
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

Bachelor Thesis
Shatin Nguyen, Theis Baasch and Oliver Raaschou

Empirically comparing high level and low level AD

Advisor: Troels Henriksen

Handed in: June 10, 2025

Abstract

Automatic Differentiation (AD) is a critical technology for gradient-based opti-
mization in machine learning and scientific computing. AD systems can be broadly
categorized as high-level, which operate on source code and can leverage semantic
information, or low-level, which operate on generic intermediate representations
(IRs) like LLVM IR. While both paradigms have theoretical advantages, their em-
pirical performance trade-offs for are not well understood. This thesis addresses
that gap by empirically comparing the runtime performance of Futhark’s high-
level, native AD system against a low-level approach using Enzyme on Futhark-
generated LLVM IR. We conduct a systematic comparison across a curated suite
of benchmarks. Our results reveal a distinct performance trade-off dictated by
the workload’s computational pattern. We found that while low-level AD excels
on computationally simple programs, high-level AD provides a significant per-
formance advantage — up to 10x — for memory-bound workloads dominated by
large matrix operations. We conclude that a high-level AD system’s ability to apply
semantic transformations offers a reliable and significant performance advantage
for a wide range of programs.

2

Contents

Introduction . 4
Motivation and Problem statement 4
Hypothesis . 4
Empirical Benchmarking and Scope 4
Key Findings and Contributions 5

Background . 6
Automatic Differentiation (AD) 6
Futhark . 6
LLVM . 7
Enzyme . 7

Methodology and Implementation . 8
Experimental Setup . 8
Benchmark selection . 8
Application of Futhark’s AD . 9
Application of Enzyme to Futhark Programs 9
Performance Measurement and Metrics 12

Evaluation and Results . 13
Presentation of Benchmark Results 13
How we analyzed our results . 13
Overall Trends and Discussion 26

Conclusion and Future Work . 27
Summary of Findings . 27
Conclusion regarding Hypothesis 27
Limitations of the Study . 27
Future Work . 28

3

Introduction

Automatic Differentiation (AD) has in the recent years gained more attraction
across numerous scientific and engineering disciplines. Its most prominent usage is
in modern machine learning, where it can be used in training models through effi-
ciently computing gradients. AD techniques offer a systematic way to compute the
derivatives of functions expressed as computer programs, providing an alternative
to more error prone manually implementing derivations and less precise numerical
approximation.

Motivation and Problem statement

The methodologies for implementing AD are diverse, often distinguished by the
level of program representation at which the differentiation transformation is ap-
plied. High-level AD tools can operate directly on, or close to, the source code al-
lowing them to take advantage of informative semantic and domain-specific knowl-
edge to enhance in order to optimize the gradient function. Futhark is a high-level
functional language which implement such AD tools and can effectively exploit
and transform programs structures to produce efficient code. Conversely, low-level
AD systems for example Enzyme AD operate on low-level intermediate language
(in our case LLVM IR).

While both methods present distinct theoretical advantages, a clear understand-
ing of their empirical performance trade-offs is crucial. The choice of AD strategy
can influence the efficiency of the generated derivative code, especially concern-
ing how the original program is preserved, transformed, or newly exploited in the
differentiated version. This thesis addresses the core problem of empirically com-
paring the runtime performance and compilation overhead of high-level AD, as
implemented in Futhark’s native system, versus low-level AD, using Enzyme ap-
plied to Futhark-generated LLVM IR, for a suite of Futhark programs. Further-
more, it seeks to investigate the underlying factors contributing to any observed
performance differences.

Hypothesis

Our hypothesis is that it is advantageous to perform AD at a higher level of ab-
straction, since high level languages expose semantic and structural information
that can lead to the generation of more efficient derivatives, whereas low-level rep-
resentations often obscure such information.

Empirical Benchmarking and Scope

To test our hypothesis, this thesis uses empirical benchmarking. This approach in-
volves a systematic execution of selected programs suitable for differentiation us-
ing Futharks’s AD implementation versus Enzyme AD. The performance of these
differentiated versions is then quantitatively measured and compared. The analysis

4

subsequently focuses on interpreting these performance results, aiming to identify
the reasons for observed differences by relating them to the characteristics of the
AD tools and the benchmarks themselves.

The scope of this project:

1. An empirical performance comparison between Futhark’s native AD system
and the Enzyme AD tool.

2. A selection of Futhark benchmarks.

3. The measurement and analysis of runtime execution performance.

4. An investigation into the reasons for performance differences, with particular
attention to the handling and transformation of program structures.

5. Documentation of the practical challenges encountered in setting up and uti-
lizing AD in Futhark and using Enzyme.

This project does not aim to:

1. Conduct an exhaustive survey or comparison of all available AD tools or
techniques.

2. Develop novel AD algorithms or new compiler optimizations for either Futhark
or Enzyme.

3. Perform a deep formal verification of the AD transformations, beyond what
is necessary to ensure correctness for the purpose of performance compari-
son.

Key Findings and Contributions

Our empirical investigation reveals a distinct performance trade-off dictated by
the workload’s computational pattern. We find that while low-level AD excels on
computationally simple programs, Futhark’s high-level AD provides a significant
performance advantage (up to 10x) for memory-bound computations. Furthermore,
we demonstrate that high-level AD’s ability to perform structural transformations
provides noticeable results when compared to low-level AD at certain problem
scales.

5

Background

Automatic Differentiation (AD)

Automatic Differentiation (AD) is a method for computing the derivatives of func-
tions written as computer programs. Unlike symbolic differentiation, which creates
a new mathematical formula, AD computes the derivative’s exact numerical value
during the program’s execution. This makes it a practical and precise alternative
to both symbolic and numerical methods. AD has two main approaches: forward
mode and reverse mode. The choice between them is critical for performance. For-
ward mode is typically more efficient for functions with fewer inputs compared to
outputs, while reverse mode is better suited for functions with more inputs com-
pared to outputs [1].

Forward mode

Forward mode in AD will find the derivative of a function f with respect to x1
by first giving each intermediate values vi a derivative v′i =

∂vi
∂x1

. Then applying
chain rule on each elementary operations (often called forward primal trace) gives
the tangent v′i. Then evaluate vi and the tangent v′i gives the derivative vj = ∂vi

∂v1
.

Forward mode will require computing the Jacobian of a function Rn → Rm where
n is the inputs of xi and m is the outputs of yi. Each evaluation generate one
column in the Jacobian and the full Jacobian can be computed in n evaluations.
Forward mode is more preferable when n ≪ m [1].

Reverse mode

In reverse mode the derivative is calculated in two phases. First phase is running
the original program and set the intermediate values vi while keep track of depen-
dencies. The second phase calculate the derivative by propagating the adjoint in
reverse. Reverse mode is preferable when m ≪ n[1].

Futhark

Futhark is a high-level, purely functional, data-parallel programming language.
It is specifically designed to facilitate the creation of high-performance parallel
programs that can be efficiently executed on contemporary hardware, particularly
Graphics Processing Units (GPUs). Its programming model is rooted in functional
principles and often emphasizes nested parallelism, allowing for the expression
of parallel computations within other parallel computations. The language is in-
tentionally kept small to enable a compiler that can apply numerous aggressive
optimizations. Futhark has built-in functionality for AD both for forward mode
and reverse mode. Futhark has a built-in backend for generating C code as well as
GPU code, corresponding to code written in Futhark [8].

6

LLVM

LLVM is a modern compiler infrastructure supporting a variety of programming
languages. It provides an optimizer that attempts to improve the runtime of code
at the cost of compile time. This project primary focuses on using the LLVM
optimizer on C and C++ programs. LLVM can also represent code in form of
LLVM intermediate representation (IR) providing a human readable instruction
set. [9].

Enzyme

Enzyme AD is an AD tool which is implemented as a plugin for the LLVM com-
piler. Enzyme performs AD by directly transforming the LLVM IR of a program.
Here it analyzes the LLVM IR of the given function and then generates new LLVM
IR which computes the functions derivative, here supporting both forward- and re-
verse mode. The design goal of Enzyme is to operate on optimized LLVM code
which can make simple and optimized gradients.

Enzyme is relevant to this study since it operate on low-level LLVM IR and
differentiates code after compiler optimizations have been performed and when the
program is in LLVM IR. Even though this allows Enzyme to operate on compiler
optimized code, it also means that the code Enzyme have limited knowledge about
the original high-level code and sematic information. In practice a trade-off is
that some functions cannot be re-computed and if it that function is needed for
calculating the derivative, Enzyme needs to handle these, and possibly introduce
overhead instructions to do so [10].

7

Methodology and Implementation

Experimental Setup

The experiments were conducted with these specifications:

Hardware
CPU: Apple M1
GPU: Apple M1
RAM: 16 GB

Software
Operation System: MacOS Sequia 15.5
Futhark Compiler: 0.25.31. Compiled with GHC 9.12.2.
LLVM Toolchain: Version 19.1.7
Enzyme: Version 0.0.180
Key Compiler flags: -O2 -fno-vectorize -fno-slp-vectorize -fno-unroll-loops

Benchmark selection

The benchmarks used in this study were from gradBench [4] and Futhark’s Ad-
Bench [[3]] to provide a robust basis for comparison. These algorithms provde a
wide range of algorithms with different applications of AD. They include scenarios
where both forward mod and reverse mode are used in different ways.

The specific benchmarks are described below:

1. Dot Product: Computes the dot product of two vectors. While simple, it
serves as a fundamental building block and a basic test case for AD.

2. Matrix multiplication: A fundamental linear algebra operation computing
the multiplication of two matrices. It is a classic example of a highly data-
parallel computation and is commonly used in many scientific and machine
learning fields.

3. Gaussian Mixture Model (GMM): This benchmark implements a Gaussian
Mixture Model, a probabilistic model used in machine learning [14].

4. Bundle Adjustment (BA): Is an algorithm in used in computer vision for 3D
reconstruction [14].

5. Hand Tracking (HT): HT is used to track a real hand by observing the depth
and fitting the model to depth information [14].

6. K-Means Clustering (KMeans): An iterative algorithm that partitions a dataset
into K distinct, non-overlapping clusters. Its main computational steps, as-
signing points to clusters and recalculating cluster centroids [12].

8

7. Long Short-Term Memory (LSTM): LSTM is a type of recurrent neural net-
work architecture [5]

8. Linear least squares (LLSQ): This is a benchmark taken from [2]

The implementations can be found on GitHub 1.

Application of Futhark’s AD

We utilized Futhark’s built-in AD capabilities to obtain the high-level differenti-
ated versions of the selected benchmarks. This process involved using the AD
constructs provided directly by Futhark’s language and compiler.

For each of the benchmarks, the primary function targeted for differentiation
was transformed using Futhark’s AD syntax. This involved applying either jvp
(Jacobian-vector product for forward mode AD) or vjp (vector-Jacobian product
for reverse mode AD). We used reverse mode (vjp): Dot Product, Matrix Multipli-
cation, GMM, BA, LLSQ, and LSTM, and forward mode (jvp) for Hand Tracking
(HT). Kmeans uses both jvp and vjp to compute the derivative. Our primary role
in this phase was therefore not to implement the AD transformations in Futhark
ourselves, but rather to correctly apply the existing AD constructs and ensure the
resulting programs could be compiled and executed within our experimental envi-
ronment.

Application of Enzyme to Futhark Programs

To perform low-level AD we applied Enzyme to the LLVM Intermediate Represen-
tation (IR) derived from the Futhark benchmark programs. This required a multi-
step pipeline that presented the primary programming and interfacing challenges
of this project. The process began by compiling the original Futhark programs into
C code using the Futhark compiler.

A crucial phase then involved manually modifying this Futhark-generated C
code to be able to interface with Enzyme. We identified the functions to be dif-
ferentiated and integrated calls to Enzyme’s C API, such as enzyme autodiff.
Invoking this API requires specifying how Enzyme should treat each of the primal
function’s arguments during differentiation. This is achieved by passing special
attributes alongside each argument, for example:

1. Active and Duplicated (e.g., using enzyme dup): Signifies that this value
is active and required for computing the gradient. The argument’s original
(primal) value must be preserved for the gradient computation.

2. Active, Duplicated and Primal Not Needed for Gradient (e.g., using en-
zyme dupnoneed): Marks an active argument as not needed. This is useful
when the user wants value of the gradient and not the primal value.

1https://github.com/ABBAASCH/ADBenchmark-Futhark-vs-Enzyme

9

https://github.com/ABBAASCH/ADBenchmark-Futhark-vs-Enzyme

3. Constant (e.g., using enzyme const): Indicates the argument is not active in
the differentiation and its derivative is not computed. This is used for inputs
that do not require gradients, such as fixed parameters.

Once the C code has been modified to use the Enzyme API and attributes, it was
then compiled into LLVM IR using Clang. The Enzyme AD transformation it-
self occurred in the LLVM IR file by loading Enzyme as a compiler plugin within
LLVM’s opt tool. This step generated a new LLVM IR file containing the differ-
entiated functions, which was finally compiled into an executable. The practical
application of this workflow involved overcoming several technical hurdles, par-
ticularly in ensuring a correct interface between the Futhark-generated code and
Enzyme’s API. These challenges, along with a concrete example, are detailed in
the next section.

Challenges in Applying Enzyme to Futhark-Generated Code

One challenge we encountered in using Enzyme was custom allocation functions.
We used some allocation functions which were generated by Futhark, which the
Enzyme plugin could not handle. The issue was in the use of a free list. We ended
up removing this free list from the allocation function, which resulted in a simple
malloc function being invoked, whenever we called the custom allocation function.
This was not ideal, however, it is important to note that this compromise affected
both Futhark and Enzyme. It is therefore a fair compromise for our benchmarks
since they are performed under the same terms.

Illustrative Walkthrough of a Basic Benchmark

As an example we have the following Futhark function, f(x) = x2 that we want
to differentiate. Consider the following function definition:

1 def f (x : f64) : f64 = x**2

Compiling this program would give us the following C code (Simplified version):
1 i n t f u t r t s f (double * out , double x) {
2 i n t e r r = 0 ;
3 double p r i m o u t ;
4 double f r e s = fpow64 (x , 2 . 0) ;
5
6 p r i m o u t = f r e s ;
7 * o u t = p r i m o u t ;
8
9 re turn e r r ;

10 }

This is a simple primal function. However, we still need to add other function to
our program to perform the benchmark. We can extend our initial Futhark with the
following:

1 def f (x : f64) : f64 = x**2
2
3 entry p r i m a l (x : f64) : f64 = #[n o i n l i n e] f x
4
5 entry d i f f e n z y m e (x : f64) : f64 = ???
6
7 entry d i f f f u t h a r k (x : f64) : f64 = v j p f x 1 . 0

10

Here we see our primal function, which we have explained earlier, with three differ-
ent entry points. The entry points give us the ability to benchmark these functions
separately with given datasets. We have also used the noinline flag in the futhark
entry point. This is done so the primal function is not in-lined so we can call the
primal function. Notice what our enzyme entry points is defined with ’???’, this is
a pattern we use in multiple benchmarks. The reason we do this is just to generate
the function with no meaningful content, since we are going to replace its content
later anyways. With all of the functions defined, we can now compile the Futhark
program to C code. Here we can see the Enzyme function that was generated with
the ’???’ which has generated a Hole warning:

1 i n t d i f f e n z z y m e (double * out , double x) {
2 i n t e r r = 0 ;
3 double p r i m o u t ;
4
5 i f (! 0) {
6 s e t e r r o r (. . .)
7 }
8
9 p r i m o u t = 0 . 0 ;

10 * o u t = p r i m o u t ;
11
12 re turn e r r ;
13 }

We replace the content of this function with the relevant enzyme attributes. This is
where we perform the AD with Enzyme:

1 i n t d i f f e n z z y m e (double * out , double x) {
2 . . .
3 double seed , d s e e d = 1 . 0 ; / / s eed f o r o u t p u t
4 double d x = 0 . 0 ; / / d e r v a t i v e a d j o i n t
5
6 e n z y m e a u t o d i f f ((void *) f ,
7 enzyme cons t , c tx ,
8 enzyme dupnoneed , &out , &d ou t ,
9 enzyme dup , &x , &d x

10) ;
11 . . .
12 }

This C function, diff enzyme, now demonstrates how we interface with Enzyme to
perform Automatic Differentiation. The core of this is the call to enzyme autodiff.
The first argument, (void*)f passes a pointer to our primal C function (which orig-
inated from the Futhark f function). Subsequent arguments pair Enzyme-specific
attributes like enzyme const, enzyme dupnoneed, and enzyme dup with the pri-
mal function’s arguments (e.g., ctx, output, x) and their corresponding derivative
variables (e.g., d output, d x). These attributes, conceptually introduced in the pre-
vious section, instruct Enzyme on how to treat each variable during differentiation
for instance, enzyme const marks ctx as non-differentiable, while enzyme dup in-
dicates that x is an active input whose derivative d x is required and whose primal
value is needed. This instrumented C code is then compiled to LLVM IR, which
Enzyme processes to generate the differentiated function, before final compilation
to an executable. This walkthrough illustrates the fundamental steps applied across
all benchmarks to enable differentiation via Enzyme.

11

Performance Measurement and Metrics

To empirically compare the two AD approaches we collected runtime using Futhark’s
build-in benchmark tool. Futhark bench is a standard tool for benchmarking Futhark
programs; it performs multiple timed runs, including a warm-up run, and reports
statistical summaries with arithmetic mean runtime and 95% confidence inter-
val[7]. We used the mean runtime from these summaries for our analysis. Runtime
in Futhark bench is defined as the wall-clock duration for when the program start
to finish [6].

All benchmarks were executed on the identical hardware and software envi-
ronment using the same input datasets for both AD approaches. The functional
correctness of the derivatives generated by both methods was verified for each
benchmark. This verification involved comparing the program’s output on its first
dataset against a reference validation output. These reference outputs were either
provided as part of the existing ADBench datasets or were generated by us from
the output of the original Futhark AD implementation. If the differentiated pro-
gram’s output matched this reference for the first dataset, the implementation was
assumed to be correct for the purpose of performance benchmarking. The datasets
used for GMM, KMeans, HT, BA and LSTM are taken from Gradbench [4]. These
dataset are large and minimize noise during the benchmark tests.

12

Evaluation and Results

In this section we will present our empirical findings form our comparative study
of Futhark’s AD and Enzyme’s AD. We will begin by presenting the results from
the various benchmarks, this being primarily through graphical representations of
speedup. Subsequently we dive into a detailed analysis of those results. Here we
aim to clarify the the factors that contributed to the observed performance differ-
ences and to evaluate our hypothesis regarding advantages of high-level AD.

Presentation of Benchmark Results

The core of the performance metric used for this comparison is the speedup achieved
by Enzyme relative to Futhark, calculated as speedup = Futhark AD execution time

Enzyme AD execution time . If
we have a speedup greater than 1.0 then it indicates that Enzyme is faster, while a
value less than 1.0 indicates that Futhark is faster.

How we analyzed our results

As an example of how we analyze the benchmark results we consider the result
from the benchmark with dot product. This is a smaller benchmark, but serves
its purpose in explaining how we analyze and conclude our analysis of the bench-
marks. Our first step is to look at the graph of our benchmark results.

Figure 1: Speedup graph for dot product

As we can see in figure 1, Futhark gets increasingly faster as the input for dot
product increases. Specifically, we see a speedup range from 0.24x to 0.06x. This
means for the smallest dataset with Futhark is approximately 4 times faster and on
the largest dataset approximately 16x faster. As this is our smallest benchmark, it
is viable for us to look at the LLVM IR generated from this benchmark. This will

13

give insight into how the code structure is optimized and will explain the trend we
see in the graph.

The purpose is to identifying loops and potential instructions that impact run-
time the most. We will be analyzing the potential issues using perf which is a Linux
tool that analyze performance by counting CPU events. The LLVM IR we analyze
after optimizations have been performed with the ’-O2’ flag as well as before and
after AD.

Our method involved tracing the program’s execution paths. LLVM IR uses the
br instruction to manage control flow and jump between labels. A loop is formed
by a br instruction that can return to the same label. When we identified a loop
structure we examined the controlling branch condition to determine the criteria
for exiting the loop. Concurrently, we analyzed the instructions within the loop
body to identify sources of potential performance overhead.

Our analysis of the LLVM IR generated by Enzyme for a dot product function
reveals that it allocates memory for each input argument. For a dot product between
two vectors of length n, this means Enzyme inserts two separate calls to malloc,
each allocating a buffer of size n.

This memory allocation is a fundamental caching mechanism in Enzyme. It
is required to preserve the original input values for the reverse pass of automatic
differentiation. This step becomes critical when these original values cannot be
easily recomputed but are necessary for the gradient calculation [11]. The example
of the generated LLVM IR shows that there is two different malloc calls followed
by llvm.memcpy which copies the values of the input parameters, A and B
into the cache. After the caching phase Enzyme then accesses the cached values
in reverse order. Consequentially creating two loops indexing from 0 to n and
afterward a loop backward from n down to 0.

Both the Enzyme-generated and Futhark-compiled code compute the dot prod-
uct gradient using a single loop over the n elements of the input vectors. However,
the core difference between them lies in the compiler’s high-level interpretation of
the gradient computation itself.

Futhark performs a high-level optimization, recognizing that the gradient of a
dot product with respect to one input vector is simply the other input vector. As
a result, Futhark avoids allocating intermediate ”adjoint” arrays for the gradients.
The resulting instruction sequence is significantly simpler and more efficient, as it
only needs to copy the final gradient values. In contrast, Enzyme adheres strictly
to the structure of the primal function. As discussed previously, it allocates two
memory buffers of size n to cache the primal inputs. It then allocates two additional
buffers for the output adjoints, leading to a total of four large memory allocations.
Enzyme uses an accumulation loop, where each gradient element is updated with
a load, add, and store sequence. Futhark’s optimization, by contrast, would only
require a load and a store.

This difference in memory strategy and instruction complexity is directly re-
flected in performance metrics. On a large test vector, perf reports the following:

14

1. Futhark: 78,205 page faults and 9.63% cache misses.

2. Enzyme: 97,736 page faults and 10.09% cache misses.

While the difference in cache misses is minor and could be attributed to run-
time variance, the disparity in page faults is substantial. This indicates significantly
higher memory pressure from Enzyme’s approach. This would explain the differ-
ence in runtime, that we see in figure 1.

15

Matrix multiplication

Figure 2: Speedup graph for matrix multiplication

In the figure 2 we see the results from the benchmark for matrix multiplication.
We notice that Futhark is consistently faster with only a small range of changes in
the speedup. Here we see that Futhark has a speedup which ranges from 0.18x to
0.21x.

Futhark’s superior performance in matrix multiplication AD is due to high-
level compiler optimizations, as detailed in [13]. Even though the paper focuses
on rewrite rules and optimizations on GPU code. It is still relevant to notice the
optimizations in section V-A [13]. This optimization focuses on eliminating the
bad temporal locality we would see in the triple nested for loop.

Instead of differentiating the primal’s triple-nested loop directly, Futhark re-
structures the entire reverse pass. It transforms the gradient computation into two
distinct, cache-friendly matrix multiplication accumulators for each input’s adjoint.
This strategy, confirmed by the code snippet for our benchmark below, significantly
improves spatial and temporal locality. The fundamental difference in these loop-
ing strategies can be illustrated with the following pseudocode in figure 3:

In contrast, Enzyme operates on the lower-level LLVM IR, applying its AD
rules to the existing loop structure without performing a semantic transformation.
Futhark’s ability to restructure the computation at a higher level of abstraction is
therefore the key driver of its performance advantage.

The LLVM IR generated by Enzyme for matrix multiplication differentiation is
similar to the dot product process but instead uses two triple-nested loops. Like in
dot product it allocates memory and copies. This time however, we allocate two
matrices of size n×m× p for A and B into new buffers.

The reason Enzyme chooses to cache larger memory blocks for A and B is

16

1 p r i m a l (A, B , n , m, p)
2 f o r i =0 ; i<n ; i ++
3 f o r j =0 ; j<p ; j ++
4 f o r k =0; k<m; k++
5 A[i *m*k]
6 B[k*p* j]

1 d i f f F u t h a r k (A, B , n , m, p)
2 f o r i =0 ; i<n ; i ++
3 f o r j =0 ; j<p ; j ++
4 f o r k =0; k<m; k++
5 dA [j *m+k] = dA [j *m+k] + A[i *m+k]
6
7 f o r j =0 ; j<p ; j ++
8 f o r k =0; k<m; k++
9 dB [k] = dB [k] + B[k*p+ j]

1 d i f f E n z y m e (A, B , n , m, p)
2 f o r i =0 ; i<n ; i ++
3 f o r j =0 ; j<m; j ++
4 f o r k =0; k<0
5 / / Enzyme c a c h i n g argument s
6
7 f o r i =n ; i =0 ; i −−
8 f o r j =n ; j =0 ; j −−
9 f o r k=n ; k =0; k−−

10 / / Enzyme c a l c u l a t e dA and dB

Figure 3: Matrix multiplication loops with Primal (top), Futhark (bottom left),
Enzyme (bottom right).

because it needs space for all the instructions from the forward pass and replay
them in the reverse pass using the tape data structure [10].

Enzyme’s reverse pass differentiates the primal code directly, failing to opti-
mize for temporal locality in the way Futhark’s high-level restructuring does. This
architectural difference leads to a dramatic gap in memory performance. Mea-
surements from perf on a sample benchmark show that Enzyme suffers from 13%
cache misses and 129,486 page faults. In contrast, Futhark maintains only 7%
cache misses and 1,585 page faults. While the cache miss rate is notable, the
nearly 100-fold increase in page faults for Enzyme points to a severe performance
penalty from its less efficient memory access patterns and initialization overhead.

17

GMM

Figure 4: Speedup graph for GMM

The results for the Gaussian Mixture Model (GMM) benchmark, presented in Fig-
ure 4, reveal a performance that is strongly dependent on the data dimensionality,
d.

For configurations with low dimensionality (d=2, 10, and 20), Enzyme consis-
tently and significantly outperforms Futhark’s AD. The speedup for Enzyme in this
regime is substantial, ranging from 1.21x to a peak of 2.26x on the d=2 and K=100
dataset. This indicates that when the computation is less intensive, the overhead
of Futhark’s high-level transformation is more pronounced, and Enzyme’s ability
to leverage low-level scalar and basic loop optimizations provides a clear perfor-
mance advantage.

However, this performance dynamic shifts as dimensionality increases. The
shift occurs around d=32, where Enzyme’s advantage diminishes to 1.07x. For all
higher-dimensional datasets (d=64 and d=128), Futhark’s AD becomes the supe-
rior approach. Futhark’s advantage grows with dimensionality, delivering a 1.20x
speedup (a ratio of 0.83x) over Enzyme on the largest d=128 K=50 configuration.

This trend provides strong empirical support for our central hypothesis. An
analysis of the gmmObjective source code confirms that its runtime is dominated
by a matrix-vector multiplication involving a d × d matrix derived from the in-
verse covariance factor. The cost of this operation scales quadratically O(d2) with
the dimension d. As this memory-intensive operation becomes the bottleneck at
higher dimensions, the benefits of Futhark’s high-level AD transformation become
decisive. As described in our previous section about the matrix multiplication anal-
ysis, , we can apply the same logic. Futhark’s AD can perform semantic, structural
transformations, such as accumulator optimizations, that are specifically designed
to restructure gradient updates and improve cache locality. Enzyme, operating at

18

the lower LLVM IR level, does not perform this semantics restructuring.

Therefore, the GMM benchmark clearly demonstrates a critical trade-off: while
low-level AD is highly effective for computing simple computations, a high-level
AD implementation offers a significant performance advantage for memory-bound
and is dictated by the structure of large matrix operations.

19

KMEANS

Figure 5: Speedup graph for kmeans

The K-means benchmark, with results shown in Figure 5, show strong empirical
evidence in support of our hypothesis. Across every tested configuration, Futhark’s
AD outperforms Enzyme, achieving a speedup of between 2.5x and 10x (corre-
sponding to speedup ratios of 0.39x to 0.10x).

The results demonstrate a clear trend where Futhark’s performance advantage
generally increases with the scale of the dataset, which is a function of the number
of points n, clusters k, and dimensions d. While the trend is consistent, minor
spikes in the speedup ratio, such as at k=1000, n=100 and d=4, correlate with
lower dimensionality. This suggests that while Futhark’s superiority is universal
for this benchmark, its relative advantage is less pronounced for computationally
simpler, low-dimension problems a finding consistent with the GMM analysis.

20

HT

Figure 6: Speedup graph for ht

The ht/hand benchmark, which uniquely utilizes forward-mode AD, presents a
complex performance narrative with three distinct phases, as shown in Figure 6.
These results highlight a nuanced trade-off between low-level and high-level AD
approaches that is dependent on problem scale and structure.

Initially, on the two smallest datasets hand1: t=26, c100 and hand2: t=26,
c=192, Futhark’s AD is faster, suggesting that for minimal computations, the over-
head of Enzyme may outweigh its optimization benefits.

However, this trend reverses for the remaining small datasets. In this second
phase, Enzyme becomes increasingly dominant as the problem size grows, peaking
at a significant 2.11x speedup. This behavior is characteristic of forward-mode AD,
which generates derivative code that mirrors the primal program’s control flow
[10].

The performance dynamic shifts again for the big hand datasets. The most sig-
nificant result in this benchmark is the dramatic performance reversal at big hand3:
t=26 c=200, where Futhark becomes 1.69x faster than Enzyme (a 0.59x speedup).
Following this anomaly, performance remains more contested, with Futhark often
holding a slight advantage. This ”performance cliff” for Enzyme strongly suggests
that while its low-level optimizations are powerful, they are applied to a fixed code
structure. At a certain scale or data layout, this structure can lead to severe bot-
tlenecks, likely related to cache inefficiency or memory access patterns. Futhark’s
high-level AD, by being able to perform semantic transformations on the array
primitives themselves, can generate derivative code with a different structure that
avoids this specific bottleneck.

The similar structure of the code when using forward mode AD could explain
the similar runtimes for both AD systems, seen in the biggest dataset big hand6:
t=26, c=1600 and big hand7: t=26, c=3200. Here we see that Enzyme is not bound
by the same memory problems or by the high-level data structures, which could be
ineffective compared to the high-level transformations utilized by Futhark. Con-

21

sidering this, it would be reasonable to see this equal performance when using
forward mode AD.

In conclusion, the ht/hand benchmark demonstrates that while a low-level,
forward-mode approach can be highly effective for a broad range of problem sizes,
it is also susceptible to performance cliffs. However, with the biggest datasets in
this benchmark, we see a similar performance, which is reasonable when we think
about the characteristics of forward mode AD.

22

BA

Figure 7: Speedup graph for BA

The Bundle Adjustment (BA) benchmark, as shown in Figure 7, reveals a different
performance dynamic. Futhark’s AD is consistently faster than Enzyme across
all 16 datasets, with the speedup ratio remaining stable in a narrow band between
0.59x and 0.66x. This corresponds to a reliable performance advantage for Futhark
of approximately 1.5x to 1.7x.

An analysis of the source code shows that the BA workload is characterized
by applying reverse-mode AD to a large number of small, independent compu-
tations one for each observation point. These inner computations are dominated
by scalar arithmetic and operations on small, fixed-size vectors, not the large,
memory-intensive array operations seen in previous benchmarks.

This ”many-small-tasks” structure explains the observed performance. The
function that needs to be differentiated is small and does not contain any loop.
Enzyme require more instructions to compute the same output. This emphasizes
our hypothesis that Enzyme has more overhead.

Therefore, the BA benchmark refines our hypothesis. Based on these results
we see that Futhark not only benefits from large matrix operations but also on
consistently small workloads.

23

LSTM

Figure 8: Visual presentation of speedup with LSTM

The Long Short-Term Memory (LSTM) benchmark, with results presented in Fig-
ure 8, further reinforces the central hypothesis of this thesis. Futhark’s native AD
demonstrates a consistent performance advantage over Enzyme across all tested
configurations, achieving a speedup of up to 0.79x.

The most significant trend revealed by the data is the relationship between per-
formance and the number of hidden units, or cells (c), in the LSTM layers. Within
each configuration of a fixed number of layers, Futhark’s relative speedup increases
as the cell count grows. This indicates that the high-level AD approach becomes
more advantageous as the underlying array operations become larger and more
memory-intensive.

This trend is directly explained by the computational structure of the LSTM
algorithm. The core of the lstmModel function consists of several element-wise
vector operations involving the weight and hidden state vectors. While the cost of
these operations scales linearly O(c) with the number of cells, they become the
dominant factor in overall runtime as c grows, making performance highly sensi-
tive to memory access patterns. As argued in previous sections, Futhark’s ability
to perform high-level, structural optimizations on these dense array computations
results in more efficient C code. Enzyme, operating at the lower LLVM IR level, is
does not utilize semantics-aware and does not do restructuring.

In contrast to the Bundle Adjustment benchmark, which was characterized by
many small, independent tasks, the LSTM benchmark’s performance is dictated by
large, memory-bound array operations, similar to the GMM benchmark. The con-
sistent results across both GMM and LSTM strongly suggest that for algorithms
dominated by such patterns, a high-level AD system that can semantically restruc-
ture the derivative computation offers a performance advantage.

24

LLSQ

Figure 9: Speedup graph for llsq

The Linear Least Squares (LLSQ) benchmark presents a notable contrast to the
previous results. As shown in Figure 9, the performance of Futhark’s AD and
Enzyme is nearly identical across all datasets. Futhark maintains a marginal but
consistent advantage, with the speedup ratio remaining stable at approximately
0.98x, indicating a 2% performance benefit.

The key finding from this benchmark is the absence of a significant perfor-
mance gap or a trend related to problem size. This result is directly explained
by the computational structure of the LLSQ algorithm. An analysis of the source
code reveals that the workload is a nested loop dominated by scalar arithmetic.
It lacks large-scale memory requirement like GMM and LSTM, and the ”many-
small-tasks” structure of the BA benchmark.

There are no obvious opportunities for Futhark’s high-level AD to apply the
semantic transformations as in other benchmarks. Both the high-level and low-
level AD systems are likely differentiating a simple loop structure in a similar way.
Since both the Futhark C backend and the LLVM optimizer are optimizing such
loops, they generate derivative code with nearly equivalent performance.

Therefore, the LLSQ benchmark serves as a good control case. It does not con-
tradict our hypothesis, but rather refines it by identifying a class of workload where
the specific advantages of high-level AD is not present. This demonstrates that the
performance benefits of a high-level approach are tied to the presence of specific,
transformable computational patterns, and in their absence, the performance of
high-level and low-level AD systems can be expected to converge.

25

Overall Trends and Discussion

The individual benchmark results when analyzed collectively reveal that the per-
formance trade-off between high-level and low-level AD is not monolithic but is
instead dictated by the underlying computational pattern of the workload. Our
findings identify three distinct categories of behavior that, taken together, provide
a nuanced understanding of when each AD paradigm excels.

This is most evident in memory-bound benchmarks like in GMM and LSTM.
In these cases, Futhark’s AD becomes increasingly dominant as data dimensional-
ity and hidden state sizes grow. This advantage comes from its high-level under-
standing of array operations, which enables structural optimizations that improve
memory locality. In contrast, the Bundle Adjustment (BA) benchmark, character-
ized by thousands of small, independent scalar computations highlights a different
advantage. Futhark’s AD transformation use less computation compared to the
low-level Enzyme AD tool, that possibly introduce additional overhead to achieve
the same result.

Furthermore, the forward-mode ht/hand benchmark demonstrates that while a
low-level approach can be highly effective, its reliance on a fixed code structure
makes it vulnerable to severe ”performance cliffs” at specific problem scales a
bottleneck Futhark’s structural transformations can avoid.

Our investigation into GPU execution, while preliminary, reinforces the prac-
tical advantages of a high-level, integrated system. The significant technical hur-
dles encountered when attempting to apply Enzyme to hand-written CUDA per-
formance - compromising workarounds for memory management - highlight the
complexity of manual GPU differentiation. Futhark’s ability to automatically gen-
erate efficient derivative code for its primary hardware target underscores the value
of a co-designed system where the AD transformations are aware of the underlying
parallelism model.

Collectively, these findings provide nuanced support for our hypothesis. The
primary advantage of high-level AD lies in its ability to apply semantics-aware
transformations that are tailored to the specific structure, whether to optimize mem-
ory access, reduce invocation overhead, or provide performance resilience against
architectural bottlenecks.

26

Conclusion and Future Work

This thesis conducted an empirical comparison of performing AD on high-level
and low-level using Futhark and Enzyme AD. We have applied AD to various
programs with different computational patterns and systematically investigated the
performance trade-offs between differentiating at the source-code level versus the
LLVM IR level. Our findings provide an answer to our central hypothesis, reveal-
ing that it is optimal for runtime to perform AD at a higher level to benefit from
optimizations and more efficient workload structure.

Summary of Findings

Our empirical investigation yielded three distinct categories of performance behav-
ior. First, for memory-bound benchmarks dominated by large, dense array oper-
ations, such as Gaussian Mixture Models (GMM) and Long Short-Term Memory
(LSTM), high-level AD becomes increasingly advantageous as data dimensionality
grows. Second, for workloads composed of many small, independent tasks, such
as Bundle Adjustment (BA), high-level AD provides a consistent and moderate
performance advantage by avoiding the cumulative overhead of the AD tool. Fi-
nally, the forward-mode Hand Tracking (HT) benchmark demonstrated that while
a low-level approach can be highly effective it is also vulnerable to severe ”per-
formance cliffs” at specific problem scales, a bottleneck that Futhark’s structural
transformations can avoid.

Conclusion regarding Hypothesis

Our findings provide strong, nuanced support for our central hypothesis: that per-
forming AD at a higher level of abstraction offers distinct performance advantages.
This advantage is primarily attributed to the AD system’s ability to leverage se-
mantic and structural information present in high level representations compared
to low-level code.

The evidence confirms that there is not a single advantage. The benefits of
high-level AD depends on the computational pattern. For memory-bound work-
loads, it excels by performing structural optimizations that improve data locality.
Its advantage lies in transformation that minimizes overhead as well as providing
performance resilience by generating structurally different derivative code that can
avoid the bottlenecks that affect low-level approaches. Therefore, we conclude
that while low-level AD is a powerful and general tool, a high-level, language AD
system offers a critical advantage leveraging semantic information to generate fun-
damentally more efficient derivative code.

Limitations of the Study

We acknowledge the following limitations to our study. First, all experiments were
conducted on a single CPU architecture. Performance dynamics on GPUs, which

27

have vastly different memory hierarchies and parallelism models, may differ signif-
icantly and were not explored. Second, while our chosen benchmarks cover a wide
range of diverse computational patterns, they do not represent the entire space of
program structures; workloads with more complex control flow or irregular mem-
ory access might yield different results. Finally, our methodology involved apply-
ing Enzyme to Futhark-generated C code. A native implementation in a language
like C++ might allow for different low-level optimizations, potentially altering the
performance comparison.

Future Work

Based on our findings and limitations, several promising areas for future research
emerge. The most critical next step is to extend this empirical comparison to a full
suite of benchmarks on GPU hardware. Our preliminary results indicate signifi-
cant practical challenges in using low-level tools for GPU differentiation, making
a systematic comparison a valuable contribution. A second investigation would
be a deeper analysis of the ”performance cliff” observed in the ht/hand bench-
mark to precisely identify its architectural cause. Finally, our results suggest that
neither AD paradigm is universally superior, motivating long-term research into
hybrid AD systems that could selectively apply high-level structural transforma-
tions to memory-bound array kernels while using low-level AD for scalar-heavy or
control-flow-intensive sections of a program.

28

Bibliography

[1] Atilim Gunes Baydin et al. Automatic differentiation in machine learning: a
survey. 2018. arXiv: 1502.05767 [cs.SC]. URL: https://arxiv.
org/abs/1502.05767.

[2] cmpad. llsq obj. URL: https://cmpad.readthedocs.io/llsq_
obj.html. (accessed: 01.04.2025).

[3] futhark-ad. futhark-ad. URL: https://github.com/diku- dk/
futhark-ad. (accessed: 06.05.2025).

[4] GradBench. GradBench. URL: https://github.com/gradbench/
gradbench. (accessed: 06.05.2025).

[5] gradbench. Long Short-Term Memory (LSTM). URL: https://github.
com/gradbench/gradbench/tree/main/evals/lstm. (ac-
cessed: 01.09.2025).

[6] Troels Henriksen. Futhark book. URL: https://futhark- book.
readthedocs.io/en/latest/practical- matters.html.
(accessed: 06.09.2025).

[7] Troels Henriksen. Futhark-bench - Futhark 0.26.0 Documentation. URL:
https://futhark.readthedocs.io/en/latest/man/futhark-
bench.html. (accessed: 06.09.2025).

[8] Troels Henriksen. Why Futhark. URL: https : / / futhark - lang .
org/. (accessed: 01.04.2025).

[9] Chris Lattner. The Architecture of Open Source Applications (Volume 1)
LLVM. URL: https://aosabook.org/en/v1/llvm.html. (ac-
cessed: 04.05.2025).

[10] William S. Moses and Valentin Churavy. “Instead of rewriting foreign code
for machine learning, automatically synthesize fast gradients”. In: Proceed-
ings of the 34th International Conference on Neural Information Processing
Systems. NIPS ’20. Vancouver, BC, Canada: Curran Associates Inc., 2020.
ISBN: 9781713829546.

29

https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767
https://arxiv.org/abs/1502.05767
https://cmpad.readthedocs.io/llsq_obj.html
https://cmpad.readthedocs.io/llsq_obj.html
https://github.com/diku-dk/futhark-ad
https://github.com/diku-dk/futhark-ad
https://github.com/gradbench/gradbench
https://github.com/gradbench/gradbench
https://github.com/gradbench/gradbench/tree/main/evals/lstm
https://github.com/gradbench/gradbench/tree/main/evals/lstm
https://futhark-book.readthedocs.io/en/latest/practical-matters.html
https://futhark-book.readthedocs.io/en/latest/practical-matters.html
https://futhark.readthedocs.io/en/latest/man/futhark-bench.html
https://futhark.readthedocs.io/en/latest/man/futhark-bench.html
https://futhark-lang.org/
https://futhark-lang.org/
https://aosabook.org/en/v1/llvm.html

[11] William S. Moses et al. “Scalable Automatic Differentiation of Multiple
Parallel Paradigms through Compiler Augmentation”. In: Proceedings of
the International Conference on High Performance Computing, Network-
ing, Storage and Analysis. SC ’22. Dallas, Texas: IEEE Press, 2022. ISBN:
9784665454445.

[12] Simon Rogers. and Mark Girolami. A First Course in Machine Learning.
Chapman Hall/CRC, 2011. ISBN: 9781498738484.

[13] Robert Schenck et al. AD for an Array Language with Nested Parallelism.
2022. arXiv: 2202.10297 [cs.PL]. URL: https://arxiv.org/
abs/2202.10297.

[14] Filip Šrajer, Zuzana Kukelova, and Andrew Fitzgibbon. A Benchmark of
Selected Algorithmic Differentiation Tools on Some Problems in Computer
Vision and Machine Learning. 2018. arXiv: 1807.10129 [cs.MS]. URL:
https://arxiv.org/abs/1807.10129.

30

https://arxiv.org/abs/2202.10297
https://arxiv.org/abs/2202.10297
https://arxiv.org/abs/2202.10297
https://arxiv.org/abs/1807.10129
https://arxiv.org/abs/1807.10129

	Introduction
	Motivation and Problem statement
	Hypothesis
	Empirical Benchmarking and Scope
	Key Findings and Contributions

	Background
	Automatic Differentiation (AD)
	Futhark
	LLVM
	Enzyme

	Methodology and Implementation
	Experimental Setup
	Benchmark selection
	Application of Futhark's AD
	Application of Enzyme to Futhark Programs
	Performance Measurement and Metrics

	Evaluation and Results
	Presentation of Benchmark Results
	How we analyzed our results
	Overall Trends and Discussion

	Conclusion and Future Work
	Summary of Findings
	Conclusion regarding Hypothesis
	Limitations of the Study
	Future Work

