a program that performs
the same operation multiple times on different sections of a large dataset. A
classical example of an operation that might exploit data parallelism is the map
operation on arrays. With sequential execution, a map operation on an array
with n elements will take O(n) time. However, since the function run by the
map has no side effects (assuming that the language is indeed purely functional),
we can run the function concurrently on each element, which yields a runtime
of only O(1).

Array languages are simply languages that permit operations on array struc-
tures rather than just primitive types such as integers and booleans. For exam-
ple, an array language might allow computing the dot product of two matrices A
and B by simply writing A * B. Futhark does not support basic operations such
as addition, multiplication, etc. on arrays, but instead provides a set of primitive
functions such as map and reduce for operations on arrays. In Futhark, these
operations are called Second-Order Array Combinators (SOACs), and, while
their semantics are defined in a sequential manner, they are typically compiled
to parallel code.

This brings us to the Futhark compiler1, which is the cornerstone of the
Futhark language. It is a heavily optimizing compiler which generates either
OpenCL, CUDA or sequential C code for use on general purpose GPUs. Many
of these optimizations are non-trivial; for example, the compiler must decide how
to deal with nested parallelism, which may occurs when two or more SOACs are
nested, such as in figure 1. We want to avoid too much nested parallelism,
since directly translating such code into GPU code may lead to creating more
threads than what the hardware actually supports. Suppose that, in figure 1,
xxs contains 1, 000 arrays with 1, 000 elements each. If we tried to create a
thread for each task, it would lead to creating 1, 000, 000 threads; much larger
than the number of cores on a typical GPU.

1 let ys = map (\xs -> reduce (+) 0 xs) xxs

Fig. 1: A simple example of nested parallelism.

In almost all cases, such nested parallelism can be transformed by the compiler
into flat parallelism, which in the case for a map nested in a reduce would look

1 https://github.com/diku-dk/futhark
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as shown in figure 2. Here, xxs_shp is the shape of xxs, and xxs_val is the
flattened array of values in xxs.

1 let xxs_flg = mkFlagArray xxs_shp 0 (replicate len 1)
2 let sc_xxs = sgmScanInc (+) 0 xxs_flg xxs_val
3 let indsp1 = scanInc (+) 0 xxs_shp
4 let ys = map2 (\shp ip1 -> if shp == 0 then 0
5 else sc_xxs[ip1-1]
6 ) xxs_shp indsp1

Fig. 2: Figure 1 converted to flat parallelism.

Notice that we no longer have any nested SOACs. Many similar types of flat-
tening optimizations exists, all of which the Futhark compiler can utilize.

1.2 Protein Design

Protein design is, as the name suggests, the discipline of designing protein
molecules in order to obtain some desired behavior for said protein. The field
can be divided into two areas: protein redesign, which modifies existing protein
structures, and de novo design, which generates new proteins from scratch. For
this thesis, we focus our attention on the last one.

Protein design is based on the notion of protein folding. Initially, an unfolded
protein is simply as a long chain of amino acids. However, these amino acids
can interact with each other, forming bonds that constrain the protein into a
certain shape, which then results in what we call the folded protein. Clearly,
then, understanding how a protein folds relies on understanding how its amino
acids interact, specifically, how the force they exert on each other bends the
protein into a certain shape. This cumulative force is called the free energy of
the protein. An unfolded protein has a relatively large amount of free energy,
meaning that the amino acids will be exerting a lot of force on each other.
A folded protein has comparatively low amount of free energy, such that the
amino acids exert only little force on each other. The structural state of a
protein that has a free energy minimum is called the native state. This leaves
us with an optimization problem: given a three dimensional protein shape, find
the sequence of amino acids such that the free energy minimum is minimized.

Optimization problems are commonplace in many scientific areas, so at first
glance, the task seems straightforward enough. However, new problems arise
when we take a closer look. In order to optimize for a sequence that reaches a free
energy minimum, we must have some sort of energy function that relates amino
acid sequences to their free energy. Many different types of energy functions
exists, but they are common in that that they can provide either speed or
accuracy, but not both. The most accurate types of energy functions are those
that are based on quantum mechanical simulations, but they are also much too
computationally expensive to be used for protein design. On the other end, there
are heuristically-based energy functions which are quite fast, but lack accuracy.
In the middle, there are the physically-based functions, which are based on the
”correct” quantum mechanical simulations, but with some simplifications which
make them less computationally expensive. One of the most widely used [3]
energy functions is the Rosetta algorithm [22], which may be considered state of
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Fig. 3: The diffusion model

the art. It uses a Monte Carlo strategy 2 to generate the amino acid sequences.
Successful Rosetta predictions fall within a Cα RMSE3 of 3-6 Ångström when
compared to real-world proteins designed with the same structure.

However, within the last decade, deep learning has emerged as an alternative
to the ”traditional”probabilistic models such as Rosetta. One of the most recent
breakthroughs in the field has been the AlphaFold model [12], a deep learning
model developed by DeepMind. AlphaFold has made protein folding predictions
with a Cα RMSE of ca. 1.5 Ångström, a significant improvement on existing
methods. Building on top of this work, there have been attempts to use so-
called diffusion models for prediction as well [32]. This particular diffusion
model (RFdiffusion) also yield good results, in some cases making predictions
very close to AlphaFold in terms of accuracy.

1.3 Diffusion Models

Diffusion models are a type of generative models. A relatively new concept,
the diffusion model was first introduced in 2015 by Sohl et al [28]. The model
consists of two steps: a forward diffusion process, and a backward diffusion
process. The forward diffusion process iteratively applies noise to an image
using some distribution (e.g. Gaussian), which eventually results in an image
which is pure noise. The backwards diffusion process uses a neural network that
is trained to remove noise from an image, eventually resulting in the original
image from the forward direction. The idea here is then that one can provide an
image with completely random noise (using the distribution from the forward
diffusion process), and then generate an entirely new image which is similar to,
but not quite the same as, the original image. For an idea of how the model
works, see figure 3.

While there are some non-obvious ways to improve the noise generation in
the forward direction (as investigated in later papers [20]), the ”core element”
of the diffusion model is the neural network that ”denoises” and thus permits
generation of novel images. Thus, selecting a type of neural network that can
perform effective denoising is an important thing to consider.

1.4 Contributions

This brings us to the concrete contributions of the thesis. Since deep learning
requires computations that are suitable for performing on GPUs, we want to
leverage the heavily optimizing compiler of Futhark to show that the language

2 Randomized algorithm with a bounded running time but some margin of error
3 The root-mean-square deviation of atomic positions
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can find use in the field of protein design; more specifically, that the language
can be used for implementing diffusion models which can compare to existing
implementations in terms of runtime. Our concrete contributions are as follows:

1. We attempt to design and implement a diffusion model using the LeNet-5
neural network design.

2. We implement a U-Net in Futhark and compare its performance to existing
implementations.

3. We implement a diffusion model in Futhark using the U-Net neural net-
work design and compare its performance to existing implementations.

2 Background

2.1 Diffusion Models

We now dive a little deeper into the mathematical theory behind diffusion mod-
els, based on the paper from Ho et al. [10]. We begin by introducing some
initial definitions.

First, we have an initial distribution of original images q(x0), from which we
can sample an image x0 ∼ q(x0). Now, the forward diffusion process is defined
as follows:

q(xt | xt−1) := N (xt;
p

1 − βtxt−1,βtI) (1)

Here, N applies noise based on a normal distribution, where xt is the output,√
1 − βtxt−1 is the mean and βtI (which is just βt) is the variance. βt itself is a

variance schedule, which adjusts the amount of noise applied at different time
steps. The reference paper has a linearly increasing β, going from β1 = 10−4 to
βT = 0.02. This forward diffusion process then yields images x1, ..., xT , where
T is the predefined maximum number of steps for applying noise, meaning that
xT is the completely noised-image. The paper we base this section on has
T = 1000 (although later papers manage to reduce the maximum number of
steps significantly). A property of the forward process, as mentioned in the
reference paper, is that it admits sampling xt at an arbitrary timestep t without
iteratively computing all of the previous steps (i.e. it can be sampled in closed
form):

αt := 1 − βt (2)

ᾱt :=

tY

s=1

αs (3)

q(xt | x0) = N (xt;
√
ᾱtx0, (1 − ᾱt)I) (4)

This property will be relevant later when implementing the neural network, since
it can greatly reduce the number of computations necessary when training.

We now define the probability distribution of the backward process pθ(xt−1 | xt)
using a neural network with parameters θ:

pθ(xt−1 | xt) := N (xt−1, µθ(xt, t),Σθ(xt, t)) (5)
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where µθ and Σθ are parameters of the neural network. While this would nor-
mally mean that we would have to train the neural network to learn both the
mean and the variance, the reference paper determines that high quality results
can be obtained with a fixed variance, and so we only need to let the neural
network learn the mean µθ.

We must then define an objective function for the neural network to learn the
mean. The reference paper settles on the following definition for µθ

4:

µθ(xt, t) =
1√
αt

�
xt −

βt√
1 − ᾱt

ϵθ(xt, t)

�
(6)

where ϵθ is a function approximator that can predict ϵ from xt. This gives us
the following objective function which we can use to train our model:

Lt =



ϵ− ϵθ

�√
ᾱx0 +

p
(1 − ᾱt, t

�



2

(7)

2.2 Neural Network

An (artificial) neural network is a collection of connected nodes called neurons.
A neuron can receive a signal from another connected neuron, modify that sig-
nal and then send it to yet another neuron. The neurons in the network are
divided into layers, where neurons in the same layer typically perform the same
task. A neural network always contains an input layer and an output layer, and
any number of layers in between, which signals travel over.

In a diffusion model, the most complex and resource-intensive operation is
the process of identifying ”what” to remove when performing the backwards
diffusion — i.e. how to identify noise. For this, simply choosing any neural
network is insufficient, since neural networks can vary greatly in their compu-
tational power.

One of the simplest types of neural networks are feedforward neural net-
works (FNN), which are also some of the first neural networks conceived [27].
Common FNN variants are multilayer perceptrons, which are fully-connected
neural networks (all network neurons in one layer are connected to the one in
the previous layer). While multilayer perceptrons are suitable for a variety of
applications, they are not in general suitable for image analysis, since the num-
ber of weights per neuron quickly grows out of control due to full-connectivity.

This leads us to convolutional neural networks (CNN), which are, on the
other hand, commonly used in the field of image analysis. CNNs do not suffer
from issues caused by full-connectivity, since they use kernels which only receive
input from a small group of neurons, such as a small square of pixels in an image.
For this reason, we choose to focus on CNN variants in this thesis. There already
exists a lot of research that applies CNN, particularly within the field of imaging.
A specific example is classification of digits in the MNIST dataset, where the
currently best performing models are CNNs5.

4 The definition is obtained through a series of derivations not included here, but they can
be found in the associated paper [10].

5 https://en.wikipedia.org/wiki/MNIST database#Classifiers
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2.2.1 Positional Embeddings / Time Embeddings

Positional embeddings is a technique mainly used in natural language process-
ing to give information about the position of tokens in a sequence.

However, in the DDPM we use positional embeddings as time embeddings.
The information given from the embeddings is crucial, as it serves to indicate
the current timestep of the image being processed by the model. This additional
information plays a big role for the entire generative model, since the amount
of noise present in the image varies. An image at an early timestep will have
much more information about the original data than at a later timestep. This
means we need some way to indicate wether the model should focus on learning
detailed features, or on the data distribution.

A single number, such as the timestep, could serve as a basic form of em-
bedding, but this would limit the complexity of the patterns and relationships
that the model could learn.

A commonly used positional encoding is sinosoidal positional embeddings,
introduced in ”Attention is All You Need” by Vaswani et al. [29] to provide a
sense of order of words in a sequence.

In sinusoidal positional embeddings, a unique vector encodes each position.
For a given position, the embedding vector is composed of sine and cosine func-
tions of different frequencies. The frequency is determined based on whether
the index of the vector is even or odd:

PEpos,2i = sin(pos/100002i/dmodel) (8)

PEpos,2i+1 = cos(pos/100002i/dmodel) (9)

Sinusoidal embeddings offer several advantages: they provide a unique and
scalable representation for each position, and they output values in the range
of -1 to 1, which prevents potential numerical instability issues such as overflow
or underflow.

Once computed, these embedding vectors are incorporated into the model
using various methods. In our implementation, the vector is passed through
a fully connected layer before being added to the convolutional layer outputs.
This approach functions almost like an ”additional bias” that is adjusted accord-
ing to the specific timestep, thus giving the model optimized, timestep-specific
parameters.

3 Design & Implementation

This section presents the design decisions made when implementing our convo-
lutional neural network, as well as relevant sections of code from the implemen-
tation.

The implementation can be found at: https://github.com/PeterLarsen404/
Diffusion
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3.1 Forward Diffusion

We know from the background section that this part of the model generates the
noisy image at a given timestep t, by sampling from the q(xt|x0) distribution.
To do this we need ᾱ, which is generated from the α sequence which is again
generated from the β sequence. We define the following functions for computing
the sequences:

1 def mk_beta (steps : i64) (start : f64) (stop: f64) : [steps]f64 =
2 tabulate steps
3 (\i ->
4 start+(f64.i64 i)*((stop-start)/((f64.i64 steps)-1f64)))
5
6 def mk_alpha [n] (betas : [n]f64) : [n]f64 =
7 map (\b -> 1f64 - b) betas
8
9 def mk_alpha_bar [n] (alphas : [n]f64) : [n]f64 =

10 scan (*) 1 alphas

What’s notable here is that β essentially is just a linspace of step elements,
from start to stop with equal numerical distance between them. Otherwise,
the creation of α and ᾱ follows the background math with the use of the SOAC’s
map and scan.

We now have all we need to generate the noisy image xt from the q(xt|x0)
distribution. The following shows the implementation of how we sample a noisy
image at timestep t:

1 def q_sample [n][m] (x0 : [n][m]f64) (t : i64) (alpha_bar : []f64)
2 (seed : i32) : ([n][m]f64,[n][m]f64) =
3 let mean = f64.sqrt alpha_bar[t]
4 let var = 1f64 - alpha_bar[t]
5 let eps = mk_rand_array seed n m
6 let noisy_img =
7 map2 (map2 (\ i e -> (i * mean) + (e * (f64.sqrt var)))) x0 eps
8 in (noisy_img, eps)

In addition to alpha_bar, q_sample takes the original image x0, the timestep
t, and the seed we want to generate the random noise from.

We initially compute the mean and var corresponding to the mean (
√
ᾱt)

and variance (1 − ᾱ t) of the closed form. We then use mk_rand_array to
sample the random noise (ϵ). Finally, we use two nested map2 to map over each
pixel in the image, computing each pixel value of the noisy image.

3.2 Backwards Diffusion

We will in this section go over the key elements of the backwards diffusion.

We know from the background section that the process of backwards diffu-
sion consists of multiple samples from the p(xt−1|xt) distribution, going from
the predefined maximum number of steps T down to 0. We implement the sam-
pling from the p(xt−1|xt) distribution as follows:
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1 def p_sample [n][m][a] (x_t : [n][m]f64) (t : i64) (num_groups : i64)
2 (beta : [a]f64) (alpha : [a]f64)
3 (alpha_bar : [a]f64) (w_images)
4 (seed: i32) : [n][m]f64 =
5 let time_embedding =
6 sinusoidal_position_embeddings 256 (f64.i64 t) :> [256]f64
7 let (eps_theta,_) =
8 unet_simple x_t time_embedding num_groups w_images
9

10 let alpha_bar_t = alpha_bar[t]
11 let alpha_t = alpha[t]
12 let eps_coef = (1f64-alpha_t) / ((1 - alpha_bar_t) ** 0.5f64)
13 let var = beta[t]
14
15 let eps =
16 if t > 1 then mk_rand_array seed n m
17 else replicate n (replicate m 0f64)
18
19 let res = map3 (map3 (\ xt eps_th e ->
20 let mean = 1f64 / (alpha_t ** 0.5f64) * (xt - eps_coef * eps_th)
21 in mean + (var ** 0.5f64) * e
22 )) x_t eps_theta eps
23 in res

The predicted noise eps_theta is computed using the neural network model.
We then compute the noise coefficient 1−αt√

1−ᾱ
using the α and ᾱ values cor-

responding to the current timestep, giving us eps_coef. The noise eps is
computed using mk_rand_array if the noise step is above 1; otherwise we
set eps to 0. We know that the variance var is held constant to the cor-
responding β value for the current timestep. Finally, we construct the image
for timestep t − 1. For each pixel, we calculate the mean of the distribution
( 1√

αt
(xt − 1−αt√

1−ᾱ
ϵθ(xt, t))), and sample using the variance.

Sampling a new image from pure noise is made from the following function
sample, which correspond to the sampling algorithm from the DDPM paper:

1 def sample [a] (num_samples : i64) (num_groups : i64) (x_seed : i32)
2 (eps_seed : i32) (img_size : i64) (n_steps : i64)
3 (beta : [a]f64) (alpha : [a]f64) (alpha_bar : [a]f64)
4 (trained_weights) =
5 let noise_imgs_seeds = mk_rand_seeds x_seed num_samples
6 let noise_imgs =
7 map (\ x -> mk_rand_array x img_size img_size) noise_imgs_seeds
8 let eps_seeds = mk_rand_seeds eps_seed n_steps
9 let eps_seeds2d =

10 map (\ x -> mk_rand_seeds x num_samples) eps_seeds
11 let generated_imgs =
12 loop denoised_imgs = noise_imgs for t_ < n_steps do
13 let t = n_steps - t_ - 1i64
14 let new_denoised_imgs =
15 tabulate num_samples
16 (\ i ->
17 p_sample denoised_imgs[i] t num_groups
18 beta alpha alpha_bar
19 trained_weights eps_seeds2d[t_,i])
20 in new_denoised_imgs
21 in map (\ x ->
22 let max = f64.maximum (flatten x)
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23 let min = f64.minimum (flatten x)
24 in map (map (\ x -> ((x-min) / (max - min)) * (1-(-1))+(-1))) x
25 ) generated_imgs

Which initially generates the needed seeds for making the noisy start images,
and the seed for p_sample. Then a loop is run n_steps times (n_steps is
often equal to 1000). In each iteration we call p_sample for each image, remov-
ing one ”step” of noise. This can be done in parallel with the use of tabulate.

Finally, the images are normalized and scaled so they fit into the [-1;1] range
of the original training images. This range is also used by the DDPM paper.

3.3 Neural Network

One of the main goals of this project was to investigate different neural network
variants in order to determine which ones were most suitable for implementing
diffusion models. This section describes our approach and results in that area.

It is important to stress at this point that our goal is not to implement a
Futhark library for constructing convolutional neural networks, but to imple-
menting a specific convolutional network with a specific purpose (for example,
we will not be translating all of the PyTorch functions into Futhark).

We previously asserted that convolutional neural networks are highly suitable for
tasks concerning image analysis. For this reason, we chose to use a convolutional
neural network for image noise prediction. Our initial CNN used the LeNet [17]
design. We first give an overview of its structure, and then a further explanation
of each of its layers.

After attempting to implement our CNN using the LeNet design, some short-
comings became apparent, and we decided to switch to the u-net design [23],
which produced much better results. We later give a more comprehensive ex-
planation of the issues with LeNet and how we implemented the u-net design.

3.3.1 LeNet

We initially chose to use the LeNet design — specifically LeNet-5 — in our
implementation. It was first proposed in 1998 by LeCun et al. [17] as one of
the earliest convolutional neural networks. Its design can be seen in figure 4.
This already brings us to one of the main issues with using LeNet for noise
prediction. LeNet-5 was originally developed for MNIST classification (and
handwritten digit recognition in general), so it only has 10 ”boolean” outputs
that indicate which digit it predicts. However, since we want to predict noise
from an input image with dimensions 28 × 28, we need 28 × 28 = 784 outputs.

To solve this problem, we have developed a variant of LeNet-5 for this thesis
called LeNet-5-Fut. This modifies the design in several ways. First, the output
layer now has a number of outputs (784) corresponding to the image dimen-
sions. Additionally, we remove the last two fully-connected layers, since the last
convolutional layer C3 provides 400 values, but we need 784 values, so instead of
scaling down, this layer scales up. Lastly, we introduce the use of positional em-
beddings with an additional fully connected layer for each convolutional layer.
The new design can be seen in figure 5 We now go into more detail with the



3 Design & Implementation 14

Fig. 4: Overview of the LeNet-5 design

design and implementation of each layer. There are three different layers: con-
volutional layers, average pooling layers, and fully-connected layers. We also
give a description of the activation functions used between each layer.

3.3.2 Convolutional Layer

Convolutional layers are the most significant part of a CNN. When running a
neural network, the vast majority of runtime is spent on the convolutional layers
[14].

The idea behind convolution layers is that the input data (typically an im-
age) is ”convolved” with a small matrix, called the kernel or filter. The convolu-
tion occurs by element-wise multiplication of the elements in the small matrix
with the elements in the ”visible” area of the input data. The products are
then summed and placed in the output data, known as the feature map. Their
placement typically corresponds to their position in the input data, but not nec-
essarily, as the input data and feature map might not have the same dimensions.
The convolution will generate a feature map for each kernel/filter used.

The math behind the convolution is not trivial.

Given an input image I of shape H in×H in and a kernel K of dimensions
k1 × k2 the cross-correlation operation for a pixel (i.j) is given by:

(I ∗K)ij =

k1−1X

a=0

k2−1X

b=0

I(i + a, j + b)K(a, b) (10)

Where the output is a feature map of shape H out×W out.
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Fig. 5: Overview of the LeNet-5-Fut design

The output dimensions of the feature map is calculated as follows:

H out = (H in− k1 + 2 ∗ P )/S + 1 (11)

W out = (W in− k2 + 2 ∗ P )/S + 1 (12)

(13)

Where P is the number of symmetrically applied padding in the form of zeroes
around the image. We often pad the input image to result in an output of a size
similar to the input image.

The convolutional operation is identical to the cross-correlation operation,
the only exception is that the kernel in the convolution is flipped 180 degrees.
However, whether we flip the kernel or not does not matter in the context of
convolutional layers in neural networks. This is because the values of the kernel
are learnable parameters, so the network can still learn to recognize the same
set of features. If it is needed to flip the kernel to recognize a certain feature,
the model just learn a flipped version of the kernel. We therefore ignore this
step in our implemented convolution.

In the case where the input image has multiple channels, thus is of the form
l×H in×H in. And we want another amount of output channels o, the kernel
must have the size of o × l × k1 × k2. We end with the following for the pixel
(i.j) in output channel o:

(I ∗K)oij =

k1−1X

a=0

k2−1X

b=0

lX

c=1

Ko,c,a,b · Ic,i+a,j+b + bo (14)

As can be seen from the LeNet-5-Fut design in figure 5, the first convolu-
tional layer changes dimensions from 1 × 28 × 28 to 6 × 28 × 28 as the number
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of channels increase. Note that if you provide an image as an input to a convo-
lutional layer, the output is not necessarily structured as an image. The result
of the layer is then feature maps numbered 1 to 6.

The ”naive” approach to implementing a convolutional layer is to implement
the mathematical operations directly: for each image and kernel, we ”slide”
them together and use the reduce operation. However, while straightforward,
this is not a very efficient implementation. Numerous more efficient algorithms
exists, of which the most notable ones are im2col (also known as GEMM), fast
fourier transformations (FTT) and Winograd, each with distinctive pros and
cons. For example, Winograd may have better performance on small batch
sizes, while FTT scales better for larger batch sizes [14]. PyTorch uses cudNN,
which implements all three, but selects a specific one depending on the size of
the input.

Due to time limitations, we have only implemented two different convolution
algorithms: the naive approach and im2col.

im2col
Instead of using the naive approach, im2col transforms the input and kernel
into two matrices, which are then multiplied together. This results in significant
speedup on GPU architecture, since matrix multiplication is highly paralleliz-
able. Results can be found in section 4.

We will for the implementation of the convolutional layer focus on the im2col
approach since this is the used version, the naive approach can be found in the
appendix.

We implement the following helper functions for the convolution:

1 def add_padding [l][n][m] (imgs : [l][n][m]f64) (padding : i64) =
2 let n_pad = (n+(padding*2))
3 let m_pad = (m+(padding*2))
4 in map (\ img_i -> tabulate_2d n_pad m_pad (\ i j ->
5 if (i < padding || i >= (n+padding)
6 || j < padding || j >= (m+padding))
7 then 0
8 else img_i[i-padding,j-padding])) imgs
9

10 def im2col [l][n][m] (img : [l][n][m]f64) (total : i64)
11 (kernel_size : i64) (new_n : i64)
12 (new_m : i64) =
13 let k_total = kernel_size*kernel_size
14 in transpose (
15 flatten (
16 tabulate_2d
17 new_n
18 new_m
19 (\ y x ->
20 flatten (
21 map
22 (\ i ->
23 flatten (i[y:y+kernel_size,
24 x:x+kernel_size])
25 :> [k_total]f64)
26 img
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27 ) :> [total]f64
28 )))

The add_padding function is used to symmetrically apply padding in the form
of zeroes around the innermost two dimensions of an image. The padding pa-
rameter decides the width of the zero padding applied to each side of the image.

im2col makes the transformation of the 3d input into the respective 2d
im2col matrix. The function essentially maps over the images and flatterns
each patch of size kernel_size x kernel_size that the kernel otherwise
would have multiplied and summed together. This is again flattened to combine
each patch in a single row before transposing it. The end result is a 2D array
where each column corresponds to a flattened patch from all channels of the
original image.

The following is the implemented convolutional layer:

1 def convolve2D [n][m][p][k][l][o] (imgs : [l][n][m]f64)
2 (kernels : [o][l][p][k]f64)
3 (biases : [o]f64)
4 (padding : i64) =
5 let new_n = (((n+(padding*2))-p)+1)
6 let new_m = (((m+(padding*2))-p)+1)
7 let total = l*p*k
8
9 let imgs_padded =

10 if (padding != 0) then
11 add_padding imgs padding
12 else
13 imgs
14
15 let img_col = im2col imgs_padded total p new_n new_m
16 let kernel_col = map (\ x -> flatten_3d x :> [total]f64) kernels
17 let res = matmul kernel_col img_col
18 let res_bias = map2 (\ r b -> map (+b) r) res biases
19 in map (unflatten new_n new_m) res_bias

We initially calculate the dimensions of the output image: new_n and new_m.

If needed, we add padding to the input images with add_padding before com-
puting the 2d im2col matrix using im2col.

The kernels are also reshaped into a 2d array using map flatten_3d.

We now make the convolution operation with the use of matrix multiplication,
before adding the respective biases.

Lastly, the image is reshaped into its output dimensions.

We make the following backwards implementation of the convolutional layer:

1 def convolve2D_b [n][m][p][k][l][o][q][r]
2 (out_grad : [o][q][r]f64) (conv_input : [l][n][m]f64)
3 (kernels : [o][l][p][k]f64) (valid_num : i64)
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4 (full_num : i64) : ([l][n][m]f64, [o][l][p][k]f64,[o]f64) =
5 let kernels_grad =
6 tabulate_2d o l (\ i j ->
7 flatten (convolve2D [conv_input[j]] [[out_grad[i]]]
8 [0f64] valid_num)
9 :> [p][k]f64)

10 let input_grad =
11 convolve2D out_grad (transpose kernels[:,:,::-1,::-1])
12 (replicate l 0f64) full_num :> [l][n][m]f64
13 let biases_grad = map (\ x -> reduce (+) 0 (flatten x)) out_grad
14 in (input_grad, kernels_grad, biases_grad)

We compute the gradients of the kernels using convolutions between each pair
of original inputs and the backpropagated gradients.

The input gradients is found with another convolution between the back-
propagated gradients and transpoed kernels.

The bias gradients are found by summing together the backpropagated gra-
dients for each channel.

3.3.3 Pooling Layer

A pooling layer uses a window similarly to the convolutional layer, but simply
uses the window to reduce the dimensions of the input feature map. For exam-
ple, using a 2x2 pooling window with stride 2 and average pooling will ”return”
the average value of all four data points as a single data point, effectively halving
the feature map.

The backward pass of the average pooling layer essentially performs an un-
pooling operation, scaling the gradient feature map to match the dimensions of
the original input to the layer. E.g a stride of 2 will double the dimensions of the
feature map. For each pixel in the gradient feature map, its value is distributed
equally across the corresponding window in the original input.

We implement the pooling layer the following way:

1 def avg_pool [l][n][m] (imgs : [l][n][m]f64) (stride : i64) =
2 let out_y = n/stride
3 let out_x = m/stride
4 let area_size = f64.i64 (stride*stride)
5 in map (\img ->
6 tabulate_2d out_y out_x (\ y x ->
7 let area =
8 img[(y*stride):(y*stride+stride),
9 (x*stride):(x*stride+stride)]

10 in reduce (+) 0 (flatten area) / area_size)
11 :> [out_y][out_x]f64) imgs

out_y and out_x compute the dimensions of the feature map after pooling.

We then slide the window of dimensions stride×stride over the image using
tabulate_2d with the new dimensions, computing the average of the values
in the window.
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We implement the following backwards average pool function:

1 def avg_pool_b [l][n][m] (imgs : [l][n][m]f64) (stride : i64) =
2 let out_y = n*stride
3 let out_x = m*stride
4 let area_size = f64.i64 (stride*stride)
5 in map (\img ->
6 tabulate_2d out_y out_x (\ y x ->
7 img[y/stride, x/stride] / area_size
8 )
9 ) imgs

Here out_y and out_x compute the dimensions of the input feature map be-
fore pooling.

We use tabulate_2d to distribute the gradient out to its respective pixels.

3.3.4 Fully-connected Layer

As the name implies, a fully-connected layer (also known as a dense layer) is
fully connected to the preceding layer, i.e. every node in the preceding layer is
connected to every node in this layer. The output features y of a fully-connected
layer are computed using the following formula:

y = x ∗W + b (15)

Where x is the input, W is the matrix of weights corresponding to the connec-
tions between the neurons of the preceding layer and the current layer, and b is
the vector of biases associated with each neuron in the current layer.

For the backwards fully connected layer, let ∂L
∂y be the gradient of the loss

function with respect to the output layer. For the weights we see that:

∂L

∂W
=

∂L

∂y
· ∂y

∂W
(16)

Since ∂y
∂W = x we arrive at the following computation for the gradients of the

weights:

∂L

∂y
· x (17)

We also see that ∂y
∂b = 1. Thus, the gradients of the biases becomes:

∂L

∂y
(18)

Lastly, we see for the inputs that ∂y
∂x = W , giving us the following math for

computing the input gradients:

WT · ∂L
∂y

(19)

We make the following implementation of the fully connected layer, we have
named the layer ”dense” in our implementation:
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1 def dense [m][n] (input : [n]f64) (weights : [m][n]f64)
2 (biases : [m]f64) : [m]f64 =
3 map2 (\ w b -> (dotprod input w) + b) weights biases
4
5 def dense_b [m][n] (out_grad : [m]f64) (dense_input : [n]f64)
6 (weights : [m][n]f64)
7 : ([n]f64, [m][n]f64, [m]f64) =
8 let ws_g :[m][n]f64 =
9 map (\ x -> map (\ y -> y*x) dense_input) out_grad

10 let input_g = map (\ w -> dotprod w out_grad) (transpose weights)
11 in (input_g, ws_g, out_grad)

3.3.5 Activation Functions

Activation functions are functions that modify the output of a single node. Some
examples include:

Binary step : f(x) =

(
0 ifx < 0

1 ifx ≤ 0

ReLU : f(x) = max(0, x)

Sigmoid : f(x) =
1

1 + e−x

For our f , we use the Rectified Linear Unit (ReLU) function. There are dif-
ferent types of activation functions, but we have chosen to only implement the
ReLU function, since it is computationally simpler, and do not suffer from the
vanishing gradient problem[30]. Activation functions like sigmoid suffer from a
problem where for very large positive or negative values, the gradients tend to
be very small. We would like to avoid small gradients since it drastically slow
down the learning process. Using ReLU mitigates this problem as its gradient
is always 1 for positive input. However ReLU can introduce another problem,
namely the dying ReLU problem[19] where neurons stop outputting anything
other than 0.

The derivative of the ReLU function is defined as:

f ′(x) = 1 if x > 0 (20)

f ′(x) = 0 if x <= 0 (21)

Meaning that if the input to the ReLU was positive, the gradient is just propa-
gated back, but if the input was negative, the gradient is set to 0.
The following shows the implementation of the ReLU layer:

1 def ReLU (x : f64) : f64 =
2 f64.max 0f64 x

We use the futhark max function.

For the backwards ReLU we have:
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1 def ReLU_b (out_grad : f64) (input : f64) : f64 =
2 if input > 0f64 then out_grad else 0f64

Following the derivative.

3.3.6 U-Net

Our initial approach reveals that LeNet-5 has several shortcomings in regards to
implementing neural networks for image analysis. The main issue, we believe,
stems from its limited number of output values. We were not able to reach
satisfactory levels of loss after training with LeNet-5. The loss never seemed
to decrease no matter how much training data and how many epochs were
used. We hypothesize that the LeNet-5 design is simply too limited for what
we are trying to achieve. There are not enough parameters to express what
we want to predict, and any amount of training would not yield satisfactory
results. We further theorize that this limitation may be caused by the lack of
skip connections in LeNet-5, which makes it harder to preserve information from
the early layers in the network.

For this reason, we have opted to choose a different neural network design,
namely U-Net [23]. This network type sees great use in the field of biomedical
image segmentation, and is even the same network type used by the authors of
the DDPM paper in their implementation [10].

Now, since our implementation did not work with LeNet-5, our approach
has changed slightly. Our main goal is to demonstrate a proof-of-concept im-
plementation of a diffusion model in Futhark, not to necessarily implement one
that surpasses existing ones in speed or accuracy. For that reason, we focus
on the question: what is the simplest possible u-net architecture that we can
implement and still achieve sufficient quality?

Our U-Net architecture requires the following new elements:

• Our u-net is not directly composed of layers, but is instead composed of
blocks, where each block has 2 convolutions. This makes it possible to
easily include more time embeddings.

• Skip connections, which, as mentioned previously, allows the network to
carry over information from earlier layers. This trait is important for
image generation and restoration tasks.

• Additional parameters (a wider network with more feature maps).

Furthermore, we reduce the number of feature maps. The original u-net scaled
to 1024 feature maps, but our version only goes to 256. Finally, our U-net does
not exhibit the ”U”-shape, since its feature maps remain the same size in all
layers.

The blocks used to build our U-Net includes the following elements:

1 def block [l][n][m][t][o] (imgs: [l][n][m]f64) (time_mlp : [t]f64)
2 (num_groups : i64) (weights) =
3 let (conv1_w,conv1_b,t_w,t_b,conv2_w,conv2_b) = weights
4 let conv1 : [o][n][m]f64 =
5 convolve2D imgs conv1_w conv1_b 1 :> [o][n][m]f64
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6 let conv1_act : [o][n][m]f64 = ReLU_3d conv1
7 let (conv1_gnorm,conv1_gnorm_cache) =
8 group_norm conv1_act num_groups 1e-05
9 let lin_out : [o]f64 = dense time_mlp t_w t_b

10 let lin_out_act : [o]f64 = map ReLU lin_out
11 let comb : [o][n][m]f64 =
12 (map2 (\ conv lin -> map (\ c -> map (\c_ -> c_+lin) c) conv)
13 conv1_gnorm lin_out_act)
14 let conv2 : [o][n][m]f64 =
15 convolve2D comb conv2_w conv2_b 1 :> [o][n][m]f64
16 let conv2_act : [o][n][m]f64 = ReLU_3d conv2
17 let (conv2_gnorm,conv2_gnorm_cache) =
18 group_norm conv2_act num_groups 1e-05
19 in (conv2_gnorm,
20 (imgs,time_mlp,conv1,lin_out,comb,conv2,
21 conv1_gnorm_cache,conv2_gnorm_cache))

Each block starts with a convolution, going from the input channels to the out-
put channels. This is followed by a group normalization. We then add the
positional embeddings to the feature maps, and make another convolution from
output channels to output channels. Lastly, we make another group normaliza-
tion.

The backwards block can be seen in the appendix.

We have throughout the project repeatedly changed the U-Net structure used
in the diffusion model. This includes changing the type, number, and size of
layers. For each generation of the U-Net, we used visual inspection of the
generated images until we reached a satisfactory result. The U-Net used in the
final generation of the diffusion model has the following structure:

Input image: 1 (channel) x 28 (height) x 28 (width)
Initial convolution: 3x3 kernel + 1 padding: 64 x 28 x 28
Down_B1:

- B(3x3 kernel + 1 padding: 128 x 28 x 28)
- Pos_embedding(256, 128)

Down_B2:
- B(3x3 kernel + 1 padding: 256 x 28 x 28)
- Pos_embedding(256, 256)

Skip connection: Cat(Down_B2, Down_B2: 512 x 28 x 28)
Up_B1:

- B(3x3 kernel + 1 padding: 128 x 28 x 28)
- Pos_embedding(256, 128)

Skip connection: Cat(Up_B1, Down_B1: 256 x 28 x 28)
Up_B2:

- B(3x3 kernel + 1 padding: 64 x 28 x 28)
- Pos_embedding(256, 64)

Output convolution: 1x1 kernel + 0 padding: 1 x 28 x 28

We here see how the positional embeddings are used in the model. The idea
behind it is simple, we concatenate the output of a previous down blok, to a up
block if the dimensions fit. As an example, the first upsampling block (Up B2)
will have 512 input feature maps.
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3.3.7 Group Normalization

We apply a technique known as group normalization [34]. This technique divides
the feature maps into groups, and then normalizes the values in each group.
This process stabilizes the learning, and reduces the total number of training
steps needed to achieve desirable results. Another similar technique is the batch
normalization, which operates over the batch dimension. However, we are using
a batchsize of 1, therefore the batchnorm, has less data to calculate the mean
and variance, leading to more noise in the estimates. The math behind the
group normalization is as follows:

y =
x− E[x]p
V ar[x] + ϵ

(22)

Where:
x is the input feature map,
E[x] is the mean of the data in a group
V ar[x] is the variance of the data in a group
ϵ is a small constant for numerical stability to avoid division by zero.

Since group normalization is the most recent addition to the network, we
have not yet derived the math due to time limitations. However, since batch
normalization is very closely related to group normalization, we can use this6

derivation as a reference.
The following shows the helper functions for implementing the grouplayer:

1 def group_arr [l][m][n] (img : [l][m][n]f64) (num_groups : i64)
2 (elem_groups : i64)
3 : [num_groups][elem_groups][m][n]f64 =
4 tabulate num_groups
5 (\ x ->
6 img[(x*elem_groups):((x+1)*elem_groups)]
7 :> [elem_groups][m][n]f64)
8
9 def mean [n] (img : [n]f64) : f64 =

10 f64.sum img / f64.i64 n
11
12 def variance [n] (vs: [n]f64) =
13 let m = mean vs
14 let xs = map (\x -> (x-m)*(x-m)) vs
15 in f64.sum xs / (f64.i64 n)
16
17 def mean_and_var [l][n][m] (img : [l][n][m]f64) : (f64,f64) =
18 let flat_img = flatten_3d img
19 let img_mean = mean flat_img
20 let img_var = variance flat_img
21 in (img_mean, img_var)

group_arr groups the input feature map, making a 4D array.
mean calculates the mean
variance calculates the variance with the use of mean
mean_and_var combines the two, notice that it takes a 3d input, making it

6 https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-
batch-normalization-layer.html
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applicable for a map over the grouped 4d array.

The following shows the implementation of the group normalization:

1 def group_norm [l][m][n] (img : [l][m][n]f64) (num_groups : i64)
2 (eps : f64) =
3 let elem_groups = l / num_groups
4 let group_img = group_arr img num_groups elem_groups
5 let (mean_grouped,var_grouped) =
6 unzip (map mean_and_var group_img)
7 let out =
8 tabulate_3d l m n (\ z y x ->
9 (img[z,y,x] - mean_grouped[z/elem_groups])

10 / f64.sqrt (var_grouped[z/elem_groups] +eps))
11 in (out,(out,var_grouped,elem_groups))

The implementation follows the math pretty nicely. We calculate the number
of elements in each group and groups them using group_arr.

Due to the implementation of mean_and_var it is possible to calculate the
means and variances of the groups in parallel using map. The values are however
returned as tuples, requiring the use of an unzip.

Lastly, the normalization is computed with a tabulate_3d, following the
math.

The following shows the implementation of the backwards groupnorm:

1 def group_norm_b [l][m][n] (out_grad : [l][m][n]f64)
2 (num_groups : i64) (eps : f64)
3 (cache) : [l][m][n]f64 =
4 let (out, var, elem_groups) = cache
5 let elem_in_group = elem_groups * m * n
6 let group_out = group_arr out num_groups elem_groups
7 let group_grad = group_arr out_grad num_groups elem_groups
8 let elem_in_group_f64 = f64.i64 elem_in_group
9

10 let grad_sum_and_mult_sum =
11 map2 (\x y ->
12 let flat_x = flatten_3d x :> [elem_in_group]f64
13 let flat_y = flatten_3d y :> [elem_in_group]f64
14 in (reduce (+) 0 flat_x,
15 reduce (+) 0 (map2 (*) flat_x flat_y)))
16 group_grad group_out
17
18 let res =
19 tabulate num_groups (\d ->
20 let (grad_sum, grad_out_mult_sum) = grad_sum_and_mult_sum[d]
21 in tabulate_3d elem_groups m n (\ z y x ->
22 (1f64 / elem_in_group_f64) *
23 (elem_in_group_f64 * group_grad[d,z,y,x]
24 - grad_sum
25 - group_out[d,z,y,x] * grad_out_mult_sum) /
26 f64.sqrt(var[d] + eps)))
27
28 in flatten res :> [l][m][n]f64

We present the results of using group normalization in section 4.
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3.3.8 Weights Initialization

Weight initialization is a important component in ensuring efficient training of
neural networks. The choice of how to set the initial weights of a network can
significantly impact both the speed of convergence during training and even the
ultimate performance of the network.

Initially, we chose our weights from a normal distribution. However, we
quickly realised when comparing losses with the python implementation that it
converged towards zero much quicker.

Instead, we used the weight initialization utilized by PyTorch and saw much
better results. The code used for initialisation is seen below:

1 def mk_dense_weights (seed : i32) (m : i64) (n : i64) : [m][n]f64 =
2 let size = 1f64/(f64.i64 n)
3 let rng_state = rng_engine.rng_from_seed [seed]
4 let rng_states = rng_engine.split_rng (m*n) rng_state
5 let rng_numb =
6 map (\e -> (rand_f64_uniform.rand ((-f64.sqrt(size)),
7 (f64.sqrt(size))) e).1)
8 rng_states
9 in unflatten m n rng_numb

10
11 def mk_conv_weights (seed : i32) (o : i64) (l : i64)
12 (p : i64) (k : i64) : [o][l][p][k]f64 =
13 let size = 1f64/( f64.i64 (l*(p*k)))
14 let rng_state = rng_engine.rng_from_seed [seed]
15 let rng_states = rng_engine.split_rng (o*l*p*k) rng_state
16 let rng_numb =
17 map (\e -> (rand_f64_uniform.rand ((-f64.sqrt(size)),
18 (f64.sqrt(size))) e).1)
19 rng_states
20 in unflatten_4d o l p k rng_numb

This code uses the ccprandom package for Futhark7.

3.3.9 Training of the model

To train the model we use the training algorithm from DDPM. This gives us
the following code:

1 let t = mk_rand_int time_seeds[e,i] 1 999
2 let (x_t, noise) = q_sample images[i] t alpha_bar noise_seeds[e,i]
3 let time_embedding =
4 sinusoidal_position_embeddings 256 (f64.i64 t) :> [256]f64
5 let (predicted_noise, cache) =
6 unet_simple x_t time_embedding num_groups w_images
7 let loss = mse_loss_img noise predicted_noise
8 let gradients =
9 unet_simple_reverse x_t predicted_noise noise w_images cache

We use the Adam optimizer together with the gradients to calculate the new
weights.

7 https://github.com/diku-dk/cpprandom



4 Benchmarks and validation 26

4 Benchmarks and validation

To evaluate the performance of our model, and the quality of the generated
images, we implement a series of benchmarks and validations. Since stand-
alone benchmarks of performance often are uninteresting, we have also imple-
mented a diffusion model in Python using PyTorch which is a machine learn-
ing framework based on the Torch library[13]. Doing this makes it possible
to investigate how well the Futhark implementations compare to the PyTorch
functions. To benchmark Futhark we use futhark bench -backend=cuda
<test_filename>.fut, for benchmarking PyTorch, we use the time library.
We categorize our benchmarks and validations into two sections.

Since the architecture of the diffusion model consists of multiple layers, the
initial section consists of benchmarking each layer individually to give us an
insight into how each part of the model correlates with their corresponding im-
plementations in PyTorch. Doing this helps us identify the most important
areas to look into when optimizing the runtime of the model.

The second section takes a more broader look at the overall performance
of the diffusion model. We look at the performance of the training loop, and
we also examine the use of Futhark-ad, and how this affects the performance.
Furthermore, we investigate the validity of the generated images using visual
inspection, a CCN classifier, and pixel intensity distributions. This analysis
gives us an understanding of the model’s capabilities and potential areas for
improvement.

4.1 Experimental setup

The benchmarks and validations have been tested on the futhark server with an
Nvidia A100 GPU.

4.2 Datasets

The structure of the U-Net model used in the experiments is notably influenced
by the used dataset. In our experiments, we are using the MNIST dataset
from keras.datasets. This dataset comprises 60,000 grayscale images of
handwritten digits, each image having the shape of 28x28 pixels.8. Since the
depth and complexity of the images are simple, the structure of the U-Net
reflects this.

4.3 Isolated benchmarks

The subsequent sections use detailed performance benchmarks to provide an in-
depth performance analysis of the key layers utilized in the U-Net architecture.

Examination of the applied U-Net, reveals that the overall performance is
largely dependent on the convolutional and group normalization layers. Each
block of the U-Net incorporates two convolutions, resulting in a total of eight
convolutions from the four blocks. Similarly, eight group normalizations are to

8 https://keras.io/api/datasets/mnist/
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find within these blocks. Additionally, we have the initial and output convo-
lutions, giving us in total, ten convolutions and eight group normalizations for
each U-Net forward pass.

Meanwhile, our U-Net only uses four dense layers, one for each block to han-
dle the time embedding - which in our context is consistently set at 256. Given
their limited presence, optimizing these layers would likely have a relatively
minor impact on the total runtime of the U-Net.

4.3.1 2D-convolution

In this section, we look at the most important layer of the U-net, namely the
convolutional layer. We present a comparative analysis, benchmarking the per-
formance of our implemented convolutional layer against the well-established
PyTorch’s convolutional layer. The benchmarks can be seen in figure 6. It is

Library
Input

In: 1
Out: 64
Img shape: 28x28
Kernel size: 3

In: 512
Out: 128
Img shape: 28x28
Kernel size: 3

In: 1024
Out: 256
Img shape: 56x56
Kernel size: 3

PyTorch 62 µs 74 µs 254 µs
Futhark 64 µs 4042 µs 12028 µs

Fig. 6: Convolutional layer benchmarks

clear from the performance results, that our implementation of the convolutional
layer quickly is outperformed by the PyTorch implementation, being almost 50
times slower at our largest benchmark.

This suggests that our implementation has difficulty scaling with large in-
put data and numerous input and output channels, which is very important to
take into account when considering the performance of using Futhark for neural
network computations.

The performance gap can due to various factors. Firstly, we know from the
design section of the 2D-convolutional layer that since PyTorch has the possibil-
ity to choose from different convolution algorithms, superior performance from
our own implementation wasn’t anticipated. PyTorch has benefited from exten-
sive optimization over its seven-year history, resulting in a mature and highly
efficient codebase.

Lastly, even though Futhark makes it easy to design and implement algo-
rithms, it is difficult to match the performance of lower-level, hardware-specific
optimizations present in libraries like PyTorch. Further investigation is there-
fore required to improve the performance of our convolutional layer in Futhark.
The same conclusion can be drawn from the backpropagation of the convolu-
tional layer, as seen in figure 7. Since the gradients of the input and weights
themselves are computed using convolutions, we see a close correlation between
the runtime performances. An interesting property to note is how the runtime
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Library
Input

In: 1
Out: 64
Img shape: 28x28
Kernel size: 3

In: 512
Out: 128
Img shape: 28x28
Kernel size: 3

In: 1024
Out: 256
Img shape: 56x56
Kernel size: 3

PyTorch 167 µs 178 µs 187 µs
Futhark 276 µs 18025 µs 333043 µs

Fig. 7: Convolutional layer benchmarks (backpropagation)

grows exponentially for the backpropagation. This is because we make a con-
volution for each combination of gradients and input images.

Analysis of the importance of input dimensions
In this section, we discuss how varying input dimensions affects the execution
time of the 2d-convolution operation. Our analysis is based on changing one of
the four parameters input channels, output channels, spatial feature map size
and kernel size while keeping the other three constant.

The table in figure 8 shows the effects of altering the kernel size. Here, we

Library
Input

In: 1
Out: 64
Img shape: 64x64
Kernel size: 3x3

In: 1
Out: 64
Img shape: 64x64
Kernel size: 7x7

Futhark 6796 µs 26588 µs

Fig. 8: Effect of altering kernel size

see a significant difference between the kernel size and the computation time.
Looking at the implementation of conv2d, we see that the size of the kernel
directly influences the height of the columns in the transformed img col and
kernel col matrices. Thus, increasing the complexity of each dotprod opera-
tion. At the same time, when the kernel size increases, the width of img_row
decreases, due to fewer unique ”areas” available from the input image. However,
this trade-off proves inefficient when it comes to parallel computation on a GPU.

Given that the core operation of the convolution lies in the matrix multipli-
cation, we investigate this further and make the following simplified example:

Let us, for the sake of the argument, assume that the GPU has an unlimited
amount of cores. When we map the dotprod operation over the column array,
we create a set of independent operations, which can be performed in parallel by
seperate GPU threads. However, the GPU architecture does not split individual
operations across multiple threads. Therefore, the time it takes to execute each
operation remains constant, regardless of the number of available GPU cores.
Conversely, with shorter columns and larger rows, the computation time could,
in theory, lead to an almost instantaneous matrix multiplication, given enough
GPU cores.
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The trade-off introduced by the kernel size is thus between the number of
computations, which increases with kernel size, and their parallelizability, which
decreases. This can clearly be seen in the figure 9 benchmark of the Futhark
matmul function. Another important aspect is the kernel sizes effect on memory

Library
Input xss: 5000x10

yss: 10x5000
xss: 10x5000
yss: 5000x10

Futhark 479 µs 26 µs

Fig. 9: matmul with different parameters

usage. With a larger kernel size, each column in the im2col matrix encompasses
a broader area of the original input. This means more data from the original
input is being duplicated to the im2col output, resulting in larger columns for
the same input if the kernel size is larger.

Using the inputs from previous benchmark in TABLECITE, we see the fol-
lowing difference in the number of elements in the im2col matrix:

In: 1, Out: 64, Img shape: 64x64, Kernel size: 3x3 = 36864 elements
In: 1, Out: 64, Img shape: 64x64, Kernel size: 7x7 = 176400 elements

Which is around a 4.785 times increase in the number of elements.

Having larger columns also means that more data has to be accessed and
stored in memory for the subsequent matrix multiplications, resulting in in-
creasing memory bandwidth requirements. Increased memory usage could lead
to cache eviction if the data exceeds the capacity of the GPU’s cache, which
could aggravate the runtime performance even further.

However, this approach also enables the use of matrix multiplication for the
convolution operation, which is highly optimized in Futhark, making it up for
the overhead introduced by the im2col transformation. Figure 10 shows the
differences between the naive conv2d approach and the im2col variant. While
it might seem from this section that larger kernels are disadvantageous from a
computational perspective, it’s crucial to consider the broader context. These
benchmarks focus on the runtime performance of the convolution operation, but
it’s not the only factor in the overall effectiveness of a neural network. Larger
kernel sizes result in more weights that the network can optimize, which can
lead to improved performance.

Library
Input

In: 50
Out: 100
Img shape: 50x50
Kernel size: 3

In: 200
Out: 400
Img shape: 50x50
Kernel size: 3

In: 500
Out: 1000
Img shape: 100x100
Kernel size: 3

Futhark: Naive conv2d 2105 µs 34608 µs 985462 µs
Futhark: im2col conv2d 405 µs 3088 µs 48610 µs

Fig. 10: Differences between naive conv2d and im2col variant.
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Peng et al. [21] propose a neural network that achieved impressive results in
semantic segmentation by utilizing larger kernel sizes. Moreover, Ding et al. [6]
note that the use of large kernel CNNs tends to capture context more effectively
and pay greater attention to image structures rather than textures.

Importance of spatial image sizes
Figure 11 shows the importance of the image sizes with respect to runtime per-
formance. As expected, increasing the image size coincides with a proportional

Image size
Input

In: 1
Out: 1
Kernel size: 3x3

64x64 50 µs
512x512 405 µs
1024x1024 1600 µs

Fig. 11: Image size effect on runtime

increase in runtime. This increase is directly connected to the larger amount of
data being processed, leading to more computations. More interesting, however,
is the scale of runtime increase. Between the benchmarks of shapes 64x64 and
512x512, we have an 8 times increase of data needed to be processed. The factor
between the runtimes for these benchmarks is also roughly 8. This proportional
scaling fits the expectation that the convolution time scales linearly with the
increase of image size.

However, when we scale the image further, from 512x512 to 1024x1024,
equating to a twofold increase in each dimension, the runtime inflates by nearly
four times. This discrepancy does not fit the linear scaling, and could potentially
be due to the effect of the memory hierarchy. As the image size increases, it be-
comes more likely that the data will not fit in the GPU’s speedy cache memory,
namely L1 and L2. As a result, the likelihood of cache misses increases, making
the GPU need to access the slower global memory, which has a higher latency.

In our experiments, we are using the Nvidia A100 GPU which has an L2
cache size of 40MB and a configurable L1/shared memory with a maximum
allocation of 164KB per streaming multiprocessor (SM)9. Looking at the input
image of size 64x64 with float64 data, it necessitates approximately 32KB of
memory, which likely fits into the size of the L1 cache. Conversely, as the image
size increases, so does the required memory: the 512x512 array requires around
2MB, and the 1024x1024 requires 8MB. With respect to other data the GPU
concurrently processes, this could very well be one of the reasons for the non-
linear scaling of runtimes.

Another potential factor that could contribute to the observed non-linear
runtimes is the influence of the GPU’s block size and occupancy.10. The block

9 https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-
architecture-whitepaper.pdf
10 https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report

/cudaexperiments/kernellevel/achievedoccupancy.htm
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Library
Input

In: 1
Out: 1024
Img shape: 1x1
Kernel size: 3x3

In: 1024
Out: 1
Img shape: 1x1
Kernel size: 3x3

Futhark 43 µs 383 µs

Fig. 12: Effects of varying input and output channels

size, corresponds to the number threads concurrently executing in a block, and
the occupancy refers to the ratio of active warps on an SM to the maximum
number of active warps supported by the SM.

As the data increases, it might lead to larger block sizes that can be less
efficiently scheduled. This results in lower multiprocessor occupancy and slower
performance [8]. Additionally, higher memory usage could lead to more con-
tention for shared GPU resources [24].

These potential factors are highly influenced by many elements and need a
deeper investigation of the Futhark compiler. Although a detailed analysis of
these elements and factors is beyond the scope of this paper, they are worth
noting as possible sources contributing to the non-linear performance trends
observed.

Importance of input channels and output channels
In order to investigate the effect of varying input and output channels, we have
conducted the following benchmarks as shown in figure 12. The benchmarks
indicate a significant difference in runtime when we vary the number of input
and output channels. This behavior, akin to the importance of kernel size, can
be traced back to the dimensions of the matrix multiplication. In the case where
we only have a single input value, we effectively perform 1024 dotprod opera-
tions, each with a single element. Conversely, when combining 1024 values into
a single output, we carry out just one dotprod operation, but with 1024 ele-
ments. Since this larger operation cannot be distributed across multiple GPU
threads, the runtime increases.

In addition, the number of input channels has a direct and substantial im-
pact on memory usage. Since the size of the im2col transformed matrix expands
with the number of input channels, an increase in input channels can result in a
very inflated intermediate representation. For instance, consider an input image
of dimensions 64x64x64 and a kernel of dimensions 64x64x3x3. Upon padding
the input with one element, the input and output retain an equal number of
elements: 64 · 64 · 64 = 262144. However, the transformed matrix expands into
64 · 3 · 3 · 64 · 64 = 2359296 elements, which is 9 times larger than both the input
and output. In extreme cases, this could exhaust the GPU memory resources,
causing a crash, even though the output of the convolution would have other-
wise fit comfortably into memory.

Summary
We have in this section investigated how the sizes of the input to the convolution
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Library
Input

In: 64
Img shape: 28x28
num groups: 32

In: 256
Img shape: 28x28
num groups: 32

In: 512
Img shape: 56x56
num groups: 32

PyTorch 43 µs 44 µs 46 µs
Futhark 91 µs 102 µs 159 µs

Fig. 13: Group norm benchmarks

affect the runtime performance. We summarise by listing some key takeaways:

• Kernel size. The kernel size has a considerable impact on the performance
of the convolution operation. Larger kernels result in more computation-
ally intensive matrix multiplications and increase memory usage. Also, the
larger the kernel, the larger the dimensions of the matrix multiplication,
leading to less efficient usage of the GPU’s parallel processing capabili-
ties. However, multiple sources describe the usefulness of larger kernels in
computer vision fields such as semantic segmentation.

• Spatial Image Sizes. The dimensions of the input image also play a sig-
nificant role in the performance of convolution. Larger images result in
larger intermediate data structures, leading to more memory usage and
potential slowdowns due to increased global memory accesses.

• Input Channels and Output Channels. The number of input and output
channels directly influence both the runtime and the memory usage of the
convolution operation. More input channels result in larger intermediate
representations and higher memory usage. Futhermore, like the kernel
size increase, the large dot product operation involved when many input
channels are combined into a single output channel cannot be distributed
across multiple GPU threads, thereby increasing the runtime.

These key points provide valuable insights into the factors influencing the per-
formance of the implemented 2d-convolution. It is essential to keep these factors
in mind when designing and optimizing the structure of the desired network.

4.3.2 GroupNorm

In this section, we take a look at how our group norm implementation compares
to the PyTorch implementation. The benchmarks can be seen in figure 13. The
benchmarks reveal that our Futhark implementation performs reasonably well,
with a runtime slightly over twice that of PyTorch for our use cases in the U-
Net. Considering PyTorch’s highly optimized codebase, this is an encouraging
result. However, we also see that as the input size increases, the performance
gap between Futhark and PyTorch grows as well, suggesting room for further
optimizations in our Futhark implementation.

In conclusion, while our Futhark implementation does not surpass PyTorch
in terms of speed, it has demonstrated the potential for efficient computation,
which further motivates the exploration of performance optimization in Futhark
for neural network computations. Evaluating the performance of our backward
group normalization function (benchmarks in figure 14), we see that Futhark
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Library
Input

In: 64
Img shape: 28x28
num groups: 32

In: 256
Img shape: 28x28
num groups: 32

In: 512
Img shape: 56x56
num groups: 32

PyTorch 145 µs 143 µs 153 µs
Futhark 62 µs 92 µs 154 µs

Fig. 14: Backward group normalization

Library
Input In: 256

Out: 64
In: 256
Out: 256

In: 1000
Out: 5000

PyTorch 47 µs 41 µs 41 µs
Futhark 21 µs 24 µs 94 µs

Fig. 15: Dense layer implementation

surpasses PyTorch in computational efficiency for the specific cases used in our
U-net architecture, which is a great achievement. The implementation only
falls behind by a slim margin at the largest input. This is especially impressive
considering the complexity of the backward group normalization operation and
indicates that our Futhark implementation maintains performance even when
the input increases.

A key factor contributing to Futhark’s great performance is our decision to
avoid recomputing the forward group norm operation, since it’s already available
in the cache from the previous computation, thus reducing the computational
overhead.

4.3.3 Dense

The following section presents how our dense layer implementation compares to
the PyTorch implementation. The benchmarks can be seen in figure 15. From
the forward performance results we see that our implementation consistently
outperforms PyTorch for the small input sizes used in our U-net model. This
demonstrates that the dense layer, though relatively simple, is implemented ef-
ficiently. However, we do see scaling difficulties with significantly large input
data, similar to what we observed with the convolutional layer. However, since
the dense layer is relatively straightforward computationally, it does not offer
much room for optimization from an algorithmic point of view. Therefore, any
improvements would likely come from further hardware-specific optimization or
more efficient memory access patterns

We here reiterate that the goal is not to match or exceed PyTorch in every
case but to provide an efficient alternative that is more amenable to mathe-
matical reasoning and formal verification, which are strengths of the Futhark
language. The same tendency can be seen in the benchmarks (figure 16) for
the backward pass of the dense layer. Futhark outperforms PyTorch for smaller
input sizes, with performance evening out as the input size grows. We clearly
see that Futhark’s efficient array computations play a key role, but as compu-
tations scale, factors such as memory bandwidth and parallelism efficiency also
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Library
Input In: 256

Out: 64
In: 256
Out: 256

In: 1000
Out: 5000

PyTorch 153 µs 146 µs 139 µs
Futhark 29 µs 31 µs 170 µs

Fig. 16: Dense layer backwards pass

come into play.

4.4 Summary

We have in the above benchmark sections compared the performance of the
three main layers in the U-Net — convolution, group normalization and dense
layer. The main focus has been on the runtime comparison between Futhark
and PyTorch, a well-regarded deep learning library.

We found that Futhark shows superior efficiency in 2 out of 3 layers when
comparing the use cases in the U-Net which are quite small computations. This
showcases the strength of Futhark when handling array computations and taking
advantage of the parallelism offered by GPUs. For larger inputs, however, the
performance between the two libraries tends to equalize, with PyTorch taking
a considerable lead in the convolutional layer, being around 48 times faster for
the largest benchmarked input. This suggests that as computations scale, other
factors such as memory bandwidth and parallelism efficiency become significant
factors.

Even though the contribution of time to the entire runtime of the U-Net
is negligible for the dense and group norm layers, it is still worth noting that
Futhark performs remarkably well for the backwards pass.

In summary, our Futhark implementations offer a compelling alternative
for executing deep learning layers, offering notable advantages particularly in
scenarios with smaller inputs. This opens up interesting prospects for the use
of Futhark in specific machine learning contexts where its strengths can be fully
leveraged.

4.5 Combined tests

This second section benchmarks the overall performance of the diffusion model,
including its components such as the training loop and the image sampling. We
also examine how the use of Futhark-ad affects the performance of the network,
and finally, we assess the quality of the generated images by a number of different
parameters: visual inspection, a CCN classifier, and pixel intensity distribution.

For the benchmarks, we look into how quickly each iteration of the training
loop executes, the time it takes to generate an image, the use of Futhark-ad,
and the time it takes to train and generate images we find sufficient.
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4.5.1 Training loop benchmark

Here, we investigate the runtime performances of the training loop. Since the
training loop runs for more than 1000 iterations it is important that it is fast.

Library
Input Epochs: 1

Img shape: 28x28
Epochs: 2
Img shape: 28x28

Epochs: 3
Img shape: 28x28

PyTorch 6432 µs 12875 µs 19342 µs
Futhark 183486 µs 367349 µs 548570 µs

Fig. 17: Training loop benchmark

As expected, our implementation is far slower than the PyTorch implemen-
tation.

4.6 Validation

In this section, we first use visual inspection and compare the generated images
with the MNIST dataset to get a rough estimate about the generative perfor-
mance. We then apply different techniques such as structural similarity index
measure (SSIM), to further compare the images. Finally, we attempt to classify
our samples using a trained CNN classifier.

4.6.1 Visual inspection

In this section, we look at how well the generated images resemble the handwrit-
ten digits in the MNIST dataset. The goal of this validation is that the digits
are virtually indistinguishable from those found in the MNIST dataset. Figure
18 shows a selected set of the generated digits we consider to be the best. In our

Fig. 18: Generated digits of best quality

assessment, it is fairly easy to classify which digit the above images should rep-
resent, suggesting that our model has learned to reproduce the essential features
of different digit classes. However, when closely compared to the MNIST im-
ages we also see shortcomings of the model. For example, the generated images
tend to have noisier backgrounds than the typical MNIST images. It is difficult
for our model to make the background entirely black, and a different structure
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of the U-Net might be needed. Figure 19 shows a side-by-side comparison of

Fig. 19: Generated (left) and real (right) digits

the background in the generated and real images, clearly showing differences in
background noise.

Moreover, our diffusion model does not always generate images we would
recognize as digits. Figure 20 shows a batch of images generated in succession
of each other with the same weights. Despite this, we are positive about the

Fig. 20: Unrecognizable digits

overall performance of our model. Its ability to generate recognizable digits is
promising, and we believe that with further refinement of the U-net, the model
might have the potential of generating more complex images.

4.6.2 Image Comparison Techniques

There are several established methods for comparing images in the field of image
processing and computer vision. These methods measure similarity or difference
based on various aspects of the images, such as pixel intensity, structure, texture,
and more. We have chosen two methods for validating our images, structural
similarity index measure (SSIM), and histogram of oriented gradients (HOG).
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4.6.3 Structural similarity index measure (SSIM)

The Structural Similarity Index Measure (SSIM) [31] is used in our analysis to
quantify similarities between two images. SSIM takes into account the struc-
tural information, luminance, and contrast—attributes that we consider to be
significant when evaluating the generated images.

To evaluate the images, we take a subset of generated images and their
corresponding training set. We calculate the SSIM value for each pair, returning
the highest SSIM value for every generated image. This gives us a sense of how
well the model can reproduce examples from the training data. The following
array shows the best SSIM results for a selected subset of images:

[0.2685010054964179]

As seen above, the highest SSIM score is 0.2685 which is far from the optimal
score of 1.

4.6.4 Histogram of Oriented Gradients (HOG)

In this section, we use the Histogram of Oriented Gradients (HOG) [4] to val-
idate the generated samples. HOG is a feature descriptor that captures the
distribution of shapes or edges, within an image. This is a be a useful measure
for validating if our model is capturing the shapes and structures found in the
training images.

For our assessment, we take a subset of the generated images and their
corresponding training set. We then compute the HOG descriptor for every
image in these sets and subsequently compute the mean and variance of these
descriptors. The following shows the computed values of the two sets:

Mean HOG descriptor for training images:
0.3174485677126979

Mean HOG descriptor for generated images:
0.30338887962731204

Standard Deviation of HOG descriptor for training images:
0.15564834336865363

Standard Deviation of HOG descriptor for generated images:
0.18153563743427917

Investigating the results, we see that the mean and variances of the generated
images are reasonably similar to those of the training images. The lower mean
for the generated images suggests that the edges in the generated images are
oriented slightly differently than those in the training images. Furthermore, the
higher variance indicates a larger variety of edge orientations.

4.6.5 Discussion of Image Comparison Techniques

While these metrics provide us with quantitative insights into the structural
and shape similarities between the training and generated images, it’s critical
to bear in mind that neither SSIM nor HOG offer a complete evaluation of our
model’s performance.
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These metrics are mostly used in areas like Image Compression [11], Face
Recognition [5], and Image Segmentation [35], which don’t directly correspond
to the task of image generation.

Several other techniques could potentially offer more appropriate evaluations
of the generative capabilities of the diffusion model. One example is the Incep-
tion Score (IS) metric, which was introduced by Salimans et al. in 2016 [25].
This algorithm evaluates generated images based on two key principles: diver-
sity and distinctness. A high score reflects a set of images with varied content,
each of which distinctly resembles a particular object. However, due to time
limitations, we did not implement this algorithm in our evaluation.

An important element to keep in mind when interpreting our validation re-
sults is that the goal of our model is not to make a perfect replication of the
training data. Rather, we seek to generate new images that closely resemble
the training data in terms of structural, and contrast characteristics, but still
are different. Despite the modest scores for SSIM and HOG, a visual inspection
of the generated images suggests that the model is indeed creating images that
are recognizably similar to the training data.

This brings us to a different issue, which is the other side of the coin. We
should strive after generating images that are distinct from the training data.
In more detail, we aim for our model to avoid overfitting, which would result in
replicating the training images rather than generating novel ones. To evaluate
whether our model is truly creating new images, we employ a nearest-neighbor
analysis.

4.6.6 Nearest neighbor validation

In this section, we use the nearest neighbor algorithm to make sure that our
model is not only memorizing and regenerating specific training images. This
method involves comparing each generated image to all images in the training
set and finding the most similar one. If the generated image is almost identical
to its nearest neighbor, it is likely that our model is overfitted to the training
data.

Figure 21 shows two examples of a generated image and its closest neighbor.
We see that while the generated images are similar to their closest neighbors from
the training set, they are not exact duplicates. This is highly encouraging as it
suggests that our diffusion model has learned to capture the underlying structure
of the data without overfitting, demonstrating positive generative capabilities.

4.7 Classification of Generated Images

The final and most conclusive evaluation of the generated images is to classify
them using a trained CNN. If the accuracy of the trained CNN on the generated
dataset is close to the accuracy of the trained CNN on the training/test data,
this is great results.



4 Benchmarks and validation 39

Fig. 21: A generated image (left) and its nearest neighbor (right)

We know from the design and implementation section that we initially tried
to use a variant of the LeNet-5 for the diffusion model. Even though this was
proven to be futile, we have still implemented the layers needed to build the
LeNet-5 architecture. Since this was the initial intend of the LeNet-5 model, we
chose to implement this in Futhark but use it for classification. Thus, by follow-
ing the architecture of LeNet-5, with minor changes, we present the following
CNN for MNIST classification, named LeNet-5-Fut:

Input image: 1 (channel) x 28 (height) x 28 (width)
Convolution: 5x5 kernel + 2 padding: 6 x 28 x 28
Activation layer (ReLU) : 6 x 28 x 28
Average Pool: 2x2 kernel + 2 stride: 6 x 14 x 14
Convolution: 5x5 kernel + 0 padding: 16 x 10 x 10
Activation layer (ReLU) : 16 x 10 x 10
Average Pool: 2x2 kernel + 2 stride: 16 x 5 x 5
Flatten : 400
Dense layer: 120 fully connected neurons
Activation layer (ReLU) : 120
Dense layer: 84 fully connected neurons
Activation layer (ReLU) : 84
Dense layer: 10 fully connected neurons
Output activation (Softmax): 10 fully connected neurons

4.8 CNN-Fut

The most notable difference between LeNet-5-Fut and CNN-Fut is the replace-
ment of positional embeddings with the introduction of a softmax layer. This
gives us a model which is almost identical to the original LeNet-5.

4.8.1 Softmax layer

Looking at the architecture for LeNet-5 we see that the last layer is a softmax
activation layer. Softmax is is a mathematical function that maps n real num-
bers into a probability distribution of n probabilities. These probabilities are
proportional to the initial values making softmax highly useful for multiclass
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classification tasks, such as classifying the MNIST dataset.

The softmax function is defined by:

σ(z)i =
ezi

PK
j=1 e

zj
(23)

Where z is the input vector of K elements, and i = 1, ...,K

By producing a probability distribution, the softmax function enables us to
directly interpret the model’s confidence in its predictions. For example, an
output from the softmax function for our MNIST classification might look like
this:

[0.0, 0.1, 0.3, 0.0, 0.0, 0.0, 0.0, 0.6, 0.0, 0.0]

Here, the model is 60% confident that the image represents the digit 7.

For our multi-class classification problem where each instance strictly be-
longs to one class, using another activation function like sigmoid or ReLU in
the output layer could bring potential issues.

Sigmoid:
The sigmoid function, like softmax, maps input numbers to a number between
0 and 1. However, sigmoid processes each output value independently, which
could lead to multiple classes showing high probabilities. This is not desirable
for our use case.

ReLU:
Several reasons make ReLU unsuitable for our output case. Firstly, ReLU sup-
presses negative input values, which could result in loss of important informa-
tion. Secondly, ReLU does not bound or normalize its output. This is unsuitable
for our use case, where interpreting the output as probabilities is crucial.

Implementation
Implementing the softmax function in Futhark is relatively straightforward:

1 def softmax [n] (X : [n]f64) : [n] =
2 let X_exp = map f64.exp X
3 let X_sum = f64.sum X_exp
4 in map (\ x -> x / X_sum) X_exp

We initially find the exponent of each value in the input array X to obtain
X_exp. Then, we calculate the sum of X_exp to get X_sum. Finally, we divide
each element in X_exp by X_sum to get the final result.

More interesting is the backwards version of the softmax function. This
is because unlike other activation functions softmax maps from a vector to a
vector. Hence, the derivative of the softmax function is a Jacobian matrix, not
a simple scalar.
Looking at the Jacobian matrix we see the following:
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If i = j :
∂σ(z)i
∂zj

= (1 − σ(z)j)σ(z)i

If i ̸= j :
∂σ(z)i
∂zj

= −σ(z)jσ(z)i

We see that if we change the input zj , it will increase the corresponding output
σ(z)j but will decrease all other outputs where i ̸= j. Intuativly this makes
sense, since the softmax function outputs a probability distribution. Thus, in-
creasing the probability of one class must naturally decrease the probability of
all other classes, so that the sum of all probabilities remains 1.

The following shows the futhark implementation of the backwards softmax:

1 def softmax_b [m] (out_grad : [m]f64)
2 (softmax_pred : [m]f64) : [m]f64 =
3 let identity : [m][m]f64 =
4 tabulate_2d m m (\ y x -> f64.bool (y==x))
5 let id_diff = map (\ y -> map2 (-) y softmax_pred) identity
6 let jac =
7 map2 (\id pred -> map (\ x -> pred * x) id) id_diff softmax_pred
8 let out_grad_2d = map (\x -> [x]) out_grad
9 in flatten (matmul jac out_grad_2d) :> [m]f64

We create the identity matrix and subtract the softmax predictions to make
id_diff. This corresponds to calculating the (1 − σ(z)i) and −σ(z)i for the
respective cases where i = j and i ̸= j.

We then multiply each row of id_diff with the respective element in
softmax_pred (this element corresponds to σ(z)j), to construct the Jacobian
matrix jac. out_grad is now reshaped to match the dimensions required for
the matrix multiplication, giving us out_grad_2d.

We make a matrix multiplication with the Jacobian and out_grad_2d,
effectively computing the gradients with respect to the input of the softmax
function. Lastly, we flatten the gradients to match the input shape.

4.9 Introduction to Futhark-ad

We have throughout this thesis seen how the functions for layers and their cor-
responding backwards functions are implemented. From this, we can conclude
that the forward pass of each layer is significantly easier to implement and un-
derstand.

First of all, the number and different type of computations required for the
backwards pass is often significantly higher than a functions respective forward
pass. This is because we also have to compute the gradients for the weights and
biases each time it is relevant. From a programming point of view, this is not
only difficult but also time-consuming. A general trend throughout this project
has been that the backwards pass has easily taken more than twice the time to
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implement.

Second, the amount of available, and easily readable, information about the
backwards passes of layers is a fraction of that available for the forward pass,
further contributing to the total implementation time.

Third, since the backwards functions require information gathered while
making the forward pass, this requires that multiple values are returned in
the cache of the forward function. This brings lots of packing an unpacking of
tuples and sometimes bring problems in the form of the opaque futhark type11

However, Futhark introduces a solution to these problems. Namely the
Futhark-AD library.

4.9.1 Futhark AD

Futhark-AD12 is a library made to compute the derivatives of Futhark programs.
It utilizes the automatic differentiation (AD) category to compute derivatives
which are significantly easier than manual differentiation from a programmer’s
point of view. The idea behind AD is that it exploits that every function, no
matter how complicated, is executed on a computer as a sequence of elemen-
tary operations such as additions, multiplications, and elementary functions
such as sin and log. By successively applying the chain rules on the composition
of operations, the exact derivatives can be computed in a mechanical fashion [1].

The use of AD is categorized into two modes, forward and reverse mode.
Forward mode is however not very applicable in machine learning since its com-
putational cost grows with the number of inputs. The reverse mode however
computes all the derivatives at once with a cost that grows with the number of
outputs [7]. Since we have much more parameters in neural networks (LeNet
has around sixty thousand), we use the reverse mode for backpropagation in
neural networks.

The idea behind reverse mode is to evaluate the function at a specific input.
This is done when we compute the loss of the model, and then propagate the
gradient of the output back through the computation, applying the chain rule
at each operation. An example of the reverse mode AD in practice can be seen
in the appendix.

However, even though the use of reverse mode seems unbeatable without any
negatives, there is no such thing as free lunch. Since we use the operations of the
evaluated function in the reverse adjoint trace, we need to store them. As the
number of operations increases, the amount of storage required also increases
proportionally, which may cause issues 13.

In Futhark-AD, the higher-order function corresponding to the reverse mode is

11 https://readthedocs.org/projects/futhark/downloads/pdf/latest/
12 https://futhark-lang.org/publications/sc22-ad.pdf
13 The data-flow equations of checkpointing in reverse automatic differentiation
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vjp, with the following types [26]:

vjp : (f : α → β) → (x : α) → (dy : β) → α (24)

Where: f is the function we want to find the derivative of. x is the point of
evaluation. dy is the output adjoints. vjp stands for ”vector-Jacobian product”
and computes: dyT · J(f(x))
The following shows how we use it in LeNet-5-fut for computing the gradients.

1 let loss weights = mse labels[i] (lenet_forward images[i] weights).0
2 let grad_w = vjp loss weights 1f64
3 let new_weights = lenet_SGD grad_w weights

Interesting for this paper is how the use of Futhark-ad compares to the imple-
mented backward functions.

4.9.2 Benchmark of Futhark-AD

The following sections investigate how well futhark-ad benchmarks to manual
differentiation.

Futhark ad is still in development Unfortunately, we get a compile error
when we try to compile our model with the use of Futhark-ad to cuda. This
means a comparison with PyTorch would be unfair and give no insight into how
Futhark-AD peforms. We can however, still compile to c, and our benchmarks
will therefore use this. This makes the results have less impact, but will still
give an idea of how the use of Futhark-ad performs.

We should however also benchmark the time it takes to implement the back-
propagation with and without ad. To make the backpropagation with ad, you
only need to implement the forward pass of each method. In my personal
experience, the time it takes to implement the forward function and manual
backpropagation is propaly a 25/75 distribution. Also, when looking at the
respective implementations, we see that AD is far easier to read and under-
stand. The manual implementation of the backpropagation can be seen in the
Appendix, far outweighing the previously seen AD implementation.

Lastly, the implementation currently invokes a compiler bug, which has
caused a standstill. Once the bug is fixed, we expect to resume with imple-
menting futhark-ad.

4.10 Traning of CNN-Fut

To use CNN-5-Fut to validate the generated images, we trained it on 200 digits
from the MNIST dataset. Testing it, we obtained an accuracy of around 90%,
which we find reasonable since the goal of the project hasn’t been to implement
a CNN giving astonishing results in classification.

4.11 Classify Generated Iimages

As the final test, we try to classify the following image using the trained CNN:
We get the following confidence results from the model:
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Fig. 22: A generated 3

1 [0.000052, 0.000150, 0.025404, 0.954648, 0.000010,
2 0.019435, 0.000068, 0.000017, 0.000216, 0.000001]

This is a huge achievement for the diffusion model and we believe that this
concludes the project satisfactorily: we have trained our diffusion model on the
MNIST dataset, generated several digits, selected the best ones, and verified
that those are not just part of the training set. Finally, we have tried to classify
the good images and gotten correct results.

5 Discussion

5.1 Related work

5.1.1 Protein design

With the consistent increase in computing power, de novo designing has been
enabled to a much greater degree. Today, predicting the structure of a protein
from its amino acid sequence (or vice versa) can be done by machine learning
models — usually deep learning models such as neural networks. These type
of information predicted by the models can vary. One example may be contact
maps: 2D matrices that show whether or not two amino acid residues are within
a certain threshold distance of each other. Because these matrices are similar to
2D images, which neural networks can successfully classify, deep learning models
have been applied in the area of protein design with some success [15]. However,
a recent study [32] has shown promising results with using diffusion models
instead of deep learning models. It introduces the RoseTTAFold Diffusion (RF
Diffusion) model which achieves an accuracy two orders of magnitude higher
than existing deep learning models; even outperforming existing diffusion models
[2]. An interesting property of this is also that so far, the state of the art of
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protein design software has generally been 3D modelling software, such as the
Rosetta software suite14 or other similar tools [33]. However, the RF Diffusion
paper reports that ”in a manner reminiscent of the generation of images from
text prompts”, it can generate protein designs from very simple specifications.
This could potentially make protein design much easier, as you would be able
to simply specify the desired protein behavior in a natural language instead of
”building” the protein structure yourself.

5.1.2 Machine learning

Despite the concept of DDPMs being so new, several possible improvements
to their efficiency have been developed within recent years. While this thesis
mostly focuses on the efficiency obtainable through the use of the Futhark com-
piler, these works instead focus on optimizing the model from an algorithmic
perspective:

• Liu et al. [18] replace parts of DDPMs that use numerical methods with
so-called pseudo numerical methods, which in many scenarios provide a
significant increase in speedup — in some cases being up to 20 times as
fast15.

• Lam et al. [16] propose a new bilateral deonising diffusion model which
parameterizes the traditional model with a scheduling network and score
network. This allows the model to generate audio samples of the same
quality as existing models, but with much fewer (as few as 7) sampling
steps16.

• Zhang and Chen [36] also show that the number of sampling steps can
be greatly reduced by selecting a good discretization scheme, allowing for
generation of high-quality samples in as few as 10 steps17.

Note that all of the above optimizations are written in python (with a small
section of the first example written in CUDA18. To our knowledge, this is the
first work that attempts to implement DDPMs in any type of functional array
programming language.

5.2 Future Work

While our attempt to implement a diffusion model in Futhark was ultimately
a success, there are still many things that could be improved. First of all, our
current model can only generate (good) digits if it is trained on digits of the same
type. We would like to be able to train the model on all digits, and then still have
it be able to generate ”good”new digits. Furthermore, the implementation of the
network could be improved. For example, it should be possible to use batch-sizes
greater than 1. Also, it would be good if the implementation was restructured
as so to allow for more easily switching to new architectures. Finally, while the

14 https://www.rosettacommons.org/software
15 Implementation for [18]: https://github.com/luping-liu/PNDM
16 Implementation for [16]: https://github.com/tencent-ailab/bddm
17 Implementation for [36]: https://github.com/qsh-zh/deis
18 https://github.com/luping-liu/PNDM/blob/master/model/scoresde/upfirdn2d kernel.cu
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thesis has focused quite heavily on the design and implementation of a proof-of-
concept diffusion model, we have not investigated the opportunity for generating
protein structures from amnio acid sequences, which was one of the motivations
for constructing the diffusion model. However, since the model shows promising
results, it would be interesting to continue with the challenge of protein structure
generation.

6 Conclusion

We have designed and implemented a working denoising diffusion probabilistic
model in Futhark. As part of the process, we have demonstrated that using a
neural network with an LeNet-5 design is insufficient for performing the denois-
ing operation. We have also demonstrated that a working implementation can
be achieved by using a U-Net design. Finally, we have shown that our program
can generate digits of acceptable quality, and that it in some cases matches
the performance of an identical neural network implemented with the PyTorch
library.
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7 Appendix

7.1 Reverse mode AD example

Reverse mode example
We introduce the following notations: A function f : Rn → Rm consists of the
intermediate variables vi with:

1. vi−n = xi, i = 1, ..., n Are the input variables.

2. vi, i = 1, ..., l Are the intermediate variables.

3. ym−i = vl−i, i = m− 1, ..., 0 Are the output variables.

4. v̇ = ∂v
∂x Is the derivative of the variable.
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Let y = f(x1, x2) = x2
1 − x1 · cos(x2) + sin(x1). We want to evaluate it at

(x1, x2) = (3, 8).
We start with the Forward Primal Trace, which will be the same as the forward
mode:

v−1 = x1 = 3 (25)

v0 = x2 = 8 (26)

v1 = v2−1 = 32 (27)

v2 = v−1 · cos(v0) = 3 · cos(8) (28)

v3 = sin(v−1) = sin(3) (29)

v4 = v1 − v2 = 9 + 0.4365 (30)

v5 = v4 + v3 = 9.4365 + 0.1411 (31)

y = v5 = 9.5776 (32)

For the Reverse Adjoint Trace, we let v̄5 = ȳ = ∂y
∂y = 1 to compute both ∂y

∂x1

and ∂y
∂x2

. Recall that this is computed ”bottom-up”:

v̄5 = ȳ = 1

v̄4 = v̄5
∂v5
∂v4

= v̄5 · 1 = 1

v̄3 = v̄5
∂v5
∂v3

= v̄5 · 1 = 1

v̄1 = v̄4
∂v4
∂v1

= v̄4 · 1 = 1

v̄2 = v̄4
∂v4
∂v2

= v̄4 · (−1) = −1

v̄−1 = v̄3
∂v3
∂v−1

= v̄3 · cos(v−1) = −0.99

v̄−1 = v̄−1 + v̄2
∂v2
∂v−1

= v̄−1 + v̄2 · cos(v0) = −0.844

v̄0 = v̄2
∂v2
∂v0

= v̄2 · v−1 · (−sin(v0)) = −2.968

v̄−1 = v̄−1 + v̄1
∂v1
∂v−1

= v̄−1 + v̄1 · 2 · v−1 = 5.156

x̄1 = v̄−1 = 5.156

x̄2 = v̄0 = 2.968

1 def naive_convolve2D [n][m][p][k][l][o] (imgs : [l][n][m]f64) (kernels : [o][l][p][k]f64) (biases
2 let flat_pk = p*k
3 let new_n = (((n+(padding*2))-p)+1)
4 let new_m = (((m+(padding*2))-p)+1)
5
6 let imgs_padded =
7 if (padding != 0) then
8 add_padding imgs padding
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9 else
10 imgs
11
12 let c1 = map (\ kernel_3d ->
13 tabulate_2d new_n new_m (\ y x ->
14 reduce (+) 0 (flatten (map2 (\ kernel img ->
15 (flatten (map2 (\ i j ->
16 map2 (*) i j)
17 (img[y:(y+p),x:(x+k)] :> [p][k]f64) kernel)) :> [flat_pk]f64
18 ) kernel_3d imgs_padded))
19 )
20 ) kernels
21
22 let c1_b = tabulate_3d o new_n new_m (\z y x -> c1[z,y,x] + biases[z])
23 in c1_b

1 def block_reverse [l][n][m] (out_grad: [l][n][m]f64) (num_groups : i64) (weights) (cache) =
2 let (conv1_w,_,t_w,_,conv2_w,_) = weights
3 let (imgs, time_mlp, conv1, lin_out, comb, conv2,conv1_gnorm_cache,conv2_gnorm_cache) = cache
4 let conv2_gnorm_b = group_norm_b out_grad num_groups 1e-05 conv2_gnorm_cache
5 let conv2_act_b = ReLU_3d_b conv2_gnorm_b conv2
6 let (conv2_b,c2_w_grad,c2_b_grad) = convolve2D_b conv2_act_b comb conv2_w 1 1
7 let conv1_gnorm_b = group_norm_b conv2_b num_groups 1e-05 conv1_gnorm_cache
8 let out_grad_conv_act = ReLU_3d_b conv1_gnorm_b conv1
9 let out_grad_sum = map (map (reduce (+) 0)) conv2_b

10 let out_grad_lin_act = map2 ReLU_b (map (reduce (+) 0) out_grad_sum) lin_out
11 let (_, t_w_grad, t_b_grad) = dense_b out_grad_lin_act time_mlp t_w
12 let (input_grad, c_w_grad, c_b_grad) = convolve2D_b out_grad_conv_act imgs conv1_w 1 1
13 in (input_grad, (c_w_grad, c_b_grad, t_w_grad, t_b_grad, c2_w_grad, c2_b_grad))

1 def lenet_reverse [n][m] (img : [n][m]f64) (prediction : []f64) (label: []f64) (weights) (cache)
2 let (C1_w,C1_b,C3_w,C3_b,F6_w,F6_b,F7_w,F7_b,F8_w,F8_b) = weights
3 let (C1_layer,C1_layer_activation,S2_layer,C3_layer,C3_layer_activation,S4_layer,F5_layer,F6_l
4 let grad = mse_prime label prediction
5 let prediction_b : [10]f64 = softmax_b grad prediction :> [10]f64
6 let (F8_layer_b,F8_w_grad,F8_b_grad) = dense_b prediction_b F7_layer_activation F8_w
7 let F7_layer_activation_b : [84]f64 = map2 ReLU_b F8_layer_b F7_layer
8 let (F7_layer_b,F7_w_grad,F7_b_grad) = dense_b F7_layer_activation_b F6_layer F7_w
9 let F6_layer_activation_b : [120]f64 = map2 ReLU_b F7_layer_b F6_layer

10 let (F6_layer_b,F6_w_grad,F6_b_grad) = dense_b F6_layer_activation_b F5_layer F6_w
11 let F5_layer_b = unflatten_3d 16 5 5 F6_layer_b
12 let S4_layer_b = avg_pool_b F5_layer_b 2 :> [16][10][10]f64
13 let C3_layer_activation_b = map2 (\ y_g y -> map2 (\ x_g x -> map2 ReLU_b x_g x) y_g y) S4_layer_b
14 let (C3_layer_b,C3_w_grad,C3_b_grad) = convolve2D_b C3_layer_activation_b S2_layer C3_w 0i64 4i64
15 let S2_layer_b = avg_pool_b C3_layer_b 2 :> [6][28][28]f64
16 let C1_layer_activation_b = map2 (\ y_g y -> map2 (\ x_g x -> map2 ReLU_b x_g x) y_g y) S2_layer_b
17 let (C1_layer_b,C1_w_grad,C1_b_grad) = convolve2D_b C1_layer_activation_b [img] C1_w 2i64 2i64
18 in (C1_w_grad,C1_b_grad,C3_w_grad,C3_b_grad,F6_w_grad,F6_b_grad,F7_w_grad,F7_b_grad,F8_w_grad,F


