
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

Master’s thesis
Mikkel Storgaard Knudsen

FShark
Futhark programming in FSharp

Advisor: Cosmin Eugen Oancea
Co-advisor: Troels Henriksen

Handed in: August 6, 2018

2

Abstract

Futhark is a purely functional programming language, designed to be compiled
to efficient GPU code. The GPU code has both C and Python interfaces,
but does not interoperate with other mainstream languages such as C#, F# or
Java.

We first describe and implement a C# code generator that allows GPU kernels
written in Futhark to be compiled and used as external libraries in C#- and F#
programs.

We then describe and implement the language FShark, which lets developers
write and prototype their own GPU code entirely as declarative F# code. The
language comes with a compiler of its own, which compiles FShark programs
to Futhark code.

We argue that the FShark-to-Futhark translations are correct by comparing
the results of F#-evaluated FShark code with their Futhark-evaluated coun-
terparts, by running a comprehensive suite of 128 unit tests.

We show that Futhark can be compiled to C# GPU code, resulting in comparable
performance with the C OpenCL backends (0−3% for complex benchmarks), by
comparing runtimes across over 20 Futhark benchmark programs ported from
other array programming languages.

Finally, we show that complex GPU benchmarks can be easily written in FShark
in a way that preserves the idiomatic F# style. The GPU benchmarks are com-
piled to GPU code and executed in an F# context, where they are shown to
perform comparably with benchmarks handwritten in Futhark.

Contents

1 Introduction 6
1.1 Relation to Related Work . 7
1.2 What FShark sets out to do . 8
1.3 The contributions of this thesis 9
1.4 Roadmap . 9

2 Background 11
2.1 CUDA . 11

2.1.1 A simple CUDA program 11
2.2 Futhark . 13
2.3 F# . 14

3 Birds-Eye View:
Architecture and Use Cases 16
3.1 Generating GPU accelerated libraries 16

3.1.1 Using Futhark in Python 17
3.1.2 Using Futhark in C# . 18

3.2 Transpiling F# Computational Kernels to Futhark 19
3.2.1 A use case . 20

4 The Futhark C# backend 22
4.1 Recap on using Futhark C# libraries 22

4.1.1 Compiling and using Futhark C# executables 23
4.2 The Futhark C# compiler architecture 24
4.3 The Structure of the Generated C# Code 27

4.3.1 The Futhark class design 28
4.3.2 Entry functions . 32
4.3.3 Entry functions in executables 32
4.3.4 Entry functions in libraries 33
4.3.5 On calling Futhark entry functions that takes arrays as

arguments . 34
4.3.6 The Program class design 34

4.4 Memory management in Futhark C# 35
4.4.1 Performance . 36

4.5 Selecting an OpenCL interface for C# 38

5 The FShark language 41
5.1 What the FShark language is 41
5.2 FShark syntax . 43

1

5.3 Notes to the FShark grammar 45
5.3.1 Limits to function argument types 45
5.3.2 FShark modules . 46

5.4 F# operators available in FShark 46
5.5 F# standard library functions available in FShark 46

5.5.1 On selection the F# subset to include in FShark 46
5.5.2 FShark function meaning has precedence to Futhark sim-

ilars . 48
5.5.3 Missing arithmetic operators in FShark 48

5.6 The FShark standard library . 48
5.7 Arrays in F# versus in Futhark 51
5.8 Converting jagged arrays to Futhark’s flat arrays, and back again 53

5.8.1 Analysis of FlattenArray 56
5.8.2 Analysis of UnflattenArray 59
5.8.3 Why UnflattenArray hinders a specific tuple type 59
5.8.4 An alternative solution (FSharkArrays) 59
5.8.5 Conclusion on arrays . 60

6 The FShark Wrapper 62
6.1 Using the FShark Wrapper . 62

6.1.1 Another short FShark module 62
6.1.2 Compiling and using the short FShark module 63

6.2 On the design decisions of the FShark wrapper 65
6.2.1 Compiling and loading FShark modules at every startup 65
6.2.2 The overhead of invoking GPU kernels 66

7 The FShark Compiler 69
7.1 The FShark compiler architecture 69
7.2 The FSharp parser . 70
7.3 The FSharkCompiler . 71

7.3.1 FSharpDecl.Entity . 71
7.3.2 F# expressions . 73
7.3.3 Translating from FSharpExprs to FSharkIL 74

7.4 The FSharkWriter . 77
7.4.1 The Futhark-to-C# compiler 79

7.5 Design choices in writing the FShark Compiler 79
7.6 Figures . 80

8 Current limitations 84
8.1 The C# code generator . 84

8.1.1 Errors in the implementation 84
8.1.2 Errors in the benchmarking functionality 85
8.1.3 Cumbersome array entry functions in Futhark libraries . . 86
8.1.4 Unnecessary memory allocations in chained Futhark func-

tion calls . 86
8.2 The FShark language . 86

8.2.1 Scatter . 86
8.3 The FShark compiler . 87

8.3.1 Disallowing certain types of FShark entry functions . . . 87
8.3.2 Allow compiler usage outside of FShark wrapper 87

2

8.4 The FShark validation . 87

9 Evaluation and benchmarks 88
9.1 Correctness of the Futhark csharp generator 88
9.2 The performance of Futhark C# programs 89
9.3 Futhark C# integration in C# programs 91
9.4 The design of the FShark language 92

9.4.1 LocVolCalib . 92
9.4.2 nbody . 94
9.4.3 Conclusion on FShark language design 98

9.5 The correctness of the FShark subset. 98
9.5.1 Testing the FShark standard library 99
9.5.2 Conclusion on FShark language correctness 100

9.6 The performance of FShark generated GPU kernels 100
9.6.1 The LocVolCalib benchmark 101
9.6.2 The nbody benchmark 101
9.6.3 Conclusion on performance of FShark generated GPU

kernels . 103

10 Conclusion and future work 105

Appendices 107

A Implementation 108

B FShark standard library 109

C Program for benchmarking byte memory writes in C# 110

D LocVolCalib benchmark written in FShark and Futhark 112

E nbody benchmark written in FShark and Futhark 113

3

Preface

This thesis is submitted in fulfillment of a 30 ECTS master’s thesis in Com-
puter Science (Datalogi) at the University of Copenhagen, for Mikkel Storgaard
Knudsen.

(Front page picture: The humble hedgehog is a peaceful omnivore firmly placed
in the lower-middle part of the food chain. However, sneaky disguises occasion-
ally allows it to partake in feasts that are otherwise reserved for apex preda-
tors.)

4

Acknowledgements

First and foremost I would like to thank my supervisor Cosmin Oancea for his
help throughout the entire project. It has been absolutely invaluable. Second,
I would like to thank Troels Henriksen for putting up with both qualified and
less qualified Haskell and Futhark questions, sent to him on IRC, all hours of
the day.

Lastly, I would like to thank Christopher Pritchard and Abe Mieres from the
official F# Slack channel, for their help with type-related F# questions.

5

1.0

Introduction

Developers worldwide are, and have always been, on the lookout for increased
computing performance. Until recently, the increased performance could eas-
ily be achieved through advances within raw computing power, as CPU’s had
steadily been doubling their number of on-chip transistors, in rough accordance
to Moore’s Law [8].

Since increasing the frequency of the single CPU has hit the power wall[9]
(among other things), achieving higher performance is realized nowadays by
scaling the parallelism of hardware, for example leading to multi-core and then
to many-core architectures. As the number of cores increases, so does the num-
ber of active threads available for parallel data processing.

Modern mainstream (general-purpose) graphical processing units (GPUs) can
run tens of thousands of hardware threads in parallel. Modern mainstream
CPUs, like the current Ryzen series by AMD, usually support between 10 and
20 simultaneous threads. This makes GPUs an attractive target for data-parallel
programming.

While re-writing a program for multi-core execution is not without challenges,
GPU programming is significantly more difficult. For example, the typical ap-
proach for multicores is to exploit (only) the parallelism of the outermost (par-
allel) loop – this is because, the loop count is typically greater than the number
of cores (maximum 32), which means that the hardware is fully utilized. GPUs,
on the other hand, expose a massive amount of hardware parallelism, whose full
utilization often requires to exploit multiple (nested) levels of the application’s
parallelism. Re-structuring the program in this manner is notoriously difficult,
not only in terms of tedious work, but also because it requires specialized knowl-
edge of compiler analysis.

To make matters even more unattractive, the mainstream APIs for programming
GPUs (e.g., CUDA, OpenCL) are quite low-level and verbose. For example,
GPU developers must not only write the computational kernels for the GPUs,
but also manually handle the memory (de)allocations and transfers between the
host program and the GPU device. All these difficulties in the development of
GPU programs, compared to normal (sequential) CPU programming, severely
hinders the adoption of GPU programming for the masses.

For example, C# [15] and F# [14] are two mainstream languages which, to our
knowledge, lack high-level (easy-to-use) solutions for GPU programming. It is

6

safe to say that there exists plenty of large, real-world projects developed in
C# and F#, which could greatly benefit from accelerating their computational
kernels on GPUs, but current, low-level solutions (such as CUDA and OpenCL)
would demand that those parts are rewritten as GPU code, and linked through
foreign interfaces. This process affects code modularity and maintainability,
and also requires expert-GPU programmers; often enough this associated cost
is deemed too high, so the acceleration benefits are discarded in favor of main-
taining a more accessible code base.

1.1. Relation to Related Work
A rich body of scientific work has been dedicated to the design of high-level
programming models aimed primarily at GPU acceleration. For example, many
domain-specific language (DSL) solutions target specific applications from ar-
eas such as image processing [24], data analytics [31], deep-learning [28], mesh
computations [22], iterative stencils [30].

Various embedded libraries (DSLs) have been developed to allow high-level ex-
pression and transparent-GPU acceleration of (simple) computational kernels
written in a host (mainstream) language. For example, Java 8 supports a stream
(flat-parallel) construct [19], and Accelerate [4, 7] and Obsidian [29] are embed-
ded in Haskell and support flat parallelism by means of operators such as map,
reduce, scan, filter. Other data-parallel and hardware-independent languages,
such as Nesl [3, 2], Futhark [18, 17, 10], SAC [11, 12], and Lift [27, 26] support
more complex parallel patterns (e.g., nested parallelism), and follow a stan-
dalone design.

In essence, all reviewed solutions are primarily aimed at developing (often) com-
plementary techniques for optimizing parallelism in the context of GPU execu-
tion, but they do not address well the practical problem of integrating the
use of the (now) accelerated computational kernels across different mainstream,
productivity-oriented (programming) environments. At best, they provide in-
tegration within one language (the host), and at the worst they require the user
to hack an interoperability solution (based on a rudimentary foreign-function
interface of the host).

This thesis investigates the latter, less-studied problem: we assume that there
exists a standalone data-parallel language that can express and execute effi-
ciently computational kernels on GPUs (for example Futhark), and we study two
transpilation techniques aimed at aggressively integrating these kernels within
the F# environment, ideally to the extent that the user is not even aware that
Futhark is even part of the picture.

In this we take inspiration from early compiler solutions [23, 6] for interoper-
ating across computer-algebra systems, in which for example the large libraries
of Aldor [32]—a strongly and statically typed language supporting dependent
types—have been seamlessly made available for use from Maple [21]—a very
dynamic language aimed at ease of inspection and scripting. Finally, perhaps
the work most related to ours is the experiment [16] that showed that pro-
grams written in a usefully-large subset of the old and interpreted (hence slow)
APL language [20] can be automatically translated to Futhark, optimized for

7

GPU execution, and easily integrated in a mainstream application written in
Python. Whereas others have translated of F#[25] into efficient C code, this the-
sis aims at providing a similar solution in which the automatically-translated
and mainstream-target languages are F# and C#, respectively.

In summary, the hardware for massively parallel programming is widely avail-
able, and many solutions exists for writing efficient GPU programs in high level
languages. The problem is that these solutions do not allow integration across
different mainstream, productivity-oriented languages.

1.2. What FShark sets out to do
This thesis takes inspiration from the APL-Futhark-Python experiment [16],
and creates an interoperability solution between F#, Futhark, and C#. The
ultimate goal is (1) to allow computational kernels to be written in a usefully-
large subset of the F# language, which can be automatically (and efficiently)
translated to Futhark, and (2) to also allow the resulting code to be integrated
back into a mainstream C# or F# application. The advantages of this approach
are that:

• it requires a gentle learning curve for the user, who needs not learn
Futhark,

• it allows full access to F#’s productivity tools, e.g., debugger, IDE, which
is very useful when developing the computational kernels, and

• it allows the code to be optimized by an aggressive compiler (Futhark),
specialized in efficiently mapping nested data-parallelism to GPU hard-
ware.

The solution proposed in this thesis is organized in two steps. The first step is
relatively straightforward and it refers to designing a C# code generator (back-
end) for the Futhark compiler. Starting from a Futhark specification, the code
generator must be able to generate C# source files, that can be compiled and
used either as standalone executables, or as importable (C#) libraries in any
other C# or F# program. There were several notable challenges in this process,
namely

• designing a layout that can encapsulate the exports of a Futhark program
in a single C# class,

• designing static and efficient helper libraries that help and simplify the
code-generation process, and

• designing a way to write sequential (non-GPU) Futhark code as pure C#
code, in cases where GPU devices are unavailable.

The second step is more challenging and refers to identifying a useful subset
of F# that can be automatically transpiled to Futhark, and, of course, de-
signing and implementing the transpilation scheme. The main challenges here
were:

• identifying which parts of the F# language can be suitably translated to
Futhark and what the translation should be,

8

• implementing a standard library written in F#, which contains the im-
plementation of Futhark’s data-parallel operators.1 On the one hand this
library publishes/fixes the types of the data-parallel operators, and, on the
other hand, it provides an implementation semantically-equivalent to the
one of Futhark, for the case when the user is prototyping the application
solely within the F# environment.

• designing and implementing a compiler pipeline that would allow effi-
cient and transparent GPU execution of F# programs (via transpilation
to Futhark), without the need to manually call Futhark compilers or to
import external libraries.

Finally, we demonstrate the feasibility of the approach by means of empiri-
cal validation: We show that unit tests written in the identified subset of F#
can be compiled and executed correctly as computational kernels on the GPU.
More convincingly, we also take several complex benchmark programs written
in Futhark, we translate them to the identified subset of F#, and show that the
GPU-compiled program, not only runs correctly, but also achieves performances
comparable to the one written natively in Futhark. Finally, we show that the
exports of the computational kernels originally written in either Futhark or the
translatable subset of F#, can be easily integrated back in an application written
in C#.

1.3. The contributions of this thesis
The principal contributions of this thesis are as follows:

1. A C# code generator for the Futhark language compiler, which generates
GPU accelerated libraries that can integrate seamlessly in C# and F# code
bases.

2. A select subset of the F# language which can be translated directly to
Futhark source code of equivalent functionality. This includes a library
which implements Futhark SOACs [18] in F#, allowing people to write F#
code which can be ported automatically to Futhark.

3. A compiler and wrapper pipeline which allows users to compile individual
F# modules in their projects to GPU accelerated libraries, and load and
execute code from these modules in the rest of the F# project.

4. A set of benchmarks and unit tests that shows that this approach is indeed
feasible.

1.4. Roadmap
• In chapter 2 we describe the current state of programming for GPUs, and

explore the differences between low level GPU programming in CUDA,
vs. high level GPU programming in Futhark.

1 For example F# does not support a reduce operator of type (α → α →
α) → α → [α] → α.

9

• In chapter 3 we explore the architecture and use cases of both the Futhark
C# generator and the FShark programming language.

• In chapter 4 we present the architecture of the Futhark compiler which
our C# code generator operates in, and describe the design and implemen-
tation of the standalone C# computational kernels.

• In chapter 5 we describe the FShark language and its standard library,
and discuss design choices and consequences regarding array usage in
FShark.

• In chapter 6 we describe the FShark wrapper, which orchestrates FShark
compilation and GPU code invocation in from within F# programs.

• In chapter 7 we describe the FShark compiler, which compiles FShark
source code into Futhark source code.

• In chapter 8 we list the current known limitations of our solution.

• In chapter 9 we evaluate our code generator by testing the performance
of its generated CPU code compared to similar GPU code generated by
existing code generators. We evaluate the language design of FShark by
comparing it with other GPU languages. Finally we show the feasibility
of the F#-to-GPU-code compilation, by comparing the performance of
FShark code used as F# code to FShark code compiled to GPU code.

10

2.0

Background

In this chapter we will first show two languages for GPU programming, namely
CUDA and Futhark. Then we will show C# and it’s interoperability with
Futhark. Finally, we will take a look at F#, and how we can expect Futhark/F#
interoperability.

2.1. CUDA
GPU programming is in principle easily available for everyone. As long as the
user has access to a GPU and a reasonable PC for developing software, it just
takes a bit of effort and reading to get started with CUDA, OpenCL or similar
programming. Realistically however, it takes much more than just a little effort
to start writing one’s own GPU programs.

2.1.1. A simple CUDA program
Take for instance the function f(x, y) = ax + y. In figure 2.1 we see the func-
tion implemented as a CUDA program. In this program, we are defining the
kernel saxpy itself, and also manually copying data back and forth between
the GPU.

11

1 #include <stdio.h>
2

3 __global__
4 void saxpy(int n, float a, float *x, float *y)
5 {
6 int i = blockIdx.x*blockDim.x + threadIdx.x;
7 if (i < n){
8 y[i] = a*x[i] + y[i];
9 }
10 }
11

12 int main(void)
13 {
14 int N = 1<<20;
15 float *x, *y, *d_x, *d_y;
16 x = (float*)malloc(N*sizeof(float));
17 y = (float*)malloc(N*sizeof(float));
18

19 cudaMalloc(&d_x, N*sizeof(float));
20 cudaMalloc(&d_y, N*sizeof(float));
21

22 for (int i = 0; i < N; i++) {
23 x[i] = 1.0f;
24 y[i] = 2.0f;
25 }
26

27 cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);
28 cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);
29

30 // Perform SAXPY on 1M elements
31 saxpy<<<(N+255)/256, 256>>>(N, 2.0f, d_x, d_y);
32

33 cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);
34

35 cudaFree(d_x);
36 cudaFree(d_y);
37 free(x);
38 free(y);
39 }

Figure 2.1: ax+ y in CUDA

The CUDA kernel

Line 3’s __global__ signifies that the following function is a CUDA kernel.
Line 4 to 10 contains the computational kernel for the GPU. Line 4 contains
the kernels name and arguments. The kernel takes several arguments: (1) a is
a scalar constant denoting a multiplicative constant, (2) x and y are references
(pointers) to floating point arrays located in GPU-device memory, and (3) n
denotes the length of the arrays x and y.
Line 6 computes the current computational thread’s global id i. If we compare
a parallel computational kernel with a sequential for-loop, this global id is the
iterator variable. Line 8 performs the actual f(x, y) calculation, and stores the

12

result in the y array, but only if the if-clause in line 7 is true. As we have tens
of thousands of threads running simultaneously on the CUDA device, we only
want to perform any array operations if we know that our current global id is
within the length of the array.

The CUDA main function

We also need a main function to run the kernel:
Line 14 sets N to 1 << 20 (or 220).
Line 16 and 17 allocate memory for two arrays x and y in host (CPU) memory.
Line 19 and 20 allocate memory for two arrays x and y on the CUDA device
(the GPU).
Line 22 to 25 initializes the arrays x and y with scalar values 1.0 and 2.0.
Line 27 and 28 copies our arrays from host memory to the corresponding arrays
d_x and d_y, which are located in (CUDA) device memory.
Line 31 spawns a number of threads, each executing the code in the saxpy
function. The amount and structure of the spawned parallelism is defined by
the argument denoted by the «<g, b»> syntax. More precisely, paramter b
denotes the number of threads spawned in a block 1, and parameter g denotes
the number of blocks scheduled in a grid. It follows that the total amount
of parallelism is g×b, and that the global thread identifier can be computed
from the position of a thread inside its corresponding grid (blockIdx.x) and
block (threadIdx.x), by means of the formula blockIdx.x*blockDim.x
+ threadIdx.x. Finally, the grid and block can have as high as three di-
mensions each (denoted by .x, .y and .z), albeit our example uses a one-
dimensional grid and block (for example .x).
Line 33 copies the result from CUDA device back to the y array in the system
memory.
The remaining lines frees the allocated memory, first from the CUDA device
and then from the system memory.

2.2. Futhark
Whereas the CUDA program and kernel contained large amounts of memory
handling and bounds checking, a similar program written in Futhark spares us
for a lot of the manual labor above. Figure 2.2 contains a Futhark program
that is semantically equivalent to the CUDA program, in regards to the com-
putational result.

1 Separating the parallelism into blocks and grids is useful because the threads in a block can
be synchronized by means of barriers and can communicate with each other in fast/scratchpad
memory. These properties do not hold across threads in different blocks of the grid.

13

1 let saxpy (a : f32) (x : f32) (y : f32) : f32 =
2 a∗x+y
3
4 entry main =
5 let N = 1<<20
6 let a = 2f32
7 let xs = replicate N 1f32
8 let ys = replicate N 2f32
9 let ys' = map2 (saxpy a) xs ys

10 in ys'
11

Figure 2.2: ax+ y in Futhark

Line 1 to 2 defines a function that takes three floats (a, x and y) and returns
ax+ y.

Line 4 to 10 defines our main function.
In line 4 we use entry instead of let to tell the compiler that main is an entry
point in the compiled program. This means we can call this function when we
import the compiled program as a library, as opposed to the function saxpy,
which cannot be accessed as a library function.
Line 5 sets N to 1 << 20 (or 220).
Line 6 sets a to 2.0.
Line 7 uses the built-in function replicate2 to generate an N element array
of 1.0
Line 8 uses the built-in function replicate to generate an N element array
of 2.0
Line 9 uses the built-in function map2 to apply the curried function (saxpy
a) to the arrays xs and ys.

map f xs has the type ((a -> b) -> []a -> []b), and returns the ar-
ray of f applied to each element of xs.

map2 f xs ys is very similar, but has the type ((a -> b -> c) -> []a
-> []b -> []c), and applies f to the elements of xs and ys pairwise.
In this case, we are calling map2 with the function (saxpy a), which is just
saxpy with the first argument a already defined.

When we compare the program in figure 2.1 to the same program written in
Futhark (figure 2.2), we quickly see how Futhark’s high level declarative ap-
proach is simpler and less verbose than CUDA’s. The Futhark compiler does
the heavy lifting, by parsing Fuhark source code and generating OpenCL code
and wrapping them in standalone C- or Python programs.

2.3. F#

F# is a high level multi-paradigm programming language in the .NET family.
2replicate has the type int -> a -> []a

14

F#s syntax follows a classical functional programming style. For instance, this
means we can take (some programs) written in Futhark, and port them to F#
in a way that very closely resembles the original Futhark code.

Figure 2.3 shows the Futhark program from figure 2.2 re-written in F#.

1 let saxpy (a : single) (x : single) (y : single) : single =
2 a*x+y
3

4 let main =
5 let n = 1<<<20
6 let a = 2.0f
7 let xs = array.replicate n 1.0f
8 let ys = array.replicate n 2.0f
9 let ys' = array.map2 (saxpy a) xs ys
10 in ys'

Figure 2.3: ax+ y in Futhark

F# also supports seamless interoperability with the rest of the .NET language
family. We can therefore readily use the C# libraries, which exports an object-
oriented class structure in F#, and vice versa.

C#

C# is an multi-paradigm programming language developed by Microsoft. In
this thesis we implement a Futhark code generator that generates C#-integrable
GPU code. For this thesis, C# was chosen for multiple reasons:

• C# is a mainstream programming language, and widely used in commercial
and academic settings.

• C# supports imperative C-style programming, which is suitable for writing
concrete implementations of programs written in Futhark’s intermediate
language ImpCode, as ImpCode itself is an imperative language.

15

3.0

Birds-Eye View:
Architecture and Use Cases

In this chapter, we will take a birds-eye view at the architectures we wish to
implement with this thesis. First, we will show how what architecture we need to
generate GPU kernels for C#, and then show a use case for such kernels.

Second, we show an architecture for making Futhark-generated GPU kernels
from F# source code and using them in F# projects, and then show a use case
for this architecture.

3.1. Generating GPU accelerated libraries
In this thesis, we are interested in making Futhark-generated GPU kernels avail-
able in C# programs. Currently, Futhark source code can be compiled to C and
Python code. For example, the Futhark C compiler follows the basic architec-
ture shown in figure 3.1. When we call the Futhark C compiler futhark-c
on a Futhark source file, the compiler reads the source code file (and possi-
bly imports) into a high-level compiler representation. As the compiler applies
different passes to optimize the program, it also successively re-writes it using
lower-level but still pure-functional intermediate representations (IR). The last
step in the blue box is to generate an imperative IR, which is not subject to
further Futhark optimizations. This imperative IR is the input to various code
generators, for example, the second box in the figure will perform a transla-
tion to the C language. The resulting C souce file contains allows the exports
of the original Futhark to be used in an intuitive fashion from any other C
program.

The Python compilation pipeline follows a similar strategy.

16

cco

Futhark parsing,
optimizing and

intermediate code
generation

Futhark C Code
Generator

Futhark
source code

Futhark source code
imports

Futhark Intermediate
Language Code

C Library

futhark­c

Figure 3.1: The Futhark-to-C compilation pipeline

3.1.1. Using Futhark in Python
We will now describe a use case for the Futhark-to-Python compiler:

1. We write a short Futhark program, which has a single entry function
available. This program takes an array of integers, and adds 2 to each
element in the array. The program is saved in file mapPlus2.fut and
is shown below:

1 entry mapPlus2 (xs : []i32) : []i32 =
2 map (+2) xs

2. We then compile the Futhark program into a library file, by calling the
Futhark compiler from the command line, as shown below:

1 $ futhark-py --library -o MapPlus2.py mapPlus2.fut
2

This compiles mapPlus2.fut to a Python file called MapPlus2.py. In
essence, the transpilation process gathers all the Futhark entry-points into
a Python class, contained in a Python module, both named MapPlus2.
For example the Python class can be instantiated with different options,
which enable gathering profiling information, or, setting default values for
program-parameters such as tile sizes of CUDA block sizes.

17

3. Finally, we write a short Python program, which uses the exports (en-
try points) of the original Futhark program, for example, the mapPlus2
function. One such simple program is shown below.

1 from MapPlus2 import MapPlus2
2

3 def main():
4 xs = range(1,1000000)
5 mapPlus2Class = MapPlus2()
6 xs2 = mapPlus2Class.mapPlus2(xs)

As expected, the Python program first imports the Futhark library on line
1 and then it constructs an instance of the corresponding class on line 5.
On line 4, we generate an array of integers from 0 to 1000000, and finally
on line 6, we use the Futhark function mapPlus2 to add 2 to every element
in our array.

3.1.2. Using Futhark in C#

The intended way for using Futhark-generated libraries from C# follows faith-
fully the interface already used by Python (and C). For example a use case is
described below:

1. We write a short Futhark program, which has a single entry function
available. This program takes an array of integers, and adds 2 to each
element in the array:

1 entry mapPlus2 (xs : []i32) : []i32 =
2 map (+2) xs
3

2. We then compile the Futhark program into a library file, by calling the
Futhark compiler from the command line, which will compile mapPlus2.fut
to a C# file called MapPlus2.cs

1 $ futhark-cs --library -o MapPlus2.cs mapPlus2.fut
2

3. Finally, we write a short C# program in which we want to integrate the
mapPlus2 function in our program. Such a program is shown in fig-
ure 3.2. In this program, we are importing the Futhark library on line 2
and constructing an instance of the contained Futhark class on line 8.
On line 9, we generate an array of integers from 0 to 1000000, and finally
on line 10, we use the exposed Futhark function mapPlus2 to add 2 to
every element in our array.

18

1 using System.Linq;
2 using MapPlus2;
3

4 public class Program
5 {
6 public static int Main(string[] args)
7 {
8 var mapplus2Class = new MapPlus2();
9 var xs = Enumerable.Range(0, 1000000).ToArray();
10 var xs_result = mapplus2Class.mapPlus2(xs)
11 }
12 }

Figure 3.2: We use the compiled Futhark program as any other library.

But to be able to achieve this, we must design and implement a Futhark C#
code generator.

3.2. Transpiling F# Computational Kernels to Futhark
The second goal of this thesis is to create an architecture which allows the user to
express the computational kernels directly in a subset of a mainstream language.
(These kernels can be then integrated back into a mainstream program by means
of the code generators discussed in the previous section.) Specifically, we want
to obtain GPU kernels directly from F# source code, and to use these kernels
in a program written in F# (or C#) afterwards.

In figure 3.3, we show such an architecture for the F# language.

19

F# program

Create instance of wrapper class

Fshark wrapper

Object instance of wrapper class is returned

FShark Compiler

Compiled GPU code

Compiled Futhark GPU code library is loaded
into the wrapper object

Wrapper object orchestrates compilation of
FShark source code

Wrapper object orchestrates invocation of
loaded library functions

Function results are return to F# program

Step 3

Step 1

Step 2

Figure 3.3: The FShark architecture

3.2.1. A use case
Following the architecture shown above, we demonstrate a use case which follows
the steps shown in the architecture.

1. We write a small FShark program that we wish to use in our F# program
to a file called MapPlus2.fs. Such an FShark program is shown below:

1 let saxpy (a : int) (x : int) (y : int) : int =
2 a*x+y
3

4 [<FSharkEntry>]
5 let run_saxpy (a : int) (xs : int array) (ys : int array): int array =
6 let res = Map2 (saxpy a) xs ys
7 in res

2. We create an instance of the FShark wrapper class, add the file path of
our FShark program to it. Then we run the FShark compilation to com-
pile and load the FShark program into the wrapper. This corresponds
to step one and two in the architecture sketch, and is done in line 3-5 in
figure 3.4.

3. Finally in line 7-10, we declare some arguments for our FShark function,
and pass them to the compiled FShark program through the FShark
wrapper.

20

1 [<EntryPoint>]
2 let main =
3 let fshark = new FShark()
4 fshark.addSourceFile(”MapPlus2.fs”)
5 fshark.CompileAndLoad()
6

7 let a = 5
8 let xs = Iota 10000
9 let ys = Replicate 10000 1
10 let res = fshark.InvokeFunction(”run_saxpy”, a, xs, ys)

Figure 3.4: Compiling and using MapPlus2.fs from within an F# program.

21

4.0

The Futhark C# backend

In this chapter we first demonstrate how we want to use Futhark-generated
C# GPU libraries in C# programs. We then describe the architecture needed
for compiling such C# libraries using the Futhark compiler, and what features
we need in our code generator to successfully generate standalone C# programs
embedded Futhark-generated GPU kernels. We then show the finished design of
the generated Futhark C# code, and describe the segments in the code segment
by segment.

We discuss choices taken for memory management in Futhark C# programs,
and compare different methods of memory management by their runtime per-
formance.

Finally, we discuss how and why the OpenCL library “Cloo” was chosen as a
backend for Futhark’s C# compiler.

4.1. Recap on using Futhark C# libraries
For a given Futhark program (such as the one shown in figure 4.1), we want
to be able to compile the program to a C# library from the command line like
shown in figure 4.2. This results in a compiled C# dynamically linked library1.
Then, we can include this library in a C# project like any other external library,
and use its functions as expected, like shown in figure 4.3.

1A .dll file

22

1 entry mapPlus2 (xs : []i32) : []i32 =
2 map (+2) xs
3

Figure 4.1: A short Futhark program called mapPlus2.fut

1 $ futhark-cs --library -o MapPlus2.dll mapPlus2.fut
2

Figure 4.2: We call the Futhark-to-C# compiler futhark-cs on mapPlus2.fut

1 using System.Linq;
2 using MapPlus2;
3

4 public class Program
5 {
6 public static int Main(string[] args)
7 {
8 var mapplus2Class = new MapPlus2();
9 var xs = Enumerable.Range(0, 1000000).ToArray();
10 var xs_result = mapplus2Class.mapPlus2(xs)
11 }
12 }

Figure 4.3: We use the compiled Futhark program as any other library.

4.1.1. Compiling and using Futhark C# executables
Not all users are interested in using Futhark programs as parts in other code
projects. Instead, these users can opt to compile Futhark programs into exe-
cutables. Recalling the Futhark example in Figures 4.1 to 4.3, we instead opt
to compile the Futhark program as an executable program.

Keeping the Futhark source file mapPlus2.fut from 4.1, we use futhark-cs
to compile the program into an executable; the command line is shown be-
low:

1 $ futhark-cs -o MapPlus2 mapPlus2.fut
2

Here, the compiler produces an executable named MapPlus2 from the original
source file, named mapPlus2.fut.

We can now execute this program in one of two ways. The first way is to write
our arguments in a string in the command line, and to echo them through a
pipe into the executable, as shown below:

1 $ echo ”[1,2,3,4,5,6,7]” | ./MapPlus2
2 [3i32, 4i32, 5i32, 6i32, 7i32, 8i32, 9i32]
3

23

Here, the one argument we are using is an integer array. We pass the array to the
executable, and it prints the result to stdout after it has finished. The i32’s
tells us that the result array holds 32 bit signed integers. For multi-argument
entry functions, we separate the arguments with whitespace.

For the second method, we store our arguments in a dataset file. For example,
we can store our integer array in a plain text file, named array.in, as shown
below:

1 [1,2,3,4,5,6,7]
2

We can then use the command line to redirect the contents of the dataset file
into our command:

1 $./MapPlus2 < array.in
2 [3i32, 4i32, 5i32, 6i32, 7i32, 8i32, 9i32]
3

If we want to, we can redirect the output from stdout to a file of our own
choice:

1 $./MapPlus2 < array.in > result.txt
2 $ cat result.txt
3 [3i32, 4i32, 5i32, 6i32, 7i32, 8i32, 9i32]
4

Here, we redirect Futhark’s output to result.txt, and print it to stdout
by using cat to confirm that we have obtained indeed the correct result.

4.2. The Futhark C# compiler architecture
In figure 3.1 we showed a rough sketch of the Futhark compiler’s architecture.
To sufficiently explore the contribution of this thesis, we will however first need
a more detailed view of the architecture we need to implement to accomplish
our goal. This architecture is depicted in figure 4.4.

24

cco

Futhark parsing,
optimizing and

intermediate code
generation

Futhark C# Code
Generator

Futhark
source code

Futhark source code
imports

Futhark Intermediate
Language Code

C# source code

futhark­cs reader.cs

scalar.cs

memory.cs

opencl.cs

panic.cs

C# compiler

Compiled C#
Dynamically Linked

Library

Cloo.clSharp.dll

Mono.Options.dll

C# source code

Figure 4.4: The Futhark C# architecture, including necessary imports.

We will now describe its three main steps:

Step 1:
A Futhark source file is passed to the Futhark compiler (like in figure
4.2). Although only the main source file is passed as an argument to the
compiler, the compiler also includes any imports in the main source file,
if there should be any.

This first part of the Futhark compiler is responsible for parsing the
passed Futhark program, including imports, and performs all type checks,
SOAC optimizations, fusions and so on [18]. The result of this process is
a Futhark program expressed in imperative internal intermediate called
ImpCode. The ImpCode grammar is available in the Futhark reposi-
tory2. The ImpCode language contains everything from memory oper-
ations like allocating and deallocation memory (both on system memory
and on the GPU), interfacing with the OpenCL device (like copying buffers
back and forth between the system and the GPU, setting kernel arguments
and launching computation kernels), and also basic expressions like addi-
tion and multiplication.

2https://github.com/diku-dk/futhark/blob/master/src/Futhark/
CodeGen/ImpCode.hs

25

https://github.com/diku-dk/futhark/blob/master/src/Futhark/CodeGen/ImpCode.hs
https://github.com/diku-dk/futhark/blob/master/src/Futhark/CodeGen/ImpCode.hs

Step 2:
The C# code generator takes the Futhark program written in ImpCode,
and expresses it as C# source code. For example, we can take the simple
ImpCode expression in figure 4.5, and rewrite it as C# code, shown in
figure 4.6.

1 SetScalar ”x” (
2 BinOpExp Add
3 (ValueExp (IntValue (Int32Value 4)))
4 (ValueExp (IntValue (Int32Value 5)))
5)

Figure 4.5: Setting int x to 4+5 with simplified ImpCode

1 int x = 4 + 5;

Figure 4.6: Setting int x to 4+5 in C#

Besides taking an ImpCode program as input, it also embeds a set of
prewritten C# libraries3 into the generated C# code. These libraries are
ncessary for the finished C# program, and are described in section 4.3.1.
The resulted C# source code is passed to a C# compiler, but also written
to disk so it is available for the developer.

Step 3:
To use the C# code, we need to compile it using the command shown in fig-
ure 4.7. We tell the compiler that we have external libraries stored at the
location stored at $MONO_PATH4, and we tell the compiler to reference two
extra external libraries Mono.Options.dll and Cloo.clSharp.dll,
as we need these libraries in the Futhark C# programs.

We also add the library flag (-lib) so that csc compiles to a .dll file
instead of generating an executable. Finally we add the /unsafe flag so
the compiler allows us to use unsafe statements in the C# program.

1 $ csc -lib:$MONO_PATH -r:Mono.Options.dll \
2 -r:Cloo.clSharp.dll /unsafe mapPlus2.cs
3

Figure 4.7: Calling the C# compiler on the resulted mapPlus2.cs file.

However, the last step in futhark-cs does this for the user automat-
ically, as long as the user has set the required $MONO_PATH variable,
and that the directory that $MONO_PATH points to, contains the required
libraries.

3reader.cs et al
4An environment variable that should be set to a directory containing external runtime

libraries for Mono runtime usage.

26

This thesis leverages the already existent Futhark codebase to implement steps
1 and 3, hence does not bring important contributions to them. Instead, the
contribution of this thesis refers to implementing the code generator described
in step 2.

In the grand scheme of things, the Futhark C# generator is not interesting by
itself. The entire contribution to the Futhark compiler is around 4500 SLOC,
split 50/50 between C# and Haskell code. In the remaining of this chapter we
will instead discuss at a high level the structure of the generated code.

4.3. The Structure of the Generated C# Code
As previously discussed, Futhark code can be compiled (1) to a library that is
usable in both C# and F# programs, and (2) also to a standalone C# executable,
which, for example, takes argument inputs from the stdin stream, and prints
the results to stdout.

As this thesis focuses on interoperability, we will primarily concentrate on the
design of the C# code generated for Futhark libraries, and mention design differ-
ences in the cases in which the Futhark executables differs from the translation
used for libraries. Figure 4.8 shows a high level representation of the generated
C# classes for the standalone- and library-compilation cases.

A Futhark C#
Program (executable)

various imports

Futhark class

Program class

A Futhark C#
Program (as library)

various imports

Futhark class

Entry functions

Entry function

Figure 4.8: The two possible types Futhark C# programs

Here follows a short explanation of the different sections of the Futhark pro-
grams.

various imports
This part consists of using statements that import the various libraries
on which the translation relies into the C# program.

Futhark class
The Futhark class is a singleton class that encapsulates all needed func-
tionality for executing the exports (entry-points) defined in the original

27

Futhark file. The Futhark class is discussed in subsec 4.3.1.

Entry functions
The entry functions wrappers for the exports declared in the Futhark
program, that are mainly responsible for converting the human-readable
input into the internal (“machine”) representation expected by the export
implementation. For example an array can be passed string, but needs to
be translated to a one dimensional array of bytes.

Program class
In the case of Futhark libraries, the entire C# program consists of the
imports and the Futhark class. Only for executables do we add the entry
functions to the Futhark class, and the Program class to the C# source
file itself.

The Program class contains a Main method, which is necessary for the
C# program to be compiled as an executable. This design is discussed in
4.3.6

4.3.1. The Futhark class design
The Futhark class is the single class defined in the compiled Futhark library. It
is depicted in figure 4.9. The following subsections explains the various parts of
the class.

The Futhark class

global context
variables

compiled Futhark
functions

class constructor

various runtime
libraries

OpenCL kernels and
wrappers (only if OpenCL)

entry functions

Figure 4.9: An overview of the Futhark class

Global context variables

Compiled Futhark programs need to keep track of several variables. Both nor-
mal and OpenCL-enabled Futhark C# programs can take several options when
they’re launched from the command line. For example, num_runs tells the
Futhark runtime how many times the chosen entry function should be executed,

28

and the variable runtime_file tells the Futhark runtime where it should
write timing information to, for example for benchmarking purposes.

Instead of passing an argument array along throughout all the functions in the
Futhark class, like we usually would do if we were writing purely functional
programs, we instead represent these arguments as class variables, which are
set when the class is instantiated. This allows to refer to them from wherever
in the rest of the class (without passing them explicitly as arguments).

For non-OpenCL programs, these variables are exclusively used for benchmark-
ing and debugging purposes. For OpenCL programs however, the global vari-
ables are vital for the program’s execution. In an OpenCL program, the Futhark
class must keep track of two extra variables.

The first variable is struct futhark_context ctx and contains the global
state of the current program’s execution. The global state consists of

(1) the current list of unused but allocated OpenCL buffers on the device,

(2) kernel handles for all the OpenCL kernels used in the Futhark program,

(3) a counter for the total running time of the program.

(4) the opencl_context, which holds the metadata necessary for OpenCL
execution, for example the current state of the device, the queue of in-
execution OpenCL actions, and so forth.

The second variable is struct futhark_context_config cfg and records
configuration information necessary for constructing the actual futhark_-
context.

The class constructor

The class constructor is necessary to setup the global variables needed through-
out the Futhark class. When the Futhark program is compiled as an exe-
cutable, the command line arguments are passed to the class constructor by the
Program class. If the Futhark program is compiled as a library, the program-
mer can pass a string array of arguments to this constructor manually.

Besides setting class variables, OpenCL-enabled versions will initialize (and
set) first the futhark_context_config cfg variable, and afterwards the
futhark_context itself.

The various runtime libraries

The runtime libraries are a set of seperate C# files that are written and dis-
tributed through the Futhark compiler. When a Futhark program is compiled,
these library files are concatenated and embedded directly into the rest of the
generated code. They contain functionality which the generated Futhark pro-
grams depend on. The runtime libraries are the following:

memory.cs
Futhark’s imperative IR (ImpCode) represents all arrays—no matter of
their dimensionality and primitive-element type—as a flat one-dimensional
array of bytes, which are accompanied by an array of 64-bits integers

29

recording the dimensions of the flat array. As such it was necessary to de-
fine a set of functions that are able to interact with these byte arrays, e.g.,
if the original array was holding floats, than we need to be able to read-
/write a float value from/into the byte array. For example, memory.cs
contains the writeScalarArray functions, which writes a scalar value
to a certain location into the byte array. The function is overloaded so it
works with scalars of any integer or floating point primitive types. Fig-
ure 4.10 shows the instance of writeScalarArray that writes a value
of type double into the byte array.

1 void writeScalarArray(byte[] dest, int offset, double value)
2 {
3 unsafe
4 {
5 fixed (byte* dest_ptr = &dest[offset])
6 {
7 *(double*) dest_ptr = value;
8 }
9 }
10 }

Figure 4.10: writeScalarArray writes a value at the specified offset in some
byte array.

scalar.cs
This library contains all the scalar functions necessary for Futhark C#
programs. In Futhark, arithmetic operators are defined for integers and
floats of all sizes, and bitwise operators are defined for all integers. How-
ever, this is not the case in C#, where many arithmetic operators are only
defined for 32- and 64 bit integers.

If these operators are used with 8- or 16 bit operands, the operands are
implicitly casted to 32 bit integers at compile time, which also means that
the final result of the operation is a 32 bit integer, which doesn’t has the
right type.

Therefore, wrapper functions must be defined for even the simplest arith-
metic functions. For example, integer addition in C# Futhark is actually
implemented by four different functions:

1 static sbyte add8(sbyte x, sbyte y){ return Convert.ToSByte(x + y); }
2 static short add16(short x, short y){ return Convert.ToInt16(x + y); }
3 static int add32(int x, int y){ return x + y; }
4 static long add64(long x, long y){ return x + y; }

Besides, scalar.cs also contains the C# definitions for the various
mathematical functions from Futhark’s math.futlibrary, such as exp,
sin and cos.

reader.cs
The reader contains the entire functionality for recieving function param-
eters through stdin, as shown in the example in subsec 4.1.1. The reader

30

reads scalars of any of the Futhark-supported primitives, and also arrays
and multidimensional arrays of scalars.

The reader also supports reading streams of binary data. This enables
Futhark to parse datasets that are stored as pure byte representation,
instead of string representations. It is only necessary for Futhark executa-
bles.

opencl.cs
opencl.cs contains wrapper functions for OpenCL’s memory related
functions. For example, instead of calling clCreateBuffer directly for
allocating an OpenCL buffer, we call OpenCLAlloc from opencl.cs.
By using a wrapper function instead of calling clCreateBuffer, we
encapsulate functionality and employ better error handling. The wrapper
functions in opencl.cs also employs a free list for OpenCL mem-
ory allocations. This list is stored in the futhark_context, and has
the following functionality:
1) When the Futhark program frees an OpenCL buffer, it is not actually
freed, but is instead added to the free list.
2) When the Futhark program later allocates an OpenCL buffer, it first
goes through the free list to see, whether it can use one of the already
existing allocations instead.

The compiled Futhark functions

The compiled Futhark functions are the Futhark functions as written in ImpCode5,
expressed in the target language, in this case C#.

The compiled Futhark functions corresponds to the entry functions found in the
entry functions-section of the Futhark class. Only the Futhark entry functions
are compiled to individual functions, and remaining helper functions are inlined
here.

In OpenCL programs, all array functions and SOAC calls are compiled as indi-
vidual (or fused) OpenCL kernels. Therefore, the compiled Futhark functions
in these programs consists of mainly some scalar operations and memory alloca-
tions, and calls to Futhark-generated kernel wrapper functions. There are also
mixes, for example for-loops that call OpenCL kernels.

In non-OpenCL programs, the array functions and SOAC calls are not stored
in seperate wrapper functions, but inlined in the Futhark functions.

OpenCL kernels and wrappers

If the Futhark program is compiled for OpenCL, all array handling function-
and SOAC calls are compiled as OpenCL kernels. This part of the Futhark class
has two parts:

1. The string (actually a single string in an array) opencl_prog, which
contains the entire Futhark-generated OpenCL source code for the Futhark
program in question. This source code contains all the OpenCL kernels for
the program, and is passed to the OpenCL device, compiled and loaded,

5See figure 4.5

31

when the Futhark class is initialized. Handles to the individual kernels
are then stored in the futhark_context.

2. For each kernel in the opencl_prog, the Futhark compiler generates a
kernel wrapper function. These wrapper functions takes the kernel argu-
ments (such as scalar values, array values and indexes) as input, and per-
forms all the OpenCL specific work necessary for the actual kernel launch;
for example setting the kernel arguments on the device, and copying data
back and forth between host and device buffers.

4.3.2. Entry functions
Futhark’s internal representation of array values are one dimensional byte arrays
(which can represent arrays of any type and dimensionality), and an accompa-
nying list of integers denoting the lengths of the array’s dimensions. However,
Futhark does not expect it’s users to pass this form of arrays as function argu-
ments, which is why each Futhark entry function has a corresponding entry
function in the final compiled code.

To discern between Futhark functions and entry functions, the Futhark func-
tion’s name is prefixed with “futhark_”, as in for example “futhark_-
foo”. Depending on whether the Futhark program is compiled as an executable
or a library, the entry function itself is then named “entry_foo” or just
“foo”.

For executables, “entry_foo” is a function that doesn’t take any arguments.
Instead, it uses the reader functions from reader.cs to parse the arguments
for “foo” from stdin, and passes them to the Futhark function. For all
array values in the arguments, the array values are converted into Futhark
representations of them. When the Futhark function returns the result, the
result is then printed to stdout.

4.3.3. Entry functions in executables
Consider again our small Futhark program mapPlus2 (figure 4.11).

1 entry main (xs : []i32) : []i32 =
2 map (+2) xs
3

Figure 4.11: A short Futhark program called mapPlus2.fut

If we compile this program as an executable, we get Futhark/entry function
pair shown in figure 4.12. The example is very simplified but does resembles
the actual implementation in functionality.

By calling entry_main(), we first call ReadStrArray<int> to parse an
integers array from stdin. We then read the number of elements in the array
into a variable, and then convert the integer array to a byte array, as Futhark
functions use byte arrays for internal value array representation.

32

We then call the internal Futhark function, which returns a byte array, the
length of the byte array and the number of elements that the byte array repre-
sents. We reform the byte array into an integer array, and print the result to
stdout.

1 (int, byte[], int) futhark_main(int byte_array_length, byte[]
byte_array, int byte_array_elms)↪→

2 {
3

4 // ...
5 // futhark stuff happens
6 // ...
7

8 return (out_array_length, out_array, out_array_elms);
9 }
10

11 void entry_main()
12 {
13 var (int_array, lengths) = ReadStrArray<int>(1, ”i32”);
14 var int_array_elms = lengths[0];
15 var byte_array = convertToByteArray<int>(int_array);
16 var byte_array_length = byte_array.Length;
17

18 var (res_array_memsize, res_array, res_array_elms) =
19 futhark_entry(byte_array_length, byte_array,

int_array_elms);↪→

20

21 var res_array_as_ints = reform_array<int>(res_array,
res_array_elms);↪→

22 printArray(res_array_as_ints);
23 exit(0);

Figure 4.12: A simplified Futhark/entry function pair from the mapPlus2 exe-
cutable

4.3.4. Entry functions in libraries
If we compile the program in fig 4.11 program as a library, we get Futhark/entry
function pair shown in figure 4.13. The example is very simplified but does
resembles the actual implementation in functionality.

The difference between this example and the example in section 4.3.3 is that
the arguments of the Futhark export are passed directly to the wrapper (e.g.,
entry_main) instead of being parsed from stdin. Similarly, the result of the
wrapper is the type-casted result of the Futhark export as opposed to the result
being written to stdout.

33

1 (int, byte[], int) futhark_main(int byte_array_length,
byte[] byte_array, int byte_array_elms)↪→

2 {
3

4 // ...
5 // futhark stuff happens
6 // ...
7

8 return (out_array_length, out_array, out_array_elms);
9 }
10

11 (int[], int[]) entry_main(int[] int_array, int[]
int_array_lengths)↪→

12 {
13 var int_array_elms = int_array_lengths[0];
14 var byte_array = convertToByteArray<int>(int_array);
15 var byte_array_length = byte_array.Length;
16

17 var (res_array_memsize, res_array, res_array_elms) =
18 futhark_entry(byte_array_length, byte_array,

int_array_elms);↪→

19

20 var res_array_as_ints = reform_array<int>(res_array,
res_array_elms);↪→

21 var res_lengths = new int[] { res_array_as_ints.Length
};↪→

22 return (res_array_as_ints, res_lengths);

Figure 4.13: A simplified Futhark/entry function pair from the mapPlus2 library

4.3.5. On calling Futhark entry functions that takes arrays as ar-
guments

Currently, library functions aren’t callable with jagged arrays (arrays of pointers
to arrays), but must instead be called with a flat element array, which is paired
up with an array of lengths denoting the dimensionality of the flat element array.
This is explained in sec 5.8.

The FShark implementation offers helper functions that can flatten jagged
arrays into flat arrays/dimension array pairs, and back again. In the future,
this might be added to the Futhark C# backend for usability purposes.

4.3.6. The Program class design
As shown in figure 4.8, we only add the Program class to the Futhark program
so we have an entrypoint for the executable.

The Program class is a C# necessity for compiling executable C# programs,
as the C# standard demands that executable programs must have a Program
class with a public Main method, that it can use as an entrypoint. In Futhark’s
case, the Main method initializes the internal Futhark class and calls the entry
function in the class. The class is shown in the figure below:

34

The Program class

public class Program
{
 static void Main(args){
 var futhark = new Futhark_Class(args);
 futhark.internal_entry();
 }
}

4.4. Memory management in Futhark C#

As Futhark stores array values in byte arrays, it is relevant to compare the
difference between how the array handling differs between Futhark’s C backend,
and this C# backend. For OpenCL programs, the memory management of C#
and C is largely the same, as the OpenCL side of these programs are the same.
C# does after all just use C bindings for it’s OpenCL interactions.

However, for non-OpenCL C# programs, we have to take C#’s memory model
into consideration.

C implicitly allows unsafe programming. In this case, it means interacting
with system memory by reading and writing arbitrary values from/to arbitrary
locations, designating the values and destinations as whatever type we want. In
figure 4.14, we see a for-loop that performs a prefix-sum operation on an array
of integers. On line 6, reading from right to left, we are first creating a reference
to a location in the byte array xs_mem_4223. However, as the reference is a
pointer to a byte in the array, we must recast it as an int32_t pointer. After
we do this, we can finally dereference the pointer to retrieve a four byte integer
from the byte array.

We add the retrieved integer to our accumulating variable scanacc_4187,
before we cast a reference in our destination byte array as an integer pointer,
and store the result there.

In C#, arrays and lists are accessed by indexing, for example var x = myArray[10];.
These arrays are managed by .NET’s CLR[13], and access violations, such as
indexing out of bounds, makes the CLR raise a suitable exception, which can
be handled in the C# program by catching it accordingly.

1 memblock mem_4226;
2 memblock_alloc(&mem_4226, bytes_4224);
3 int32_t scanacc_4187 = 0;
4

5 for (int32_t i_4189 = 0; i_4189 < sizze_4135; i_4189++) {
6 int32_t x_4147 = *(int32_t *) &xs_mem_4223[i_4189 * 4];
7

8 scanacc_4187 += x_4147;
9

10 *(int32_t *) &mem_4226[i_4189 * 4] = scanacc_4187;
11 }

Figure 4.14: A short snippet from a Futhark C program

35

However, for performance reasons4.4.1, we are interested in writing to our C#
arrays directly. To do this, we must use both unsafe blocks and fixed blocks.
Note that this does not necessarily result in unsafe code, because the Futhark
generated code is performing the safety checks already.

The unsafe block

In C#, we cannot just write arbitrary values to arbitrary locations, as this opens
the program for memory access violations by trying to access memory outside
of C#s memory space. Such violations triggers segmentation faults which halts
the entire program, instead of throwing an exception.

Therefore we encapsulate our unsafe pointer-using code in an unsafe block.

The fixed block

C#s CLR manages memory locations for allocated buffers, which means that it
also moves these memory allocations around in memory during program exe-
cution when necessary. To be able to read and write to buffers referenced by
pointers, we must therefore fix these buffers in memory, before we are able to
use them directly.

An example of using the unsafe- and the fixed block is shown in figure 4.15.
We start the function by starting an unsafe block. After we have started the
unsafe block, we fix the destination buffer in memory and get a pointer to
the exact location that we are interested in. Finally, we use a cast to treat the
destination pointer as a double pointer so we can store a double at that
location.

1 void writeScalarArray(byte[] dest, int offset, double value)
2 {
3 unsafe
4 {
5 fixed (byte* dest_ptr = &dest[offset])
6 {
7 *(double*) dest_ptr = value;
8 }
9 }
10 }

Figure 4.15: writeScalarArray writes a value at the specified offset in some
byte array.

4.4.1. Performance
Although C# does offer safe methods to store values directly in byte arrays,
we have chosen to avoid these functions as their implementations carry huge
overhead compared to doing things the unsafe way. For this benchmark, we are
writing N integers to a byte array, using the three methods shown in figure 4.16.

36

1 static void UsingBuffer()
2 {
3 byte[] target = new byte[TEST_SIZE*sizeof(int)];
4 for (int i = 0; i < TEST_SIZE; i++)
5 {
6 var intAsBytes = BitConverter.GetBytes(i);
7 Buffer.BlockCopy(intAsBytes, 0, target, i * sizeof(int), sizeof(int));
8 }
9 }
10

11 static void UsingUnsafe1()
12 {
13 byte[] target = new byte[TEST_SIZE*sizeof(int)];
14 for (int i = 0; i < TEST_SIZE; i++)
15 {
16 unsafe
17 {
18 fixed (byte* ptr = &target[i * sizeof(int)])
19 {
20 *(int*) ptr = i;
21 }
22 }
23 }
24 }
25

26 static void UsingUnsafe2()
27 {
28 byte[] target = new byte[TEST_SIZE*sizeof(int)];
29 unsafe
30 {
31 fixed (byte* ptr = &target[0])
32 {
33 for (int i = 0; i < TEST_SIZE; i++)
34 {
35 *(int*) (ptr+i*sizeof(int)) = i;
36 }
37 }
38 }
39 }

Figure 4.16: Three methods of writing integers to an array.

37

The full program is available in listing C in the appendix, to compare safe and
unsafe methods of writing values to byte arrays, and the results (as shown in
fig 4.17) tells us that there are definite performance gains to retreive by going
unsafe.

The obvious reason for the performance difference is, that for the safe method,
in each of the N iterations, the BitConverter allocates a small array of bytes,
where the value of integer-scalar i is recorded, and then it copies this small array
into the target byte array. The unsafe methods do not exhibit this overhead,
since they update directly the target byte array. The performance difference
between the second and third method corresponds to the small overhead that
comes from fixing the target buffer in memory.

4.5. Selecting an OpenCL interface for C#
OpenCL interaction is not a part of the .NET standard library, but several
libraries do exist for .NET/OpenCL interactions. For this thesis, I researched
a selection of these libraries, to determine which one that would fit the best for
my purposes. As Futhark depends on being able to interface with the OpenCL
platform directly, it was necessary to find an OpenCL library for .NET which
had direct bindings to the OpenCL developer library.

The .NET libraries I took into consideration was NOpenCL, OpenCL.NET and
Cloo. All three libraries have been designed to aide OpenCL usage in C#
programs, by simplifying OpenCL calls behind abstractions, for example by
wrapping pointer operations in private methods.

NOpenCL
NOpenCL was the first candidate for the C# backend, and had several
advantages to the other two: As per February 2018, it had been updated
within the last year, and was therefore the least deprecated library. Sec-
ond, the NOpenCL repository on Github contains both unit tests and
example programs.

However, NOpenCL is also tailored for Windows use, and therefore not
a good fit for Futhark, as Futhark is available on both Windows, Linux
and Mac OS. Furthermore, the library is not available through the NuGet
package manager, and the OpenCL API calls are needlessly complex to
work with through the library.

OpenCL.NET
OpenCL.NET also has a test suite, is available through NuGet, and is
used as the backend for other libraries, such as the F# GPU library
Brahma.FSharp.

However, this library hardcoded to work on a in a Windows context, and
has not been updated for more than five years.

Cloo
Cloo is usable on all three platforms, and it is available on NuGet. Fur-

38

100000 1000000 10000000

0

5 · 105

1 · 106

1.5 · 106

2 · 106

2.5 · 106

3 · 106

4
5
,2
6
2 2
.8
4
· 1

0
5

2
.7
8
· 1

0
6

3
,2
7
3

2
6
,6
9
0 2
.6
9
· 1

0
5

3
,1
9
7

2
7
,4
7
8 2
.3
9
· 1

0
5

Number of scalars written to byte array

Ru
nt

im
e

in
tic

ks

Safe vs. unsafe memory writes

Safe memory access
Unsafe memory access with N fixes
Unsafe memory access with 1 fix

Figure 4.17: Comparison between safe and unsafe methods for writing scalars
in a byte array.

39

thermore, as opposed to the other two libraries, the Cloo library contains
a class with static functions that does nothing but passing arguments on
to the OpenCL library, using C#s DllImport attribute. It is immedi-
ately possible to skip most of Cloos features, and just use the library for
it’s OpenCL bindings.

Furthermore, the Cloo project is still alive, and the Cloo develop
branch on Github is actively being updated as per July 20186.

Given these three candidates, I chose to work with Cloo: It was the only one
that had the necessary OpenCL bindings readily available, and the only one
that was platform agnostic.

6https://github.com/clSharp/Cloo/commits/develop/Cloo/Source

40

https://github.com/clSharp/Cloo/commits/develop/Cloo/Source

5.0

The FShark language

test test In this chapter we present the FShark language and it’s standard li-
brary. We start out by presenting FShark’s syntax and discussing the syntax’s
limitations. Afterwards we present first the built-in F# operators and F# stan-
dard library functions available in FShark. We then present our own standard
library written specifically for FShark, and discuss why we implemented our
own standard library instead of using the standard library already available in
F#.

Then, we discuss how array types are implemented in FShark, and how F#
arrays differ from Futhark arrays. Finally, we describe and solve the implemen-
tation challenges caused by our design choices, and discuss alternative solutions
to the one that was chosen.

5.1. What the FShark language is
The second contribution of this thesis is a high level programming language,
which can be compiled automatically to GPU kernels that are readily usable in
a mainstream programming language.

The FShark language is the sum of two parts:
1) The FShark subset, which is a defined subset of the F# language and the
F# standard library.
2) An accompanying standard library, which adds SOACs and array functions
that can be used in programs written in the FShark subset.

The FShark language can be compiled into standalone GPU kernels using
the FShark compiler 7. These kernels can then be integrated directly in F#
programs.

The program in figure 5.1 is written in FShark, and can be used as any other
F# code in an F# project. However, as it is written in FShark, we can pass it
through the FShark compiler and end up with the result Futhark code shown
in figure 5.2 At this moment we we will skip explaining the meaning of the code,
and simply point out that the FShark source code and the resulting source code
have a strong resemblance.

41

1 let saxpy (a : int) (x : int) (y : int) : int =
2 a*x+y
3

4 let getArrayPair (a : int) : (int array * int array) =
5 let xs = Iota a
6 let n = Length xs
7 let ys = Rotate (a / n) xs
8 in (xs, ys)
9

10 [<FSharkEntry>]
11 let entry (a : int) : int array =
12 let (xs, ys) = getArrayPair a
13 let res = Map2 (saxpy a) xs ys
14 in res

Figure 5.1: A short FShark program

1 let saxpy (a : i32) (x : i32) (y : i32) : i32 =
2 ((((a ∗ x)) + y))
3 let getArrayPair (a : i32) : ([]i32, []i32) =
4 let xs = iota (a) in
5 let n = length (xs) in
6 let ys = rotate (((a / n))) (xs) in
7 (xs, ys)
8 entry entry (a : i32) : []i32 =
9 unsafe let patternInput = getArrayPair(a) in

10 let ys = patternInput.2 in
11 let xs = patternInput.1 in
12 let res = map2 ((\(x : i32) -> (\(y : i32) ->

saxpy(a) (x) (y)))) (xs) (ys) in
13 res

Figure 5.2: The source code in figure 5.1 compiled to Futhark source code by
the FShark compiler.

In the following section, we will describe the entire FShark language. Al-
though the subset is just a part of F#, we will describe it as if it was a new
language.

42

5.2. FShark syntax
Figures 5.3 to 5.7 shows the complete FShark syntax.

prog ::= module prog
| prog′ prog
| ϵ

prog′ ::= typealias
| fun

progs′ ::= prog′ progs′

| ϵ

typealias ::= type v = t
module ::= module v = prog′ progs′ (See subsec 5.3.2 on FShark modules)

fun ::= [<FSharkEntry>] let id (v1 : t1) . . . (vn : tn) : t = e
| let v (v1 : t1) . . . (vn : tn) : t

′ = e, See subsec 5.3.1

Figure 5.3: FShark statements

e ::= (e) (Expression in parenthesis)
| k (Constant)
| v (Variable)
| (e0, . . . , en) (Tuple expression)
| {id0 = e0; . . . ;idn = en} (Record expression)
| [|e0; . . . ; en|] (Array expression)
| v.[e0][en] (Array indexing)
| v.id (Record indexing)
| v.id (Module indexing (See subsec 5.3.2))
| e1 ⊙ e2 (Binary operator)
| −e (Prefix minus)
| not e (Logical negation)
| if e1 then e2 else e3 (Branching)
| let p = e1 in e2 (Pattern binding)
| fun p0 . . . pn → e (Anonymous function)
| e0 e1 (Application)

Figure 5.4: FShark expressions

43

p ::= id (Name pattern)
| (p0, . . . , pn) (Tuple pattern)
Figure 5.5: FShark patterns

t ::= int8 | int16 | int | int64 (Integers)
| uint8 | uint16 | uint | uint64 (Unsigned integers)
| single | double (Floats)
| bool (Booleans)
| (t0 ∗ . . . ∗ tn) (Tuples)
| {id0 : t0; . . . ; idn : tn} (Records)
| t array (Arrays)

Figure 5.6: FShark types

k ::= ny | ns | n | nL (8-, 16-, 32- and 64 bit signed integers)
| nuy | nus | n | nUL (8-, 16-, 32- and 64 bit unsigned integers)
| df | d (Single and double precision floats)
| true | false (Boolean)
| (k0, . . . , kn) (Tuple)
| {id0 = k0; . . . ; idn = kn} (Record)
| [|k0; . . . ; kn|] (Array literals)

Figure 5.7: FShark literals

44

5.3. Notes to the FShark grammar

5.3.1. Limits to function argument types
There are several limits to the F# compiler, which limits the types available in
function definitions.

1. Tuples in entry functions, whether they are used in the arguments or in
the return types, are allowed to contain a maximum of seven elements.
This is because the CLR runtime uses the type System.Tuple for these
tuples. Incidentally, System.Tuple is only defined for tuples up to seven
elements.

This limitation can be circumvented by using more tuples. For example,
rewriting a function so it returns
((int * int * int * int) * (int * int * int * int))
instead of
(int * int * int * int * int * int * int * int).

2. Non-entry functions cannot have tuple type arguments. For functions that
take tuple arguments, the F# compiler parses these tuple type arguments
correctly. However, the F# compiler rewrites calls to these functions in
a curried way. Figure Figure 5.8 shows two two F# functions, foo and
bar, and figure Figure 5.9 shows a simplified representation of how these
functions are represented in the F#-compiler intermediate representation.

When translating from FShark to Futhark, the Foo function is correctly
written in Futhark as a function with a tuple argument, but since the call
expression Call foo 4 5 now treats foo as having a different type
than first defined, the corresponding Futhark translation will trigger a
type error at compile time.

1 let foo ((x , y) : (int * int)) : int = x + y
2

3 let bar = foo (4,5)

Figure 5.8: A function calling another function in F#

1 Function foo ((x , y) : (int * int)) : int = x + y
2

3 Function bar () : int = Call foo 4 5

Figure 5.9: F# compiler curries tuple arguments when calling tuple functions

3. Entry functions should not use record type arguments, as these have not
been investigated fully for FShark use yet.

45

5.3.2. FShark modules
The modules supported in FShark are not higher-order modules as in ML, but
instead just a nested namespace in the containing module.

5.4. F# operators available in FShark

The F# subset chosen for FShark is described in 5.10. Note that all of these
operators are overloaded and defined for all integer and floating point types in
F#, except for modulus which in Futhark is only defined for integers.

Arithmetic operators
The set of supported arithmetic operators is addition (+), binary subtrac-
tion and unary negation (-), multiplication (*), division (/) and modulus
(%).

Boolean operators
FShark currently supports logical AND (&&), logical OR (||), less- and
greater-than (<, >), less- and greater-or-equal (<=, >=), equality (=), in-
equality (<>) and logical negation (not).

Special operators
FShark also supports some of F#s syntactic sugar. These operators might
not have direct Futhark counterparts, but their applications can be rewrit-
ten in Futhark for equivalent functionality. The supported operators are
back- and forward pipes (<| and |>), and the range operator (e0 .. e1),
which generates the sequence of numbers in the interval [e0, e1].
Note that the range operator must be used inside an array (as so [|e0..e1|]),
so the expression generates an array instead of a list.

Figure 5.10: FShark operators

5.5. F# standard library functions available in FShark
FShark supports a subset of the F# standard library. These are readily avail-
able in all F# programs, without having to open other modules. The standard
library subset is shown in figure 5.11.

5.5.1. On selection the F# subset to include in FShark

For selecting the F# subset to support in FShark, I chose to look at what
functions that were included in F#’s prelude. That is, the functions that are
available in an F# program without having to open their containing module
first. Fortunately, F# opens several modules by default of which I only needed
to look in two different ones, to be able to support a reasonable amount of F#
built-ins in FShark.

The primary module used in my supported F# subset is the module FSharp.Core.Operators.
This module contained not only the standard arithmetic described in figure
5.10, but also most1 of the functions shown in the figure 5.11. Except for unit

1except for some convertion functions, found in FSharp.Core.ExtraTopLevelOperators

46

id
The identity function.

Common math function
The square root function (sqrt), the absolute value (abs), the natural
exponential function (exp), the natural- and the decimal logarithm (log
and log10).

Common trigonometric functions
Sine, cosine and tangent functions (both standard and hyperbolic): sin,
cos, tan), sinh, cosh and tanh. Also one- and two-argument arctan-
gent: atan and atan2.

Rounding functions
FShark supports all of F#s rounding functions: floor, ceil, round
and truncate.

Number convertion functions
FShark supports all of F#s number convertion functions. For all the
following functions t, te = e′, e : t0, e

′ : t, barring exceptions like trying to
convert a too large 64-bit integer into a 32-bit integer.
The convertion functions available are int8, int16, int, int64,
uint8, uint16, uint, uin64, single, double, bool.

Various common number functions
min, max, sign and compare.

Figure 5.11: FShark built-ins

type functions like failwith, exit and async, most of the functions and
operators FSharp.Core.Operators have direct counterparts in Futhark’s
prelude, with equivalent functionality: All except for four of operators and
functions chosen for FShark are in fact implemented in Futhark’s math.fut
library. It was therefore an obvious decision to support these functions and
operators in FShark.

However, for the remaining four functions2 that didn’t have equivalents in
Futhark’s math.fut, their function calls are replaced with their identities in-
stead. For example, the FShark code shown below:

1 exp x

can be expressed in Futhark directly as shown below:

1 exp x

However, the hyperbolic cosine function (shown below) is available in F#, but
not in Futhark.

1 cosh x

Therefore, the compiled FShark Futhark code is just the hyperbolic function
inlined. When the FShark compiler encounters the cosh function the cosh

2compare, cosh, sinh, tanh

47

call is replaced with cosh’s definition in the FShark generated Futhark code.
This is shown below:

1 ((exp x) + (exp (-x))) / 2.0

These rewritings are not pretty to look at from a programmer’s perspective, but
the Futhark code generated by the FShark compiler is not meant to be read
by humans anyhow.

5.5.2. FShark function meaning has precedence to Futhark simi-
lars

In FShark, the sign function has type t → int. However, the similar
function in Futhark, sgn, has type t → t. FShark is designed to be translated
into equivalent Futhark functions, which is why the FShark compiler does not
translate sign directly to sgn, but does instead inline a type converter t → int
to wrap the sgn call. See the example below:

1 sign 4.0f

is represented in the FShark compiled Futhark source code as

1 i32.f32 (f32.sgn (4.0f))

5.5.3. Missing arithmetic operators in FShark

Currently, bitwise operators like bitwise-AND and bitwise-OR are missing, but
they should be relatively simple to add to the FShark subset, by adding them
to the set of supported operators in the FShark compiler.

5.6. The FShark standard library
Besides defining an F# subset suitable for Futhark translation, it was also im-
perative to create a standard library of SOACs and array functions for FShark,
to make it possible to write programs with parallel higher-order array functions.
We call this standard library FSharkPrelude.

Similarly to how the subset of math functions chosen from F# to include in the
FShark was chosen, the SOACs and array function included in the FSharkPrelude
has been picked directly from the Futhark libraries futlib/array.fut and
futlib/soacs.fut. The FSharkPrelude doesn’t discriminate between
array functions and SOACs, as maintaining and importing two different pre-
lude files in FShark was needlessly complicated.

The FSharkPrelude consists of functions which are directly named after their
Futhark counterparts, and have equivalent functionality. This prelude, together
with the FShark subset, is what makes up the FShark language. When
FShark developers are writing modules in FShark, they are ”guaranteed”

48

that their FShark programs has the same results whether they are executed
as native F# code, or compiled and executed as Futhark. The guarantee is on
the condition that we know that the individual parts of the FShark language
and standard library, are correctly translated to Futhark counterparts. We can
check that this condition still holds by running the FShark test suite. See sec
9.5 for an elaboration on these tests.

The FSharkPrelude versions of Futhark functions are defined in three differ-
ent ways.

1. Functions like map and array functions like length have direct F# equiv-
alents. The FSharkPrelude versions therefore simply pass their argu-
ments on to the existing functions. Other functions, like the map functions
which takes multiple arrays as arguments, require a bit of assembly first.
For those map functions, we zip the arguments before using Array.map
as usual. For example, FSharkPrelude.Map, -Map3 and -Map4 are shown
below:

1 let Map (f : 'a -> 'b) (xs : 'a array) : 'b array =
2 Array.map f xs
3

4 let Map3 f aa bb cc =
5 let curry f (a,b,c) = f a b c
6 let xs = Zip3 aa bb cc
7 in Array.map (curry f) xs
8

9 let Map4 f aa bb cc dd =
10 let curry f (a,b,c,d) = f a b c d
11 let xs = Zip4 aa bb cc dd
12 in Array.map (curry f) xs

2. Some Futhark SOACs have F# counterparts that are very close to their
original definition. for example, Futhark’s reduce takes a neutral el-
ement3 as one of the arguments in their function calls, whilst their F#
counterparts (Array.reduce) does only take an operator and an array
as arguments. In such cases, the FSharkPrelude version changes the
input slightly before passing it on to the existing function. See example
below:

1 let Reduce (op: 'a -> 'a -> 'a) (neutral : 'a) (xs : 'a array) =
2 if null xs then neutral
3 else Array.reduce op xs

3. Lastly, some functions does not have F# counterparts at all, such as scat-
ter. In these cases, we manually implement an equivalent function in F#.
Note that we are not limited to the FShark subset in the FSharkPrelude,
as the prelude function calls are not translated by the FShark compiler,
but detected and exchanged for Futhark function calls of the same name
during the FShark compilation. FSharkPrelude.Scatter4 is shown

3For parallelization purposes
4The SOAC Scatter actually has limitations regarding FShark use. See section 8.2.1

49

below:

1 let Scatter (dest : 'a array) (is : int array) (vs : 'a array) : 'a array =
2 for (i,v) in Zip is vs do
3 dest.[i] <- v
4 dest

The complete list of available SOACs and array functions is available in ap-
pendix B.

Why is FSharkPrelude part of the FShark language?
Although plenty of functions in the Futhark library already has F# counterparts,
we have chosen not to allow these F# counterparts to be used directly in FShark
programs. Besides basic differences like different naming in F# and Futhark for
equivalent functions5 like, there are multiple other reasons.

1) From a user experience point of view, it is awkward to maintain a whitelist
of accepted functions from certain classes. For example, Array.map is ex-
changable with Futhark’s map, but there are no immediate Futhark version of
F#s Array.sortInPlace. Therefore, the FShark compiler would succes-
fully exchange a call to Array.map with a call to map, but it would have to halt
with an error message, if the user tried to use Array.sortInPlace.

2) Some Array functions have subtle differences compared to their Futhark coun-
terparts. As shown in FSharkPrelude.Reduce example, Array.reduce
is slightly different in F#.

We are slightly hypocritical, as we DO let users use a subset of F#s standard
library functions. However, there is a whitelist available for this subset in the
FShark language specification, and the standard library functions are not vis-
ibly called as a method from another module.

How FShark SOACs differ from Futhark’s ditto
On a surface level, FShark and Futhark SOACs are the same. After all, they
have equivalent functionality. However, Futhark’s SOACs gets special treatment
in the Futhark compiler, and are fused together where applicable. Take for
instance the short code example in figure 5.12.

1 entry main : []f32 =
2 let xs = iota 100
3 let ys = map (f32.i32) xs
4 let zs = map (+ 4.5f32) ys
5 in zs

Figure 5.12: A short Futhark program consisting of just SOACs

For non-OpenCL programs, Futhark’s compiler fuses all three expressions into
one for-loop, as described in simplified Futhark C# code in figure 5.13. Similarly,

5like fold and foldBack vs. foldl and foldr

50

in an OpenCL program, the short code example is translated into a single kernel,
as shown in figure 5.14.

1 float[] mem = new float[100];
2 for (int i = 0 ; i < 100 ;i++)
3 {
4 float res = int_to_float(i);
5 res = res + 4.5f;
6 mem[i] = res;
7 }

Figure 5.13: Figure 5.12 compiled as (simplified) non-OpenCL C# code.

In both of the compiled examples, we must first allocate a target array for our
result, but note that although we obtain three different arrays in the original
Futhark code, both of the compiled versions transform the iota expression into
a for-loop instead, and inserts the operators from the two subsequent maps into
the loop.

This is a concrete implementation Futhark fusion rules as defined in [18]; which
states that (map f) ◦ (map g) ≡ map(f ◦ g)

However, executing FShark code as native F# code will execute the expressions
as written, which means that we are allocating and writing to an array three
times, once for each line in the program.

Futhark and nested maps

Futhark’s compiler also specializes in parallelizing nested SOAC calls[18], which
for example transforms nested map expressions into one single map expression.
For Futhark programs like the one in figure 5.15, the resulting OpenCL program
contains a single map kernel with i ∗ j active threads.

The F# compiler doesn’t make any such transformations for FShark pro-
grams.

5.7. Arrays in F# versus in Futhark
As Futhark is an array language, designing the array handling for FShark was
an important part of the design process. Whereas multidimensional array types
in Futhark are written as, for example, [][]i32 for a two dimensional integer
array, their actual representation in the compiled code is a flat array of bytes,
and an array of integers denoting the lengths of the dimensions. Accessing
the array at runtime can be done in O(1), whether it’s either at some con-
stant or a variable index (for example let second_x = xs[2] or let n
= xs[i,j]). The indexes are resolved during the Futhark compilation, either
as scalars, or as a variable calculated from other variables.

Functional languages like Haskell mainly works with lists. Although F# is a
multi-paradigm language and not exclusively functional, we primarily work with
lists when writing functional code in F#.

51

1 __kernel void map_kernel(__global unsigned byte *mem)
2 {
3 int global_thread_id = get_global_id();
4 bool thread_active = global_thread_id < 100;
5

6 float res;
7

8 if (thread_active) {
9 res = int_to_float(global_thread_id);
10 res = res + 4.5f;
11 }
12 if (thread_active) {
13 *(__global float *) &mem[global_thread_id * 4] = res;
14 }
15 };

Figure 5.14: Figure 5.12, but compiled as a simplified OpenCL kernel.

1 let xss = map (\row ->
2 map (fun col ->
3 row * col
4) <| iota j
5) <| iota i

Figure 5.15: A nested FShark program

In F#, lists are implemented as singly linked lists. Nodes in the list are dynam-
ically allocated on the heap, and lookups take O(n) time, where n is the length
of the list. We cannot make multidimensional lists, but we can make lists of
lists: If we were to emulate a two dimensional list of integers in F#, we could use
the type int list list. At runtime, the type would then be realized as a
singly linked list of references to singly linked list of integers. For an int list
list of n×m integers, we therefore have lookups in O(n+m) time.

F# does also have arrays. The System.Array class itself is reference type.
If we initialize an integer array in F# like in figure 5.16, the result is that
the variable arr is a reference to where it’s corresponding array is located in
memory.

As the integers contained in the array are value types, the layout of the array
referenced by arr is some initial array metadata, and then the ten integers
stored in sequence.

1 // Array.create : int -> 'a -> 'a array
2 let arr = Array.create 10 0
3 // arr = [|0; 0; 0; 0; 0; 0; 0; 0; 0; 0;|]

Figure 5.16: Initializing an array in F#

We can access the array elements on O(1) time, as indexing into the array is just
done by accessing the array reference plus an index offset. If we want to emulate
multidimensional arrays with these elements, we can create arrays of arrays (in

52

.NET terms, these are called “jagged arrays”). In figure 5.18 we initialize a
jagged array of integers. To see how the jagged array is stored in memory, see
figure 5.17.

xss is an array of arrays, so xss is a reference to an array in memory, which
itself contains references to other arrays. To retrieve the variable some_two,
we first follow the reference to the array xss in memory. There we get the
second element, which is a reference to another array in memory. In this array,
we read the third element, which in this case is the 2 that we wanted.

Denoting by r the rank of the jagged array, the lookup requires r queries to
memory, because accessing an array requires a memory acces, and we have to
follow r references to get to our element. If we just wanted a reference to the
second array in xss, we would be chasing the first reference to arr, and then
return one of the references stored within.

F# also offers actual multidimensional arrays, of up to 32 dimensions. As op-
posed to jagged arrays, the elements of these multidimensional arrays are stored
contiguously in memory, and the entire array can therefore be accessed at once,
instead of chasing references like with the jagged array. Chasing references
may introduce cache misses which carries cache penalties and therefore a slower
performance.

However, using multidimensional arrays in FShark would make it much harder
to implement FSharks SOACs in the standard library. When we apply func-
tions from F#s Array module to a jagged array, we treat the jagged array as
an array of elements.
For example, this means that applying Array.map f to a two-dimensional
jagged array xss will apply f to each array referred to by xss.

If on the other hand, we used Array2D.map to map f over a two-dimensional
multidimensional array, we would actually apply f to each element in the mul-
tidimensional array, and not each row or column in the multidimensional ar-
ray.

Implementing SOACs for multidimensional arrays would require a significant
effort, as opposed to with jagged arrays, where most SOACs already had equiv-
alent or near-equivalent counterparts in the F# library.

5.8. Converting jagged arrays to Futhark’s flat arrays,
and back again

As mentioned in section 4.3.2, we cannot just pass jagged arrays as arguments to
the Futhark C# entry functions. Instead, we must convert our jagged array into
a flat array and an array of integers, and pass these two objects as arguments
instead.

In figure 5.19 we see a three dimensional array that is being flattened. The
array has n×m× k elements.
First, we split the three dimensional array into k two dimensional arrays. The
k elements are sorted by their previous k-index.

53

xss

0 1 2 3 4 5 6 7

0 0 0 0 0

0 1 2 3 4

7 7 7 7 7

0 1 2 3 4

1 1 1 1 1

0 1 2 3 4

Figure 5.17: The memory representation of an 8 by 5 jagged array in C#.

54

1 let i = 8
2 let j = 5
3 let xss = Array.init i <| (Array.create j)
4

5 (* xss = [|
6 [|0;0;0;0;0|];
7 [|1;1;1;1;1|];
8 [|2;2;2;2;2|];
9 [|3;3;3;3;3|];
10 [|4;4;4;4;4|];
11 [|5;5;5;5;5|];
12 [|6;6;6;6;6|];
13 [|7;7;7;7;7|];
14 |]
15 *)
16

17 let some_two = xss.[2].[3]

Figure 5.18: Initializing a jagged array of integers in FSharp

We then take each of the k two dimensional arrays and split them into k ×m
dimensions of n elements each. These k × m n-elements arrays are sorted by
first by their k index (lowest first), and then by their m index.

To reshape the flattened array, just follow the arrows backwards.

55

n

m

k

Figure 5.19: Flattening a three dimensional jagged array into one flat contiguous
array.

5.8.1. Analysis of FlattenArray
The simple algorithm for this flattening is described in pseudocode in figure
5.20. The implemented algorithm is slightly more complex, as it has perform
various type castings, and also checks for invalid arrays such as irregular arrays.
In the example, the type ′b denotes a primitive type such as booleans or integers.

56

Type a on the other hand, is any type variable - namely array types.

1 FlattenArray (array : Array of a) : (Array of 'b * Array of int) =
2 match typeOf(array) with
3 | Array of 'b ->
4 return (array, [len(array)])
5 | Array of _ ->
6 subarrays_and_lengths = map FlattenArray array
7 (subarrays, subarrays_lengths) = unzip subarrays_and_lengths
8 subarray_lengths = head(subarrays_lengths)
9 concatenated_subarrays = concat subarrays
10 this_length = len(array)
11 lengths = [this_length] @ subarray_lengths
12 return (contatenated_arrays, lengths)

Figure 5.20: Flattening jagged arrays, pseudocode

When FlattenArray first is called with a jagged array as input, we don’t know
how many dimensions this array has. Therefore, we recursively call FlattenArray
on the subarrays of the arrays, until these recursive calls reach a base case. The
base case is the array that does not contain array references, but primitive
values.

L2 : For a one dimensional jagged array, this branch is taken once. For a jagged
array of d dimensions, it’s taken

∏d−1
n=1(subarrays at dn) times.

L3 is the base case, which takes O(1) time. This is because we are just returning
a tuple with the original array, and singleton array that holds the length
of the array (creating the singleton array is also O(1).)

L4 : For a jagged array of d dimensions, this branch is taken
∏d−1

n=1(subarrays at dn)
times.

L5 is the start of the recursive case. This line is called O(d) times, d be-
ing the number of dimensions in the jagged array. The result of map
FlattenArray array is an array of a array references and integer
array references.

L6: As the array in the function call was an array of arrays, we call the flat-
tening algorithm recursively on the subarrays.

L7 simply retrieves a reference to the first array in the array of subarray lengths.
This is O(1).

L8 is by far the most costly line in the function. F#s Array.concat function
takes a sequence of arrays, allocates a new array, and copies each element
of the old arrays into the new array. Each of the n elements in the jagged
array is copied to a new array a maximum of d times, which means we are
performing O(n ∗ d) reads and writes.

L9 retrieves the length of an array, and is O(1).

L10 appends a singleton array to the accumulated array of subarray dimensions,
by first creating a singleton array, and then copy both the single element

57

and the contents of the accumulated array to a third array of their collected
length.

All in all, the upper bound on the FlattenArray algorithm is O(n ∗ d). This
is a far cry from the performance of flattening in Futhark. Flattening is done in
O(1), as flattening merely calculates the product of the dimensions of the array,
and returns the result as the new single dimension of the array.

Notes on the implementation of the FlattenArray algorithm

We have designed and implemented the original FlattenArray algorithm our-
selves. However, the first implementation used a variant of the FSharkArray
datatype (discussed in section 5.8.4). That algorithm is shown below:

1 let rec FSharkArrayToFlatArray (arr : FSharkArray<'a>) : ('a [] * int64 []) =
2 let checkRegularity arrs : unit =
3 if Array.length arrs = 0
4 then failwith ”Empty array”
5
6 let head = Array.head arrs
7 if not <| Array.forall (fun l -> l = head) arrs
8 then failwith ”Irregular array”
9
10 match arr with
11 | Bottom list -> (list, [|int64 <| Array.length list|])
12 | Dimension(subarrays) ->
13 let a = List.toArray <| List.map FSharkArrayToFlatArray subarrays
14 let (subarrs, lens) = Array.unzip a
15 checkRegularity lens
16 let subarrs' = Array.concat subarrs
17 let lens' = Array.head lens
18 let len_subarrs = int64 <| List.length subarrays
19 let lens_out = Array.append [|len_subarrs|] lens'
20 (subarrs', lens_out)

However, as we changed the FShark implementation to use jagged arrays in-
stead, we also had to change the implementation of the FlattenArray algorithm.
To make the FlattenArray work with jagged arrays, we posted a question on the
official F# slack channel for advice on removing the type checks in the function,
together with the at the time current implementation of the algorithm.

This led the users Christopher Pritchard and Abe Mieres to post a rewritten
version of the algorithm, which is the version that is used in the current imple-
mentation of the FShark compiler.

1 let rec ArrayToFlatArray (array : System.Array) =
2 if array.Length = 0 then failwith ”Empty array”
3 let array0 = array |> Seq.cast |> Seq.toArray
4 let arrays = array0 |> Array.choose (box >> function
5 | :? System.Array as xs -> Some xs
6 | _ -> None
7)
8 let lengths = Array.map (Seq.cast >> Seq.length) arrays |> Array.distinct
9 if arrays .Length = 0 then array0 |> Array.map unbox, [|int64 array.Length|]
10 elif arrays .Length <> array.Length then failwith ”Invalid array”
11 elif lengths.Length > 1 then failwith ”Irregular array”
12 else
13 let a = Array.map ArrayToFlatArray arrays
14 let subarrs, lens = Array.unzip a
15 let subarrs' = Array.concat subarrs
16 let lens' = Array.head lens
17 let len_subarrs = int64 array.Length
18 let lens_out = Array.append [|len_subarrs|] lens'
19 subarrs', lens_out

58

5.8.2. Analysis of UnflattenArray
The algorithm UnflattenArray in figure 5.21 restores the flat array from the
Futhark C# program, to a jagged array in F#.

1 UnflattenArray (lengths : Array of int) (data : Array of a) =
2 match len(lengths) with
3 | 1 ->
4 return data
5 | _ ->
6 length = head(lengths)
7 lengths' = tail(lengths)
8 data' = chunk_array length data
9 data'' = map (UnflattenArray lengths') data'
10 return data''

Figure 5.21: Recreating a jagged array from flat array with dimensions

Like in FlattenArray, the most expensive line in the function is the array-
manipulating one. In UnflattenArray, it is line 7: For each dimension in
the lengths array, we chunk our data array into multiple smaller arrays. Each of
the n elements in the initial array is moved to a new and smaller array d times,
which makes the complexity of this algorithm O(n ∗ d).

5.8.3. Why UnflattenArray hinders a specific tuple type
When an FShark function is invoked, it’s arguments are prepared by an ar-
gument converter first. For scalar arguments, the argument is simply returned.
But for array arguments, we must flatten the jagged array into a tuple that
follows Futhark’s array representation.

When the Futhark function returns, we then have to unflatten the Futhark
arrays back into jagged arrays. To do this, we naively look at all the values
returned by the Futhark function, and whenever we encounter a tuple of type
(’a [] * int64 []), we assume that this is a flat array that needs to
be unflattened. This procedure works fine, but has one side effect: FShark
doesn’t support entry functions that has ((’a [] * int64 [])) tuples in
their return types, because this type is reserved.

To circumvent this, the user is instead encouraged to return the tuple as two
separate values.

5.8.4. An alternative solution (FSharkArrays)
Instead of using jagged arrays (or even multidimensional arrays), we initially
considered implimenting an FShark specific array type, which could be directly
translated to Futhark’s flat array structure.

This data type is shown in figure 5.22. An FSharkArray<’a> contains a flat
array of <’a>, and a list of integers denoting the lengths of the arrays contained

59

in the flat array.

1 type FSharkArray<'a> = class
2 val mutable flatArray : 'a array
3 val mutable dimensions : int array
4 end

Figure 5.22: The basic structure of an FSharkArray

This would allow us to skip the flattening and unflattening algorithms that are
currently used for invoking imported Futhark functions, and instead just pass
the contents of the arrays as is.

However, this approach was deemed impractical for several reasons. Jagged ar-
rays readily support getting subarrays and elements using the array indexing op-
erator intuitively. for example, for a two-dimensional array xss : int [][],
we can expect that xss.[1] returns a subarray, and that xss.[1].[4] re-
turns an integer. For example, to get the same functionality for FSharkArrays,
we would have to implement the array operator for FSharkArrays manually.
The array operator would have to access the flat array by calculating an off-
set using the array operator operands together with the lengths stored in the
dimensions integer array.

Besides calculating array indexes manually, we would also have to handle that
the index operator must be able to return either an element of some type ’a, or
another FSharkArray. This could be handled by implementing FSharkArray
as a discriminated union type instead; as shown in figure 5.23.

1 type FSharkArray 'a = FlatArray of ('a array * int array)
2 | Element of 'a

Figure 5.23: FSharkArray as a discriminated union type

This way, an FSharkArray can be either an array or an element. However,
we then have a third problem. Wherever we are using FSharkArray ’a, our
elements from the arrays will be wrapped as Element of ’as.

This means that we will have to either implement a custom set of F# opera-
tors and standard library functions which unwraps Elements before passing
them on to the actual operator or function, or at least implement an unwrapper
function of type unwrap : Element of ′a → ′a, which must be applied ev-
erywhere in functions that uses both FSharkArrays and F# standard library
functions.

5.8.5. Conclusion on arrays
Ultimately, choosing between jagged arrays, multidimensional arrays and FSharkAr-
rays became a question of simplicity vs. performance. For FShark, I had the
liberty to focus solely on simplicity, as FShark code is neither intended or even
efficient when executed as native FSharp code. Therefore I could choose to let
FShark use jagged arrays, instead of any of the other options.

60

The syntax for declaring a jagged array type closely resembles Futhark’s multi-
dimensional array syntax (take for instance FSharp’s int[][] versus Futhark’s
[][]i32 for declaring two-dimensional integer arrays). The close similarities
between Futhark and FShark code means that FShark generated Futhark
code is easier to read for debugging purposes, and likewise makes Futhark code
easier to port to FShark.

61

6.0

The FShark Wrapper

In this chapter we will first demonstrate how to compile and use an FShark
module within an F# project. We will then delve further into how and why
compiled FShark functions are actually invoked through through a wrapper
class called the FShark Wrapper.

Finally, we will discuss the performance disadvantages that comes with the
current implementation of the FShark wrapper.

6.1. Using the FShark Wrapper
Although FShark code can be executed directly in F# as normal F# code, our
benchmarks in section 9.6.3 shows that compiling our FShark code to Futhark
GPU modules gives us performance increases by several orders of magnitudes
(from ×100 to × 1000).

We therefore need to implement a wrapper which enables us to compile our
FShark programs as well as utilize them in our F# programs.

6.1.1. Another short FShark module
Below we see a simple FShark module that we want to compile into a GPU
kernel and use in our F# program.

1 module ExampleModule
2 open FSharkPrelude
3

4 let saxpy (a : int) (x : int) (y : int) : int =
5 a*x+y
6

7 let getArrayPair (a : int) : (int array * int array) =
8 let xs = Iota a
9 let n = Length xs
10 let ys = Rotate (n / 2) xs
11 in (xs, ys)
12

13 [<FSharkEntry>]
14 let entry (a : int) : int array =
15 let (xs, ys) = getArrayPair a

62

16 let res = Map2 (saxpy a) xs ys
17 in res

Line by line, this module does the following:
L1: We define the name of this module as ExampleModule. If we want to use
this module in an F# program without compiling it as FShark first, we can
refer to this module by this name.
L2: We open FSharks standard library FSharkPrelude in this module, so
we can access the standard functions in the FShark module. In this module,
we are using the standard functions Iota, Length, Rotate and Map2.
L4-5: We define the function saxpy.
L7-11: We define the function getArrayPair.
L8: Iota a returns the integer array of the numbers from 0 up to, but not
including, a.
L9: Length xs returns the length of the array xs.
L10: Rotate n rotates the contents of an array n places in either the right or
left direction.
For example, Rotate 2 [1;2;3;4;5;6] = [5;6;1;2;3;4],
and Rotate (-2) [1;2;3;4;5;6] = [3;4;5;6;1;2]
L11: Here we return the pair of arrays (xs, ys).

L13-17: We define the entry function entry.
L15: We call getArrayPair to get two arrays.
L16: We use Map2 to map the curried function (saxpy a) over the arrays xs
and ys.

For two arrays xs = [x1, x2, . . . , xn] and ys = [y1, y2, . . . , yn],
Map2 (saxpy a) xs ys = [saxpy a x1 y1, saxpy a x2 y2, . . . , saxpy a xn yn].

L17: The entry function returns the result of the call to Map2.

This concludes the short FShark module.

6.1.2. Compiling and using the short FShark module
With our FShark module ready, we now proceed to compile, load and use it.
This is shown in figure 6.1.

63

1 module FSharkExample
2 open FShark.Main
3

4 [<EntryPoint>]
5 let main argv =
6 let wrapper =
7 new FSharkWrapper(
8 libName=”ExampleModule”,
9 tmpRoot=”/home/mikkel/FShark”,
10 preludePath=

”/home/mikkel/Documents/fshark/FSharkPrelude/bin/Debug/FSharkPrelude.dll”,↪→

11 openCL=true,
12 unsafe=true,
13 debug=false
14)
15 wrapper.AddSourceFile ”ExampleModule.fs”
16 wrapper.CompileAndLoad
17 let a = 1000000
18 let result = wrapper.InvokeFunction(”entry”, a) :?> int

array↪→

19 printfn ”Mapping (+2) over %A gives us %A” xs xs'
20 0

Figure 6.1: An F# program using FShark

Let us now explain line by line what is happening in the figure:
L6: We begin by constructing an instance of the FSharkWrapper. It has the
following mandatory arguments:

libName
This is the library name for the FShark program. In the final Futhark
.cs and .dll files, the main class will have the same name as the
libName. This doesn’t really matter if FShark is just used as a JIT
compiler, but it’s good to have a proper name if the user only wants to
use the compiler parts of FShark.

tmpRoot
The FShark compiler works in its own temporary directory. This ar-
gument must point to a directory where F# can write files and execute
subprocesses (Futhark- and C# compilers) which also has to write files.

preludePath
The FShark compiler needs the FShark prelude available to compile
FShark programs.

openCL
Although Futhark (and therefore FShark) is most effective on OpenCL-
enabled computers, the benchmarks in 9.6.3 still show a significant speed
increase for non-OpenCL Futhark over native F# code. Therefore, FShark
is also available for non-OpenCL users. Use this flag to tell FShark
whether Futhark should compile C# with or without OpenCL.

unsafe
For some Futhark programs, the Futhark compiler itself is unable to tell

64

whether certain array operations or SOAC usages are safe, and will stop
the compilation, even though the code should (and does) indeed work. To
enable these unsafe operations, pass a true flag to the compiler.

debug
Passing the debug flag to the FShark compiler enables various runtime
debugging features, for instance benchmarking the time it takes to run
various parts of the compiler.

L15: Now we can pass a source file to the FShark wrapper.
L16: We tell the wrapper to compile the source file that we have added to the
wrapper object, and load the compiled library into the wrapper afterwards.
L17: As our entry function defined in the program in figure 6.1 takes an integer
as argument, we define an integer variable we can pass to it.
L18: We use the wrapper to invoke the entry function from the compiled and
loaded library, using our previously declared a as the only argument. As the
FShark wrapper uses reflection to dynamically load compiled libraries at run-
time, we are not able to statically determine what type of result we will get from
the InvokeFunction call. Therefore, we use F#s downcast operator (:?>)
to declare the return value as an int array.

If we are in doubt of which type to downcast to, we can always lookup the
return type by reviewing the FShark module’s source code. We can downcast
to any of the types usable in F#, including tuples and arrays.

6.2. On the design decisions of the FShark wrapper
To summarize, the current design of FShark usage is dependent on a wrapper
object, which for all FShark projects must compile and load the input FShark
modules once, and, afterwards, it must pass arguments from F# to the resulting
GPU kernels by using .NET reflection. This design has several costs for both
usability and performance, and we will here discuss some of these costs, and
what we could do to alleviate them in the future.

6.2.1. Compiling and loading FShark modules at every startup
At this time, FShark works by compiling and loading FShark modules just
in time before they are needed in the containing F# project. However, this is
more often than not redundant work. For the developer who is using FShark
to develop prototypes of FShark GPU kernels, it is of course beneficial to
continuously recompile the FShark program under development to verify that
changes are being made.

However, when the FShark program is finished and ready to be used in projects,
it isn’t necessary to compile it again.

How much time do we spend on compiling and loading the FShark mod-
ules?

If we, instead of loading the compiled FSharkGPU kernels through the FShark
wrapper, just open the compiled kernel libraries as any other C# .dll file, we

65

can circumvent the FShark compiler completely, and use the compiled kernel
directly.

For the benchmark LocVolCalib 9.6.3), we have measured the average time
cost of the program compilation time. In figure 6.2 we see how the time is spent
during the compilation.

Parsing FShark code using F# parser 217984 ms
Converting F# declarations to FSharkIL + 19129 ms
Converting FSharkIL to Futhark source code + 98949 ms
Compiling Futhark to C# with futhark-cs + 8037165 ms
Compiling C# code using C# compiler + 999251 ms
Loading compiled C# class using reflection + 101601 ms
Figure 6.2: Time spent on compiling LocVolCalib at runtime in FShark-using
program

So the dynamic compilation process takes about 10 seconds, while running the
accelerated program on the largest dataset takes only a couple of seconds. This
is a costly affair, which we could definitely live without.

Suggestions for changes

We have two main suggestions for change.
1) The easiest way would be to add a AddModulePath function to the FShark
wrapper. The benchmarks show that we aren’t spending that much more time
when loading compiled assemblies into F# using reflection, than if we opened
the assembly as a library in the project.

Therefore, we could add a function that takes a path to a compiled FShark
module, and loaded the path’s target into the wrapper.

2) We could also go for a second, more permanent solution. Instead of relying
on F#s reflection functionality to load our compiled assemblies into scope dy-
namically, we could redesign the FShark use case itself, so that it uses just the
compiler, and not the wrapper.

In this case, the new use case would be to compile the FShark modules using the
FShark compiler, and then manually reference- and open them in F# projects.
This would not only remove the repeated module compilation, but also let us use
static typing with the compiled FShark modules, enabling autocompletion and
type checking for function arguments, and also removing the need to manually
downcast the FShark invokation results.

6.2.2. The overhead of invoking GPU kernels
The second issue with the current approach is, that every single call to a FShark
function carries significant overhead for copying data back and forth between
CPU and GPU buffers. This is a problem when we are chaining together GPU
function calls: that is when we take the array output of function f and use it
as an argument for function g without any changes to it.

66

In figure 6.3 we see a chain of three calls to a compiled FShark module. Al-
though we are calling the second function with the result from the first function
together with another array, and calling the third function with result from the
second function, we are still moving the results from the GPU buffers to our
system RAM between each call, and deallocating the buffers on the GPU, even
though we are going to reallocate them soon thereafter.

deallocate and copy res to CPU

allocate and copy xs to GPU

deallocate and copy res' to CPU

allocate and copy res to GPU

deallocate and copy res'' to CPU

allocate and copy res' to GPU

CPU GPUprogram.fs:
let xs = Iota 1000000

let res = foo xs

let res' = bar res

let res'' = baz res'

in res''

Figure 6.3: Buffers are copied back and forth between CPU and GPU between
calls

In the future, we could eliminate this overhead by allowing the compiled Futhark
functions to opaque arrays instead of actual data arrays. Opaque arrays are
merely references to already allocated GPU buffers, and can be resolved into ac-
tual data arrays only when the data is needed in the remaining program.

We could then also have multiple versions of the compiled Futhark functions;
one version that takes an actual data array as input, and one that can use a
reference to a GPU buffer instead.

In this case, we could wait until after the three function calls to actually copy the
referenced GPU buffer back to the system RAM. This would strongly reduce the
number of copies back and forth between the GPU and the system RAM: Instead
of the allocations/deallocations increasing linearly with the number of chained
GPU kernel calls, we can make do with one allocation and one deallocation
between system RAM and GPU, pr. chain, as in figure 6.4

67

return res reference to CPU

allocate and copy xs to GPU

return res' reference to CPU

call bar with res reference

deallocate and copy res'' to CPU

call baz with res' reference

CPU GPUprogram.fs:
let xs = Iota 1000000

let res = foo xs

let res' = bar res

let res'' = baz res'

in res''

Figure 6.4: Buffers aren’t copied between CPU and GPU unless necessary

This functionality is already implemented in Python’s PyOpenCL library, and
is used in Futhark programs that are compiled as Python libraries.

68

7.0

The FShark Compiler

In this chapter, we present the FShark compiler pipeline. We first present the
compiler architecture, and followingly describe the four parts of the compiler
piece by piece, with accompanying compilation and translation examples.

7.1. The FShark compiler architecture
At this point in the report, we are able to generate GPU-accelerated computa-
tional kernels for C#. We have also defined a language for writing GPU kernels
using F#, and we have offered several methods of integrating these compiled C#
kernels in F# projects. What remains is to build a compiler, that takes FShark
code as input, and returns a compiled C# library that runs GPU computational
kernels.

In practice, we need to build an architecture that supports the functionality
defined in figure 7.1.

69

FSharp Parser

FShark source code FSharkPrelude assembly

FSharkCompiler

Typed Abstract Syntax Tree

FSharkWriter

FShark Intermediate Code

Futhark­to­C# compiler

Futhark source code

C# source code
and

Compiled Futhark­C# library or
executable

Figure 7.1: The complete architecture from FShark source code to compiled
C# program.

7.2. The FSharp parser
Parsing and building a regular F# program is trivial when using official build
tools like msbuild or fsharpc. But in the case of FShark, we are not
interested in the final output of the F# compiler. Instead, we use only part of
the F# compiler’s pipeline: By passing our FShark source code through the F#
compiler’s parser features, we retrieve its corresponding Typed Abstract Syntax
Tree.

70

The Typed Abstract Syntax Tree (TAST) contains the function and value dec-
larations that makes up our FShark program. The Typed Abstract Syntax
Tree is merely an AST that already has tagged all the contained expressions
with their respective types.
We take this TAST and pass it on into the FSharkCompiler.

As the F# Software Foundation offers the official F# Compiler as a freely avail-
able NuGet package for F# projects, we can use this package FSharp.Compiler.Services
to parse the entire input FShark program and give us a Typed Abstract Syntax
Tree of the FSharp expressions therein, instead of writing our own parser. So
as the F# parser part of the pipeline amounts to calling some library functions
from an imported library, we will not use more time on this part.

7.3. The FSharkCompiler
For the FSharkCompiler, we need to build a module that takes an F# TAST
as input, and returns the corresponding program as written in an intermediate
language defined for FShark, called FSharkIL.
The declarations in the TAST are called FSharpDecls, and in FShark we
work with two kinds of FSharpDecls.

The first kind of FSharpDecl that FShark supports is the FSharpDecl.MemberOrFunctionOrValue,
which are declarations of members, functions and values. We don’t use mem-
bers in FShark, as they are for object oriented F# programming, but we do use
functions and values. For all intents and purposes, F# values are just functions
without arguments.

The other kind is the FSharpDecl.Entity. Entities are F# declarations that
are neither functions or values themselves, but instead alterations to the present
F# program. The FSharkCompiler supports three different entities.

In total, this means that our intermediate language must also support four
different declarations, which are the FSharkDecls. These are shown in figure
7.6.

7.3.1. FSharpDecl.Entity
The FSharkCompiler supports three different entities.

FSharpRecords are standard record types, and can be translated to Futhark
records with ease. This entity has an empty FSharpImplementationFileDeclaration
list.

FSharpAbbreviations are type abbreviations, and are easily translated into
Futhark type aliases. This entity has an empty FSharpImplementationFileDeclaration
list.

FSharpModules are named modules which contains subdeclarations. In FShark
we don’t support parameterized modules, so in reality the just work as
namespaces for functions and values. The FShark compiler supports
building FShark modules, but current limitations demands that modules
are flattened when compiled to Futhark. This also means that function
name prefixes in function calls are stripped when compiled to Futhark.

71

An example of this module flattening is shown below.

1 module Vec3 =
2 type Vec3single = {x:single ; y:single ; z:single}
3 let plus (a : Vec3single) (b : Vec3single) : Vec3single =
4 {x=a.x+b.x; y=a.y+b.y; z=a.z+b.z}
5

6 type vec3 = Vec3.Vec3single
7 type mass = single
8 type position = vec3
9 type acceleration = vec3
10 type velocity = vec3

1 type Vec3single = {x : f32, y : f32, z : f32}
2 let plus (a : Vec3single) (b : Vec3single) : Vec3single =
3 {x=((a.x + b.x)), y=((a.y + b.y)), z=((a.z + b.z))}
4
5 type vec3 = Vec3single
6 type mass = f32
7 type position = Vec3single
8 type acceleration = Vec3single
9 type velocity = Vec3single

Here, the Vec3 module is flattened and made part of the outer scope of
the file. Due to time constraints, this current solution was chosen. The
solution does introduce the danger of namespace collisions. for example,
we could get in trouble by having a function further down which was also
called plus.

A later version of the FSharkCompiler could very well contain a better
solution to the module problem, either by translating FShark modules to
Futhark modules, or at least by naming the flattened module declarations
in a special way; for example by keeping the containing module’s name in
the flattened declarations’ name, like in the example below:

1 module Vec3 =
2 type Vec3single = {x:single ; y:single ; z:single}
3 let plus (a : Vec3single) (b : Vec3single) : Vec3single =
4 {x=a.x+b.x; y=a.y+b.y; z=a.z+b.z}
5

6 type vec3 = Vec3.Vec3single

1 type Vec3_Vec3single = {x : f32, y : f32, z : f32}
2 let Vec3_plus (a : Vec3_Vec3single) (b : Vec3_Vec3single) : Vec3_Vec3single =
3 {x=((a.x + b.x)), y=((a.y + b.y)), z=((a.z + b.z))}
4
5 type vec3 = Vec3_Vec3single

72

7.3.2. F# expressions
An F# function or value is not without its accompanying F# expression. The
F# compiler compiles these F# expressions into FSharpExprs, which we can
parse ourselves, and rewrite as FSharkIL expressions. In figure 7.2 we see three
different F# expressions, and their representations as FSharpExpr’s.

For the first example, we just create a tuple literal. In the FSharpExpr version,
we see how the literal is created using NewTuple. NewTuple takes a list of
FSharpExprs as arguments. In this case, we are using two constants, each of
which takes some primitive object, and the .NET type of that object.

In the second example, we use the Let expression. Semantically, Let takes
a name n and two expressions e1 and e2, and exchanges every instance of n
in e2 with e1. Then we encounter two Let-expressions that we didn’t write
ourselves. That is because the F# compiler turns tuple assignments into chains
of Let expressions instead. Here, we use TupleGet to get each field of the
tuple.

Finally, we use a typed instance of the Call expression to call the overloaded
function Plus as the integer version of the plus function, giving it the two
variables Value a and Value b as arguments.

In the third example, we see the Lambda expression in use. Lambda takes a
list of variables (in the form of name/type pairs), and an FSharpExpr. In this
case, Lambda only has one variable.
The innermost expression here is the Application expression. Application
takes a function or a lambda, and a list of arguments, and applies the list of
arguments one by one to the function or lambda.

73

1 // example 1
2 (79, 42.0f)
3

4 // example 2
5 let tuple = (79, 42.0f)
6 let (a,b) = tuple
7 in a + a
8

9 // example 3
10 let a = 2.0f
11 let foo = fun x -> x + 3.0f
12 in foo a

1 ; example 1
2 NewTuple ([Const(79, System.Int32), Const(42.0f, System.Single)])
3

4 ; example 2
5 Let tuple (NewTuple ([Const(79, System.Int32), Const(42.0f, System.Single)]))
6 (
7 Let a (TupleGet 1 tuple)
8 (
9 Let b (TupleGet 2 tuple)
10 (
11 Call Plus System.Int32
12 ([Value a, Value b])
13)
14)
15)
16

17 ; example 3
18 Let a Const(2.0f, System.Single)
19 (
20 Let foo (Lambda ([(x, System.Single)])
21 (Call Plus System.Single
22 ([Value x, Const(3.0f, System.Single)])
23))
24 (
25 Application foo ([Value a])
26)
27

28)

Figure 7.2: Three F# expressions, and their representation as FSharpExprs

The entire set of FSharpExprs used in the FSharkCompiler is available in
figure 7.8, and the entire set of .NET types used in the FSharkCompiler is
available in figure 7.7.

7.3.3. Translating from FSharpExprs to FSharkIL
Now that we have the F# expressions and types in order, we can translate them
into our FShark intermediate language, FSharkIL.

74

Continuing the example from figure 7.2, we will see three examples of such
translations in figure 7.3. The expressions as written in FSharkIL happens to
look very much like FSharks own expressions, except for one thing. In F#,
infix operators are translated into normal function calls at compilation.

Therefore, the FSharkCompiler detects these specific function calls (the calls
to infix operators), and translates them back into infix operations. Although it
would possible to treat infix operators as functions in the FShark generated
Futhark code, we have chosen to write the operator calls as infix operations, for
readability.

75

1 ; example 1
2 NewTuple ([Const(79, System.Int32), Const(42.0f, System.Single)])
3

4 ; example 2
5 Let tuple (NewTuple ([Const(79, System.Int32), Const(42.0f, System.Single)]))
6 (
7 Let a (TupleGet 1 tuple)
8 (
9 Let b (TupleGet 2 tuple)
10 (
11 Call Plus System.Int32
12 ([Value a, Value b])
13)
14)
15)
16

17 ; example 3
18 Let a Const(2.0f, System.Single)
19 (
20 Let foo (Lambda ([(x, System.Single)])
21 (Call Plus System.Single
22 ([Value x, Const(3.0f, System.Single)])
23))
24 (
25 Application foo ([Value a])
26)
27

28)

1 ; example 1
2 Tuple ([Const(79, FInt32), Const(42.0f, FSingle)])
3

4 ; example 2
5 LetIn tuple (Tuple([Const(79, FInt32), Const(42.0f, FSingle)]))
6 (
7 LetIn a (TupleGet tuple 1)
8 (
9 LetIn b (TupleGet tuple 2)
10 (
11 InfixOp Plus FInt32 (Var a) (Var b)
12)
13)
14)
15

16 ; example 3
17 LetIn a Const(2.0f, FSingle)
18 (
19 LetIn foo (Lambda ([(x, FSingle)])
20 (InfixOp Plus FSingle (Var x) (Const(3.0f, FSingle)))
21)
22 (
23 Application foo ([Var a])
24)
25

26)

Figure 7.3: Three FSharpExprs expressions, and their representation as
FSharkExprs

76

The complete set of rules for translating .NET types to FShark types are avail-
able in figure 7.9, and the complete set of rules for translating FSharpExprs
to FSharkExprs are shown in figure 7.10.

With the FSharpExprs translated to FSharkExprs, we can pass the entire
program as written in FShark intermediate code onto the next part of the
compiler pipeline; the FSharkWriter.

7.4. The FSharkWriter
The FSharkWriter takes programs written in FSharks intermediate language,
and translates them into valid Futhark source code.

Continuing the example from figure 7.3, we will see three examples of such
translations in figure 7.4.

The complete set of FSharkExpr-to-Futhark rules are shown in figure 7.12,
and the rules for translating FSharkIL-types to Futhark-types are shown in
figure 7.11.

77

1 ; example 1
2 Tuple ([Const(79, FInt32), Const(42.0f, FSingle)])
3

4 ; example 2
5 LetIn tuple (Tuple([Const(79, FInt32), Const(42.0f, FSingle)]))
6 (
7 LetIn a (TupleGet tuple 1)
8 (
9 LetIn b (TupleGet tuple 2)
10 (
11 InfixOp Plus FInt32 (Var a) (Var b)
12)
13)
14)
15

16 ; example 3
17 LetIn a Const(2.0f, FSingle)
18 (
19 LetIn foo (Lambda ([(x, FSingle)])
20 (InfixOp Plus FSingle (Var x) (Const(3.0f, FSingle)))
21)
22 (
23 Application foo ([Var a])
24)
25

26)

1 -- example 1
2 (79i32, 42.0f32)
3
4 -- example 2
5 let tuple = (79i32, 42.0f32) in
6 let a = tuple.1 in
7 let b = tuple.2 in
8 a i32.+ b
9

10 -- example 3
11 let a = 2.0f32 in
12 let foo = (\(x : f32) -> x i32.+ 3.0f32) in
13 in foo a

Figure 7.4: Three FSharkExprs expressions translated to Futhark by
FSharkWriter

The FSharkCompiler creates a temporary folder at the temporary root folder1

that was passed as an argument when initializing the FSharkWrapper, and
writes the finished string of Futhark source code to a Futhark file in this di-
rectory. The name of the Futhark file is taken from the libName variable we
passed to the FSharkWrapper at its initialization.

1see the tmpRoot variable in sec 6.1.2

78

7.4.1. The Futhark-to-C# compiler
The FSharkWrapper now calls the Futhark-to-C# compiler futhark-cs. If
we named our FShark module “MyLib”, the command used be like shown be-
low:

1 $ futhark-cs --library -o MyLib.dll MyLib.fut

futhark-cs compiles a C# dynamically linked library and writes it to MyLib.dll,
and also writes the C# source code from the Futhark compilation to MyLib.cs.

This marks the end of the FShark compilation process.

7.5. Design choices in writing the FShark Compiler
To implement the FSharkCompiler, we had the choice between implement-
ing a lexer and parser manually, or using F#’s own compiler as a parser library.
Furthermore, F#’s Typed Abstract Syntax Trees shows the types of any func-
tions and operators used in an F# program. This means, that even for the
program shown in 7.5, the F# compiler’s type inference tells us that the plus
operator used in the expression on line 3 is the int plus operator.

1 let x = 7
2 let y = 9
3 in x + y

Figure 7.5: A short F# program that uses type inference to decide the types of
the plus-operator’s operands.

If we were to implement our own F# parser, we would not only have to implement
the lexer and parser ourselves, but also type inference.

I chose to use F#’s own compiler as it gave me all this functionality for free, out
of the box.

79

7.6. Figures

Decl := FSharkRecord([(field1, decl1), . . . , (fieldn, decln)])
| FSharkTypeAlias(name, τ)
| FSharkModule(name, [decl1, . . . , decln])
| FSharkVal(name, [τ1, . . . , τn], [arg1, . . . , argn], τreturn, e)

Figure 7.6: The four possible FSharkDecls.

80

τ = System.Int8
| System.Int16
| System.Int32
| System.Int64
| System.UInt8
| System.UInt16
| System.UInt32
| System.UInt64
| System.Single
| System.Double
| System.Boolean
| System.Array τ
| System.Tuple (τ1 × . . .× τn)

Figure 7.7: The .NET types used in the FSharkCompiler

e = Const(obj, τ)
| Value(v)
| AddressOf(v)
| NewTuple(_, [e0, ..., en])
| NewRecord([(v0, e0), . . . , (vn, en)])
| NewArray(τ, [e0, ..., en])
| TupleGet(_, i, e)
| FSharpFieldGet(e,_, field)
| Call(_,GetArray,_, nil, [e0, e1])
| Call(_, name,_, nil, [e0, . . . , en])
| Call(_, name,_, τ, [e0, . . . , en])
| Call(_, infixOp,_, τ, [e0, e1])
| Call(_, unaryOp,_, τ, [e0])
| Let(p, e0, e1)
| IfThenElse(e0, e1, e2)
| Lambda([(v1 : τ1), . . . , (vn : τn)], e)
| Application(func,_, [e0, . . . , en])
| TypeLambda(e)
| DecisionTree(_,_)
| DecisionTreeSuccess(_,_)

Figure 7.8: The FSharpExprs used in the FSharkCompiler

81

JSystem.Int8K = FInt8JSystem.Int16K = FInt16JSystem.Int32K = FInt32JSystem.Int64K = FInt64JSystem.UInt8K = FUInt8JSystem.UInt16K = FUInt16JSystem.UInt32K = FUInt32JSystem.UInt64K = FUInt64JSystem.SingleK = FSingleJSystem.DoubleK = FDoubleJSystem.BooleanK = BoolJSystem.Array τK = FSharkArray JτKJSystem.Tuple (τ0 × . . .× τn)K = FSharkTuple (Jτ0K × . . . × Jτn)K
Figure 7.9: Translation rules for .NET-types to FSharkIL-types translations.

JConst(obj, τ)K = Const(obj, JτK)JV alue(v)K = Var(v)JAddressOf(v)K = JvKJNewTuple(_, [e0, ..., en])K = Tuple([Je0K, . . . , JenK])JNewRecord([(v0, e0), . . . , (vn, en)])K = Record([(v0, Je0K), . . . , (vn, JenK)])JNewArray(τ, [e0, ..., en])K = List(JτK,[Je0K, . . . , JenK])JTupleGet(_, i, e)K = TupleGet(JeK, i)JFSharpF ieldGet(e,_, field)K = RecordGet(field, JeK)JCall(_,GetArray,_, nil, [e0, e1])K = ArrayIndex(Je0K, Je1K])JCall(_, name,_, nil, [e0, . . . , en])K = Call(name, [Je0K, . . . , JenK])JCall(_, name,_, τ, [e0, . . . , en])K = TypedCall(JτK, name, [Je0K, . . . , JenK])JCall(_, infixOp,_, τ, [e0, e1])K = InfixOp(infixOp, JτK, Je0K, Je1K)JCall(_, unaryOp,_, τ, [e0])K = UnaryOp(unaryOp, JτK, Je0K)JLet(v, e0, e1)K = LetIn(v, Je0K, Je1K)JIfThenElse(e0, e1, e2)K = If(Je0K, Je1K, Je2K)JLambda((v : τ), e)K = Lambda(v, JτK, JeK)JApplication(func,_, [e0, . . . , en])K = Application(JfuncK,[Je0K, . . . , JenK])JTypeLambda(e)K = JeKJDecisionTree(_,_)K = PassJDecisionTreeSuccess(_,_)K = Pass

Figure 7.10: Translation rules for FSharp expressions to FSharkIL expressions

82

JFInt8K = i8JFInt16K = i16JFInt32K = i32JFInt64K = i64JFUInt8K = u8JFUInt16K = u16JFUInt32K = u32JFUInt64K = u64JFSingleK = f32JFDoubleK = f64JBoolK = boolJFSharkArray τK = []JτKJFSharkTuple (τ0 × . . . × τn)K = (Jτ0K, . . . , JτnK)
Figure 7.11: Translation rules from FSharkIL types to Futhark types

JConst(obj, τ)K = objJτKJV ar(v)K = vJTuple([e0, . . . , en])K = (Je0K, . . . , JenK)JRecord([(v0, e0), . . . , (vn, en)])K = {v0 = Je0K, . . . , vn = JenK}JList(KJτK,[Je0K, . . . , JenK]) = [Je0K, . . . , JenK]JTupleGet(KJeK, i) = JeK.iJRecordGet(field, e)K = JeK.fieldJArrayIndex(earr, [e0, . . . , en])K = JearrK[Je0K, . . . , JenK]JCall(name, [e0, . . . , en])K = name (Je0K) . . . (JenK)JTypedCall(KJτK, name, [Je0K, . . . , JenK]) = JτK.name (Je0K) . . . (JenK)JInfixOp(KinfixOp, JτK, Je0K, Je1K) = (Je0K) JτK.infixOp (Je1K)JUnaryOp(KunaryOp, JτK, Je0K) = JτK.unaryOp (Je0K)JLetIn(Kv, Je0K, Je1K) = let v = Je0K in Je1KJIf(KJe0K, Je1K, Je2K) = if Je0K then Je1K else Je2KJLambda(v, JτK, JeK)K = \(v : JτK) → JeKJApplication(JfuncK,[Je0K, . . . , JenK])K = (JfuncK) (Je0K) . . . (JenK)JPassK = ϵ

Figure 7.12: Translation rules from FSharkIL expressions to Futhark source
code

83

8.0

Current limitations

In the chapter, we describe the current known limitations of both our code
generator, the FShark language design and of the FShark compiler. The
limitations are divided into two categories; those caused by our design choices,
and those caused by a lacking implementation.

8.1. The C# code generator
Both of the code generator limitations listed below are caused by lack of imple-
mentation.

8.1.1. Errors in the implementation
Using Futhark’s own test suite, we have tested and evaluated the current im-
plementation of the code generator. These tests have made it apparent that the
C# code generator does not yet generate fully correct Futhark programs.

The Futhark test suite contains 961 tests, which tests everything from the
Futhark compiler itself (for example whether type aliases, higher order mod-
ules et al. handled correctly?), to whether the individual mathematical and
bitwise operations are correctly translated from Futhark to desired target lan-
guage (C# in our case), and whether types, be they array types or scalar types,
are retained throughout the entire program.
It also tests the stdin/stdout functionality of the generated programs.
The current implementation does not pass all tests correctly: for the Futhark
C# compiler for non-OpenCL programs, we are passing 840 out of 961 tests.
For the Futhark C# compiler for OpenCL programs, we are passing just 833 out
of 961 tests.

For many of these tests, we can immediately see what the issue is. In example,
we our stdin reader for C# programs does not currently read empty arrays1

correctly. Such errors are caused by lack of implementation in the stdin reader,
and can be corrected with relative ease by implementing the missing features.
The test suite also reveals various off-by-one errors in edge cases of the imple-
mentation, which should be simple to debug and fix.

1such as example empty(i32) or empty(f32).

84

Despite of these temporary bad test results, we are still confident that our code
generator is mostly correct. After all, the current implementation does pass
more than 86% of the test suite.
More importantly, although we have 128 failing tests, the test results also show
that many of these tests have the same point of failure.

For example, we have 16 failing tests caused by the missing reader features, and
8 off-by-one errors stemming from a certain helper function in the C# class.
If this is representative for the other failing tests as well, it is likely that the
remaining number of (known) bugs in the implementation is closer to ten, than
to a hundred.

8.1.2. Errors in the benchmarking functionality
The current implementation contains an error which hinders us in reliably test-
ing all benchmarks in the Futhark benchmark suite. In rare cases, a benchmark
program will both compile and execute correctly, but return the wrong runtime
measurements.

In principle, this bug should disqualify us from being able to report any reliable
benchmarks from our solution at all, but repeated testing shows that the bug
is indeed only present for certain benchmark programs.

For example, the Crystal benchmark executes correctly for both Futhark C
and Futhark C#, but the runtimes reported are obviously wrong for the Futhark
C# case:

1 $ futhark-bench --compiler=futhark-opencl crystal.fut
2 Compiling ./crystal.fut...
3 Results for ./crystal.fut:
4 dataset #0 (”200i32 30.0f32 5i32 1i32 1.0f32”): 32.00us

(avg. of 10 runs; RSD: 0.37)↪→

5 dataset #1 (”20i32 30.0f32 5i32 50i32 0.5f32”): 21.20us
(avg. of 10 runs; RSD: 0.04)↪→

6 dataset #2 (”40i32 30.0f32 5i32 50i32 0.5f32”): 40.70us
(avg. of 10 runs; RSD: 0.02)↪→

7 dataset #3 (”40i32 30.0f32 50i32 50i32 0.5f32”): 263.40us
(avg. of 10 runs; RSD: 0.27)↪→

8 dataset #4 (”2000i32 30.0f32 50i32 1i32 1.0f32”): 10800.40us
(avg. of 10 runs; RSD: 0.04)↪→

9

10 $ futhark-bench --compiler=futhark-csopencl crystal.fut
11 Compiling ./crystal.fut...
12 Results for ./crystal.fut:
13 dataset #0 (”200i32 30.0f32 5i32 1i32 1.0f32”): 32.20us

(avg. of 10 runs; RSD: 0.54)↪→

14 dataset #1 (”20i32 30.0f32 5i32 50i32 0.5f32”): 31.90us
(avg. of 10 runs; RSD: 0.58)↪→

15 dataset #2 (”40i32 30.0f32 5i32 50i32 0.5f32”): 29.30us
(avg. of 10 runs; RSD: 0.57)↪→

16 dataset #3 (”40i32 30.0f32 50i32 50i32 0.5f32”): 31.60us
(avg. of 10 runs; RSD: 0.65)↪→

85

17 dataset #4 (”2000i32 30.0f32 50i32 1i32 1.0f32”): 28.70us
(avg. of 10 runs; RSD: 0.62)↪→

On the other hand, the Hotspot benchmark works as expected:

1 $ futhark-bench --compiler=futhark-opencl hotspot.fut
2 Compiling ./hotspot.fut...
3 Results for ./hotspot.fut:
4 dataset data/64.in: 1686.00us (avg. of 10 runs; RSD: 0.07)
5 dataset data/512.in: 13064.60us (avg. of 10 runs; RSD: 0.01)
6 dataset data/1024.in: 42276.30us (avg. of 10 runs; RSD: 0.01)
7 $ futhark-bench --compiler=futhark-csopencl hotspot.fut
8 Compiling ./hotspot.fut...
9 Results for ./hotspot.fut:
10 dataset data/64.in: 2172.10us (avg. of 10 runs; RSD: 0.06)
11 dataset data/512.in: 9172.20us (avg. of 10 runs; RSD: 0.42)
12 dataset data/1024.in: 33946.10us (avg. of 10 runs; RSD: 0.46)

8.1.3. Cumbersome array entry functions in Futhark libraries
As described in section 4.3.5, we currently have to flatten our jagged arrays
before we can pass them to our Futhark library functions. Likewise, we have
to unflatten the results if we want to use them as jagged arrays again after-
wards.

In sec. 5.8, we presented a solution for both flattening and unflattening such
arrays, and thus solving this limitation is merely a question of porting and
implementing these algorithms in the Futhark generated C# libraries.

8.1.4. Unnecessary memory allocations in chained Futhark func-
tion calls

The current implementation of the code generator causes significant overhead
when chaining together GPU function calls, as discussed in sec. 6.2.2. Whilst
not being a functional limitation, implementing an opaque return type for
Futhark GPU calls would increase runtime performance in any programs that
chain together such calls.

The Python code generator for Futhark already has such an opaque data type
implemented, and one could look to this implementation for inspiration on how
to design a similar data type for Futhark C#.

8.2. The FShark language

8.2.1. Scatter
The current implementation of the FShark language allows users to use the
SOAC Scatter. However, the actual scatter SOAC from Futhark has cer-

86

tain usage constraints concerning uniqueness2, which we currently do not enforce
in FShark.

This means that users can unknowingly write valid FShark programs, that are
not valid Futhark programs, if they accidentally break the rules of scatter usage.
This is not a nice position for the FShark language to be in, so we should in
principle either remove the Scatter SOAC from the FShark standard library,
or enforce the uniqueness constraint in the FShark compiler. This might take
some time.

8.3. The FShark compiler

8.3.1. Disallowing certain types of FShark entry functions
As the FShark wrapper relies on the flattening algorithms shown in sec. 5.8
to make F#s jagged arrays compatible with Futhark’s flat arrays (sec. 4.3.5),
we currently prohibit FShark entry functions have return types that are either
(’a[] * int64[]) tuples, or tuples or arrays that contains such tuples.
This is described in detail in subsec. 5.8.3.

This could be solved by moving the array flattening into the generated Futhark
C# libraries as described in subsec. 8.1.3, solving two limitations at the same
time.

8.3.2. Allow compiler usage outside of FShark wrapper
As discussed in section 6.2.2, we would like to be able to use just the FShark
compiler, without having to go through the FShark wrapper. Our goal is
to be able to compile FShark programs directly from the command-line like
so:

1 $ fshark -o MyModule.dll MyModule.fs

This should be relatively easy to achieve, as the compiler architecture already
exists within the FShark project.

8.4. The FShark validation
The current FShark test suite lacks accompanying tests for the FShark type
conversion functions. These must be implemented to assure us that FShark
correctly translate type convertion functions to Futhark.

2See https://futhark.readthedocs.io/en/latest/language-reference.
html#in-place-updates

87

https://futhark.readthedocs.io/en/latest/language-reference.html#in-place-updates
https://futhark.readthedocs.io/en/latest/language-reference.html#in-place-updates

9.0

Evaluation and benchmarks

In this chapter we first evaluate both the correctness of our code generator,
and the performance of the C# programs that our code generator generates.
For testing correctness, we use the Futhark compiler’s existing test suite with
our new code generator. For the performance evaluation, we run and compare
benchmark results between programs generated by the Futhark C#-, C- and
Python code generators.

We then evaluate whether the FShark language succeeds in letting us write
complex GPU benchmarks in an idiomatic F# style.

Finally, we evaluate the FShark compiler itself. First we test whether the
FShark compiler correctly translates FShark programs to Futhark, so that
they are functionally equivalent. We then compile and compare the performance
of GPU benchmarks written in FShark with equivalent benchmarks written in
Futhark.

Specifications for benchmark

For all benchmarks in this section, we have run the benchmarks on a system
with these attributes:

• CPU: 4 cores of Intel Core i5-6500 at 3.20GHz

– L1 cache: 128 KiB

– L2 cache: 1024 KiB

– L3 cache: 6144 KiB

• GPU: GeForce GTX 970

9.1. Correctness of the Futhark csharp generator
To show that the Futhark C# code generator correctly translates Futhark to
C# programs, we have chosen to test our solution using the already existing
Futhark test suite, as described in section 8.1.1.

Although the C# code generator currently does not pass all the tests in the test
suite, we believe that the Futhark-to-C# translation itself is correct.

88

However, there are still parts of the generated Futhark C# programs which
contains errors. Therefore we cannot say that the current implementation is
completely correct.

9.2. The performance of Futhark C# programs
To determine whether Futhark C# programs have similar performance to Futhark
C and Futhark Python programs, we have used Futhark’s own benchmark suite.
We have measured the runtime of 22 benchmarks compiled with the Futhark C#
code generator, and used the performance of the Futhark C-OpenCL-generated
kernels as a reference point.
The results are shown in table 9.2.

We have sorted the benchmarks by their runtimes. Short benchmarks are eas-
ily influenced by “background noise” from the operating system, whereas small
fluctutations in running time has much less effect on longer running bench-
marks.

Our benchmarks doesn’t show that either the C# or the C GPU kernels are the
better choice to any significant degree. For the two longest benchmarks, we see
that the C# kernels do run faster than the reference, but not more than ∼ 3%.
For the remaining benchmarks, the two versions are mostly comparable. We
see a large speed difference for the Hotspot benchmark, but it also has a high
relative standard deviation.

As we go further down the list we also see that BFS Iterative Partitioning
and NN have large speed differences, without much relative standard deviation.
However, at this point we are running benchmarks that lasts for few millisec-
onds, so we will not investigate the difference further.

On the grounds of these benchmarks, we are confident that our C# code gen-
erator is able to build C# programs that are comparable in performance to
corresponding C versions.

However, as described in 8.1.2, we are also aware that the current implemention
Futhark C# implementation contains errors, which for some benchmarks makes
it impossible to reliably measure their runtimes. We still have more benchmarks
to run when these errors are fixed, but we are confident that future benchmarks
will support our assertation, rather than disprove it.

89

Benchmark C# Ref. Speedup in percentage RSD
LocVolCalib 1879302 1940669 +3.16% 0.00
Particle Filter 396207 412421 +3.93% 0.01
Myocyte 395485 396866 +0.35% 0.00
Stencil 158911 156194 −1.74% 0.01
OptionPricing 153315 154702 +0.9% 0.00
LUD clean 131038 132479 +1.09% 0.00
NW 62752 62995 +0.39% 0.01
BFS Flattened 40708 39384 −3.36% 0.01
Hotspot 34073 44038 +22.63% 0.46
BFS Padded 30924 33047 +6.42% 0.06
High Pass Filter (FFT) 27156 22252 −22.04% 0.02
Radix-sort 21805 22462 +2.92% 0.02
SRAD 13813 13456 −2.65% 0.04
Backprop 12576 12887 +2.41% 0.07
Pagerank 8987 8796 −2.17% 0.01
BFS Iterative Partitioning 7193 6062 −18.66% 0.04
NN 7127 8197 +13.05% 0.02
BFS Heuristic 6468 6275 −3.08% 0.02
Fluid 1316 1060 −24.15% 0.06
LUD 570 532 −7.13% 0.13
Canny Edge Detection 241 202 −19.31% 0.07
Raytracer 218 351 +37.89% 0.17

Figure 9.1: Average benchmark runtime in microseconds

90

Benchmark Dataset
LocVolCalib large dataset
Particle Filter 128_128_10_image_400000_particles.in
Myocyte medium dataset
Stencil default dataset
OptionPricing large dataset
LUD Clean 2048× 2048
NW medium dataset
BFS Flattened 64kn_32e-var-1-256-skew.in
Hotspot 1024× 1024
BFS Padded 64kn_32e-var-1-256-skew.in
High Pass Filter (FFT) 1024× 1024
Radix-sort N = 106

SRAD image.in
Backprop medium dataset
Pagerank random_medium.in
BFS Iterative Partitioning 64kn_32e-var-1-256-skew.in
NN medium dataset
BFS Heuristic 64kn_32e-var-1-256-skew.in
Fluid medium dataset
LUD 64× 64
Canny Edge Detection Lena (512× 512)
Raytracer dataset #0

Figure 9.2: Datasets used for benchmarks

9.3. Futhark C# integration in C# programs
Our implemented code generator allows us to use Futhark libraries in C#,
as expected. The example below is taken from the file Program.cs in the
CSharpTest folder in the FShark repository. In this folder, we find a com-
piled C# .dll file which is the result of compiling the LocVolCalib benchmark
with the futhark-csopencl compiler.

1 using System;
2 using LocVolCalib;
3 namespace CSharpTest
4 {
5 internal class Program
6 {
7 public static void Main(string[] args)
8 {
9 var lvc = new LocVolCalib.LocVolCalib(args);
10 var res = lvc.main(256, 256, 256, 64, 0.03f, 5.0f, 0.6f, 0.5f,

0.2f);↪→
11 var result_array = res.Item1;
12 Console.WriteLine(result_array);
13 }
14 }
15 }

First we instantiate an instance of the LocVolCalib class from the Futhark C#
class with the arguments that we passed to the main method of our Program
class. This lets us pass flags to the LocVolCalib class, which for example lets us

91

specify the number of runs we want our benchmark to execute.

Then we run the benchmark by calling the lvc.main method as shown. The
program behaves as expected, and prints the benchmark results after the bench-
mark run.

As discussed in section 4.3.5, the current return type is cumbersome, but such
is the current state of affairs.

9.4. The design of the FShark language
One of the goals of FShark is to enable users to write complex GPU programs
using idiomatic F# code.

To test this, we have taken two already existing benchmark implementations
from Futhark, and manually translated them to FShark. We will not elaborate
on the functionality of the benchmarks in these two examples. Instead we will
focus on the code style used in FShark programs.

9.4.1. LocVolCalib
First, we present the FShark version of the LocVolCalib benchmark (respec-
tively FSharpTests/Benchmarks/LocVolCalib.fs and finpar/LocVolCalib.fut in
the FShark and Futhark benchmarks repository.) from the Finpar[1] bench-
mark suite.

We have chosen this benchmark as it is features plenty of nested SOACs, and
is in general a structurally complex program.

Below, we show multiple snippets of the FShark and Futhark version of the
LocVolCalib benchmark to demonstrate

1 ;; Snippet from FShark's LocVolCalib
2 let explicitMethod (myD: float32 [] []) (myDD: float32 [] [])
3 (myMu: float32 [] []) (myVar: float32 [] [])
4 (result: float32 [] [])
5 : float32 [] [] =
6 // 0 <= i < m AND 0 <= j < n
7 let m = Length myDD
8 Map3 (fun (mu_row : float32 []) (var_row : float32 []) (result_row : float32

[]) ->↪→
9 Map5 (fun (dx : float32 []) (dxx : float32 []) (mu : float32) (var : float32)

(j : int) ->↪→
10 let c1 = if 0 < j
11 then (mu*dx.[0] + 0.5f*var*dxx.[0]) * result_row.[j-1]
12 else 0.0f
13 let c3 = if j < (m-1)
14 then (mu*dx.[2] + 0.5f*var*dxx.[2]) * result_row.[j+1]
15 else 0.0f
16 let c2 = (mu*dx.[1] + 0.5f*var*dxx.[1]) * result_row.[j]
17 in c1 + c2 + c3) myD myDD mu_row var_row <| (Iota m)
18) myMu myVar result
19
20 // for implicitY: should be called with transpose(u) instead of u
21 let implicitMethod (myD: float32 [] []) (myDD: float32 [] [])
22 (myMu: float32 [] []) (myVar: float32 [] [])
23 (u: float32 [] []) (dtInv: float32)
24 : float32 [] [] =
25 Map3 (fun (mu_row : float32 []) (var_row : float32 []) (u_row : float32 []) ->
26 let (a,b,c) = Unzip3 (
27 Map4 (fun (mu : float32) (var : float32) (d : float32 []) (dd : float32 [])

->↪→

92

28 (0.0f - 0.5f*(mu*d.[0] + 0.5f*var*dd.[0]), dtInv - 0.5f*(mu*d.[1] +
0.5f*var*dd.[1]),↪→

29 0.0f - 0.5f*(mu*d.[2] + 0.5f*var*dd.[2])
30)
31) mu_row var_row myD myDD
32)
33 in tridagPar a b c u_row
34) myMu myVar u

1 -- Snippet from Futhark's LocVolCalib
2 let explicitMethod [m][n] (myD: [m][3]f32, myDD: [m][3]f32,
3 myMu: [n][m]f32, myVar: [n][m]f32,
4 result: [n][m]f32)
5 : ∗[n][m]f32 =
6 -- 0 <= i < m AND 0 <= j < n
7 map3 (\mu_row var_row result_row ->
8 map5 (\dx dxx mu var j ->
9 let c1 = if 0 < j

10 then (mu∗dx[0] + 0.5∗var∗dxx[0]) ∗ unsafe result_row[j-1]
11 else 0.0
12 let c3 = if j < (m-1)
13 then (mu∗dx[2] + 0.5∗var∗dxx[2]) ∗ unsafe result_row[j+1]
14 else 0.0
15 let c2 = (mu∗dx[1] + 0.5∗var∗dxx[1]) ∗ unsafe result_row[j]
16 in c1 + c2 + c3) myD myDD mu_row var_row (iota m)
17) myMu myVar result
18
19 -- for implicitY: should be called with transpose(u) instead of u
20 let implicitMethod [n][m] (myD: [m][3]f32, myDD: [m][3]f32,
21 myMu: [n][m]f32, myVar: [n][m]f32,
22 u: ∗[n][m]f32, dtInv: f32)
23 : ∗[n][m]f32 =
24 map3 (\mu_row var_row u_row ->
25 let (a,b,c) = unzip3
26 (map4 (\mu var d dd ->
27 (0.0 - 0.5∗(mu∗d[0] + 0.5∗var∗dd[0])
28 , dtInv - 0.5∗(mu∗d[1] + 0.5∗var∗dd[1])
29 , 0.0 - 0.5∗(mu∗d[2] + 0.5∗var∗dd[2]))
30) mu_row var_row myD myDD)
31 in tridagSeq (a, copy b, c, copy u_row)
32 myMu myVar u

There are a couple of differences. The Futhark version can define the lengths
of the dimensions of its arrays in the function definition. These lengths can
then be used as variables in the function body. An example of this is shown
in the Futhark example: At line 2 we define that our input arrays have n ∗m
elements, or in some cases 3 ∗m, and we can then use these lengths, such as in
the if-expression on line 12.

The second difference is on line 31 of the Futhark version. Here, we copy the
array used for our function call, which is a feature used for Futhark’s uniqueness
types[18]. As we don’t have uniqueness types in FShark, we can leave out this
copy in the FShark version, as shown in line 33.

The third difference is the usage of the unsafe expression in Futhark’s exam-
ple at line 10, 13 and 15. We need them in Futhark to circumvent Futhark’s
boundary checks for array indexing, but we can leave them out in the FShark
version, as FShark doesn’t have that kind of boundary checks.

93

The second pair of snippets are shown below.

1 let value (numX: int) (numY: int) (numT: int) (s0: float32) (strike: float32)
2 (t: float32) (alpha: float32) (nu: float32) (beta: float32): float32 =
3 let (myXindex, myYindex, myX, myY, myTimeline) = initGrid s0 alpha nu t numX

numY numT↪→
4 let (myDx, myDxx) = initOperator myX
5 let (myDy, myDyy) = initOperator myY
6 let myResult = setPayoff strike myX myY
7 let myTimeline_neighbours = Reverse (Zip (Init myTimeline) (Tail myTimeline))
8
9 let myResult' =
10 Foldl (fun oldResult (tnow,tnext) ->
11 let (myMuX, myVarX, myMuY, myVarY) =
12 updateParams myX myY tnow alpha beta nu
13 in rollback tnow tnext oldResult
14 myMuX myDx myDxx myVarX
15 myMuY myDy myDyy myVarY
16) myResult myTimeline_neighbours
17 in myResult'.[myYindex].[myXindex]

1 let value(numX: i32, numY: i32, numT: i32, s0: f32, strike: f32,
2 t: f32, alpha: f32, nu: f32, beta: f32): f32 =
3 let (myXindex, myYindex, myX, myY, myTimeline) =
4 initGrid(s0, alpha, nu, t, numX, numY, numT)
5 let (myDx, myDxx) = initOperator(myX)
6 let (myDy, myDyy) = initOperator(myY)
7 let myResult = setPayoff(strike, myX, myY)
8 let myTimeline_neighbours = reverse (zip (init myTimeline) (tail myTimeline))
9

10 let myResult = loop (myResult) for (tnow,tnext) in myTimeline_neighbours do
11 let (myMuX, myVarX, myMuY, myVarY) =
12 updateParams(myX, myY, tnow, alpha, beta, nu)
13 let myResult = rollback(tnow, tnext, myResult,
14 myMuX, myDx, myDxx, myVarX,
15 myMuY, myDy, myDyy, myVarY)
16
17 in myResult
18 in myResult[myYindex,myXindex]

There are two major differences: First, the FShark version doesn’t take one
single tuple as the function argument, but does instead need to take the tu-
ple elements as arguments individually. This is because of the F# compiler’s
currying, as described in section 5.3.1.

Second, we have translated the Futhark version’s for loop on line 9 into a
Foldl on line 9 of the FShark version. This is because the current version
of FShark doesn’t support for-loops. Otherwise, the two expressions are
equivalent.

The complete FShark version is available in appendix D, with the Futhark
version available for reference.

9.4.2. nbody
Below, we present the FShark version of the nbody benchmark (respectively
FSharpTests/Benchmarks/nbody.fs and accelerate/nbody/nbody.fut in the FShark
and Futhark benchmarks repository.) from the Accelerate[5] benchmark suite.

94

We have chosen this benchmark to show how matrix manipulation functions can
be implemented in FShark, and how FShark have support for type aliases and
records similar to Futhark.

The examples from the nbody benchmark are shown below:

1 // Snippet from FShark's nbody
2
3 module Vec3 =
4 type Vec3single = {x:single ; y:single ; z:single}
5 let plus (a : Vec3single) (b : Vec3single) : Vec3single =
6 {x=a.x+b.x; y=a.y+b.y; z=a.z+b.z}
7
8 let minus (a : Vec3single) (b : Vec3single) : Vec3single =
9 {x=a.x-b.x; y=a.y-b.y; z=a.z-b.z}
10
11 let dot (a : Vec3single) (b : Vec3single) : single =
12 a.x*b.x + a.y*b.y + a.z*b.z
13
14 let scale (a : single) (b : Vec3single) : Vec3single =
15 {x=a*b.x; y=a*b.y; z=a*b.z}
16
17 let norm (a : Vec3single) : single =
18 sqrt <| a.x*a.x + a.y*a.y + a.z*a.z
19
20 let normalise (v : Vec3single) : Vec3single =
21 let l = norm v
22 in scale (1.0f / l) v
23
24 type vec3 = Vec3.Vec3single
25 type mass = single
26 type position = vec3
27 type acceleration = vec3
28 type velocity = vec3
29
30 type body = { position: position;
31 mass: mass;
32 velocity: velocity;
33 acceleration: acceleration
34 }
35
36 // ...
37
38 let advance_body (time_step: single) (body: body) (acc: acceleration): body =
39 let acceleration = Vec3.scale body.mass acc
40 let position = Vec3.plus body.position <| Vec3.scale time_step body.velocity
41 let velocity = Vec3.plus body.velocity <| Vec3.scale time_step acceleration
42 in {position=position; mass=body.mass; velocity=velocity;

acceleration=acceleration}↪→
43
44 let advance_bodies (epsilon: single) (time_step: single) (bodies: body []): body

[] =↪→
45 let accels = calc_accels epsilon bodies
46 in Map2 (fun body acc -> advance_body time_step body acc) bodies accels
47
48 let advance_bodies_steps (n_steps: int) (epsilon: single) (time_step: single)
49 (bodies: body []): body [] =
50 let steps = Iota n_steps
51 in Foldr (fun _ bodies' -> advance_bodies epsilon time_step bodies') bodies

steps↪→
52
53 let wrap_body (posx : single) (posy : single) (posz : single) (mass : single)

(velx : single)↪→
54 (vely : single) (velz : single) (accx : single) (accy : single)

(accz : single)↪→
55 : body =
56 {position={x=posx; y=posy; z=posz};
57 mass=mass;
58 velocity={x=velx; y=vely; z=velz};
59 acceleration={x=accx; y=accy; z=accz}}
60

95

61 let unwrap_body (b: body): (single * single * single * single * single * single *
single * single * single * single) =↪→

62 (b.position.x, b.position.y, b.position.z,
63 b.mass,
64 b.velocity.x, b.velocity.y, b.velocity.z,
65 b.acceleration.x, b.acceleration.y, b.acceleration.z)
66
67 // ...
68
69 let rotatePointByMatrix (rotation: single [] []) (p: position): position =
70 let x = p.x
71 let y = p.y
72 let z = p.z
73 {x= x*rotation.[0].[0] + y*rotation.[1].[0] + z*rotation.[2].[0];
74 y= x*rotation.[0].[1] + y*rotation.[1].[1] + z*rotation.[2].[1];
75 z= x*rotation.[0].[2] + y*rotation.[1].[2] + z*rotation.[2].[2]}
76
77 let rotatePointsByMatrix (rotation: single [] []) (ps: position []): position []

=↪→
78 Map (rotatePointByMatrix rotation) ps
79
80 let rotateXMatrix (angle: single): single [] [] =
81 [|
82 [|1.0f; 0.0f; 0.0f|];
83 [|0.0f; cos angle; - sin angle|];
84 [|0.0f; sin angle; cos angle|]
85 |]
86
87 let rotateYMatrix (angle: single): single [] [] =
88 [|
89 [|cos angle ; 0.0f; sin angle|];
90 [|0.0f ; 1.0f; 0.0f |];
91 [|- sin angle; 0.0f; cos angle|]
92 |]
93
94 let matmult (x: single [] []) (y: single [] []) : single [] [] =
95 let Sum = Reduce (+) 0.0f
96 Map (fun xr ->
97 Map (fun yc -> Sum (Map2 (fun x y -> x*y) xr yc)) (Transpose y)
98) x

1 -- Snippet from Futhark's nbody
2 module vec3 = mk_vec3 f32
3
4 type mass = f32
5 type position = vec3.vec
6 type acceleration = vec3.vec
7 type velocity = vec3.vec
8 type body = {position: position,
9 mass: mass,

10 velocity: velocity,
11 acceleration: acceleration}
12
13 let advance_body (time_step: f32) (body: body) (acc: acceleration): body =
14 let acceleration = vec3.scale body.mass acc
15 let position = vec3.(body.position + scale time_step body.velocity)
16 let velocity = vec3.(body.velocity + scale time_step acceleration)
17 in {position, mass=body.mass, velocity, acceleration}
18
19 let advance_bodies [n] (epsilon: f32) (time_step: f32) (bodies: [n]body): [n]body =
20 let accels = calc_accels epsilon bodies
21 in map2 (advance_body time_step) bodies accels
22
23 let advance_bodies_steps [n] (n_steps: i32) (epsilon: f32) (time_step: f32)
24 (bodies: [n]body): [n]body =
25 loop bodies for _i < n_steps do

96

26 advance_bodies epsilon time_step bodies
27
28 let wrap_body (posx: f32, posy: f32, posz: f32)
29 (mass: f32)
30 (velx: f32, vely: f32, velz: f32)
31 (accx: f32, accy: f32, accz: f32): body =
32 {position={x=posx, y=posy, z=posz},
33 mass,
34 velocity={x=velx, y=vely, z=velz},
35 acceleration={x=accx, y=accy, z=accz}}
36
37 let unwrap_body (b: body): ((f32, f32, f32), f32, (f32, f32, f32), (f32, f32, f32)) =
38 ((b.position.x, b.position.y, b.position.z),
39 b.mass,
40 (b.velocity.x, b.velocity.y, b.velocity.z),
41 (b.acceleration.x, b.acceleration.y, b.acceleration.z))
42
43 //...
44
45 let rotatePointByMatrix (rotation: [3][3]f32) ({x,y,z}: position): position =
46 {x= x∗rotation[0,0] + y∗rotation[1,0] + z∗rotation[2,0],
47 y= x∗rotation[0,1] + y∗rotation[1,1] + z∗rotation[2,1],
48 z= x∗rotation[0,2] + y∗rotation[1,2] + z∗rotation[2,2]}
49
50 let rotatePointsByMatrix [n] (rotation: [3][3]f32)(ps: [n]position): [n]position =
51 map (rotatePointByMatrix rotation) ps
52
53 let rotateXMatrix (angle: f32): [3][3]f32 =
54 [[1f32, 0f32, 0f32],
55 [0f32, f32.cos angle, -f32.sin angle],
56 [0f32, f32.sin angle, f32.cos angle]]
57
58 let rotateYMatrix (angle: f32): [3][3]f32 =
59 [[f32.cos angle, 0f32, f32.sin angle],
60 [0f32, 1f32, 0f32],
61 [-f32.sin angle, 0f32, f32.cos angle]]
62
63 let matmult [n][m][p] (x: [n][m]f32) (y: [m][p]f32): [n][p]f32 =
64 map (\xr ->
65 map (\yc -> f32.sum (map2 (∗) xr yc))
66 (transpose y))
67 x

There are several differences between the FShark and the Futhark versions
here. The primary difference is, that the Futhark version supports higher-order
modules. This is shown in line 2 of the Futhark example, where we instantiate
the higher-order 3D vector module vec3 with the single precision floating point
type f32 module.

FShark does not at this point support similar higher-order modules, so we fake
it by implementing a simple 3D vector module manually. Then, for both the
FShark and the Futhark version, we state a list of type aliases for the rest of
the program.

We then see five functions advance_body, advance_bodies, advance_-
bodies_steps, wrap_body and unwrap_body. The differences between
the FShark and Futhark versions are negliable, with one except. As in the
LocVolCalib example, we don’t support for-loops in FShark. Therefore we
have replaced the for-loop with a fold instead, obtaining the same functional-

97

ity.

Finally, we see five matrix helper functions. For both of the rotation functions
rotateXMatrix and rotateYMatrix, the FShark version infers the types
of the overloaded cos and sin functions automatically, whereas the Futhark
developer must access those two functions through their containing modules
instead.

Also, FShark doesn’t have a sum operator in it’s standard library like Futhark
has, so we implement it ourselves by defining it in the FShark version at line
95.

The complete FShark version is available in appendix E, with the Futhark
version available for reference.

9.4.3. Conclusion on FShark language design
As shown in the two example benchmarks above, we can now write complex
GPU benchmarks in F# using purely functional idiomatic F#. We can use nested
SOACs as we like, and use records and type aliases to improve the readibility
of the code.

9.5. The correctness of the FShark subset.
To ensure that every operator and function in the FShark subset has equiva-
lent results, no matter whether the FShark code is run as native F# code, or
compiled into Futhark, we have written a comprehensive test suite with unit
tests for each operator, standard library function and SOAC in the FShark
language.

An FShark test is an FShark program, but with two extra values added,
namely an input and an output value for the test. For example, the test written
for the division operator is shown below. It is a unit test for the division
operator, and contains six test cases, namely division for signed integers of (8,
16, 32, 64 bits) and single- and double precision floating points

1 module Div
2 open FSharkPrelude.FSharkPrelude
3 open FShark.TestTypes.TestTypes
4 open System
5

6 [<FSharkEntry>]
7 let div (fiveByte : int8) (fiveShort : int16) (five : int)
8 (fiveLong : int64) (fiveSingle : single) (fiveDouble : double)
9 : (int8 * int16 * int * int64 * single * double) =
10

11 (fiveByte / 2y, fiveShort / 2s, five / 2,
12 fiveLong / 2L, fiveSingle / 2.0f, fiveDouble / 2.0)
13

14 [<FSharkInput>]
15 let value = [|5y; 5s; 5; 5L; 5.0f; 5.0|] : obj array
16

17 [<FSharkOutput>]

98

18 let sameValue =
19 (2y, 2s, 2, 2L, 2.5f, 2.5) : (int8 * int16 * int * int64 * single *

double)↪→

For all arithmetic operators available in FShark, I have written an accompany-
ing test, suitably located in the directory FSharkTests/UnitTests/Operators
in the FShark project.

We also test that edge cases, such as dividing floating point numbers by zero,
has the correct results (namely infinity or -infinity.) We also test that
FShark inlined functions such (see section 5.5.1 and 5.5.2) behaves as expected.
The rewritten functions are tested in FSharkTests/UnitTests/InlinedFuns

At the moment, the FShark test suite (UnitTests+ FSharkPreludeTests)
contains 128 unit tests, spread across 248 test cases.

9.5.1. Testing the FShark standard library
For the FShark standard library FSharkPrelude, we supply multiple test
suites.

UnitTests/FSharkSOACS

The first test suite is located in FSharkTests/UnitTests/FSharkSOACS.
Here, we test various SOAC integrations. The SOACs are not tested system-
atically, but are instead mixed and matched with other FShark language fea-
tures such as lambdas, to see whether they break when used in more complex
ways.

In example, we use the test Filter31 to test whether Zip, Map, Filter and
Unzip, anonymous functions and tuple outputs work well together, which they
do. The test is shown below.

1 module Filter3
2 open FSharkPrelude.FSharkPrelude
3 open FShark.TestTypes.TestTypes
4
5 [<FSharkEntry>] // original test uses doubles but my CPU doesn't support f64s
6 let zip1a (xs1 : int array) (xs2 : bool array) : (bool array * int array) =
7 let tmp = Filter (fun (x: (int * bool)) ->
8 let (i,b) = x in b
9) (Zip xs1 xs2) in
10 Unzip(Map (fun (x: (int*bool)) ->
11 let (i,b) = x in (b,i)
12) tmp)
13
14 [<FSharkInput>]
15 let value = [|[|0;1;-2;5;42|];[|false;true;true;false;true|]|] : obj array
16
17 [<FSharkOutput>]
18 let outvalue = ([|true;true;true|] , [|1;-2;42|]) : (bool [] * int [])

We do not test all of the Map and Unzip functions, as they are essentially the
same. For example, we have tested Map and Map2, but as Map3 is designed
just like Map2, but with an extra argument (shown below), we have decided
that the design difference is too small to warrant an extra test case.

1FSharkTests/UnitTests/FSharkSOACS/Filter/Filter3.fs

99

1 let Map2 f aa bb =
2 let curry f (a,b) = f a b
3 let xs = Zip aa bb
4 in Array.map (curry f) xs
5

6 let Map3 f aa bb cc =
7 let curry f (a,b,c) = f a b c
8 let xs = Zip3 aa bb cc
9 in Array.map (curry f) xs

FSharkPreludeTests

Besides the FSharkSOACS tests in the FSharkTests folder, the FSharkPrelude
also comes with a test suite on it’s own. We have implemented this test suite
to verify that our FShark SOACs have the same behaviour as their Futhark
counterparts.

This test suite contains 53 unit tests of the SOACs in the FSharkPrelude.
As opposed to the unit tests in the FSharkTests, the unit tests here doesn’t
compare their results with the Futhark results, but does instead only compare
their results with a predefined expected result.

Nevertheless, this suite contains 53 test cases spread across all the SOACs, ex-
cept for near-identical cases, like in the Map2/Map3 example from before.

9.5.2. Conclusion on FShark language correctness
We have written a comprehensive test suite which covers all parts of the FShark
language. All our 248 test cases passes our tests, which makes us confident that
the FShark compiler does indeed translate all parts of the FShark language
correctly to Futhark. More importantly, our test cases tells us that we can
trust that an expression written in FShark will evaluate to the same result, no
matter whether it’s executed in F# or in Futhark.

We still have one blind spot though; namely that we haven’t written many test
cases for unsigned integers. These have not been written due to time constraints,
but shouldn’t be inherently difficult to add to the existing test suite.

9.6. The performance of FShark generated GPU ker-
nels

In the following section, we used the FShark compiler to compile complex GPU
benchmarks written in FShark, to valid Futhark source code.

We have then used the futhark-bench program to run benchmarks on the
FShark generated Futhark code, to compare the FShark-generated Futhark
programs with equivalent handwritten Futhark programs.

The first benchmark tested is the LocVolCalib benchmark.

100

9.6.1. The LocVolCalib benchmark
In figure 9.3 we see the benchmark results of the LocVolCalib benchmark, lo-
cated in FSharkTests/Benchmarks/LocVolCalib.fs.
For the F# results in this benchmark, we have used the FSharkTests program
in the FShark repository to first run the compilation, and pass the dataset ar-
guments to the resulting loaded library.

The first two columns represent the compiled FShark code being executed
as C# libraries, both with and without OpenCL support. The third column
represents the FShark code being executed natively as F# code. The three last
columns show the benchmark results of the handwritten Futhark version.

Based on the benchmarks, we can make the following conclusions:

1. FShark code is significantly faster when compiled to OpenCL than when
compiled to sequential C# code. The speed increase is ×420, ×571 and
×483 for the small, medium and large dataset respectively.

2. Running FShark code natively in F# is slower than compiling the FShark
code to sequential C# code. This is not surprising, as the Futhark compiler
makes various optimizations like fusing SOAC calls during compilation,
whilst F# executes the code as it is written.
The speed increase from native FShark to compiled FShark is ×1.06,
×1.02 and ×1.51 for the small, medium and large dataset respectively.

It is surprising that the F# version is not that much slower than the
compiled C# version.

3. The FShark version of the LocVolCalib benchmark is significantly slower
than the already existing Futhark version (upto ×2.5 slower.) This is
strange, as the two versions are almost the same. We are currently not
sure why, as the only major difference is the rewriting of Futhark’s loop ex-
pression into a foldl expression (section 9.4.1). We will have to investigate
this.

4. The sequential C# version of the benchmark is up to ×37% slower than the
sequential C# version. We do not currently know where precisely where
this slow down appears, but investigating the fact is definitely worthwhile.
It is our best guess that the speed difference comes from the sequential
version’s array reading and writing functions, as these are currently call-
by-value, instead of call-by-reference.

9.6.2. The nbody benchmark
Whereas the LocVolCalib benchmark takes nine scalars as input to run, the
nbody benchmark takes multiple arrays of inputs, each containing thousands
of scalars. We have not implemented a nice way of handling inputs of this size
in the FShark architecture yet.

However, we can still run accurate benchmarks on the FShark version of nbody,
by taking the FShark program out of the F# context.

First, we compile the FShark version of nbody to Futhark source code by
using the FShark compiler. Then we add the benchmark annotations (shown

101

small.in medium.in large.in
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

·106

1
8
7
.9
7

2
6
9
.2
7

5
,0
5
2
.0
8

7
9
,2
6
5

1
.5
4
· 1

0
5

2
.4
5
· 1

0
6

8
4
,5
3
7

1
.5
8
· 1

0
5

3
.7
2
· 1

0
6

1
3
4
.0
3

1
3
4
.7
6

1
,9
2
5

1
3
5
.1
9

1
3
4
.4
3

1
,9
1
1
.0
8

3
,0
2
0
.5
9

5
,8
4
2
.4
8

9
6
,4
7
6
.5
2

Dataset

Ru
nt

im
e

in
m

ill
ise

co
nd

s

LocVolCalib performance

FShark (OpenCL)
FShark (non-OpenCL)

FShark executed as FSharp
futhark-bench (futhark-csopencl)
futhark-bench (futhark-opencl)

futhark-bench (futhark-c)

Figure 9.3: Comparison of LocVolCalib benchmark for multiple versions

102

in figure 9.5) from the Futhark version of nbody, to the FShark generated
version. Finally, we run the Futhark benchmark program with our code by
calling the command:

1 $ futhark-bench --compiler=futhark-csopencl fsharkNbody.fut

Unfortunately, the nbody benchmark is one of the benchmarks that are affected
by the measurement described in section 8.1.2. Therefore we cannot present
a representative comparison between the FShark/C# GPU kernel, and it’s
Futhark/C counterpart in this report.

However, we can show a runtime comparison between the original Futhark
nbody implementation and the translated FShark version, by running them
both with the Futhark C OpenCL compiler. We see the results of this bench-
mark in figure 9.4.

We see that the FShark version compiles to a Futhark program, that has
performance very close to the original Futhark program.

9.6.3. Conclusion on performance of FShark generated GPU ker-
nels

Based on our two benchmarks, we conclude that FShark is indeed a viable
GPU programming language. Although we lose a lot of performance in the
LocVolCalib benchmark, we see no loss of performance in the nbody benchmark.
At this point we cannot safely conclude whether FShark generated Futhark
programs are inherently inferior to Futhark programs. LocVolCalib says that
FShark versions are inferior, and nbody says that they aren’t, so we will have
to write more benchmarks before we can make a conclusion either way.

1 -- ==
2 -- tags { futhark-opencl futhark-c }
3 --
4 -- input @ data/nbody-acc-t0.in
5 -- output @ data/nbody-acc-t0.out
6 --
7 -- input @ data/nbody-acc-t10.in
8 -- output @ data/nbody-acc-t10.out
9 --

10 -- input @ data/100-bodies.in
11 -- input @ data/1000-bodies.in
12 -- input @ data/10000-bodies.in
13 -- input @ data/100000-bodies.in
14
15 -- ”data/N-bodies.in” all have the other attributes n_steps=1, timestep=1.0, and
16 -- epsilon=50.0.
17
18 -- rest of source code goes here
19 -- ..

Figure 9.5: Annotations like these shows futhark-bench where it can find
datasets for its benchmarks

103

100 1000 10000 100000

0

0.2

0.4

0.6

0.8

1

·105

2
6

8
9 1
,3
1
0

1
.0
1
· 1

0
5

2
7

9
2 1
,3
0
6

1
.0
2
· 1

0
5

N

Ru
nt

im
e

in
m

ic
ro

se
co

nd
s

nbody performance

FShark version
Futhark version

Figure 9.4: Two versions of the nbody benchmark compared

104

10.0

Conclusion and future work

We have presented a code generator which generates GPU accelerated com-
putational libraries that are readily integrable in both C# and F# programs.
We have also presented a programming language FShark, which allows us to
prototype, compile and execute GPU kernels in an F# environment.

Our benchmarks shows that our C# code generator generates GPU kernels which
has performance comparable to the GPU kernels generated by the already ex-
isting C code generator, with average runtimes being within +0− 3% for large
datasets. However, multiple test cases in the Futhark test suite are still fail-
ing. This indicates that the current version of the C# code generator can not
completely Futhark code to C# programs.

We have validated the FShark language and it’s translations to Futhark on a
comprehensive test suite of over 120 unit tests and 190 unique test cases, which
covers the entire F# language and it’s standard library.
Furthermore we have demonstrated that FShark is suitable for developing ef-
ficient GPU kernels, by porting multiple existing GPU benchmarks to FShark
– although currently with severe (×2.5) speed reductions for large datasets in
some benchmarks.

Future work
As described in section 8, the current implementations of our code generator
and FShark suite is limited in several ways. The following prioritized list shows
the future work of the FShark project.

• The C# code generator for Futhark is not finished. Although we can suc-
cesfully compile and run a large part of the Futhark benchmark suite,
there are still several benchmarks that fails to run on the current imple-
mentation. They either fail due to errors in the current implementation,
or because they rely on features that have not been implemented yet. We
plainly need to identify and fix these issues.

• There are still plenty of SOACs and array functions in the Futhark stan-
dard library, that haven’t been implemented in FShark yet. We want to
port more of these functions to FShark, which should be relatively easy,
as they are just functions, and not language constructs.

105

• As described in section 6.2.2, chaining GPU kernel calls currently adds an
unnecessary overhead. We want to develop an opaque array type which
merely contains references to already allocated GPU buffers, and which
aren’t copied back from GPU to RAM until strictly necessary.

• The current version of FShark prohibits certain function types and re-
serves them for the FShark wrapper, as the wrapper needs to handle
jagged arrays before using them with C# Futhark functions. We are in-
terested in finding a better way of handling this, so we can remove this
seemingly arbitrary language restriction.

• Section 9.6.3 shows that the sequential C# backend is significantly slower
than the sequential C backend. We want to determine whether the current
implementation contains any easy fixes for better performance. This is not
a top priority though, as Futhark is primarily intended for OpenCL use
anyhow.

• The current iteration of the FShark language lacks several of Futhark’s
language features. For example, as seen in section 9.4.1, we currently have
to emulate for-loops by rewriting them into folds instead. It should be
possible to add equivalent loop semantics to the FShark language, but
it does require more time and experiments with the F# language and -
compiler.

• Currently, we only use modules as nested namespaces in the outer scope
of the FShark programs. It would be interesting to investigate whether
it is feasible to implement higher-modules in FShark.

• FShark currently uses jagged arrays to emulate multidimensional arrays,
even though jagged arrays themselves bring multiple design problems to
FShark. The primary reason for using the jagged arrays is that they are
easy to develop SOACs for. In the future we want to develop a library of
SOACS for the multidimensional array type in F#, so we eventually will
be able to exclude jagged arrays from FShark completely.

• The current implementation of the C# code generator generates C# li-
braries that takes flat array/integer array pairs as arguments, when mul-
tidimensional arrays are needed.
It is unpleasant for programmers to manually convert their multidimen-
sional (or jagged) arrays before calling Futhark library functions.
We want to change the entry functions for Futhark C# libraries, so they
can be called with multidimensional or jagged arrays.
Alternatively, we can alleviate the problem by making the flattening al-
gorithms from section 5.8 available through the Futhark generated C#
programs.

106

Appendices

107

A.0

Implementation

Code generator
The C# code generator is part of the Futhark project. The Futhark implementa-
tion is located on Github: https://github.com/diku-dk/futhark

The code generator is stored in the Futhark branch mknu/csharp, and this
thesis is based on the commit 0d363e9572b1c32299332a30cadfc31d5427817a,
see
https://github.com/diku-dk/futhark/tree/0d363e9572b1c32299332a30cadfc31d5427817a

Our implementation is located in the folder src/Futhark/CodeGen/Backends.

We have been testing the code generator using the test suite located in the
tests directory in Futhark’s root directory.

FShark language and compiler
The FShark language, compiler and test suite is all located on Github:
https://github.com/diku-dk/fshark. It is structured as a single F#
solution containing five F# projects.
This thesis is based on the commit cc223733703f20a313fb5fddef51b697619504d3,
see
https://github.com/diku-dk/fshark/tree/cc223733703f20a313fb5fddef51b697619504d3

The FShark test suite can be found in the FSharkTests folder.
An executable example is shown in Examples/Program.fs folder. We rec-
ommend opening and using the FShark solution through an IDE such as Jet-
brains’ Rider.

108

https://github.com/diku-dk/futhark
https://github.com/diku-dk/futhark/tree/0d363e9572b1c32299332a30cadfc31d5427817a
https://github.com/diku-dk/fshark
https://github.com/diku-dk/fshark/tree/cc223733703f20a313fb5fddef51b697619504d3

B.0

FShark standard library

The FShark standard library is available in the FShark repository in the file
FSharkPrelude/FSharkPrelude.fs.
See https://github.com/diku-dk/fshark/blob/cc223733703f20a313fb5fddef51b697619504d3/

FSharkPrelude/FSharkPrelude.fs

109

https://github.com/diku-dk/fshark/blob/cc223733703f20a313fb5fddef51b697619504d3/FSharkPrelude/FSharkPrelude.fs
https://github.com/diku-dk/fshark/blob/cc223733703f20a313fb5fddef51b697619504d3/FSharkPrelude/FSharkPrelude.fs

C.0

Program for benchmarking byte memory writes in C#

1 using System;
2 using System.Diagnostics;
3 using System.Runtime.InteropServices;
4
5 namespace ConsoleApplication2
6 {
7 internal class Program
8 {
9 static private int TEST_SIZE = 1000000;
10
11 static void UsingBuffer()
12 {
13 byte[] target = new byte[TEST_SIZE*sizeof(int)];
14 for (int i = 0; i < TEST_SIZE; i++)
15 {
16 var intAsBytes = BitConverter.GetBytes(i);
17 Buffer.BlockCopy(intAsBytes, 0, target, i * sizeof(int),

sizeof(int));↪→
18 }
19 }
20
21 static void UsingUnsafe1()
22 {
23 byte[] target = new byte[TEST_SIZE*sizeof(int)];
24 for (int i = 0; i < TEST_SIZE; i++)
25 {
26 unsafe
27 {
28 fixed (byte* ptr = &target[i * sizeof(int)])
29 {
30 *(int*) ptr = i;
31 }
32 }
33 }
34 }
35
36 static void UsingUnsafe2()
37 {
38 byte[] target = new byte[TEST_SIZE*sizeof(int)];
39 unsafe
40 {
41 fixed (byte* ptr = &target[0])
42 {
43 for (int i = 0; i < TEST_SIZE; i++)
44 {
45 *(int*) (ptr+i*sizeof(int)) = i;
46 }
47 }
48 }
49 }
50
51 public static void Main(string[] args)
52 {

110

53 var TESTS = 10;
54 var stopwatch = new Stopwatch();
55 for (int i = 0; i < TESTS; i++)
56 {
57 stopwatch.Start();
58 UsingBuffer();
59 stopwatch.Stop();
60 }
61
62 Console.WriteLine(”Safe took {0} ticks on avg.”,

stopwatch.ElapsedTicks / 10);↪→
63
64 stopwatch.Reset();
65
66 for (int i = 0; i < TESTS; i++)
67 {
68 stopwatch.Start();
69 UsingUnsafe1();
70 stopwatch.Stop();
71 }
72
73 Console.WriteLine(”Unsafe1 took {0} ticks on avg.”,

stopwatch.ElapsedTicks / 10);↪→
74
75 stopwatch.Reset();
76
77 for (int i = 0; i < TESTS; i++)
78 {
79 stopwatch.Start();
80 UsingUnsafe2();
81 stopwatch.Stop();
82 }
83
84 Console.WriteLine(”Unsafe2 took {0} ticks on avg.”,

stopwatch.ElapsedTicks / 10);↪→
85
86 }
87 }
88 }

Short C# program that measures performance differences between various meth-
ods of writing scalars to byte arrays

111

D.0

LocVolCalib benchmark written in FShark and Futhark

To avoid adding hundreds of lines of source code to the appendices, we instead
link to the two different versions of the LocVolCalib benchmark:

The FShark version is available on:
https://github.com/diku-dk/fshark/blob/d41e5d99f37dc6c77b565ec89ee58533bb264232/

FSharkTests/Benchmarks/LocVolCalib.fs

The Futhark version used is available on:
https://github.com/diku-dk/futhark-benchmarks/blob/fd4dec357bb51d8109fed67c2e14bc5da9b20179/

finpar/LocVolCalib.fut

112

https://github.com/diku-dk/fshark/blob/d41e5d99f37dc6c77b565ec89ee58533bb264232/FSharkTests/Benchmarks/LocVolCalib.fs
https://github.com/diku-dk/fshark/blob/d41e5d99f37dc6c77b565ec89ee58533bb264232/FSharkTests/Benchmarks/LocVolCalib.fs
https://github.com/diku-dk/futhark-benchmarks/blob/fd4dec357bb51d8109fed67c2e14bc5da9b20179/finpar/LocVolCalib.fut
https://github.com/diku-dk/futhark-benchmarks/blob/fd4dec357bb51d8109fed67c2e14bc5da9b20179/finpar/LocVolCalib.fut

E.0

nbody benchmark written in FShark and Futhark

The FShark version is available on
https://github.com/diku-dk/fshark/blob/d41e5d99f37dc6c77b565ec89ee58533bb264232/

FSharkTests/Benchmarks/Nbody.fs

The Futhark version used is available on:
https://github.com/diku-dk/futhark-benchmarks/blob/fd4dec357bb51d8109fed67c2e14bc5da9b20179/

accelerate/nbody/nbody.fut

113

https://github.com/diku-dk/fshark/blob/d41e5d99f37dc6c77b565ec89ee58533bb264232/FSharkTests/Benchmarks/Nbody.fs
https://github.com/diku-dk/fshark/blob/d41e5d99f37dc6c77b565ec89ee58533bb264232/FSharkTests/Benchmarks/Nbody.fs
https://github.com/diku-dk/futhark-benchmarks/blob/fd4dec357bb51d8109fed67c2e14bc5da9b20179/accelerate/nbody/nbody.fut
https://github.com/diku-dk/futhark-benchmarks/blob/fd4dec357bb51d8109fed67c2e14bc5da9b20179/accelerate/nbody/nbody.fut

Bibliography

[1] C. Andreetta, V. Bégot, J. Berthold, M. Elsman, F. Henglein, T. Henriksen,
M.-B. Nordfang, and C. E. Oancea. Finpar: A parallel financial benchmark.
ACM Trans. Archit. Code Optim., 13(2):18:1–18:27, June 2016.

[2] L. Bergstrom and J. Reppy. Nested data-parallelism on the GPU. SIG-
PLAN Not., 47(9):247–258, Sept. 2012.

[3] G. E. Blelloch, J. C. Hardwick, J. Sipelstein, M. Zagha, and S. Chatterjee.
Implementation of a Portable Nested Data-Parallel Language. Journal of
parallel and distributed computing, 21(1):4–14, 1994.

[4] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover.
Accelerating Haskell array codes with multicore GPUs. In Proc. of the
sixth workshop on Declarative aspects of multicore programming, pages
3–14. ACM, 2011.

[5] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover.
Accelerating haskell array codes with multicore gpus. In Proceedings of
the Sixth Workshop on Declarative Aspects of Multicore Programming,
DAMP ’11, pages 3–14, New York, NY, USA, 2011. ACM.

[6] Y. Chicha, M. Lloyd, C. Oancea, and S. M. Watt. Parametric Polymor-
phism for Computer Algebra Software Components. In Proc. 6th Inter-
national Symposium on Symbolic and Numeric Algorithms for Scientific
Comput., pages 119–130. Mirton Publishing House, 2004.

[7] R. Clifton-Everest, T. L. McDonell, M. M. T. Chakravarty, and G. Keller.
Streaming irregular arrays. In Proceedings of the 10th ACM SIGPLAN
International Symposium on Haskell, Haskell 2017, pages 174–185, New
York, NY, USA, 2017. ACM.

[8] P. J. Denning and T. G. Lewis. Exponential laws of computing growth.
Commun. ACM, 60(1):54–65, Dec. 2016.

[9] M. Dubois, M. Annavaram, and P. Stenstrm. Parallel Computer Orga-
nization and Design. Cambridge University Press, New York, NY, USA,
2012.

[10] M. Elsman, T. Henriksen, D. Annenkov, and C. E. Oancea. Static interpre-
tation of higher-order modules in futhark: Functional gpu programming in
the large. In Proceedings of the ACM on Programming Languages, Volume
2, Number ICFP, ICFP 2018, New York, NY, USA, 2018. ACM.

114

[11] C. Grelck. Shared memory multiprocessor support for functional array
processing in SAC. Journal of Functional Programming (JFP), 15(3):353–
401, 2005.

[12] C. Grelck and S.-B. Scholz. SAC: A functional array language for efficient
multithreaded execution. Int. Journal of Parallel Programming, 34(4):383–
427, 2006.

[13] J. Hamilton. Language integration in the common language runtime. SIG-
PLAN Not., 38(2):19–28, Feb. 2003.

[14] M. R. Hansen and H. Rischel. Functional Programming Using F#. Cam-
bridge University Press, New York, NY, USA, 2013.

[15] A. Hejlsberg, S. Wiltamuth, and P. Golde. C# Language Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[16] T. Henriksen, M. Dybdal, H. Urms, A. S. Kiehn, D. Gavin, H. Abelskov,
M. Elsman, and C. Oancea. APL on GPUs: A TAIL from the Past, Scrib-
bled in Futhark. In Procs. of the 5th Int. Workshop on Functional High-
Performance Computing, FHPC’16, pages 38–43, New York, NY, USA,
2016. ACM.

[17] T. Henriksen, K. F. Larsen, and C. E. Oancea. Design and GPGPU per-
formance of futhark’s redomap construct. In Proceedings of the 3rd ACM
SIGPLAN International Workshop on Libraries, Languages, and Compilers
for Array Programming, ARRAY 2016, pages 17–24, New York, NY, USA,
2016. ACM.

[18] T. Henriksen, N. G. W. Serup, M. Elsman, F. Henglein, and C. E. Oancea.
Futhark: Purely functional gpu-programming with nested parallelism and
in-place array updates. In Proceedings of the 38th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2017,
pages 556–571, New York, NY, USA, 2017. ACM.

[19] K. Ishizaki, A. Hayashi, G. Koblents, and V. Sarkar. Compiling and opti-
mizing java 8 programs for gpu execution. In Proceedings of the 2015 In-
ternational Conference on Parallel Architecture and Compilation (PACT),
PACT ’15, pages 419–431, Washington, DC, USA, 2015. IEEE Computer
Society.

[20] B. Legrand. Mastering Dyalog APL. Dyalog Limited, November 2009.

[21] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter,
J. McCarron, and P. DeMarco. Maple 9 Advanced Programming Guide.
Maplesoft, 2003.

[22] G. Mudalige, M. Giles, J. Thiyagalingam, I. Reguly, C. Bertolli, P. Kelly,
and A. Trefethen. Design and initial performance of a high-level unstruc-
tured mesh framework on heterogeneous parallel systems. Parallel Com-
put., 39(11):669–692, Nov. 2013.

[23] C. E. Oancea and S. M. Watt. Domains and expressions: An interface
between two approaches to computer algebra. In Proceedings of the 2005
International Symposium on Symbolic and Algebraic Computation, ISSAC
’05, pages 261–268, New York, NY, USA, 2005. ACM.

115

[24] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Ama-
rasinghe. Halide: A language and compiler for optimizing parallelism, lo-
cality, and recomputation in image processing pipelines. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, pages 519–530, New York, NY, USA, 2013.
ACM.

[25] A. Shaikhha, A. Fitzgibbon, S. Peyton Jones, and D. Vytiniotis.
Destination-passing style for efficient memory management. In Proceed-
ings of the 6th ACM SIGPLAN International Workshop on Functional
High-Performance Computing, FHPC 2017, pages 12–23, New York, NY,
USA, 2017. ACM.

[26] M. Steuwer, C. Fensch, S. Lindley, and C. Dubach. Generating performance
portable code using rewrite rules: From high-level functional expressions to
high-performance opencl code. In Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2015, pages
205–217, New York, NY, USA, 2015. ACM.

[27] M. Steuwer, T. Remmelg, and C. Dubach. Lift: A Functional Data-parallel
IR for High-performance GPU Code Generation. In Procs. of Int. Symp.
on Code Generation and Optimization, CGO’17, pages 74–85, Piscataway,
NJ, USA, 2017. IEEE Press.

[28] A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun. Delite: A compiler architecture for performance-oriented
embedded domain-specific languages. ACM Trans. Embed. Comput. Syst.,
13(4s):134:1–134:25, Apr. 2014.

[29] J. Svensson. Obsidian: GPU Kernel Programming in Haskell. PhD thesis,
Chalmers University of Technology, 2011.

[30] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leis-
erson. The pochoir stencil compiler. In Proceedings of the twenty-third
annual ACM symposium on Parallelism in algorithms and architectures,
pages 117–128. ACM, 2011.

[31] E. Totoni, T. A. Anderson, and T. Shpeisman. Hpat: High performance
analytics with scripting ease-of-use. In Proceedings of the International
Conference on Supercomputing, ICS ’17, pages 9:1–9:10, New York, NY,
USA, 2017. ACM.

[32] S. M. Watt, P. A. Broadbery, S. S. Dooley, P. Iglio, S. C. Morrison, J. M.
Steinbach, and R. S. Sutor. AXIOM Library Compiler User Guide. Nu-
merical Algorithms Group (ISBN 1-85206-106-5), 1994.

116

	Introduction
	Relation to Related Work
	What FShark sets out to do
	The contributions of this thesis
	Roadmap

	Background
	CUDA
	A simple CUDA program

	Futhark
	F#

	Birds-Eye View:Architecture and Use Cases
	Generating GPU accelerated libraries
	Using Futhark in Python
	Using Futhark in C#

	Transpiling F# Computational Kernels to Futhark
	A use case

	The Futhark C# backend
	Recap on using Futhark C# libraries
	Compiling and using Futhark C# executables

	The Futhark C# compiler architecture
	The Structure of the Generated C# Code
	The Futhark class design
	Entry functions
	Entry functions in executables
	Entry functions in libraries
	On calling Futhark entry functions that takes arrays as arguments
	The Program class design

	Memory management in Futhark C#
	Performance

	Selecting an OpenCL interface for C#

	The FShark language
	What the FShark language is
	FShark syntax
	Notes to the FShark grammar
	Limits to function argument types
	FShark modules

	F# operators available in FShark
	F# standard library functions available in FShark
	On selection the F# subset to include in FShark
	FShark function meaning has precedence to Futhark similars
	Missing arithmetic operators in FShark

	The FShark standard library
	Arrays in F# versus in Futhark
	Converting jagged arrays to Futhark's flat arrays, and back again
	Analysis of FlattenArray
	Analysis of UnflattenArray
	Why UnflattenArray hinders a specific tuple type
	An alternative solution (FSharkArrays)
	Conclusion on arrays

	The FShark Wrapper
	Using the FShark Wrapper
	Another short FShark module
	Compiling and using the short FShark module

	On the design decisions of the FShark wrapper
	Compiling and loading FShark modules at every startup
	The overhead of invoking GPU kernels

	The FShark Compiler
	The FShark compiler architecture
	The FSharp parser
	The FSharkCompiler
	FSharpDecl.Entity
	F# expressions
	Translating from FSharpExprs to FSharkIL

	The FSharkWriter
	The Futhark-to-C# compiler

	Design choices in writing the FShark Compiler
	Figures

	Current limitations
	The C# code generator
	Errors in the implementation
	Errors in the benchmarking functionality
	Cumbersome array entry functions in Futhark libraries
	Unnecessary memory allocations in chained Futhark function calls

	The FShark language
	Scatter

	The FShark compiler
	Disallowing certain types of FShark entry functions
	Allow compiler usage outside of FShark wrapper

	The FShark validation

	Evaluation and benchmarks
	Correctness of the Futhark csharp generator
	The performance of Futhark C# programs
	Futhark C# integration in C# programs
	The design of the FShark language
	LocVolCalib
	nbody
	Conclusion on FShark language design

	The correctness of the FShark subset.
	Testing the FShark standard library
	Conclusion on FShark language correctness

	The performance of FShark generated GPU kernels
	The LocVolCalib benchmark
	The nbody benchmark
	Conclusion on performance of FShark generated GPU kernels

	Conclusion and future work
	Appendices
	Implementation
	FShark standard library
	Program for benchmarking byte memory writes in C#
	LocVolCalib benchmark written in FShark and Futhark
	nbody benchmark written in FShark and Futhark

