
Master Thesis

Accelerated Interest Rate Option
Pricing using Trinomial Trees

Authors:
Marek Hlava

Martin Metaksov

Supervisors:
Cosmin Oancea

Wojciech Michal Pawlak

University of Copenhagen
Copenhagen, Denmark

August 2018

Abstract

In this thesis we describe different parallelization strategies for the Hull-White Single-
Factor Model that prices financial derivatives using the trinomial trees numerical
method. The work is focused on finding the middle ground between the distinct
levels of parallelism and trade-offs such as thread divergence vs. locality of reference,
by applying various optimization techniques and transformations.

First, we will present a sequential solution, used to validate all parallel implemen-
tations later through the project.

Second, we will present a one-option per thread implementation, which will only
deal with outer parallelism.

Third, we will present a multiple options per thread block implementation, aiming
to exploit both levels of parallelism.

Fourth, we will present a fully-flattened implementation, which will put emphasis
on the importance of finding the middle ground between parallelization trade-offs.

Finally, we will present a number of experiments conducted to help explore the
performance impacts by each implementation and optimization previously presented.
This empirical validation will be used to pinpoint the implementations with highest
performance on each different dataset.

Keywords: Option pricing, Trinomial trees, Hull-White Single-Factor Model, Par-
allel programming, Flattening, GPGPU, CUDA, C/C++, Futhark

i

Acknowledgments

First and foremost, we would like to thank Cosmin E. Oancea and Wojciech M.
Pawlak for their supervision and dedication to this project. For all the guidance
on financial terminology, parallel transformations, CUDA programming and all re-
lated topics we have discussed. For the number of hours each of them have spent
thoroughly reading this thesis and guided us in improving it.

We would also like to thank Troels Henriksen for his quick responses on GitHub
and his help with Futhark.

Thank you.

ii

Contents

Abstract i

Acknowledgments ii

Contents iii

1 Introduction 1

2 Background 12

3 Hull-White Single-Factor Model 36

4 Sequential Implementation 46

5 One Option per Thread 54

6 Multiple Options per Thread Block 62

7 Full Flattening 74

8 Experimental Methodology 85

9 Experimental Results 94

10 Related Work 118

11 Conclusion 126

Appendices 128

A Generated Data 129

B CUDA-option Experiments 136

iii

Contents

C CUDA-multi Experiments 144

D Implementations Experiments 152

Bibliography 156

iv

1
Introduction

After over 50 years of miniaturization with the pace of Moore’s law[25], transistor
shrinking is reaching its limits1, and the increase in CPU-clock speed has halted
for a while now. Until quantum computers become a reality, or another hardware
technology emerges, computation speed-ups will be achieved by scaling hardware
parallelism—for example, current many-core architectures already support tens of
thousands of hardware threads. In contrast to CPU-frequency scaling, which directly
resulted in increased performance of the unmodified (sequential) program, unlocking
the power of massively-parallel architectures presents significant challenges.

First, it requires the programmer to “think parallel”, for example, to reason about
the parallel nature of recurrences (loops) appearing at various nested levels, and
then to make the parallelism semantics explicit in the program—ideally by means of
parallel-language constructs rather than by unsafe directives such as OpenMP.

Second, while arguably, programs are (more) naturally expressed by combining
parallel constructs at the same level and at various levels in a nest (a.k.a., nested
parallelism), many-core architectures have little support for dynamic parallelism and
morally exploit only flat parallelism. It follows that “someone” has to rewrite the
nested-parallel program into a semantically-equivalent one that uses only flat-parallel
constructs. Ideally, the compiler is the one that performs this translation (automat-
ically), but unfortunately, current programming-model and compiler technology is
far from effectively and reliably supporting real-world applications. It follows that
in many cases, it is the programmer who needs to perform this rewriting by hand
in addition to applying other (compiler) techniques aimed at optimizing locality of

1A prediction by the 2015 International Technology Roadmap for Semiconductors (ITRS)

1

Chapter 1. Introduction

reference, thread divergence, etc. In essence, efficiently porting by hand a complex
application to modern hardware often breaks code modularity/maintainability and
requires the programmer to have expert knowledge in compiler analysis. Further-
more, the mainstream parallel APIs are rather low-level, and thus very tedious to
program with (e.g., OpenCL, CUDA are the “parallel assembly” of our time).

Third, to make matters worse, the optimization recipe is often sensitive to the
dataset [1], i.e., optimal performance requires several semantically-equivalent code
versions, each tailored to the particularities of a class of datasets. One potential
driver in the process of code-version generation is the degree of parallelism that is
actually mapped to the hardware. Common wisdom says that outer parallelism is
more beneficial (than inner), so in principle, one should exploit as many levels of outer
parallelism as there are needed to fully utilize the hardware, and should sequentialize
the rest. This strategy also benefits locality of reference, because sequentializing inner
parallelism may enable tiling opportunities. For example:

• The common implementation of dense matrix-matrix multiplication utilizes
only the outer two levels of parallelism and it sequentializes and tiles the (in-
nermost) dot product operation, which results in a compute-bound performance
behaviour. However, if not enough parallelism is available in the outer levels,
then it is necessary to also exploit the dot product parallelism, albeit resulting
in memory-bound behavior.

• In the case of sparse-matrix vector multiplication, the computation can be
carried out in multiple ways: by using row-wise decomposition, column-wise
decomposition, or Checkboard decomposition. The performance of each de-
pends on the distribution and the skewness of the dataset and can lead to
other possible trade-offs, such as locality of reference vs. load balancing (thread
divergence).

2

Chapter 1. Introduction

This thesis explores the space of optimization techniques aimed at efficiently port-
ing to GPGPU hardware2 of a difficult-to-parallelize, real-world application from the
financial domain, namely option pricing by means of trinomial trees. This application
is particularly challenging because:

• it uses irregular nested parallelism, which is notoriously difficult to map effi-
ciently to hardware, and

• it exhibits thread-divergence on two (orthogonal) levels, which are difficult to
optimize at the same time, but leaving either one unoptimized may significantly
degrade performance.

An interesting finding of this thesis is that the aforementioned “common wisdom” is
only partly correct. It still holds that sequentializing the inner-parallelism in excess
(to the ones needed to saturate hardware) is the right thing to do when the diver-
gence is randomly distributed — even though this method necessarily leaves one level
of divergence unoptimized. However, when the distribution of divergence is skewed
on both levels, it is better to exploit all parallelism because this allows to optimize
all divergence.

Finally, although all discussed optimization techniques have been implemented man-
ually using CUDA programming, we believe that this thesis may provide useful
insights into how to integrate such code transformations in the repertoire of an op-
timizing compiler.

2General-purpose computing on graphics processing units

3

Chapter 1. Introduction

1.1 Problem Statement

To succeed on the market, financial organizations strive for higher performance in
the tools they use on daily basis. Such examples are financial organizations manag-
ing investment portfolios with large number of assets, or financial software providers
developing applications for pricing and risk management 3. This has led to an in-
creased interest in HPC 4 solutions, efficiently exploiting hardware parallelism. The
Hull-White Single-Factor Model is one of the financial models widely used by fi-
nancial organizations to simulate random changes in interest rates in order to price
derivatives. This model can be implemented using trinomial trees [18, pg. 444], [21]
- a generic numerical method known for its higher accuracy and stability compared
to other popular models used for this purpose (e.g. binomial trees). While this
method allows for the precise estimation of option prices, it is extremely expensive
computationally, making it an interesting candidate for parallelization. This thesis
studies several optimization recipes used to implement the Hull-White Single-Factor
Model using trinomial trees, and it also studies how to combine the resulted code
versions into one program that offers high performance across all classes of datasets.
The main questions this thesis will try to answer are:

What are the performance trade-offs for parallelizing the Hull-White
Single-Factor Model on modern massively parallel hardware and which
optimization techniques can yield performance benefits?

Which techniques for parallelism optimization work best for the differ-
ent data classes and how do we combine all parallel versions into one
program that provides high performance on all data sets?

3SimCorp is one such organization trying to investigate and attempt to improve the core pricing
functionalities in its product, Simcorp Dimension, by using various parallelization techniques to
review the implementations of pricing models used by their clients.

4High performance computing

4

Chapter 1. Introduction

1.2 Birds-Eye View of our Approach

The thesis will begin with the creation of a proof-of-concept sequential implementa-
tion of the model. This will be done in accordance to description provided in Options,
Futures, and Other Derivatives [18] and will be carried out in C++. Validation will
be done only on single callable European zero-coupon bonds, which is the most basic
data input to work with. The rationale for studying the financial background of
the algorithm is that it would enable domain-specific optimizations in early design
stages.

The algorithm is concerned with the creation of a trinomial tree, with the shape
shown on Figure 1.1. The tree is built in two passes, referred to as forward and
backward propagation. Forward propagation represents the construction of a term
structure for the underlying asset by progressing one time step at a time. Backward
propagation discounts the asset prices to estimate an option payoff at maturity by
going back through the tree. The price of the derivative is estimated by the value
obtained all the way back at the root.

As long as optimizations are concerned, the most important properties of the con-
structed trees are their widths and heights, which are clearly denoted on Figure 1.1.
Both computation steps have a similar structure: the height dimension represents
a time series, and is implemented as a sequential loop, because the computation of
a certain timestep (level) in the tree depends on the values computed in the previ-
ous timestep. However, the computation along the width axis can be performed in
parallel, i.e., for a certain timestep, all points at the same level in the tree can be
computed with a map operation. It is straightforward to observe that the number of
computations performed for a given option depends strongly on both the width and
the height of the tree corresponding to that option. This thesis will be concerned
with pricing a large number of derivatives (batches) in parallel, as efficiently as pos-
sible. Batch pricing exhibits two nested levels of parallelism: one across options, and
one on the width dimension of each option tree. Furthermore, this nested parallelism
is irregular, because the heights and widths may vary wildly across options.

5

Chapter 1. Introduction

Figure 1.1: Example of a trinomial tree constructed for the Hull-White Single-Factor
Model, illustrating its width and height.

Source: Modified by the authors, based on Options, Futures and Other
Derivatives[18, pg. 699].

The divergence of widths and heights in a dataset presents several important chal-
lenges, but also many optimization opportunities. One of the challenges is to inves-
tigate which of the two nested-levels of application parallelism should be mapped to
hardware - is it only the outer one or both?

Exploiting only the outer parallelism is most suited (i) when the batch is large
enough to fully utilize hardware parallelism and (ii) when all widths and heights are
equal. However, when the heights and widths are highly variant across options, this
approach suffers from significant thread-divergence overhead (think load imbalance).
It is possible to optimize one of the two divergence factors but not both, for example
by sorting the options by their widths (or heights) in a descending order.

The alternative is to exploit both levels of parallelism. This has the advantage

6

Chapter 1. Introduction

that it naturally optimizes the width divergence, while the height divergence can
be similarly optimized by sorting. The problem is that efficient execution requires
that the flattening of the two levels of parallelism is performed on bins of options,
whose summed widths fit the size of the CUDA block. This is because the flattening
transformation introduces many parallel-prefix sums, map, and scatter operations,
which would be prohibitively-expensive unless they are performed in fast (scratch-
pad) memory, which is available only at CUDA-block level. On the other hand, this
fast memory, is a very scarce resource. Increasing its footprint may result in de-
creasing the occupancy of the hardware. In essence this demonstrates an important
performance trade-off: optimizing thread divergence may ultimately lead to a decline
in hardware occupancy (or locality), i.e., “there is no free lunch”.

The first parallel approach examined in this thesis refers to the version that exploits
only outer parallelism, i.e., it computes a batch of options in parallel, but the pricing
of an option is carried out sequentially inside one thread. The challenges for this
version are caused by the irregularity of the widths and the heights; they specifically
refer to (i) ensuring coalesced accesses to global memory, without wasting too much
memory due to padding, and (ii) reducing the thread-divergence overhead by sorting
the options based on their widths or heights. The implementations based on this
approach have been described in detail in chapters 5, 7 and will be referred to as
CUDA-option and Futhark-basic respectively.

The second parallel approach exploits both levels of parallelism, by packing mul-
tiple options and running them in parallel at CUDA-block level. The number of
options that can be priced per block depends on their constructed tree widths, whose
total sum must not exceed the maximal CUDA block size of 1024. This implies two
things: First, this version is not suitable for pricing options with widths larger than
1024, as those cannot be packed into a CUDA block. Second, divergence across the
width axis is implicitly optimized by bin-packing options at CUDA-block level. The
main difficulty with this implementation is finding the right heuristic for flattening
the nested parallelism. For example, the classical full-flattening approach [3], while
general, is not applicable because it would generate too many arrays located in fast
memory, which is a sparse resource. Similar to the previous approach, we can use

7

Chapter 1. Introduction

coalescing, padding and sorting to improve the performance. Exploiting both inner
and outer parallelism should help discover performance benefits on some data sets,
e.g. the ones which present skewed distributions for both widths and heights. This
implementation is covered in detail in chapter 6 and will be referred to as CUDA-
multi.

The last parallel approach explores the effects of the classical full flattening [3]. In
contrast to the first two versions which have been implemented in CUDA, this version
has been flattened out by hand in Futhark [17], a high-level data-parallel functional
language. This approach is similar to the second one, except that all arrays are
allocated in slow (global) memory rather than in fast (shared) memory. As such,
this version is expected to yield significantly degraded performance in comparison to
the remaining two. There is still a narrow niche for it: when the batch size is small
and some widths are larger than the block size (then the other two approaches are
inefficient or not applicable). However, the real purpose of this implementation is to
further emphasize the trade-off between locality of reference and thread divergence:
this version is by far the slowest in a large majority of cases, albeit its thread diver-
gence is optimal. This implementation is described in more details in chapter 7 and
will be referred to as Futhark-flat.

The thesis will also perform a systematic evaluation of the capabilities of all imple-
mentations, by generating and testing them on various datasets that exhibit different
distributions of divergence. This will be done in an attempt to study the performance
trade-offs on different data and to discover the impact of possible optimization tech-
niques by empirical validation.

As an empirical evaluation, we will test all implementations on 7 distinct datasets
(some of which are random, others skewed). We will show that CUDA-option domi-
nates the benchmarks on most datasets (except on the skewed ones), reaching up to
~529× speed-up compared to the sequential implementation. The skewed dataset on
the other hand benefits most from CUDA-multi, providing up to ~2× speed-up over
CUDA-option. Furthermore, we will demonstrate that CUDA-multi outperforms
CUDA-option by up to ~13× for floats and ~11× for doubles when the dataset is
small enough.

8

Chapter 1. Introduction

1.3 Motivation and Relation to Related Work

This section briefly surveys related work with the goal of motivating the practical
and scientific contributions of this thesis. A more detailed review can be found in
Chapter 10. A rich body of scientific work has studied how to accelerate real-world,
computing-starved applications by porting them to GPGPU hardware. Related so-
lutions span several research directions: (i) building native GPGPU libraries, (ii)
designing data-parallel languages and (iii) devising compiler transformations aimed
at optimizing parallelism.
Many native GPGPU libraries have been already developed to support high-

performance execution of commonly-used algorithms. Such examples are cuBLAS
and cuDNN [27] that port linear-algebra and deep-learning algorithms, respectively,
and a more recent effort of Mathworks and Nvidia that is aimed at accelerating
Matlab libraries on Nvidia hardware. Similarly, in the financial domain, efforts
have been aimed at accelerating risk modelling [1] and derivative pricing [29] using
Monte-Carlo simulations. We argue that this thesis is of practical interest because, to
our knowledge, there is no publicly-available GPGPU implementation of (batched)
trinomial pricing.
The design of data-parallel hardware-independent languages have been

a heavily scrutinized research topic. In this sense, many domain-specific languages
(DSL) have been developed for accelerating image-processing pipelines [33], iterative
stencils [41], data analytics [42], deep-learning and mesh computations [26, 39], or
specific host-language constructs [23, 19, 40]. However, such DSLs do not typically
support nested-composition of parallel constructs, which is the case of trinomial
pricing. Finally, even though several data-parallel languages provide some support
for nested parallelism [3, 17], they are not capable of expressing or deriving (at least)
one of the two efficient implementations of trinomial pricing, which are the subject
of this thesis.

9

Chapter 1. Introduction

Relation with compiler analysis. In this thesis we identify the important
performance trade-offs for our application and solve them by hand, taking inspiration
from related static and (more) dynamic analyses. As examples of applications of
static analysis, we have optimized spacial locality (i.e., ensured memory coalescing)
by working with arrays in transposed form [29] and we have performed loop fusion [32]
to decrease the number of accesses to global memory. In the implementation of the
code version that computes multiple options in one CUDA block, we have drawn
inspiration from loop distribution [32] and Blelloch’s flattening transformation [3].
This was necessary in order to rewrite the algorithmic specification, which exhibits
two-level irregular parallelism, into a composition of flat-parallel constructs. As
example of (more) dynamic analyses, we have used inspector-executor techniques [38,
31] to permute the order of the options in a way that minimizes the thread-divergence
overhead, and we argue that a similar lightweight inspector can be used to derive
a simple predicate that predicts the most suited version of the code for the current
dataset. Finally, we argue that the manually-applied optimizations presented in this
thesis (i) are likely applicable to other programs, and (ii) they provide useful insights
into engineering the compiler infrastructure that would automate the optimization
process.

10

Chapter 1. Introduction

1.4 Thesis Contributions

Scientific contributions: The main scientific contributions of this thesis are:

• Research on how the Hull-White Single-Factor Model works in practice and
why it is useful

• Analysis of how the algorithm behind the Hull-White Single-Factor Model can
be flattened to expose more parallelism

• Empirical validation that validates our claims and is supported by tables and
plots

• Static and dynamic inspector/executor analysis of the model for performance
optimization

Practical contributions: The main practical contributions of this thesis are:

• Multiple parallel implementations of the Hull-White Single-Factor Model in
CUDA

• A one-option-per-thread parallel implementation of the Hull-White Single-
Factor Model in Futhark

• A fully-flattened parallel implementation of the Hull-White Single-Factor Model
in Futhark

• A well-structured project on GitHub containing all implementations with build
instructions for each

• Data generator for testing edge cases and relevant data distributions

11

2
Background

This chapter will describe the essential terminology and techniques, laying down a
foundation for the remaining chapters of this thesis. It is divided into four sections.
First, we will cover fundamental financial concepts and methods essential for under-
standing the examined financial model and algorithm behind it. We will define all
the parameters of the model that we implemented. We will proceed with a brief
description of the CUDA parallel programming model — the main technology used
in the project. Next, we will introduce the semantics and types of parallel operators
we have used throughout the project and finally we will look into a definition of
flattening parallel program transformations.

2.1 Financial Instruments

A derivative is a financial instrument that derives its value from and is dependent on
the performance of some other basic underlying entity like asset, index, or interest
rate. The most common underlying instruments include bonds, commodities, curren-
cies, interest rates, market indexes and stocks. Over the last 40 years, various classes
of derivatives like futures and options have grown in importance in finance being
actively traded on daily basis in the markets all over the world. They significantly
increase market efficiency and the transfer of risk in the economy. The derivatives
market is much bigger (estimates go from $630 trillion to $1.2 quadrillion) than
the market capitalization of the global stock markets ($73 trillion)1. Derivatives
are mainly used for financial risk management as an insurance against rapid price

1http://www.visualcapitalist.com/worlds-money-markets-one-visualization-2017/

12

Chapter 2. Background

movements through hedging, increasing exposure to asset price movements through
speculation or taking advantage of differences between two or more markets through
arbitrage. [18, pg.1-18] This project is concerned with the valuation of financial
derivatives.

2.1.1 Options

This thesis will focus on only one specific type of derivatives - options. These are
contracts that give the holder the right to buy or sell an underlying asset at a certain
point in time for a certain price, both specified when purchasing the option. This
is in contrast with other derivatives - forwards and futures, where the holder is
obligated to buy or sell the underlying asset. Another difference is where they are
traded. Options and futures are standardized contracts traded on an exchange, while
forwards are traded in the over-the-counter (OTC) market and can be customized
for every transaction. [18, pg.22]

We identify two types of options. A call option gives the holder the right to buy the
underlying asset by a certain date for a certain price. A put option gives the holder
the right to sell the underlying asset by a certain date for a certain price. The price in
the contract is called strike price and the expiration date is called maturity. Options
that can be exercised at any time before maturity are known as American options
and options that can be exercised only on the expiration date itself are known as
European options. One contract usually allows to buy or sell 100 shares. [18, pg.7-8]

Option Example An investor spent 20.000 kr for an option to buy 100 Maersk
shares for 9.600 kr each. The current market price for Maersk stock is 9.440 kr as
of March 15, 2018. If the price does not rise above 9.600 kr by the maturity, the
investor does not exercise the option and loses 20.000 kr. However, if Maersk stock
is priced at 10.000 kr when the option can be exercised, the investor is able to buy
100 shares for the strike price of 9.600 kr and immediately sell them for 10.000 kr.
This will generate a profit of 400 ∗ 100 = 40.000 kr minus the initial contract cost of
20.000 kr.

13

Chapter 2. Background

Table 2.1 illustrates an example of exercising this option at different dates. Even
if the stock price rises above the strike price, the net profit might still be negative
when the contract price is accounted for.

Table 2.1: Profit generated by a call option with strike price of 9.600 kr and contract
price of 100× 200 = 20.000 kr.

March 2018 June 2018 Sept. 2018 Dec. 2018
Stock price (kr) 9.440 9.700 10.000 9.800
Share sale profit (kr) not exercised 10.000 40.000 20.000
Net profit (kr) −20.000 −10.000 20.000 0

2.1.2 Bonds and zero interest rates

Bonds are a form of debt that allow companies or governments borrow money from
investors. Interest rate on an investment that starts today and lasts for n years are
called n-year zero-coupon interest rates. All the interest and principal (known also
as face value or par value) payments are realized at the bond maturity. For example,
an investment of $100 with a 5-year zero rate with continuous compounding at 5%
p.a. grows to

100× e0.05×5 = 128.40

In reality, most actively traded bonds pay in addition periodical coupons (interest)
to the holder. [18, pg.80] However, we choose to deal with a most basic bond — a
zero-coupon bond in this project, as coupon-bearing bonds introduce more complex-
ity in valuation of their cash flows. We decide to do it for the reason of brevity, not
to obstruct the main ideas behind the financial model that we implement. More-
over, in this project we deal with risk-free rates, interest rates that can be earned
without assuming any risk, a common practice in derivative pricing. Another as-
sumption we make is that we use continuous compounding frequency (as opposed
to annual or monthly compounding) for measuring interest rates, an infinitesimally
small compounding interval, that allows us to simplify interest rate calculations. [18,
pg.76-79]

14

Chapter 2. Background

2.1.3 Yield Curve

Typically for most pricing models, the probability distributions of interest rates,
bond prices, or other variables at a future point in time are lognormal. However,
this does not provide any information of how interest rates evolve over time. [18, pg.
682]. This can be achieved by building a term structure model, also known as a yield
curve. The term structure model describes the evolution of all zero-coupon interest
rates as a function of maturity. [18, pg.83]

In practice, we do not usually have bonds with maturities equal to exactly 1.5 years,
2 years, 2.5 years, and so on. One approach is to use linear interpolation between
the bond price data before it is used to calculate the zero curve. For example, if it is
known that a 2.3-year bond with a coupon of 6% sells for $108 and a 2.7-year bond
with a coupon of 6.5% sells for $109, it might be assumed that a 2.5-year bond with
a coupon of 6.25% would sell for $108.5. In addition, it is also usually assumed that
the yield curve is horizontal prior to the first point and horizontal beyond the last
point. [18, pg.83]

For simplicity, in this thesis we have chosen to use a specific yield curve provided
in Example 30.1 and Table 30.2 in [18, pg.706].

2.1.4 Black-Scholes model and formula

The Black-Scholes formula [8], is perhaps the world’s most well-known options pricing
model. The model has had a huge influence on the way that traders price and hedge
derivatives [18, pg.299-324]. The main financial insight of the equation is that it
allows to perfectly hedge an option by buying and selling the underlying asset and
consequently eliminate the risk. This implies that there is only one right price for
the option — computed by the formula. However using the Black-Scholes formula,
assumes several simplifications:

• The option must be European and can only be exercised at expiration.

• No dividends are paid out during the life of the option.

• Markets are efficient (i.e., market movements cannot be predicted).

15

Chapter 2. Background

• There are no transaction costs in buying the option.

• The risk-free rate and volatility of the underlying are known and constant.

• The returns on the underlying are normally distributed.

They make this model too simplistic and unrealistic for more precise risk modelling.

2.1.5 Volatility

Volatility, denoted with Greek symbol σ, is a standard deviation of the logarithmic
returns around the average of any random variable such as the price of a given security
or a market index over a given time period. [18, pg. 303] The higher the volatility,
the higher the risk of holding the security. It is a variable in option pricing formulas
showing the extent to which the return of the underlying asset will fluctuate between
current moment and the expiry of the option. A common practice in valuation of
options is to use implied volatility, a theoretical value, that is derived directly from
the market price of a derivative observed in a given moment in the market and
input into an option pricing model such as Black-Scholes, that assumes that the
volatility is constant. Volatility, however, as expressed as a percentage coefficient
within option-pricing formulas, arises, among others, from daily trading activities
and is itself observed to be random and unpredictable. Assets experience periods
of high and low volatility rather than staying constant. Thus, apart from simplistic
Black-Scholes model, there exist different stochastic models simulating the random
changes volatility. In this project, the model, that we investigate, assumes in its
standard form a constant time-independent volatility across time, and thus we are
not concerned with modelling variability of volatility.

2.1.6 Mean Reversion

One-factor short-rate models are one example of models that are dependent on a
single stochastic factor – the short rate 2. In short-rate models, on the long run,

2A mathematical model that describes the future evolution of interest rates.

16

Chapter 2. Background

interest rates appear to be drawn back to their average level over time .[18, pg.
684] This phenomenon is known as mean reversion. When the short rate - typically
denoted as r - is high, mean reversion tends to cause the interest rates to decrease;
vice verse, when r is low, mean reversion tends to cause them to increase. This is
explained visually on fig. 2.1 below.

Figure 2.1: Illustration of mean reversion

Source: Based on Options, Futures and Other Derivatives [18, pg. 684].

2.1.7 Day-count Conventions

Day-count conventions is a method for computing the amount of accrued interest, i.e.
accumulated or received payments or benefits over time. It is usually used to asses
the present value when the next coupon payment is less than a full coupon period
away. Typically, bond markets and financial instruments have their own day-count
conventions, which vary on the type of instrument, the interest rate type, and the

17

Chapter 2. Background

issuance country. The standards were introduced to simplify accounting calculations
and introduce constancy of time period, e.g. day, month, year. In the project, we
chose to use Actual/365 Fixed method assuming the year to be 365 days and the
actual differences to be calculated in days, i.e. the smallest interval is one day.

2.1.8 Numerical Methods for Option Pricing

Numerical methods are mathematical tools designed to give approximate but accu-
rate solutions to various numerical problems. Most often used methods are iterative
methods that converge to a satisfactory result with a certain assumed level of approx-
imation by iterating in a finite number of steps from the initial conditions. In this
project, we deal with interpolation and solutions to continuous-time stochastic dif-
ferential equations describing financial phenomena like interest rate. As we can only
represent problems with finite amount of data, we need to discretize these problems
by finding values in a finite number of points in a problem domain. We use numer-
ical methods to solve problems that do not have an analytical solution, e.g. some
differential equations cannot be solved exactly. While using numerical methods, it is
important to address the numerical stability of the used algorithm to estimate and
control round-off errors arising from the use of floating point arithmetic.

Binomial Tree A most basic numerical method for pricing options involves
the construction of trees or lattices. [18, pg. 253] A binomial tree (see fig. 2.2) is a
numerical method, which allows to graphically represent the possible values that an
option may take at different nodes or time periods. The value of the option depends
on the underlying stock or bond, and computing values on the nodes is based on the
probability that the price of the underlying asset will decrease or increase. The main
advantage of binomial trees is that they are analytically tractable. This means that
price valuation for a derivative can be performed on each node for every time step.
This gives more flexibility and allows pricing of path-dependent derivatives, such as
exotic options, having more complex cashflows. While the binomial model presented
on fig. 2.2 is unrealistically simple, the life of an option may in practice span for 30

18

Chapter 2. Background

or more time steps, making it possible to implicitly consider about 230, or approx. 1
billion possible stock price paths. [18, pg. 268]

Figure 2.2: Illustration of a binomial tree

Source: Based on Options, Futures and Other Derivatives [18, pg. 254].

Trinomial Tree The trinomial option pricing model (an example is shown on
fig. 2.3) is an alternative numerical method for constructing trees, with the difference
that it consolidates another possible value per single time period. This makes the
trinomial model even more relevant to real life situations, as it ensures the possibility
that the value of the underlying asset may not change over a time period (taking the
mid path on the tree). Calculations for a trinomial tree are analogous to those for a
binomial tree.

19

Chapter 2. Background

Figure 2.3: Illustration of a trinomial tree

Source: Based on Options, Futures and Other Derivatives [18, pg. 444].

In this project, we use trinomial tree method as a numerical method for option
pricing. However, there exist other methods that might be more suitable and per-
forming better under certain specific conditions, that might be mathemtically and
computationally more complex.

Monte Carlo simulations samples different paths to obtain the expected
payoff of the asset in a risk-neutral world and are then discounted at this risk-free
rate. Monte Carlo Methods are particularly useful in the valuation of options with
multiple sources of uncertainty (multiple dimensions) They are suitable for pricing
instruments with complicated features, when the payoff depends on the path fol-
lowed by the underlying variables, as this makes them difficult to value through
a straightforward Black–Scholes analytical model or tree-based computation. Un-
fortunately, the method is computationally intensive and might be too slow to be
competitive over an analytical solution or other numerical techniques like trees. On

20

Chapter 2. Background

the other hand, this constraint is less of concern in current computing environment
with abundant and efficient compute capabilities. Another issue is that Monte Carlo
procedures have to be adjusted to handle situations with early exercise opportunities,
what increases their implementation complexity. [18, pg. 448]

Finite difference methods (FDM) value a derivative by solving the differ-
ential equation that the derivative satisfies. The differential equations are converted
into sets of difference equations and are solved iteratively. This is similar to the
trinomial trees method, since the computations also work back from the end of the
derivative maturity to the beginning. In fact, tree based methods, if suitably param-
eterized, are a special case of the explicit finite difference method. [18, pg.455 - 466]
These type of methods can solve derivative pricing problems that have, in general,
the same level of complexity as those problems solved by tree approaches, but, given
their relative complexity, are usually employed only when other approaches are in-
appropriate. Furthermore, like tree-based methods, they are limited in terms of the
number of underlying variables, i.e. multiple dimensions, they can handle.

21

Chapter 2. Background

2.2 CUDA Background

CUDA3 is a parallel computing platform and a programming model based on C/C++,
developed by Nvidia with the purpose to simplify and make GPGPU programming
more accessible. It allows developers to incorporate various CUDA-specific keywords
(such as e.g. __device__, __host__, cudaMemCpy, blockIdx and more.) into their
programs, in order to express the parallelism and indicate to the compiler the code
that should be run on the GPU.

2.2.1 Process Flow

CUDA allows the compiler to distinguish between serial and parallel code by using
the __host__ and __device__ function modifiers respectively. While the first will
be run as any other normal C/C++ program on the CPU, the latter will be run on
the GPU. Device functions can be called inside kernel functions that are defined
with the __global__ keyword and when called, are executed N times in parallel by
N different CUDA threads. Since GPUs operate on their own memory, it is necessary
that the input to the kernels is copied to the GPU memory beforehand. Furthermore,
the results have to be copied back and both of these operations can be done with
the use of the built-in cudaMemCpy() function. Note that copying data back and
forth from the GPU takes a rather high amount of time, hence GPU computing is
not always suitable for all applications. It is often the case that the input is too
small and it makes more sense to run an algorithm sequentially, as that will result
in a shorter runtime. Return or temporary arrays must also be pre-allocated on the
GPU beforehand, which is done by the cudaMalloc() function.

Each parallel invocation of a kernel creates a CUDA block of multiple threads
(currently up to 1024 threads). A block executes only on one multiprocessor, which
allows (i) synchronization (by means of barriers) across all threads in the block and
(ii) the use of shared memory, allowing threads within a block to communicate. On
a larger scale, a set of blocks is called a grid. The number of blocks and threads can

3Additional information about CUDA can be found on the Nvidia official documentation pages:
https://docs.nvidia.com/cuda/

22

https://docs.nvidia.com/cuda/

Chapter 2. Background

be specified by the programmer. A general overview of this structure is illustrated
on fig. 2.4.

Figure 2.4: Grid of Thread Blocks

Source: https://docs.nvidia.com/cuda/cuda-c-programming-guide/

CUDA automatically allocates thread blocks and resources to the Streaming Mul-
tiprocessors (SMs). SMs are the part of the GPU which runs the provided CUDA
kernel and they consist of several sub-components: Memory caches (e.g. shared
memory, constant memory, and more); thousands of registers4, which can be parti-

4Register memory is memory allocated inside a single thread and is only accessible by it through
its lifespan. This is the fastest memory available in the CUDA memory model.

23

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

Chapter 2. Background

tioned among the threads for execution; a warp scheduler5 and execution cores for
both integer and floating-point operations. Fig. 2.5 illustrates the CUDA memory
model.

Blocks and threads can be indexed inside the kernel in order to utilize the workload
distribution among threads. CUDA also allows the use of shared memory between
all threads within a block with the use of the __shared__ keyword, used when
declaring arrays. In contrast to global memory, which is accessible from all threads,
shared memory is much faster to operate with, due to its locality, as well as its
different technology6.

The parallel access to data can often lead to data hazards, such as RAW (read after
write), WAR (write after read) or WAW (write after write). While good software
design can often help with data hazards (i.e. as it will be seen in section 5.1), it is
often insufficient. In those situations, the __syncthreads() function can be called,
which awaits all threads within a block and prevents incorrect memory reads/writes.
Note that this slows down the overall runtime, thus it is up to the programmer to
ensure it is only used when necessary.

5When passed to the SM, thread blocks are split into warps (currently with a maximum size of
32 threads). All the threads in a warp execute concurrently on the resources of the SM.

6Global memory uses DRAM, while Shared memory uses SRAM, which tends to be overclocked,
hence faster.

24

Chapter 2. Background

Figure 2.5: CUDA memory model

Source: Based on Nvidia CUDA Programming Guide 1.1, 2007

2.2.2 Memory Coalescing

One of the most significant hardware optimizations that CUDA provides is memory
coalescing. It can be achieved when the threads in a warp access (when executing
one read/write SIMD instruction) consecutive memory locations, making the access
to be performed in one memory transaction. The consequences of not using memory
coalescing can be as much as a warp different memory transaction to read/write this
data. It is therefore important that the code is designed to take advantage of this

25

Chapter 2. Background

optimization. As it can be seen on fig. 2.6, an array can be restructured (transposed)
allowing to take advantage of the order of elements. In the course of this project we
have applied both coalesced and non-coalesced accesses and it has been interesting
to observe the performance benefits it can lead to, as it will be shown in chapter 9.

Figure 2.6: Memory coalescing

Source: Based on Real-Time FFT Computation Using GPGPU for OFDM-Based
Systems [22]

26

Chapter 2. Background

2.3 Semantics and types of parallel operations

To understand the flattening transformations applied and derive implementations
exploiting different levels of flattening, it is necessary to first understand the higher-
order functions we have used. Note that the functions described in this section can
be redundant in imperative languages, such as CUDA. Despite that, parts of the
work of this thesis is done in Futhark, hence these functions will be met throughout
this report. For simplicity, these functions have been extracted from the Futhark
language. Therefore this section will also serve as a ”Futhark background”. Note
that for all functions below, [n]α denotes an array of n elements of type α and e

denotes the neutral element.

2.3.1 Zip and unzip

Zip and unzip are used when working with tuples of data, as the first creates a tuple
of values, while the latter can be used to extract the values of it. These functions are
redundant in CUDA, however we have used them in the Futhark implementations.
The signature of zip is:

zip : [n]α→ [n]β → [n](α, β)

zip [x1, x2, ...xn] [y1, y2, ...yn] = [(x1, y1), (x2, y2)..., (xn, yn)]

Conversely, the signature of unzip is:
unzip : [n](α, β)→ ([n]α, [n]β)

unzip [(x1, y1), (x2, y2)..., (xn, yn)] = ([x1, x2, ...xn], [y1, y2, ...yn])

2.3.2 Map

A map applies a given function to each element of a list. It therefore takes a function
and an array as input. It has the following signature:

map : (α→ β)→ [n]α→ [n]β

map f [x1, x2, ..., xn] = [f(x1), f(x2), ..., f(xn)]

27

Chapter 2. Background

We have additionally used map2, map3 and similar map variations in Futhark, which
have different signatures than the ones above, where the map is applied to multiple
arrays (map2 for 2, map3 for 3, etc.) of the same size. In these cases, the function
f takes multiple parameters, one from each array. For simplicity, we have used only
map in our pseudo-code, even though the maps may take multiple arrays as input.
In these cases, the number of arguments in the lambda function indicate the number
of input arrays if unclear.

2.3.3 Reduce

A reduce uses a given binary-associative operator, a neutral element, and an array,
and it recursively accumulates the array elements with the combining operator, start-
ing with the neutral element, building up the return value. Reduce is quite similar
to a scan (discussed in the next subsection), with the only difference that it does not
keep intermediate values. The function has the following signature:

reduce : (α→ α→ α)→ α→ [n]α→ α

reduce � e [x1, x2, ..., xn] = e� x1 � x2 � ...� xn

We have created an alias for reduce, named reducePlus, which corresponds to reduce (+) 0
where the combining operator is + and 0 is the neutral element.

2.3.4 Scan

An inclusive scan (or just scan) uses a given binary-associative operator, a neutral
element, and an array and recursively accumulates the array elements with the com-
bining operator, starting with the neutral element, building up the return values.
Note that (i) scan returns an array containing all intermediate values, differently
from reduce and (ii) the neutral element is not returned together with the interme-
diate values. Another variation of scan is exclusive scan/scanExc, which shifts the
return array of a typical scan to the left with one element, including the neutral
element in the beginning and excluding the last element (hence the name exclusive).

28

Chapter 2. Background

Scan (inclusive) has the following signature:

scan : (α→ α→ α)→ α→ [n]α→ [n]α

scan � e [x1, x2, ..., xn] = [e� x1, ..., e� x1 � ...� xn]

while an exclusive scan has the signature:
scanExc : (α→ α→ α)→ α→ [n]α→ [n]α

scanExc � e [x1, x2, ..., xn] = [e, e� x1, ..., e� x1 � ...� xn−1]

Scan has been one of the most used functions in this project. To reduce redundancy in
the pseudo-code of the following chapters, we have created an alias for it - scanPlus,
which corresponds to scan (+) 0 where the combining operator is + and 0 is the
neutral element.

2.3.5 Segmented scan

A two-dimensional irregular array — meaning the rows (segments) do not have the
same lengths — can be represented by a flat array of values of primitive types together
with a “flag” array, which denotes where each row (segment) starts—in essence a
true or 1 flag value denotes the start of a new segment and a false or 0 value
denotes that the current element is within a segment but not the first element of the
segment. A segmented scan/sgmScan operator semantically performs in parallel an
inclusive scan on each of the segments of the array. (Note that exclusive scan can
also be segmented, but it will not be introduced, as it was not used in this thesis).
Segmented scan has a type similar to scan, except that it also receives the flag array
as parameter; moreover it is also straightforwardly implemented by means of scan.

29

Chapter 2. Background

Its type and implementation are presented below:
sgmScan : (α→ α→ α)→ α→ [n]bool→ [n]α→ [n]α

sgmScan � e flags vals =

let (_, vals′) = scan ((f1, v1) (f2, v2) →

if f2 then (true, v2) else (f1 || f2, v1 � v2)

) (false, e) (zip flags vals)

in vals′

Similar to scanPlus and reducePlus, we have also created an alias for sgmScan -
sgmScanPlus, which corresponds to sgmScan (+) 0 where the combining operator is
+ and 0 is the neutral element.

2.3.6 Replicate

Replicate takes an integer n and a value m and creates an array of length n whose
elements have value m. The function signature is:

replicate : (n : int)→ β → [n]β

replicate n m = [m, ...,m]

2.3.7 Scatter

Scatter is used for bulk in-place updates with multiple values and takes an array
to write to, an array of indexes showing which elements of the first arrays should
be updated, and an array of values, i.e. the updates. Note that CUDA supports
in-place updates, hence this operation is not needed. The signature is shown below:

scatter : [n]α→ [m]β → [m]α→ [n]α

2.3.8 Iota

The iota function is Futhark-specific and is used to create an array of index values,
used to map indexes over elements. It takes an integer as input. The signature is

30

Chapter 2. Background

shown below:
iota : (n : int)→ [n]int

iota n = [0, 1..., n− 1]

2.3.9 Last

Last takes an array as input and returns the last element of it. The signature is:
last : [n]α→ α

last [x1, x2, ...xn] = xn

2.3.10 Length

Length takes an array as input and returns its length/size. The signature is:
length : [n]α→ int

length [x1, x2, ...xn] = n

31

Chapter 2. Background

2.4 Flattening Background

As briefly mentioned in the Introduction, complex applications are often composed of
multiple nested levels of operations. This means that operations are often performed
on nested arrays such as a = [[1, 2], [3, 4, 5], [6, 7, 8, 9]]. Suppose that we want to
apply the function f(x) = x + 1 to each element in the array (note that iteration
over arrays is done via a map). This cannot be done directly, as x is of type ”array
of integers”. Instead, we can iterate over all nested arrays (with the use of another
map) and apply the function to each sub-array as follows: map (\x→ map f(x)) a.
In order to effectively utilize massively parallel hardware, it is necessary that nested
higher-order functions (such asmap, scan, reduce, etc.) are flattened, so that they can
operate on flat arrays. Their transformation can be done through certain flattening
techniques such as the ones described in this section. Flattening an array itself
is straightforward, as the example above becomes flat_a = [1, 2, 3, 4, 5, 6, 7, 8, 9].
Albeit, the flattened representation of an array does not contain any indication of
how many nested arrays existed before, nor on their separation. Hence it is often
necessary to introduce additional arrays such as shape and flags. In our example,
shape_a = [2, 3, 4], contains the length of each sub-array of a. Denoting the length
of shape_a by m and the length of flat_a by n, we can create the flag array by:

• using an exclusive scan to compute the indices where a true or 1 value should
be placed in the flag array, i.e., inds = scanExc (+) 0 shape_a = [0, 2, 5],

• updating an array of false values with true at the computed indices, i.e.,
flags_a = scatter (replicate n false) inds (replicate m true) which results
in [1, 0, 1, 0, 0, 1, 0, 0, 0].

The flag array can be later used to flatten nested operations, for example in the
case of segmented scan. Note that only the flattening transformations that have been
used in this project are described, even though many more transformations can be
devised. Note also that these transformations are only guidelines and they can be
simplified in practice, as some of the steps may be redundant in various combinations
of operations.

32

Chapter 2. Background

2.4.1 Nested Map in a Map

A nested map inside a map is one of the simplest flattening transformations that
can be performed. The procedure is as simple as applying the nested map on the
flattened array, meaning that:

map (x→ map f(x)) a ≡ map (x→ f(x)) flat_a

Applying the map to the flat array shown as an example in the beginning of this
section, we get map (x→ x+ 1) [1, 2, 3, 4, 5, 6, 7, 8, 9] = [2, 3, 4, 5, 6, 7, 8, 9, 10]

2.4.2 Nested Scan in a Map

Flattening scan is also done in a single step, as it is replaced with a segmented scan,
taking an additional flags array. In general, the flattening transformation of a nested
scan can be described as (where e is the neutral element):

map (x→ scan � e x) a ≡ sgmScan � e flags_a flat_a

Using the array a mentioned previously as an example, (+) as a cumulative operator
and 0 as a neutral element, we can apply
sgmScan (+) 0 [1, 0, 1, 0, 0, 1, 0, 0, 0] [1, 2, 3, 4, 5, 6, 7, 8, 9] = [1, 3, 3, 7, 12, 6, 13, 21, 30]

2.4.3 Nested Replicate in a Map

As previously mentioned, replicate takes as inputs an integer and a value of some
arbitrary type α. For simplicity (only in this section), we will name them n and x,
where n is the number of times x should be replicated. The flattening of a replicate
nested inside a map becomes a combination of scans and scatters. In the following
we assume the flat array a is of type [q](int, α):

map (\(n, x)→ replicate n x) a ≡ sgmScanInc (+) 0 flags vals

where:
(shape, xs) = unzip a
inds = scanExc (+) 0 shape
flatlen = (last inds) + (last shape)
flags = scatter (replicate flatlen false) inds (replicate n true)

33

Chapter 2. Background

vals = scatter (replicate flatlen false)) inds xs

The above re-write rule says that a replicate operation nested in a map will gener-
ate a flat array (by means of the sgmScan operation), whose structure is described by
the shape (and flags) arrays. Since the re-write rule is very dry, we work an example
by hand to provide more insight.

Suppose that we have a map ((n, x) → replicate n x) [(1, 7), (3, 8), (2, 9)], that is,
to replicate 7 one time, 8 three times, and 9 two times through the iterations of the
map. We start by deriving
(shape, xs) = unzip([(1, 7), (3, 8), (2, 9)]) = ([1, 3, 2], [7, 8, 9])
inds = scanExc (+) 0 [1, 3, 2] = [0, 1, 4]
flatlen = (last [0, 1, 4]) + (last [1, 3, 2]) = 4 + 2 = 6
flags = scatter [0, 0, 0, 0, 0, 0] [0, 1, 4] [1, 1, 1] = [1, 1, 0, 0, 1, 0]
vals = scatter [0, 0, 0, 0, 0, 0] [0, 1, 4] [7, 8, 9] = [7, 8, 0, 0, 9, 0]
and finally
sgmReplicate = sgmScan (+) 0 [1, 1, 0, 0, 1, 0] [7, 8, 0, 0, 9, 0] = [7, 8, 8, 8, 9, 9]

2.4.4 Nested Reduce inside a Map

We cover now the case in which a reduce is nested inside a map:
map (\x → reduce � e x) a

where a is a two-dimensional irregular array, represented by (1) array flat_a, which
holds the flattened values, and by (2) arrays shape_a and flat_a which encode the
row structure of a, as explained before.

The result of flattening is a flat array containing as many elements as rows in a

(i.e., length of shape_a), in which each element of the result is obtained by reduc-
ing the corresponding segment with the given operator and neutral element, a.k.a.
segmented reduce. The re-write rule is given below (and it assumes no empty rows):

map (\x→ reduce � e x) a ≡ map (\i → vals[i− 1]) shape_scanned

where
shape_scanned = scan � e shape_a

34

Chapter 2. Background

vals = sgmScan (�) e flags_a flat_a

Suppose that we simplify the example in the beginning of this section, such that
� = +, e = 0, a = [[1, 2], [3, 4, 5]]; flat_a = [1, 2, 3, 4, 5]; shape_a = [2, 3], and
flags_a = [1, 0, 1, 0, 0]. Then the segmented reduce is obtained as follows:

shape_scanned = scan (+) 0 shape_a = [2, 5]
vals = sgmScan (+) 0 [1, 0, 1, 0, 0] [1, 2, 3, 4, 5] = [1, 3, 3, 7, 12]
and finally
sgmReduce = map (\i → vals[i− 1]) shape_scanned = [3, 12]

Summary

This chapter has provided a brief introduction to the necessary concepts mentioned
in the consequent chapters. It has covered financial topics such as options, volatility,
numerical methods, and more, all needed in the implementations. Following was an
introduction to the basics needed for understanding terminology and techniques in
CUDA, which have been used throughout this thesis. Next, this chapter has covered
the parallel operations used in the thesis, immediately followed by the flattening
background needed for applying transformations in order to exploit thread divergence
and experiment with different levels of nested parallelism.

35

3
Hull-White Single-Factor Model

The following chapter will study the Hull-White Single-Factor Model to understand
the algorithm behind it and prepare a strategy for a parallel implementation. It will
first introduce a general overview of how a trinomial tree is being constructed, and
later show how prices are being discounted from it.

3.1 Hull-White Trinomial Tree

In this project, we implement the trinomial tree numerical method to discretize the
Hull-White model. In contrast to the standard trinomial tree, the tree used in the
Hull-White model incorporates the mean-reversion of the interest rate, by using a
width limit and modified branching methods for the tree. Standard branching (see
fig. 3.1a) remains the same throughout the tree. At the bottom of the tree, where
interest rates are very low, the “up one/straight along/down one” (see fig. 3.1b)
branching is used. At the top of the tree, where interest rates are very high, the
“straight along/down one/down two” branching is used (see fig. 3.1c).

We observe that this pruning characteristic allows us to asses the size of the tree
upfront and use this knowledge to enable more specific implementation optimiza-
tions, in particular how to map the tree to the parallel device thread and memory
architecture. Otherwise, the tree could grow infinitely in its width, making it im-
possible to map to limited parallel architecture memory resources and invalidating
certain parallel implementations.

36

Chapter 3. Hull-White Single-Factor Model

(a) Standard branching (b) Bottom branching (c) Top branching

Figure 3.1: Alternative branching methods for a trinomial tree.

Source: Based on Options, Futures and Other Derivatives[18, pg. 698].

3.2 Overview

Pricing a single option using Hull-White short-rate1 single-factor trinomial tree model
enables the term structure of interest rates at any given time to be obtained from
the value of the short rate r at that time and the risk-neutral process for r. This
shows that, once the process for r has been defined, everything about the initial zero
curve and its evolution through time can be determined[18, pg. 683].

The model consists of two steps. The first (forward propagation along the tree)
is the construction of the trinomial tree in order to obtain a list of alpha values for
each time step. These alphas are later used in the second step (backward propaga-
tion along the tree) to fit the option/bond prices and obtain the option value back
at the root node of the tree. The input fed to the algorithm consists of an option,
which includes its strike price, maturity, time step length, mean-reversion rate2 and
volatility3. The output is the estimated price of the option/bond. The two steps can
be generalized as follows:

1The short rate, r, at time t is the rate that applies to an infinitesimally short period of time at
time t[18, pg. 682]

2denoted as a - determines the relative volatilities of long and short rates[20, pg.9]
3denoted as σ - determines the overall level of volatility [20, pg. 9]

37

Chapter 3. Hull-White Single-Factor Model

1. Forward propagation step: Construct a term structure for the underlying
asset by progressing one time step at a time. Determine neutral risk rate for
a new time step using estimated yield curve data and estimated current asset
values.

2. Backward propagation step: Discount the asset prices to estimate option
payoff at maturity going from the leaves of the tree to its root.

Algorithm 1 shows a high-level overview of a function implementing this procedure
for pricing one option. The input of the algorithm is an option and a yield curve
(used for the computation of alphas) and the output is the estimated price of the
option. The function consists primarily of two sequential (convergence) loops of
count tree height, which contain inner parallel operators of count tree width, where
tree height and width are specific to each option (and thus vary across options). The
tree height is dependent on the number of time steps, i.e., maturity of the underlying
bond and precision. The tree width is dependent on the number of terms and input
parameters.

Different option/bond maturities (leading to different tree heights) and different
level of pricing accuracy (number of simulated time steps leading to different tree
dimensions) make the choice of an effective parallelization strategy difficult. It is
necessary to have a deep understanding of the algorithm itself to achieve maximum
parallelization efficiency. The book by John Hull[18] provides a solid background on
the topic, describing the mechanics of interest rates, markets, as well as application
of binomial trees and eventually trinomial trees to option pricing. Chapter 30 further
narrows the topic of using trinomial trees as a numerical method and introduces a
step by step walk-through of applying the algorithm on a basic example. While some
of the calculation details are omitted in the book, the authors provide references to
previous articles[20][21], where they provide a thorough explanation backed with
more detailed examples.

38

Chapter 3. Hull-White Single-Factor Model

It is important to mention that the construction of a trinomial tree is a discrete-
time, lattice-based4 numerical method, but the example in the book is simplified
by cutting the tree at a certain height and using analytic formulas to produce a
concrete result for a specific financial instrument - a zero-coupon bond maturing at
time (m + 1) ∗ 4t [18, pg. 704]. These formulas have been found and proven to be
effective by the authors of the book and the articles. While this simplification gives
more precise results in the above mentioned specific case, constructing the entire tree
and using all of the time steps provides a foundation for pricing other options with
more sophisticated cashflows. All the implementations of this thesis will be focused
on the described numerical approach.

The following sub-chapters are focused primarily on the intuition behind the al-
gorithm, with the sole purpose to provide the reader with a general overview for
it. For this reason, many of the details and formulas of calculating specific values
are omitted, however they are thoroughly described in the book and the articles by
Hull and White. As the model is best understood visually, we have included some
of the supplementary images from the Hull and White book in order to support our
algorithm explanation.

4A model that takes into account expected changes in various parameters e.g. interest rate over
the duration of the option

39

Chapter 3. Hull-White Single-Factor Model

Algorithm 1: High-level overview of pricing a single option using Hull-White
Single-Factor Model
Input : Option, YieldCurve
Output: Price approximation

1

2 alphas[0] = Compute yield at initial interest rate
3 Qs[0][width/2] = 1 /* Initialize the root node to 1$ */
4

5 /* Forward propagation (convergence) loop */
6 for i = 0 to height do
7 /* Compute Qs at the next time step */
8 for j = 0 to width do
9 Qs[i + 1][j] = Compute Q from Qs[i] and alphas[i]

10 end
11 Compute alphas[i + 1] from Qs[i]
12 end
13

14 /* Initialize prices at the last time step to 100$ */
15 Prices[height− 1] = 100
16

17 /* Backward propagation (convergence) loop */
18 for i = height − 1 to 0 do
19 /* Compute prices at the previous time step */
20 for j = 0 to width do
21 Prices[i][j] = Compute price from Prices[i + 1] using alphas[i]
22 end
23 end
24

25 /* Return price at the root node */
26 return Prices[0][width/2]

40

Chapter 3. Hull-White Single-Factor Model

3.3 Forward Propagation

The forward propagation by itself consists of two stages. Each of them computes dif-
ferent values on the same tree. While the tree height can grow indefinitely, depending
on the number of time steps, the width of the tree is limited by mean-reversion (as
reasoned for in chapter 2), by determining its max. width (or as we refer to it for
simplicity - width).

Indexing Since the tree is 2-dimensional, locating and computing values on
individual nodes boils down to locating them by index first. Hence, we introduce
the two indexes - i and j, used to indicate the tree height and its width respectively.
To describe the meaning of i and j visually, we can use fig. 3.2, where nodes along
the height - A, C, G - can be indexed as i = 0, 1, 2. Indexing across the width is
different, as we intuitively denote the core of the tree - nodes A, C, G - with j = 0.
Going down along the three decreases the value of j, while going up increases it.
This means that nodes D,H are located on j = −1, nodes B,F are located on j = 1
and so on. We denote the highest node across the width as jmax and jmin as the
lowest. Note that jmin = −jmax due to the symmetry of the tree, making it possible
to omit jmin occurrences in our implementations by replacing them with −jmax. On
fig. 3.2 nodes E and I are at the top and at the bottom of the tree width, hence their
j indexes are equal to jmax and jmin respectively. The index values in this example
are jmax = 2 and jmin = −2. Note that our code cannot always be aligned with our
intuition and indexes cannot be negative in our programs. Hence we can shift the
indexing between jmin and jmax and count from 0 to 2 ∗ jmax + 1 instead, making the
root node to be located at index jmax. Despite that, we have used jmin and jmax as
width boundaries throughout this report, as they are easier to comprehend.

Stage 1 aims to construct a tree for a variable R∗ that is initially 0 and
follows the Ornstein–Uhlenbeck stochastic5 process6 dR∗ = −aR∗dt + σdz which is

5With a random probability distribution or pattern that may be analyzed statistically but may
not be predicted precisely.

6Tends to drift towards its long-term mean (also called mean-reverting).

41

Chapter 3. Hull-White Single-Factor Model

symmetrical about R∗ = 0[18, pg.698-699]. Together with R∗, pu, pm and pd are
calculated to match the respective up, mid and down probabilities that match the
expected change and variance of the change in R over the next interval 4t. Since
the width of the tree is limited between jmin and jmax, some of the branching is
calculated differently, thus pu, pm and pd depend on the node position. Naturally
the tree construction happens iteratively, node by node, starting from the root. In
the end of the stage, this first tree will always have a symmetrical shape7 similar8 to
fig.3.2.

Figure 3.2: Example of the trinomial tree for R∗.

Source: Modified by the authors, based on Options, Futures and Other
Derivatives[18, pg. 699].

7Trinomial trees are recombining, meaning that at any time, an up move followed by a down
move has exactly the same effect on the price as a down move followed by an up move.

8Note that the width and height of the tree may differ based on the number of time steps and
the maturity of the financial instrument

42

Chapter 3. Hull-White Single-Factor Model

An important property of this tree include first of all that it is self-recombining,
causing it to be symmetric. The probabilities on the lower part of the tree will be the
negative of the probabilities on the upper part of the tree, e.g. probability that node
A reaches node D is minus the probability of node A reaching node B. Furthermore,
also due to symmetry, all unique probabilities can be stored in an array of size the
width of the tree, because e.g. the probability of node A reaching node B is the same
as the probability of node C reaching node F and so on. Probabilities are used both
in stage 2 of the forward propagation, but also in the backward propagation, thus
it is necessary to contain them to the end, if they are to be stored. Last but not
least, the way probabilities are calculated is different on jmin or jmax, because of the
difference in branching. This can be seen on fig. 3.2 where nodes E and I branch out
differently in comparison to all other nodes.

Stage 2 In this stage, the rates at each node in the tree at each time step are
shifted up by an amount - α, chosen so that the revised tree correctly prices discount
bonds [21, pg. 6]. This is done by defining Qi,j as the present value of a security
that pays off $1 if node (i, j) is reached and 0 otherwise. The starting point is to set
Q0,0 = 0 and α0 to the interest rate at time 4t. Qs at the next time step are then
calculated by using the generalized formula [18, pg.705]:

Qm+1,j =
∑

k

Qm,kq(k, j)exp[−(αm + k4r)4t]

Assuming that we start at step m, to calculate the Qs on step m+1, we need to have
the α on step m. Furthermore, once the Qs on step m+1 have been calculated, they
are used to also find the α on m + 1 later. This leads to conclude that αs and Qs
are interrelated on each time step. αs are calculated using the generalized formula
[18, pg.703]:

αm =
∑nm

j=−nm
Qm,je

−j4r4t − lnPm+1

4t
At the end of this stage, the new tree will have changed visually. For example, the
tree from fig. 3.2 can be re-shaped as shown on fig. 3.3.

43

Chapter 3. Hull-White Single-Factor Model

Figure 3.3: Example of the trinomial tree for R.

Source: Options, futures and other derivatives fig. 30.9 [18, pg. 702]

An important observation here is that the only outcome of this tree that is used in
the backward propagation is the array of αs. Qs are in this case intermediary values,
used to compute the α on each step and for this reason, the Q values do not need to
be stored any longer once all αs have been computed.

3.4 Backward Propagation

The backward propagation starts with the previously constructed tree during the
forward propagation step, in particular with array of αs. At each time-step the option
payoff is computed as the discounted value of the expected value at the next step
[21, pg. 6]. From this it follows that the nodes at time step i (e.g. the nodes without
assigned letters in figures 3.2 and 3.3 above) are the starting point of the backward
propagation. Their values are set to 100$ and are used to compute the previous set of
nodes (at time step i−1). That is done by discounting bond price values up until the
exercise of the option. At the option expiration time step, we decide if we exercise
the option or let it expire worthless. To achieve that, we calculate the difference
between bond price and the strike price. The positive values mean exercise, while

44

Chapter 3. Hull-White Single-Factor Model

non-positive mean expiry worthless and are set to 0. We discount the option prices
further down to the root of the tree to get the approximation of the option price
on the valuation day. This is the output of the algorithm. We use the array of αs
computed during the forward propagation through this procedure. It is important
to note that determining the option price depends on the type of option (whether it
is a put or a call option).

Summary

This chapter has provided a detailed overview of the Hull-White Single-Factor Model,
in particular its two-stage procedure fo propagating along a trinomial tree. It will be
used in the following chapter, which will introduce the challenges of implementing a
sequential version of the algorithm in C++.

45

4
Sequential Implementation

In order to better understand the algorithm, we have started with a basic sequential
implementation of it in C++. While this step could be done in any language, we
have chosen to work with C++, as it would allow us to re-use pieces of code for
the parallel CUDA implementations, described further in this report. Running this
version with a large number of options will likely result in a significant amount of
computation time. However, the purpose of this implementation is rather a proof of
concept that the algorithm produces correct approximations, as well as to provide a
set of results, which can be used to test against with the other implementations.

The algorithm described in the book is used to price one option at a time and
the natural way to start a sequential implementation would be to create a single
function that prices one option. Looping through all options in the data set and
calling this function for each of them will then produce the end results. Pseudo-code
in Algorithm 2 describes the approach we took based on the book and articles by
Hull and White. Note that real is a data type that can be either single or double
precision floating point number based on the required accuracy.

The implementation iterates through all given options, constructs a trinomial tree
for each of them and propagates prices back through the tree, obtaining the price
approximations for each option and returning them in the end. The algorithm follows
the intuition provided in the previous chapter 3. The focus of this implementation
is on correctness and simplicity.

46

Chapter 4. Sequential Implementation

4.1 Algorithm Description

Precomputation Pricing of one option starts with computing its constants
such as tree width and rate step, tree height and time step, and other values needed
to solve the formulas in Hull and White model. Afterwards, for each width step
j, rate and probabilities (up, middle, down) are precomputed for use during both
forward and backward propagations.
Algorithm 2: Sequential implementation
1 function ComputeOptionPrice
Input : option : { StrikePrice, Maturity, Length, TermUnit,

TermStepCount, ReversionRate, Volatility, Type }
yields : { [Prices], [Timesteps] }

Output: Price approximation for the option
2

3 Pre-compute probabilities for all width steps j
4 c : OptionConstants = Compute constants for the option
5 /* Option constants include: */
6 /* c.t : int - option length */
7 /* c.X : real - option strike price */
8 /* c.dt : real - time step (height) */
9 /* c.dr : real - rate step (width) */

10 /* c.jmax : int - max. j of the tree */
11 /* c.width : int - tree width (2 ∗ c.jmax + 1) */
12 /* c.height : int - tree height */
13 /* c.type : CALL | PUT - option type */
14

15 /* Create an array of alphas and set the first alpha to the
initial dt-period interest rate */

16 alphas : real[c.height + 1]
17 alphas[0] = Compute yield at c.dt

47

Chapter 4. Sequential Implementation

Forward propagation The purpose of forward propagation is to compute an
array of alphas of size tree height + 1 that will be used during backward propagation.
The first alpha is set to the interest rate at time of one time step. To capture the tree
values at any given time step, only the current and previous tree levels of size tree
width are needed, these two arrays are named Qs and QsCopy. The single starting
value in the middle of the tree (the root of the tree) in Qs array is initalized to 1$.

After the arrays are initialized, the program iterates through time steps along the
tree height. At each time step, it goes through the values Q computed in the previous
step. Every value contributes to three values in the next time step (QsCopy) as
illustrated in figure 4.1, according to the precomputed rates and probabilities. Note
that this is an example of standard branching and there are also a bottom and a top
branching, see fig. 3.1. After all Qs in the next step are computed, their values are
aggregated to compute the next alpha. Lastly, arrays Qs and QsCopy are swapped
and QsCopy is reset to zeros for the next iteration. Note that this approach combines
stages 1 and 2 described in chapter 3.3 in a single iteration of the forward propagation
loop.

Figure 4.1: Forward propagation - computing the next step

Source: Compiled by the authors

48

Chapter 4. Sequential Implementation

Algorithm 3: Sequential implementation - forward propagation
18 /* Forward propagation */
19 Qs = real[c.width]
20 QsCopy = real[c.width]
21 Qs[c.jmax] = 1 /* Set initial node to 1$ */
22

23 /* Iterate through nodes along tree height */
24 for i = 0 to c.height − 1 do
25 /* Compute the highest allowed j index on step i */
26 jhigh : int = min(i, c.jmax)
27 alpha : real = alphas[i]
28

29 /* Iterate along width between j indexes on step i */
30 for j = −jhigh to jhigh do
31 Compute and add to QsCopy on j + 1, j, j− 1
32 end
33

34 /* Iterate along width between j indexes on step i+ 1 */
35 jhigh1 : int = min(i + 1, c.jmax)
36 alpha_p1 : real = 0
37 for j = −jhigh1 to jhigh1 do
38 Aggregate alpha_p1 based on QsCopy[j]
39 end
40

41 Compute alphas[i + 1] based on alpha_p1
42 Qs = QsCopy
43 Fill QsCopy with 0
44 end

49

Chapter 4. Sequential Implementation

Backward propagation After all alphas are computed, they are carried over
to backward propagation along with two arrays of size tree width. These arrays
called Prices and PricesCopy are used to store the current and previous tree levels
similarly to forward propagation. Prices are initialized to 100$ which represents the
payoff at bond maturity.

Afterwards, the program iterates through time steps along the tree height starting
from the end of the tree. At each time step, the values at step i− 1 in PricesCopy
are computed from three values in Prices at step i using alpha at i and the precom-
puted probabilities as illustrated in figure 4.2. If the current time step is the option
maturity, every computed price is discounted by the option strike price, taking care
of the option type being call or put as well. Lastly, arrays Prices and PricesCopy
are swapped and PricesCopy is reset to zeros for the next iteration.

Figure 4.2: Backward propagation - computing the previous step

50

Chapter 4. Sequential Implementation

Algorithm 4: Sequential implementation - backward propagation
45 /* Backward propagation */
46 Prices : real[c.width]
47 PricesCopy : real[c.width]
48 Fill Prices with 100 /* Initialize prices to 100$ */
49

50 for i = c.height − 1 to 0 do
51 jhigh : int = min(i, c.jmax)
52 alpha : real = alphas[i]
53

54 for j = −jhigh to jhigh do
55 jind : int = j + c.jmax
56 Compute res based on Prices at j + 1, j, j− 1
57

58 if Step i is the option maturity then
59 if c.type is CALL then /* Call option */
60 PricesCopy[jind] = max(res− c.X, 0)
61 else /* Put option */
62 PricesCopy[jind] = max(c.X− res, 0)
63 end
64 else
65 PricesCopy[jind] = res
66 end
67 end
68 Prices = PricesCopy
69 Fill PricesCopy with 0
70 end
71

72 /* Return the calculated current option price */
73 return Prices[c.jmax]

51

Chapter 4. Sequential Implementation

4.2 Validation

Results obtained by running this implementation will be used for validation of the
parallel algorithms, so it is important that they are fully correct. We compared our
intermediate array values of alphas, Qs and Prices along with the final results with
values provided by our supervisor and made sure they are the same within a margin
of error.

Table 4.1 compares the value of a three-year put option on a nine-year zero-coupon
bond with a strike price of 63: mean-reversion rate a = 0.1 and volatility σ = 0.01,
which is an example option in Hull & White [18, pg. 706]. The left table shows
book results [18, pg. 707] and the right table shows our results for the same option
with different time steps. Our approach is fully numerical, while their tree results
are semi-analytic, since they do not build a tree for the whole nine-year bond, but
only for the three-year option and then compute the rest using analytic formulas.
Despite this fact, our result for daily time steps, i.e. 365 × 9 steps for the full tree,
are within 0.02% difference of their analytic result.

Table 4.1: Sequential results compared on a book example

Source: Compiled by the authors, based on [18, pg. 707].

Steps Tree Analytic
10 1.8468 1.8093
30 1.8172 1.8093
50 1.8057 1.8093
100 1.8128 1.8093
200 1.8090 1.8093
500 1.8091 1.8093

Steps per year Results
1 1.87996
5 1.83827
10 1.81851
25 1.81120
100 1.81053
365 1.80968

52

Chapter 4. Sequential Implementation

Summary

This chapter provided an overview of our sequential implementation with focus on
explaining the computations in forward and backward propagations and how the
final results are obtained. Finally, it described how the computations and results
were validated with external sources. The following chapter will describe how this
implementation was adapted for a parallel one option per thread version in CUDA.

53

5
One Option per Thread

This chapter describes the first parallel approach that exploits only outer parallelism,
i.e. it computes a batch of options in parallel where one thread prices a single
option. This algorithm is therefore similar to the sequential implementation with
some caveats concerning GPGPU architectures that were tackled in an iterative
process producing multiple versions of the code.

5.1 Sequential Implementation to CUDA

Global memory setup

It was necessary to identify arrays being used and consider how to store them in
device memory. The input is a structure of arrays of size number of options, each
array representing one parameter of the options. This structure is ideal for coalesced
memory access because consecutive threads will load contiguous memory, optimizing
the number of memory transactions and thus speed. The algorithm itself requires
two arrays of tree width size for Qs and QsCopy, and one array of tree height size
for alphas per option. We place the three arrays in GPU’s global memory, where
each thread uses a single part of each array which size depends on the option being
computed.

Global memory accesses

Array accesses had to be analyzed as well to avoid race conditions and optimize
performance. The sequential implementation pre-computes rates and probabilities

54

Chapter 5. One Option per Thread

for each node along the width and saves them. They are reused later both during
the forward and backward propagations. In contrast, for this CUDA implementation
we would have to store the values in global memory, resulting in slower access times.
Instead, since they were accessed too few times, we opted to re-compute the values
every time they were used in order to save query time and reduce the global memory
consumption.

More importantly, in the forward propagation computing Qs at the next time
step was done by a single computation on the current node and adding the value
to three nodes in the next step as shown in figure 4.1. This performs 1 read for
the computation and 3 reads followed by 3 writes for the addition. For all parallel
implementations, this scatter pattern was replaced by a gather pattern illustrated
in fig. 5.1, which performs 3 reads/computations and 1 write in this scenario.

This makes it necessary to pre-compute and save the values for Qs first to avoid
computing the same value multiple times. The final result makes 1 read/computa-
tion/write in the pre-computation step followed by 3 reads and 1 write in computing
the next time step. This approach eliminates 1 write and the need to have atomic
additions, which would be necessary when exploiting inner parallelism described in
chapter 6. However, since the tree is trinomial (fig. 3.2), a value can be computed
from up to 5 values from the previous time step. Thus all possible types of branch-
ing have to be enumerated which makes the code more verbose and more difficult to
maintain.

55

Chapter 5. One Option per Thread

Figure 5.1: Comparison of scatter and gather operations

Source: Compiled by the authors

5.2 Implementations

We iteratively implemented 4 versions of this first parallel approach. They all share
the same kernel but they store and access the three global arrays Qs, QsCopy and
alphas in different ways.

The general steps for all these versions are as follows:

1. Load all options to GPU device memory.

2. Compute widths and heights for all options.

3. Allocate in global GPU memory two (expanded) arrays Qs and QsCopy which
are large enough to hold option-width elements for all the options in the batch.
What “large enough” means will be specified for each version.

4. Similarly, allocate in global GPU memory one array alphas which is large
enough to hold option-height elements for all options in the batch.

5. Price all options using our CUDA kernel.

6. Copy results to host memory.

56

Chapter 5. One Option per Thread

All pre-processing is performed on the GPU and is implemented using CUDA’s
Thrust library 1.

Version 1 - Naive

The first version stores arrays in a simple way where one thread gets contiguous parts
of memory with sizes that match the computed option’s width/height. Table 5.1
shows an example of storing alphas for 3 options of heights 2-4-3 computed by 3
threads in a single flat array. Each thread needs to know only the start index of
its array chunk along with the option’s width/height and then it can access array
elements consecutively. The indices can be easily computed by running inclusive
scans on widths and heights, obtaining also total sizes for the arrays in the process.

Table 5.1: Memory alignment in version 1

Source: Compiled by the authors

T1 T1 T2 T2 T2 T2 T3 T3 T3
α0 α1 α0 α1 α2 α3 α0 α1 α2

This approach is very efficient in terms of storage space, however, it is very in-
efficient when it comes to performance. When we analyze how array elements are
accessed in forward (alg. 3) and backward propagation (alg. 4), we find out that all
threads access their α0 at the same time, then move to α1 and so on. This results
in strided, un-coalesced access to global memory which ineffectively uses GPU hard-
ware. The next 3 versions tackle this problem by padding and transposing the arrays
on different levels, so as to ensure coalesced accesses to global memory whenever pos-
sible.

Version 2 - Global-level Padding

In order to make array access coalesced, the second version stores arrays padded to
the maximum width/height across all options. Continuing with the example from

1https://developer.nvidia.com/thrust

57

https://developer.nvidia.com/thrust

Chapter 5. One Option per Thread

above, the new alignment is illustrated in table 5.2. This obviously leads to some
array elements not being used, unless the widths/heights are equal across options.
However, when threads in a warp access the same array index at the same time, the
access is now coalesced and can be performed in fewer memory transactions, greatly
improving performance.

Table 5.2: Memory alignment in version 2

Source: Compiled by the authors

T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
α0 α0 α0 α1 α1 α1 α2 α2 α3

To compute sizes of the arrays, it is necessary just to find out the maximum
width/height and multiply them by the number of all options. Indexing to array
elements can be simply computed as index ∗ optionsCount + optionIndex .

The only downside is that the global padding might require very large memory
chunks to be allocated but unused, especially if the dataset is skewed, i.e. with a
small number of options that have very large widths/heights. According to our tests,
discussed in detail in chapter 9, this version is up to ~10× faster than version 1 but
the memory footprint is up to ~7× larger. The next two versions try to minimize
the memory footprint by padding arrays on a smaller scale.

Version 3 - Block-level Padding

The third version is designed to save memory compared to the second version, while
keeping memory access coalesced. Here we look at what options get computed in
a single CUDA block (of up to 1024 threads). The maximum width/height of the
options is computed per block and the total size of an array is then the sum of all
block maxima multiplied by the block size.

The pre-processing of options is thus more complex. It is implemented using
reduce_by_key and transform_inclusive_scan Thrust routines with custom opera-
tions. As a result, arrays QsInds and alphasInds storing indices to the respective

58

Chapter 5. One Option per Thread

arrays are computed, created using two addition helper arrays, all of size
doptionsCount/blockSizee. The computed indices represent the start of an array part
specific to a block, elements can then be accessed as blockSize ∗ index + threadId.

The downsides of this version are that if options in the dataset are not sorted
by widths and heights, the amount of saved memory compared to version 2 may
be very small while this version requires more pre-processing time and intermediate
arrays. With correct sorting applied and the block size kept small, on our datasets
this version uses only up to 4% more memory than version 1, while keeping up to
~10× performance lead like version 2. The last version further reduces the array
padding even on bigger block sizes.

Version 4 - Warp-level Padding

The fourth version is similar to version 3 with a difference that we look at what
options get computed by a single warp of 32 threads instead of the whole block. This
is motivated by the fact that coalesced accesses to global memory are supported by
hardware at the (half) warp level, i.e., the threads in a warp execute in lock step, and
need to access consecutive memory locations in a SIMD instruction. In effect, array
padding is performed at a lower granularity—that of a warp—while still preserving
coalesced accesses. Depending on a dataset, the added warp-level padding might be
smaller than block-level padding, in exchange for blockSize/32 more indices to be
stored. When comparing version 4 with version 3, we achieved up to 70% decrease
in memory for a CUDA block of size 1024.

Futhark implementation

This one option per thread parallel approach was also implemented in Futhark as a
proof of concept and is equivalent to version 2 since Futhark uses global padding on
arrays to ensure that memory accesses are coalesced. This version will be discussed
further in chapter 7.

59

Chapter 5. One Option per Thread

Optimizations

Choosing thread block size Since this implementation prices one option per
thread, the thread block size represents the number of options being priced in parallel.
Those options can have different widths and heights, leading to thread divergence
on outer parallelism (heights) and inner parallelism (widths). It follows that bigger
blocks might contain options that vary in widths/heights more than in small blocks,
thus causing more threads to wait for completion of the block execution. On the
other hand, smaller block sizes result in more thread blocks being scheduled, what
adds extra overhead. Depending on the dataset, block sizes of either 128 or 256 are
preferred.

Sorting input In order to (easily) reduce thread divergence, we can sort options
before computation by either heights or widths. This would make one warp/block
of threads compute options with similar number of execution steps and reduce the
amount of time the threads have to wait for each other’s execution. Our experiments
show that sorting does have a large positive impact on performance, up to ~10× faster
than no sorting, but the choice of sorting by height or width depends on a dataset
with a difference of up to 20%.

5.3 Validation

To validate computed results from the CUDA implementations, we created a test
case that uses the example mentioned in section 4.2. 100 instances of this option
with gradually more time steps are first computed on the CPU using the sequential
implementation from chapter 4 and then compared with results computed from all 4
versions. The test case was written using Catch2 2 test framework for its simplicity.

The differences between floating point GPU results and CPU results must be inter-
preted carefully, since there are many reasons why the same sequence of operations
may not be performed on the GPU and CPU, e.g. because of fused multiply-add

2https://github.com/catchorg/Catch2

60

https://github.com/catchorg/Catch2

Chapter 5. One Option per Thread

on the GPU, rearranging operations for parallelization, higher than expected pre-
cision for computations on the CPU and rounding not required by common math
operations by the IEEE 754 standard [44, pg. 16].

Despite this, we successfully validated our results using a small epsilon value
of std::numeric_limits<real>::epsilon() ∗1000, where real is either single or dou-
ble precision floating point number. This equals to 0.000119209 for single and
0.00000000000022204 for double precision, which makes double precision much more
reliable.

Summary

This chapter provided an overview of our parallel one option per thread implemen-
tation using CUDA with focus on explaining the challenges of parallelizing the se-
quential implementation from chapter 4. It introduced 4 versions of this parallel im-
plementation, each with its own advantages and disadvantages. Finally, it described
how the GPU results were validated against the CPU results and the challenges of
doing that. The following chapter will describe how this implementation was adapted
to compute multiple options in a single CUDA thread block.

61

6
Multiple Options per Thread Block

This chapter describes our CUDA implementation that prices multiple options in
one thread block. This approach exploits inner parallelism, leveraging fast shared
memory for computations of Qs and Prices. The limitation of this version is that it
cannot price options with widths bigger than the size of a thread block (1024), since
every thread computes one value along the tree width. The flattening transformations
applied to derive a multiple options per thread block implementations and the ones
used to derive a fully flattened implementation are semantically the same, as it will
be shown later in section 7.4. For this reason, we have explained them in thorough
details in the context of a functional language in chapter 7, making them easier to
understand. Instead, the descriptions in this chapter are more focused on CUDA-
specific challenges.

6.1 CUDA-option to CUDA-multi

To implement this parallel approach, we used CUDA-option as a basis, reusing code
that is not specific to each version, such as parts of pre-processing and some compu-
tations.

6.1.1 Memory setup

In this implementation one thread does not compute the whole tree for an option,
rather it computes a single value on the tree width. This allows us to move the array
of Qs to shared memory and even remove the array of QsCopy, as it was used to hold
Qs temporarily between computations, and now a single Q value can be temporarily

62

Chapter 6. Multiple Options per Thread Block

stored in a thread register. Shared memory thus comprises of one real array of Qs
and one uint16_t array of flags (used by segmented scans), both of thread block size.
Global memory then stores all the options along with their pre-computed widths and
heights, and the array of all alphas.

6.1.2 Pre-processing

After the options are loaded to GPU memory and their widths and heights are
computed, they have to be split into chunks. A chunk represents one or more options
whose combined widths can fit into the chosen thread block size. This process is also
known as bin packing, which is a combinatorial NP-hard problem, so we decided to
implement it in a simple way on the CPU, since it is not a focus of this thesis. The
options are packed by a for-loop, in which an option is put into the current chunk if
the sum of width sizes for options stored already in the chunk does not exceed the
thread block size, otherwise a new chunk is created and the current option index is
added to an array of indices. This produces an array of option indices, e.g. [1, 3, 5],
which describes that there are 5 options computed by 3 thread blocks, the first block
will compute option 0, the second one options 1 and 2, and the third one options 3
and 4.

It is obvious that this simple implementation packs options into a smaller number
of chunks/blocks if the options are sorted by width. However, it should also be desir-
able to sort the options by height to optimize thread divergence, since computations
on the tree width are parallelized. Therefore, a better bin packing implementation
might improve performance by packing more options into chunks by their widths,
while optimizing thread divergence on heights, probably as a trade-off for more pre-
processing time.

6.1.3 Flattening

Algorithm 5-9 outlines the kernel written for this implementation, which is much
more complex than the kernel that computes one option per thread described in
chapter 5. Since computed values are dependent on results from multiple threads, it

63

Chapter 6. Multiple Options per Thread Block

is important to synchronize threads in the block to prevent race conditions. However,
special care has to be taken for this not to result in deadlocks because of thread
divergence, caused by options with different widths and heights inside a block.

Initialization First, option indices inds for a block have to be distributed to
threads based on option widths, such that each thread can compute one value in Qs.
For example, threads 0-200 compute option 0 with width 201 and threads 201-1000
compute option 1 with width 799, leaving threads 1001-1023 unoccupied. This is
done by a series of segmented scans on arrays with indices and widths, resulting in
every thread in block getting an index of the option to compute (optionIdx) and
scannedWidthIdx representing the start index of Qs (Alg. 5, 6, 7 lines 10-65). Af-
terwards, one thread per option initalizes the first Q and alpha value (Alg. 7 lines
69-71). To access the global array of alphas, a thread uses helper functions getAl-
phaAt(index, optionIndex) and setAlphaAt(index, value, optionIndex) that compute
global array indices based on the specific version described later in section 6.2. It can
be noted that the actions performed in the initialization have close resemblance to
some of the transformations described in chapter 2.4. However, it is difficult to relate
them to a single specific flattening transformation (e.g. map, reduce, replicate), as
CUDA is not using any of those functions directly.

Forward propagation In the loop, it is important that all threads use the
maximum height of options in the block, not the height of their option which might
be smaller. This way block-level synchronization can be used inside the loop without
the possibility of deadlocks. However, at each time step a thread has to check if
it should even compute new Qs based on its option’s height. First, a thread pre-
computes the next Q value, then all threads can quickly compute the next Q value
from multiple Qs in the previous step and save it in a local variable (Alg. 8 lines
75-88). Afterwards, Qs are multiplied in order to be summed up using parallel
segmented scan (Alg. 8 lines 90-92). Next, a new alpha value is computed from the
last scanned Qs per option (Alg. 8 lines 95-98). Lastly, all threads set Qs to the new
Q values (Alg. 8 line 99).

64

Chapter 6. Multiple Options per Thread Block

Backward propagation Before the loop, each threads sets Qs to 100 (called
Prices in the sequential implementation, reusing the array in this version) (Alg. 9
lines 103-104). Then in the loop, threads have to use max height again in order to
use thread synchronization. Each thread computes one price in the previous time
step (if valid for current option) and after all of them are done, they store the values
and move to another step (Alg. 9 lines 106-119). After the whole tree is traversed,
one thread per option sets the price result in the global results array (Alg. 9 lines
122-124).

65

Chapter 6. Multiple Options per Thread Block

Algorithm 5: Multiple options per thread block kernel
1 function kernelMultipleOptionsPerBlock
Input : options : { [StrikePrices], [Maturities], [Lengths], [TermUnits],

[TermStepCounts], [ReversionRates], [Volatilities], [Types], [Widths],
[Heights] },
yields : { [Prices], [Timesteps] }
[inds], [alphas], [results]

Output: Price approximations for the options in block
2

3 /* Initialize shared memory references */
4 volatile extern __shared__ char sh_mem[] /* Memory array for block */
5 Qs = (real *)&sh_mem /* Qs are the first part */
6 values = (int32_t *)&sh_mem /* Helper int array, overwrites Qs */
7 flags = (uint16_t *)&sh_mem[blockDim.x ∗ sizeof(real)] /* After Qs */
8

9 /* Compute option indices and scanned widths */
10 idxBlock = blockIdx.x == 0 ? 0 : inds[blockIdx.x− 1]
11 idxBlockNext = inds[blockIdx.x]
12 idx = idxBlock + threadIdx.x
13 width = 0
14 if idx < idxBlockNext then /* Don’t fetch options from next block */
15 width = options.Widths[idx]
16 values[threadIdx.x] = width
17 else
18 values[threadIdx.x] = 0
19 end
20 __syncthreads

66

Chapter 6. Multiple Options per Thread Block

Algorithm 6: Multiple options per thread block kernel - cont. 2
21 /* Scan widths inplace to obtain indices to Qs for each option */
22 scanPlus values
23 scannedWidthIdx = −1
24 if idx <= idxBlockNext then
25 /* Get the scanned width as in exclusive scan */
26 scannedWidthIdx = threadIdx.x == 0 ? 0 : values[threadIdx.x− 1]
27 end
28 __syncthreads
29

30 /* Send option indices to all threads */
31 values[threadIdx.x] = 0 /* Clear values and flags */
32 flags[threadIdx.x] = 0
33 __syncthreads
34

35 /* Set values to option indices and flags to option widths */
36 if idx < idxBlockNext then
37 values[scannedWidthIdx] = threadIdx.x
38 flags[scannedWidthIdx] = width
39 else if idx == idxBlockNext and scannedWidthIdx < blockDim.x then
40 /* Fill the remaining part of the block (if any) */
41 values[scannedWidthIdx] = threadIdx.x
42 flags[scannedWidthIdx] = blockDim.x− scannedWidthIdx
43 end
44 __syncthreads
45

46 /* Scan option indices with widths as flags to distribute them */
47 sgmScanPlus values flags
48 optionIdxBlock = values[threadIdx.x] /* Option index within block */

67

Chapter 6. Multiple Options per Thread Block

Algorithm 7: Multiple options per thread block kernel - cont. 3
49 /* Let all threads know about their scannedWidthIdx (Q start) */
50 if idx <= idxBlockNext then
51 flags[threadIdx.x] = scannedWidthIdx
52 end
53 __syncthreads
54 scannedWidthIdx = flags[optionIdxBlock]
55

56 /* Get the option for thread and compute its constants */
57 OptionConstants c
58 optionIdx = idxBlock + optionIdxBlock
59 if optionIdx < idxBlockNext then
60 c = Compute constants for options[optionIdx]
61 else /* Fake option to fill block */
62 c.n = 0
63 c.width = blockDim.x− scannedWidthIdx
64 end
65 __syncthreads
66

67 /* Initialize Qs and alphas in one thread per option */
68 if threadIdx .x == scannedWidthIdx and optionIdx < idxBlockNext then
69 alpha = compute yield at dt /* Initial alpha value */
70 setAlphaAt(0, alpha, optionIdx)
71 Qs[scannedWidthIdx + jmax] = 1 /* Initial Q value */

72 end

68

Chapter 6. Multiple Options per Thread Block

Algorithm 8: Multiple options per thread block kernel - cont. 4
73 /* Forward propagation */
74 for i = 1 to maxHeight do
75 jhigh = min(i, c.jmax)
76 j = threadIdx.x− c.jmax− scannedWidthIdx
77 /* If both height and width steps are valid for this option */
78 if i <= c.height and j >= −jhigh and j <= jhigh then
79 alpha = getAlphaAt(i− 1, threadIdx.x)
80 Qs[threadIdx.x] *= exp(...) /* Pre-compute Qs using alpha */

81 end
82 __syncthreads
83

84 Q = 0
85 if i <= c.height and j >= −jhigh and j <= jhigh then
86 Q = Compute next step from Qs
87 end
88 __syncthreads
89

90 Qs[threadIdx.x] = Q ∗ exp(...) /* Set Qs for summation */
91 __syncthreads
92 sgmScanPlus Qs flags /* Sum up Qs */
93

94 /* Get last values of segmented scans (reduced results) */
95 if i <= c.height and threadIdx .x == scannedWidthIdx + c.width − 1 then
96 alpha = Compute alpha from Qs[threadIdx.x]
97 setAlphaAt(i, alpha, optionIdx)
98 end
99 Qs[threadIdx.x] = Q /* Set Qs to new values */

100 __syncthreads
101 end

69

Chapter 6. Multiple Options per Thread Block

Algorithm 9: Multiple options per thread block kernel - cont. 5
102 /* Backward propagation */
103 Qs[threadIdx.x] = 100 /* Init prices to 100$ */
104 __syncthreads
105

106 for i = maxHeight − 1 to 0 do
107 jhigh = min(i, c.jmax) j = threadIdx.x− c.jmax− scannedWidthIdx
108 price = Qs[threadIdx.x]
109 __syncthreads
110

111 if i <= c.height and j >= −jhigh and j <= jhigh then
112 alpha = getAlphaAt(i− 1, optionIdx)
113 price = Compute new price using alpha
114 end
115 __syncthreads
116

117 Qs[threadIdx.x] = price /* Set prices to new values */
118 __syncthreads
119 end
120

121 /* Set results to prices on the first nodes */
122 if optionIdx < idxBlockNext and threadIdx .x == scannedWidthIdx then
123 results[optionIdx] = Qs[scannedWidthIdx + c.jmax]
124 end

70

Chapter 6. Multiple Options per Thread Block

6.2 Implementations & Validation

We derived 3 implementations that differ only in the way how the array of alphas in
global memory is stored and accessed. It is similar to the 4 CUDA-option versions,
except that the array of Qs is not of concern here because it is in shared memory.

Version 1 - Naive

The first simple version was created to be a starting point for the other versions and
for comparison. The alphas are padded on a global level, thus the size equals the
maximum height of all options times the number of options. Values are accessed in
a straightforward way as maxHeight ∗ optionIndex + index . However, this access is
not coalesced and the next two versions solve that to improve performance.

Version 2 - Global-level Padding with Coalescing

The second version is similar, since the alphas are padded on a global level. How-
ever, the values are being accessed in transposed form as optionsCount ∗ index +
optionIndex . This simple change in indexing should result in performance speed-ups
for no additional cost, either in terms of storage requirements or pre-processing time.
Interestingly, in our experiments, this version did not lead to noticeable performance
gains, probably because alphas are not accessed as often as Qs which are already in
shared memory, and version 1 does have global-level padding.

Version 3 - Block-level Padding

The third version tries to improve on storage requirements as it uses padding for
alphas on block level. It does so by computing an array of indices to alphas, each
value representing the beginning of a segment allocated for a single block. One
segment is of size maximum height of options in the block times the number of
options in the block. The values are then accessed in a slightly more complicated
way as alphaIndexForBlock + optionIndexInBlock + optionsCountBlock ∗ index . This

71

Chapter 6. Multiple Options per Thread Block

should result in less global memory being allocated in trade-off for an array of indices
created, and then accessed in the kernel. It might also lead to speed-ups due to
improved locality of reference. For our datasets, this version performs up to ~3×
faster while using up to 6x less memory than versions 1 and 2. Note that warp-level
padding is not possible to achieve in this approach as one option can be computed
by multiple warps.

Optimizations

Choosing thread block size Due to the nature of this approach, it is best
to choose the biggest thread block size available to be able to manually pack as
many options into a block as possible. All versions when compiled use more than 64
registers which effectively limits the thread block size to 512. However, we can also
limit the amount of registers1 in order to be able to use the maximum block size of
1024. During our experiments, we observed that limiting the number of registers to
32 and setting block size to 1024 gives the best performance (up to ~2.3× faster) as
it lead to full occupancy of the device SMs.

Sorting input This approach eliminates thread divergence caused by different
option widths by applying flattening to the inner parallelism. In order to reduce
thread divergence on heights, it should be beneficial to sort the options by height
before computation. However, sorting options by width might lead to more efficient
packing of options into chunks. Experiments show that sorting by height gives better
performance for all tested datasets, up to ~2.3× faster than no sorting.

Validation

Computed results from all 3 versions are validated by expanding the test case de-
scribed in section 5.3. Furthermore, chapter 9 will describe tests using bigger datasets.

1We can limit the number of registers by setting the nvcc compiler flag –maxrregcount=32,
as mentioned in https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.htmloptions-for-
steering-gpu-code-generation

72

Chapter 6. Multiple Options per Thread Block

Summary

This chapter provided an overview of our parallel multiple options per thread block
implementation using CUDA with focus on explaining the challenges of exploiting
the inner parallelism, compared to the one option per thread implementation from
chapter 5. It introduced 3 versions of this parallel implementation, the final third
version being the best performing one. Finally, it described how the GPU results
were validated against the CPU results using our common CUDA test case. The
following chapter will introduce the third parallel approach — full flattening.

73

7
Full Flattening

This chapter will introduce the classic, fully-flattened implementation of the model.
It has been written in Futhark, a functional, high-level data-parallel language, with
the main reason for this being simplicity.

The purpose of this implementation is to further underline the importance of the
locality of reference vs. thread divergence trade-off, particularly when working with
large data sets. In this case, thread divergence optimization is at its peak, while
locality of reference is at its worst. The implementation exploits both inner and
outer parallelism, as it processes all input options at the same time.

7.1 Sequential Version to Futhark-basic

As full-flattening is difficult to imagine and compose from scratch, we have started by
creating a basic, one option per thread Futhark implementation, which we refer to as
Futhark-basic. Due to the functional language semantics, some of the optimizations
done in CUDA-option were not possible here. This involves particularly the memory
allocations, which are handled automatically by the Futhark compiler, allowing only
global memory padding. Nevertheless, sorting on either width or height can still turn
to be useful in order to reduce thread-divergence overhead.

As it will be shown in chapter 9, albeit its drawbacks, the performance of Futhark-
basic has the full potential of competing with both CUDA implementations. Despite
that, its main purpose is to serve as a template for deriving a fully-flattened version,
which we refer to as Futhark-flat.

Using a functional language to represent a data-processing algorithm is rather

74

Chapter 7. Full Flattening

straight-forward. Once the options are read in the sequential version, they are iter-
ated over by using a for-loop. In Futhark, this is done by a map operation. Since this
is the first map encountered in the Futhark program, and it is not nested, the func-
tion being mapped will be executed in parallel over all options. Temporary arrays
such as Qs, QsCopy and alphas are declared with Futhark’s let-binding and every
variable gets allocated in global memory. While C programs usually first allocate an
array, then enter a loop to provide its initial values, in Futhark this will be done by
a composition of replicate, iota or map.

The rest of the code translation followed the sequential code inside the loop, by
replacing C++ code with its functional Futhark equivalent. Two optimizations have
been done in order to simplify and reuse code, which included (i) moving the back-
ward and forward helpers into reusable functions, together with the computation of
jvalues and (ii) replacing the scatter in the forward helper by a gather operation in
order to optimize writes. Other more complex transformations include summing up
elements in an array, done by a loop in C++ and by a reduce operation in Futhark.
However, none of these transformation can be described as non-trivial, as they are
typical to functional languages. The complete code base for Futhark-basic can be
found in file futhark/futhark-basic.fut and is outlined in algorithm 10.

75

Chapter 7. Full Flattening

Algorithm 10: Futhark-basic
1 function trinomialBasic
Input : options : [{ StrikePrice, Maturity, Length, TermUnit,

TermStepCount, ReversionRate, Volatility, Type }],
yields : [{ Price, Timestep }]

Output: Price approximations for all options
2 results = map options with function:
3 constants = compute constants from option
4 Qs = replicate width 0 /* Init Qs to 0 */
5 Qs[jmax] = 1 /* Initial Q value */
6 alphas = replicate height 0 /* Init alphas to 0 */
7 alphas[0] = compute yield at constants.dt /* Initial alpha value */
8 /* Forward propagation */
9 loop (Qs,alphas) for i < height do

10 /* f1, f2, f3 check for out-of-bounds on j-index and set 0s */
11 Qs = map f1 Qs /* Pre-compute Qs */
12 Qs = map f2 (iota width) /* Get next step with fwdHelper */
13 tmpQs = map f3 Qs /* Compute tmpQs for reduce */
14 alpha = reducePlus tmpQs /* Compute next alpha */
15 alphas[i + 1] = alpha /* Set next alpha */

16 end
17 /* Backward propagation */
18 Prices = replicate width 100 /* Init Prices to 100$ */
19 loop (Prices) for i=(max_height-1) ≥ 0 do
20 /* f4 check for out-of-bounds on j-index and sets 0s */
21 Prices = map f4 (iota width) /* Prev step with bkwdHelper */

22 end
23 return@map Prices[jmax] /* Result for one option */

24 end
25 return results

76

Chapter 7. Full Flattening

7.2 Futhark-basic to Futhark-flat

Once Futhark-basic was validated against the C++ sequential implementation and
the book example, Futhark-flat could be derived. In Futhark, all arrays are stored
in (slow) global memory, which increases the time each thread needs for reading the
data. The two implementations work with different levels of parallelism. Futhark-
basic uses nested parallelism, where the pricing of one option happens sequentially,
but multiple options are priced simultaneously with the use of a parallel map. In
Futhark-flat many nested computations are performed in parallel, operating on enor-
mous arrays, each containing data for all options. Helper index and flag arrays are
used to indicate the start and end memory addresses of each option in such arrays,
in order to allow multiple threads to work on the same array in parallel. The way
threads are allocated to work on each array happens behind the scenes, automated
by the Futhark compiler. The transformations performed in CUDA-multi (see chap-
ter 6) and Futhark-flat should in theory be the same, as the difference between the
two only lies in the way memory is allocated, the use of in-place updates in CUDA,
and the amount of options processed in parallel.

The program expects to read the dataset from input as a structure of arrays. The
trinomialFlat function is then invoked with an array of all options as input, where
multiple arrays are computed from it, representing a series of OptionConstants men-
tioned in algorithm 2 in chapter 4. It can be seen that memory usage increases
proportionally with the number of options. Furthermore, every array created inside
trinomialFlat, such as Qs and alphas is also stored in global memory. In this im-
plementation, the size of the width-dependent arrays (e.g. Qs and QsCopy) is the
sum of all widths times the data type size (i.e. whether a float or double precision
is used). Height-dependent arrays (alphas) on the other hand are computed as the
number of options times the maximum height times the data type size (Note that an
optimization can be made here, to avoid the padding of height-dependent arrays).
While this implementation is expected to perform fast enough on small data sets, it
is also expected that the performance will significantly degrade with the increased
number of options, because of the excessive amount of memory it requires.

77

Chapter 7. Full Flattening

Since trinomialFlat works with arrays of individual properties for all options, dif-
ferently from the function in Futhark-basic, which works with individual properties
for one option at a time, several flattening principles were used in order to apply the
same permutations to all elements in the arrays at the same time. After inspecting
Futhark-basic code, we have extracted functions that have to be flattened in order
to apply them on flat arrays.

Flattening transformations

It can be seen immediately on Algorithm 10 that there is a repetitive use of oper-
ations, i.e., there are two replicates on widths and 4 maps on widths. This allows
efficient reuse of many of the temporary arrays, used in the process of flattening, such
as inds and flags. Furthermore, it is possible to reuse arrays between the different
transformations, as e.g. replicate and map are both done on the widths array. The
complete pseudo-code for Futhark-flat can be found under algorithms 11-12 further
in this section. Before the algorithm itself, we introduce the specific flattening oper-
ation we have used in order to implement it.

The code transformation starts from a replicate on the widths (Alg. 10 line 4). This
is used to initialize the array of Qs. As shown in the example in section 2.4.4, first
step is obtaining ns and ms. The ns in this case are the widths, which we can get
from the option constants. We can then obtain the inds and the size. The inds are
computed by performing an exclusive scan. Since we needed the scanned_lens (an
inclusive scan on widths) array further in the code, we omit the exclusive scan and
instead perform a map, adding the neutral element 0 in the beginning and excluding
the last element of scanned_lens (Alg. 11 line 7):

len_inds = map (i → if (i == 0) then 0 else scanned_lens[i− 1])

(iota numAllOptions)

Furthermore, we can obtain the size from last scanned_lens. The next step is ob-
taining a flags array as flags = scatter (replicate w 0) len_inds widths (Alg. 11 line
8). The array of ms on the other hand is obtained by performing a replicate w 0.

78

Chapter 7. Full Flattening

Computing the vals array is the next step of the transformation. It can be seen in
Futhark-basic, however, that the Qs array is not only initialized, but also the jmax th

element of it is set to 1 (Alg. 10 lines 4-5). We have decided to simplify the process by
combining these two operations. We start by creating a sgm_inds array by (Alg. 11
line 9-10):

scatter (replicate w 0) len_inds (iota numAllOptions)

where numAllOptions is obtained through length options. We then perform
sgmScanPlus flags sgm_inds which results in an array containing indexes of all
options, spread across the size of Qs. In the next step, we create the array (Alg. 11
line 13)

q_lens = map(x→ x− 1) (sgmScanPlus flags (replicate w 1))

which contains segmented enumerators for each of the option widths. This array is
going to be useful for getting j − indexes from the Qs arrays later on. Finally, we
apply (Alg. 11 line 14)

Qs = map ((i, k)→ if (i == jmaxs[sgm_inds[k]]) then 1 else 0) q_lens (iota w)

This concludes the first replicate on widths.

The next step is a replicate on alphas (Alg. 10 line 6) along the height of all
trees. We have approached this transformation by determining the max height
from all options, which could then be used to create an enormous array of size
total_len = numAllOptions ∗ max_height (Alg. 11 line 16), where max_height is
obtained with a custom reduce on the heights, which finds the highest element.
Once again we want to combine the initialization of alphas to 0 and the computation
of alphas[0] with the use of the yield curve, however, for all options. This means
that every 0th element of each segment of alphas has to be assigned with a value
from the yield curve. We can do this in 1 step, but for simplicity, the pseudo-code
of Futhark-flat divides these first computations of alphas in two steps. We first
replicate total_len 0 to initialize the array. Finally, we obtain (Alg. 11 line 21)
alphas = scatter alphas (map (i → i ∗ seq_len) (iota numAllOptions)) yields.

79

Chapter 7. Full Flattening

The next three operations are two maps on Qs and one on iota width (Alg. 10
line 11-13). As mentioned in 2.4.1, a nested map is simply the same function ap-
plied to the flat array. Since we already have the flat Qs, we can safely apply the
maps (Alg. 12 lines 25-27). Similarly, we have q_lens, which contains segmented
enumerators of all widths. Note that, as before, the mapping functions consist of a
safe mechanism, checking if the j-value is going out of bounds. This can happen in
the beginning of the tree construction, as jmin and jmax have not been reached yet,
hence some nodes are missing, e.g. there are no nodes above node B, or below node
D on fig. 3.2.

A reduce on tmpQs is done next (Alg. 10 line 14), which needs to be flattened
in order to obtain the new alphas for the next steps of all options. Luckily, tmpQs
are already flat, as it is a result of a map operation performed on Qs. As mentioned
in chapter 2.4.4, we can obtain the vals in a sgmReduce by using a segmented scan
(Alg. 12 line 28):

alphaVals = sgmscanPlus flags tmpQs

We remove the redundant step of computing the actual reduce result and instead
write the next step of alphas directly, with the use of the alpha_indsp1 helper array
(Alg. 12 lines 31-34).

alpha_indsp1 = map f6 (iota numAllOptions)

alphas = scatter alphas alpha_indsp1 alpha_vals

The backward propagation begins with the initialization of the Prices array, which
is a map over iota w, which is already flat, hence the map function is simply applied
to all flat elements (Alg. 12 line 38). Furthermore, we observe that Prices inside the
backward propagation step are also computed with the use of a map over iota w,
hence the same rule applies (Alg. 12 line 41).
Finally, Prices at all jmax must be returned. For this step, we can easily obtain inds
of all root elements in Prices and their respective vals. The algorithm is finalized by
returning res = scatter (replicate numAllOptions 0) inds vals (Alg. 12 line 45-49),
which consists of the final price estimates for all options.

80

Chapter 7. Full Flattening

Algorithm 11: Futhark-flat
1 function trinomialFlat
Input : options : [{ StrikePrice, Maturity, Length, TermUnit,

TermStepCount, ReversionRate, Volatility, Type }],
yields : [{ Price, Timestep }]

Output: Price approximations for all options
2 /* Get option constants */
3 (widths, heights, constants) = unzip (map f1 options)
4 numAllOptions = length options /* Get length of options */
5 scanned_lens = scanPlus widths /* Scan widths */
6 w = last scanned_lens /* Total size of all width arrays */
7 len_inds = map (i → if (i == 0) then 0 else scanned_lens[i− 1]) (iota

numAllOptions) /* Get width indexes */
8 flags = scatter (replicate w 0) len_inds widths /* Get width flags */
9 sgm_inds = scatter (replicate w 0) len_inds (iota numAllOptions)

10 sgm_inds = sgmscanPlus flags sgm_inds /* Get segm. width inds */
11

12 /* Get jmin to jmax range values for all options, represented in
the range from 0 to 2 ∗ jmax + 1 */

13 q_lens = map (textx→ x− 1) (sgmscanPlus flags (replicate w 1))
14 Qs = map ((i,k) → if (i == jmaxs[sgm_inds[k]]) then one else zero) q_lens

(iota w) /* Initialize Qs */
15 /* Get max height */
16 max_height = reduce ((x,y) → if (x > y) then x else y)) 0 heights
17 seq_len = max_height + 1 /* Compute length of max tree height */
18 total_len = numAllOptions * seq_len /* Copmute alphas length */
19 alphas = replicate total_len 0 /* Init alphas array with 0s */
20 /* Init alphas array with initial alpha values on starting

indexes for all options */
21 alphas = scatter alphas (map (i→ i ∗ seq_len) (iota numAllOptions)) yields

81

Chapter 7. Full Flattening

Algorithm 12: Futhark-flat - cont. 2
22 /* Forward propagation */
23 for (Qs, alphas) for i < max_height do
24 /* f2, f3, f4 check for out-of-bounds on j-index and set 0s */
25 Qs = map f2 (Qs) (q_lens) (iota w) /* Precompute Qexp on Qs array

(uses sgm_inds, seq_len, alphas, other constants) */
26 Qs = map f3 q_lens (iota w) /* Compute Qs in the next step */
27 tmpQs = map f4 q_lens (iota w) /* Compute tmpQs for reduce */
28 alpha_vals = sgmscanPlus flags tmpQs
29

30 /* f5, f6 check for out-of-bounds on i-index and set 0s */
31 alpha_vals = map f5 (iota numAllOptions) /* Compute alphas */
32 alpha_indsp1 = map f6 (iota numAllOptions)
33 /* Update alphas at next step */
34 alphas = scatter alphas alpha_indsp1 alpha_vals
35 end
36

37 /* Backward propagation */
38 Prices = map f7 (iota w) /* Init Prices to 100$ */
39 for (Prices) for i = (max_height − 1) ≥ 0 do
40 /* f8 check for out-of-bounds on j-index and sets 0s */
41 Prices = map f8 q_lens (iota w) /* Compute Price at prev step */

42 end
43

44 /* Get root inds and Prices */
45 (inds, vals) = unzip (map f9 (iota numAllOptions))
46 /* Scatter prices for all options */
47 Prices = scatter (replicate numAllOptions 0) inds vals
48

49 return Prices /* Return results for all options */

82

Chapter 7. Full Flattening

7.3 Validation

To validate the correctness of Futhark-flat, we have used futhark-bench, a built-in
tool, which is the recommended way to benchmark Futhark programs. The code is
compiled using the specified compiler and ran a specified number of times for each
test case. The output is validated against the output files in the out folder, previ-
ously created by running the Sequential C++ implementation, described in chapter
4. The average runtime is also printed to the standard output. Futhark-flat has been
successfully validated on all input data sets.

7.4 Comparison with CUDA-multi

The core differences between CUDA-multi and Futhark-flat are (i) the number of
options that can be priced in parallel and (ii) the arrangement of memory. While
CUDA provides the concept of thread blocks, where all threads in a single block
are run on the same multiprocessor (hence allowing the use of shared thread memory
and register memory for faster data access), Futhark operates on a larger granularity,
thus is only able to operate with the much slower global memory. This difference
makes it possible to derive a multiple options per thread block in CUDA, where a
chunk of options can be priced in parallel, but not in Futhark. Despite that, both
implementations operate on a flat list of options. Whether this list comprises of the
number of options whose widths can fit in a CUDA block (1024), or of all options that
were inputted, the flattening transformations of both versions remain semantically
the same.

When comparing the kernel function from CUDA-multi with the trinomialFlat
function in Futhark-flat, the first noticeable difference is the computation of option
constants. While Futhark-flat computes constants for all options in one map oper-
ation and stores them in separate arrays in global memory, CUDA-multi computes
constants only for options in the current thread block (as intended) and stores them
in fast thread registers.

In CUDA’s case, option constants could also be stored in shared memory to ease

83

Chapter 7. Full Flattening

the register pressure in order to fit more blocks on SMs, but that would mean each
memory access is always slower. On the other hand, we can also enforce a limit
on the number of registers, but it might result in register spilling to slow global
memory. However, spilled registers can still get cached in L1 cache which has the
same speed as shared memory. We tried to experiment with putting the constants
into shared memory and it indeed eased register pressure, but it also noticeably hurt
the performance. Possible optimization in CUDA-multi could be some combination
of shared memory for rarely accessed constants and registers for frequently accessed
ones.

Another similar difference is in forward propagation, where CUDA-multi stores
temporary values tmpQs in thread registers which results in much faster access.

Summary

This chapter has provided an overview of our fully flattened parallel implementation
using Futhark. It has started by introducing Futhark-basic, a one-option per thread
implementation in Futhark, created and used as a template to derive Futhark-flat,
together with the flattening transformations applied and the method we have used
to validate its correctness. At the end, it compared flattening implementation in
Futhark-flat with the one in CUDA-multi. This concludes the last two algorithm im-
plementations and leads to the methodology and experiments performed in order to
determine the pros and cons of each version and more importantly their performance.

84

8
Experimental Methodology

This chapter will introduce the reader to the methodology used to experiment our
work. This includes the data sets we have generated and their difference in dis-
tributions, which have helped us find key differences in the performances of our
implementations. Later in this chapter we present the experimental environment,
which includes the hardware and software we have used and finally we conclude with
an evaluation of the experiments we have created and the reasons why.

8.1 Data generation

Until this point, all implementations have been tested and validated on examples
from the book (book.in). Doing this helps determine the correctness of the imple-
mentations and gives some hints about the running times of each version, however,
book.in is too small to draw any meaningful conclusions from it. To challenge the
implementations we have created a simple dataset generator, which works with sev-
eral different distributions. This chapter will introduce the reader to the dataset
generator and the sets that were generated to put the implementations to test and
help discover performance differences.

8.1.1 Generator Overview

The generator is implemented in C++ and takes 3 arguments as input - total number
of options in the set, a skewness parameter and the data distribution type to be
generated. The inputted number of options is used as a max limit when generating
options. We have generated six essential datasets with 216 = 65536 options, which

85

Chapter 8. Experimental Methodology

is double the total number of available threads on the GPU that was used for this
thesis1 (32768). Additionally, we have created variations for each essential data
distribution with 1000, 10000 and 30000 options in each (that is 6 ∗ 3 = 18 more
files), which could be useful to test performance differences when files have different
number of options.

The skewness parameter represents the amount (in percent) of options that will
be skewed (have significantly different height and/or width than the rest of the
options). This parameter is applied only for the skewed distributions, which will be
described later in this chapter. Lastly, the data distribution type is used to specify
the dataset which will be generated. The generator currently works with 6 different
types, which will be described next in this section. Plots and statistics to show the
data distributions are available in Appendix 11. Note that all data distribution plots
consist of a scatter plot where each dot represents an option, and histogram plots next
to their corresponding axis, indicating on the data distribution. We have additionally
included statistics for both the widths and the heights of different options in the file.

8.1.2 Uniform

The uniform data distribution consists of the same option replicated multiple times.
Each entry in this set has the same height and the same width as the others. All
widths in the newly generated set are equal to 47 and all heights to 109. As this set
is uniformly distributed, all other statistics such as variance, std, skewness are 0 for
both widths and heights. The data distribution and statistics about it are shown on
fig. 8.1, where it can be seen that a dot is formed in the center of the plot. While
pricing the same option this many times is not practically/financially useful, there is
a possibility that many real-life inputs will have a uniform distribution, where both
their widths and heights will have close values. In such a case, the dots on the plot
will be separated, but will still remain close to the center. This suggests that in these
distributions, pricing individual options will also take similar times. In our generated
set, each option should be priced in exactly the same amount of time. Furthermore,

1Hardware will be described later in section 8.2

86

Chapter 8. Experimental Methodology

since there is no difference in the heights and the widths, it is not expected that
pricing this data distribution in parallel will benefit from any sorting or padding,
which should be an interesting experiment.

Figure 8.1: Illustration of the uniformly distributed generated file

8.1.3 Random

The random data distribution (see fig. 8.2) consists of options with both uniformly
distributed random widths and uniformly distributed random heights. This dataset is
interesting, as it presents a wide variety of option sizes. Both padding and sorting can
benefit the processing of such a data distribution, hence it can help answer questions
concerned with the various optimization techniques that can possibly improve the
performance of the algorithm.

87

Chapter 8. Experimental Methodology

Figure 8.2: Illustration of the randomly distributed generated file

8.1.4 Random with Constant Height/Width

The following two data distributions (see Appendix 11 for plots and details) have
similar structures as the random one described above, however, one of their parame-
ters is being held in place (kept constant). In the case of constant height, the width
is uniformly randomly distributed, while the height remains the same throughout all
options. The other case is vice verse, where the width remains the same, while the
height is randomly distributed. It will be interesting to experiment whether having a
constant width or height benefits the performance of any implementation. It should
also be interesting to see if sorting and padding can benefit the performance.

88

Chapter 8. Experimental Methodology

8.1.5 Skewed

This data distribution introduces data skewness, where a small percent of all options
is significantly different than the rest. As it can be seen on fig. 8.3, the majority of
the data has widths up to approx. 100 and heights up to approx. 400. Several options
with much larger heights and widths stand out with a larger range for both widths
and heights. This data distribution can also often occur in real life situations, where
several data entries significantly deviate from the rest. This introduces problems
with memory padding in some of the implementations, but can benefit from sorting
both along the height and along the width. It will be interesting to experiment with
the behaviour of CUDA-multi on similar datasets where the majority of options have
small widths, hence allowing to pack and process more options in parallel.

Figure 8.3: Illustration of the skewed generated file

89

Chapter 8. Experimental Methodology

8.1.6 Skewed with Constant Height/Width

The last two data distributions (see Appendix 11 for plots and details) introduce
similar concepts as the skewed dataset. Similarly, the majority of the data has a
relatively small uniform random distribution on both axes. The difference comes in
the skewed part, where either the height or the width are constant, with a much
larger values than the rest of the set. he free parameter (the one that is not held
constant) in these cases has the same distribution as the rest of the options. These
two sets can show interesting information about the dominance of either widths or
heights in a dataset, and help determine whether any of the implementations perform
better on widths or on heights. It should also be interesting to observe the runtime
when sorting and padding are used on each of the different axes.

8.2 Experimental Environment

Hardware In order to test our code, we have used the GPU cluster at DIKU2.
It is composed of 5 servers with multicore CPUs and 2 GPUs per machine. We have
only used four of the machines (GPU01-04) each with 2 x nVidia GeForce GTX 780
GPUs. The complete hardware specification for each of the 4 GPUs is described
below:

• Case: 1x Supermicro SYS-7047GR-TPRF, 4U/Tower barebone LGA2011,
2x1620W PSU, 8x3.5" htswp trays

• CPU: 2x Intel Xeon E5-2650v2, 8-core CPU, 2.6GHz, 20MB cache, 8GT/s
QPI

• RAM: 8x Samsung 16GB DDR3(128GB total) 1866MHz Reg. ECC server
module

• GPU: 2x nVidia GeForce GTX 780 Ti, 3072MB, 384 bit GDDR5, PCI-E 3.0
16x, 15 streaming multiprocessors with 2880 CUDA cores (single precision)

2Find more information on https://di.ku.dk/it/documentation/gpu/

90

https://di.ku.dk/it/documentation/gpu/

Chapter 8. Experimental Methodology

and 960 CUDA cores (double precision) and compute capability 3.5

• SSD: 1xIntel S3500 serie 240GB SATA

• HDD: 1x Seagate Constellation ES.3 4TB 7200RPM SATA 6Gb/s 128MB
cache 3,5"

The GTX 700 series were first released in 2013 and GPU technology has noticeably
improved since. Despite that, both CUDA and Futhark provide portability, allowing
to easily switch hardware, or scale the solution, allowing to run the code on even
more modern hardware, without the need to re-write it.

Software We also turn to software as another aspect of portability. Even
though CUDA and Futhark allow code to be run on many different architectures
and operating systems, it is often a good idea to align compiler versions on different
systems. All experiments described in chapter 9 have been run on Red Hat En-
terprise Linux Server 7.5 (Maipo) with a Linux 3.10.0-862.6.3.el7.x86_64
kernel. All CUDA programs have been compiled by Cuda compilation tools, re-
lease 9.2, V9.2.148 using C++11 and all Futhark programs by the Futhark 0.6.0
compiler. Note that the use of older versions of both may result in compile errors, as
we have used modern language features introduced in the newer releases. The same
applies for newer compiler versions, since we cannot guarantee that neither Nvidia
products, nor the Futhark language are going to be backward compatible.

Experiments With the large number of combinations between datasets, compu-
tation precision, implementations, optimizations and more, we have created a testing
framework for our CUDA implementations. It runs one combination at a time and
writes the measurements to a file. For each run we obtain the name of the file;
the precision; number of registers; the implementation version; the block size; the
sort option; kernel time in microseconds; total time in microseconds and the total
allocated memory in bytes. Futhark implementations are tested using the built-in
futhark-bench tool.

91

Chapter 8. Experimental Methodology

Evaluation Throughout all experiments, we have tested for multiple perfor-
mance factors:

• Using both float and double precision. Although we do not expect that
computing doubles will perform better than floats, it has been interesting to
observe how the algorithms perform on different levels of precision.

• To determine the highest performing implementation, we evaluate the run-
times of all approaches. For simplicity, we align our CUDA findings with
futhark-bench’s measurement strategy - excluding input reading, device con-
text initialization, copying of input and output to/from the device and writing
the output. Pre-computations of the data, such as sorting and index compu-
tations/padding are still included in our results. It has been interesting to
observe the speed-ups achieved when different variations of sorting were ap-
plied, when different types of padding were applied and when different block
sizes were used3. All runtimes are in seconds, as we have found that measure
to be best visually representative on the plots.

• Another important measurement we have considered was memory. We have
created multiple versions both for CUDA-option and CUDA-multi, where mem-
ory was optimized, thus it has been interesting to observe the impacts of each
version. Memory has been measured in megabytes (MB).

Summary

This chapter provided an overview of the methodology used in order to set up the
experiment environment. This has included the datasets we have generated in order
to put the implementations to a test, the hardware and software used to run them
and a brief description of what exactly we have put to the test in order to measure
performance. The following chapter will introduce the actual experiments and elab-

3Note that CUDA-multi is always expected to perform better with the largest block size available
- namely 1024, hence we have tested different block-sizes only for CUDA-option.

92

Chapter 8. Experimental Methodology

orate on the results we have obtained, in order to determine different performance
characteristics and obtain an empirical validation for answering the thesis questions.

93

9
Experimental Results

This chapter will introduce the actual experiments we have conducted in this project.
It will first discuss the performance benefits of the different optimization techniques
we have used and generalize with the speed-ups achieved over the sequential set-up
we have discussed in chapter 4. The chapter will conclude with a summary of our
findings aiming to answer the thesis questions stated in the beginning of the report.

As mentioned in the previous chapter, we ran our 5 programs on 7 datasets with
many combinations of parameters such as version, sorting and block size, which gave
us a large number of results (3542 in total). Therefore, it is important to show
only the results that matter the most, and we decided to make plots that show the
best runtimes and average memory we measured for the combination shown on the
plot. Even though we have created a variety of plots to support our findings, in this
chapter we will only show the ones which can clearly show the differences we discuss.
Since we have distributions of different nature, we expect to see opposing differences
for some optimizations. Therefore, to underline the trade-offs and the importance of
each optimization, we have tried to show on plots the two datasets that have shown
the most contrast in each experiment. Nevertheless, all results can be found in tables
under the two chosen plots and all plots can be found in Appendices B, C and D.

94

Chapter 9. Experimental Results

9.1 CUDA-option Performance

9.1.1 Coalescing

As it can be seen on fig. 9.2, coalescing (versions 2, 3 and 4 all provide memory
coalescing) has proven to be a successful technique for CUDA-option. The highest
performance was achieved on the random dataset with constant height, where we
have achieved as much speed-up as ~10× on floats and ~2× on doubles. The least
impact by coalescing has shown to be on the skewed datasets, even though still ~2×
faster.

95

Chapter 9. Experimental Results

Table 9.1: Float runtime for all 7 datasets (in seconds)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 0.347 12.64 1.037 2.05 2.498 0.973 0.879
2 0.055 2.125 0.11 0.299 1.106 0.248 0.234
3 0.054 2.043 0.108 0.294 1.085 0.243 0.227
4 0.055 1.993 0.108 0.293 1.085 0.243 0.227

Table 9.2: Double runtime for all 7 datasets (in seconds)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 0.493 15.329 1.273 3.026 3.475 1.079 1.101
2 0.248 8.355 0.545 1.497 2.105 0.66 0.632
3 0.249 8.427 0.547 1.502 2.112 0.661 0.636
4 0.252 8.409 0.546 1.504 2.127 0.661 0.642

Figure 9.2: Performance impact of coalescing in CUDA-option (best runtimes)

96

Chapter 9. Experimental Results

9.1.2 Global-level Padding

While the runtime improvements were significant after the coalescing, memory con-
sumption had also increased with the usage of global-level padding in version 2 (up
to ~7× more for both floats and doubles), in comparison to version 1. This can
be seen on fig. 9.4 showing the memory consumption difference between all versions
for datasets 1 - Random and 4 - Skewed. This was obviously unwanted and it was
therefore necessary to try and reduce the memory usage.

9.1.3 Block-level Padding

As described in chapter 5, block-level padding (version 3) is a memory optimization
technique, which attempts to reduce the large memory usage, while preserving coa-
lesced memory access. This version has proven to significantly reduce memory size,
as it can be seen on fig. 9.4, while the performance remained similar. On average,
requiring ~1.4× less memory than version 2 for floats and ~3× for doubles, but still
~2× more than version 1.

9.1.4 Warp-level Padding

Warp-level padding (version 4) was also described in chapter 5, where arrays were
padded per 32 threads (warp) instead of a block, compared to version 3. On average,
it used ~1.4× less memory than block-level padding, bringing it down to ~1.4×
more memory than no padding (fig. 9.4), while performance remained similar again
(fig. 9.2).

97

Chapter 9. Experimental Results

Table 9.3: Float memory size for all 7 datasets (in MB)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 53.263 283.977 159.031 177.772 81.821 80.399 80.043
2 53.263 558.263 285.263 326.263 558.263 356.263 347.263
3 53.521 405.301 184.502 207.782 156.367 149.116 139.867
4 53.536 354.488 183.127 206.254 115.145 108.296 106.469

Table 9.4: Double memory size for all 7 datasets (in MB)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 105.513 566.925 317.034 354.532 162.588 159.747 159.035
2 105.513 1115.513 569.513 651.513 1115.513 711.513 693.513
3 105.771 809.55 367.724 414.292 311.595 297.848 278.65
4 105.786 707.85 364.956 411.222 228.997 215.484 211.654

Figure 9.4: Memory impact of padding in CUDA-option (average global memory
size)

98

Chapter 9. Experimental Results

9.1.5 Sorting

An important optimization technique which affects thread divergence is sorting. We
tested 4 types of sorting:

1. ascending height first, width second

2. descending height first, width second

3. ascending width first, height second

4. descending width first, height second

As shown on fig. 9.6, dataset 0 - Uniform data distribution, is negatively affected
by it, as we also have to spend a few milliseconds to sort the data and gain no
actual benefit for doing that. This is expected, since all options in the file have
the exact same width and height. We expect, however, that sorting similar data
distributions, where the distribution of data is centered around the middle (similar
to fig. 8.1 but not just one point), can lead to a small, insignificant speed-up. Hence
the only situation where we found sorting useless was when pricing a large number
of duplicated options, which is impractical.

In contrast, sorting has proven to be quite successful on other datasets. However,
as mentioned in chapter 5, and shown on fig. 9.6, choosing a good sorting strategy can
be data-sensitive. We can see on the plot for dataset 5 - Skewed constant height that
any sorting is better than no sorting at all. Despite that, different sorting options
can produce different speed-ups with up to 20% of margin.

Due to the thread divergence, we risk running large options (e.g. options with
large heights) in the end, which likely results in CUDA waiting on a few threads to
process them, while a lot of other threads are idling. Intuitively, reducing the idle
time for threads can produce significant speed-ups, hence we expect that sorting by
descending should be generally better in most cases. Looking at the additional plots
in Appendix B.3 or tables in fig. 9.6, we can confirm our observation, as sorting by
both width and height in descending order tends to be faster.

99

Chapter 9. Experimental Results

Additionally, we show that pre-processing (primarily affected by sorting) takes a
negligible amount of time in all cases, as seen in fig. 9.7, where the highest average
pre-processing time for doubles takes 12.3 milliseconds when sorting by ascending
width.

Table 9.5: Float runtime for all 7 datasets (in seconds)
sort DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
None 0.054 8.422 1.037 0.644 2.498 0.77 0.706
Height N 0.056 2.554 0.115 0.337 1.181 0.304 0.299
Height H 0.056 1.993 0.108 0.294 1.129 0.25 0.243
Width N 0.056 2.585 0.116 0.337 1.138 0.311 0.285
Width H 0.056 2.069 0.108 0.293 1.085 0.243 0.227

Table 9.6: Double runtime for all 7 datasets (in seconds)
sort DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
None 0.248 26.203 1.273 2.973 9.776 2.886 2.575
Height N 0.254 9.18 0.551 1.551 2.322 0.868 0.862
Height H 0.254 8.355 0.545 1.497 2.162 0.66 0.696
Width N 0.254 10.752 0.55 1.551 2.279 0.975 0.848
Width H 0.254 9.96 0.545 1.497 2.105 0.811 0.632

Figure 9.6: Performance impact of sorting in CUDA-option (best runtimes)

100

Chapter 9. Experimental Results

Table 9.7: Float pre-processing time for all 7 datasets (in milliseconds)

sort DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
None 1.325 2.947 1.597 1.619 1.69 1.644 1.657
Height N 3.022 5.458 3.376 3.396 3.46 3.436 3.477
Height H 3.039 5.407 3.388 3.403 3.439 3.424 3.483
Width N 3.03 6.131 3.398 3.425 3.458 3.459 3.494
Width H 3.033 5.297 3.375 3.418 3.453 3.441 3.479

Table 9.8: Double pre-processing time for all 7 datasets (in milliseconds)
sort DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
None 1.283 2.678 1.788 1.87 2.036 1.807 1.795
Height N 7.098 10.664 7.586 7.592 7.629 7.524 7.516
Height H 7.104 9.206 7.601 7.593 7.636 7.516 7.521
Width N 7.21 12.304 7.561 7.703 7.639 7.551 7.524
Width H 7.107 11.987 7.547 7.622 7.632 7.567 7.511

Figure 9.7: Pre-processing cost in CUDA-option (average pre-processing times)

9.1.6 Block Sizes

Since CUDA-option is concerned with running a single option per thread, the block
size determines the number of options that can be processed in parallel. This was
also described at the end of chapter 5, together with an explanation of the trade-offs
for choosing different block sizes. The two experiments we have chosen to display in
this section (see fig. 9.9) show that the optimal block-size is also dependent on the
data. Even though the impact of block sizes is not significant (i.e. ~1.5× for floats
and ~1.2× for doubles), dataset 1 - Random performs best with a block size of 128.
In contrast, dataset 5 - Skewed Constant Height operates best with block size of 512.
Despite that, smaller block sizes prevail to show optimal performance on all other
experiments (as seen in Appendix C.2 or tables in fig. 9.9).

101

Chapter 9. Experimental Results

Table 9.9: Float runtime for all 7 datasets (in seconds)
block DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
32 0.083 2.911 0.176 0.491 1.085 0.252 0.233
64 0.054 2.029 0.108 0.294 1.093 0.249 0.23
128 0.054 1.993 0.108 0.293 1.092 0.243 0.227
256 0.055 2.185 0.11 0.294 1.115 0.244 0.229
512 0.055 2.282 0.112 0.294 1.174 0.256 0.23
1024 0.059 2.347 0.113 0.302 1.56 0.339 0.306

Table 9.10: Double runtime for all 7 datasets (in seconds)
block DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
32 0.257 9.075 0.548 1.517 2.153 0.742 0.696
64 0.248 8.815 0.545 1.5 2.156 0.735 0.702
128 0.248 8.355 0.545 1.497 2.105 0.722 0.682
256 0.259 9.053 0.55 1.514 2.327 0.67 0.632
512 0.267 10.089 0.562 1.544 3.312 0.66 0.722
1024 0.316 9.965 0.613 1.638 5.431 1.025 1.048

Figure 9.9: Performance impact of different block sizes in CUDA-option (best run-
times)

102

Chapter 9. Experimental Results

9.2 CUDA-multi performance

9.2.1 Coalescing

Both version 1 and version 2 of CUDA-multi use global-level padding to allocate
height-dependent arrays (alphas). Their difference comes in the memory coalescing.
Interestingly enough, all experiments we have created to test the performance benefits
of coalescing on CUDA-multi have shown no significant improvement. This can be
seen on fig. 9.11. The only reasonable explanation for this is that CUDA-multi does
not access that many alphas at the same time. For example, in CUDA-option on a
uniform dataset, using a block size of 1024 will make all 1024 threads access alphas at
the same time, which makes it easy to optimize data transfers by coalescing. On the
other hand, in CUDA-multi the number of alphas accessed at the same time depends
primarily on the number of options in the block and their widths. Nevertheless, this
number is going to be much smaller, making optimizations much less significant.

103

Chapter 9. Experimental Results

Table 9.11: Float runtime for all 7 datasets (in seconds)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 0.146 6.797 0.743 1.192 1.138 1.016 0.456
2 0.148 6.895 0.758 1.204 1.135 1.01 0.462
3 0.15 4.841 0.75 0.888 0.45 0.334 0.336

Table 9.12: Double runtime for all 7 datasets (in seconds)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 0.439 12.312 1.367 2.794 1.877 1.638 1.014
2 0.439 12.364 1.374 2.798 1.877 1.635 1.016
3 0.444 10.343 1.388 2.465 1.147 0.91 0.896

Figure 9.11: Performance impact of memory coalescing on CUDA-multi (best run-
times)

104

Chapter 9. Experimental Results

9.2.2 Global-level Padding

As noted in the previous section, both version 1 and 2 use global-level padding and
no memory-optimizing technique has been applied. Hence we do not expect any
memory differences between the two. Fig. 9.13 further confirms our expectations.

9.2.3 Block-level Padding

Similarly to CUDA-option, we can apply block-level padding in an attempt to op-
timize the memory usage of the implementation. We can see on fig. 9.13 that on
the random data distribution we can achieve up to ~2× memory improvement for
both floats and doubles. Furthermore, on the skewed dataset, we can see memory
improvements up to ~5× for both floats and doubles. Due to the improved locality of
reference, as mentioned in chapter 6.2, we also expect to see runtime improvements
after this optimization. Indeed, if we look at fig. 9.11 we can see that version 3 per-
forms up to ~3× faster on floats and ~1.8× on doubles. Furthermore, we can observe
that all skewed datasets are significantly and positively impacted by version 3.

Intuitively, the next step would be to experiment with warp-level padding and
attempt to improve the memory optimization even further. However, since one
option can be computed by multiple warps, this optimization is not available in
CUDA-multi.

105

Chapter 9. Experimental Results

Table 9.13: Float memory size for all 7 datasets (in MB)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 29.781 302.882 29.881 302.781 302.787 302.785 92.787
2 29.781 302.882 29.881 302.781 302.787 302.785 92.787
3 29.8 168.061 30 180.213 60.99 66.086 57.208

Table 9.14: Double memory size for all 7 datasets (in MB)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 58.531 604.632 58.632 604.531 604.537 604.535 184.537
2 58.531 604.632 58.632 604.531 604.537 604.535 184.537
3 58.55 334.966 58.75 359.377 120.943 131.189 113.374

Figure 9.13: Memory impact of global-level padding CUDA-multi (average global
memory size)

106

Chapter 9. Experimental Results

9.2.4 Sorting

As mentioned at the end of chapter 6, reducing the thread divergence on heights
can be done by sorting by height, while sorting by widths can improve the options
packing. We can see on fig. 9.15, that any sorting gives up to ~1.7× speed-up for floats
and up to ~1.4× for doubles. The differences between sorting options is insignificant,
however we can see that sorting by height often results in a slightly better speed-up.
Supplementary plots in Appendix. C.3 and tables in fig. 9.15 further underline this.

As also seen in section 9.1.5, uniform datasets obviously do not benefit from sort-
ing, but it has been shown that the process of sorting only slightly degrades perfor-
mance.

107

Chapter 9. Experimental Results

Table 9.15: Float runtime for all 7 datasets (in seconds)
sort DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
None 0.146 7.281 0.778 1.551 0.778 0.769 0.6
Height N 0.148 4.847 0.743 0.894 0.452 0.342 0.337
Height H 0.148 4.841 0.743 0.89 0.45 0.334 0.336
Width N 0.148 4.919 0.743 0.893 0.464 0.366 0.344
Width H 0.148 4.933 0.743 0.888 0.462 0.365 0.345

Table 9.16: Double runtime for all 7 datasets (in seconds)
sort DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
None 0.439 13.19 1.428 3.442 1.59 1.484 1.265
Height N 0.444 10.343 1.367 2.474 1.149 0.921 0.897
Height H 0.445 10.367 1.369 2.465 1.147 0.91 0.896
Width N 0.445 10.374 1.367 2.476 1.151 0.94 0.896
Width H 0.444 10.475 1.37 2.466 1.147 0.939 0.899

Figure 9.15: Performance impact of sorting padding CUDA-multi (best runtimes)

108

Chapter 9. Experimental Results

9.2.5 Block Sizes

The experiments on block sizes (see fig. 9.17) have proven that using block size of
1024 and limiting registers to 32 is always preferable, compared to using block size
of 512 without limiting registers. We can see a speed-up of up to ~1.4× on floats and
~1.5× on doubles. Bigger block size allows packing more options in one block, while
limiting the number of registers helps to achieve full occupancy on SMs, proving our
performance expectations from chapter 6.2.

Table 9.17: Float runtime for all 7 datasets (in seconds)
block DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
512 0.206 7.603 1.216 1.247 0.631 0.467 0.471
1024 0.146 4.841 0.743 0.888 0.45 0.334 0.336

Table 9.18: Double runtime for all 7 datasets (in seconds)
block DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
512 0.664 20.91 3.146 3.869 1.894 1.444 1.44
1024 0.439 10.343 1.367 2.465 1.147 0.91 0.896

Figure 9.17: Performance impact of block sizes on CUDA-multi (best runtimes)

109

Chapter 9. Experimental Results

9.2.6 Bin Packing

As mentioned in chapter 6, in CUDA-multi, all options are packed sequentially before
invoking the kernel. Ideally, we can optimize this by implementing it in parallel.
Despite that, we show on tables 9.19 and 9.20 that pre-processing of the data has
had insignificant impact on the performance, delaying it up to ~7.3 milliseconds on
average. We can also note here that (i) the times shown in the two tables show the
average pre-processing time for each version (hence there may be larger runtimes
than 7.3, but still insignificant) and (ii) the runtimes include sorting too, as sorting
can also have an impact on bin packing.

Table 9.19: Float pre-processing time for all 7 datasets (in milliseconds)

version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 2.734 3.688 3.211 3.251 3.314 3.29 3
2 2.701 3.657 3.268 3.264 3.283 3.255 3.089
3 2.667 3.517 3.381 3.001 3.015 2.885 3.045

Table 9.20: Double pre-processing time for all 7 datasets (in milliseconds)
version DAT 0 DAT 1 DAT 2 DAT 3 DAT 4 DAT 5 DAT 6
1 5.93 7.257 6.627 6.706 6.762 6.675 6.198
2 5.985 7.3 6.603 6.676 6.658 6.702 6.161
3 6.174 6.967 6.659 6.56 6.251 6.363 6.293

Figure 9.18: Pre-processing cost in CUDA-multi (average pre-processing times)

110

Chapter 9. Experimental Results

9.3 Parallel Speed-up

First and foremost, we underline the performance benefits that porting code to
GPGPU hardware can provide. Figures 9.19 and 9.20 show speed-up achieved by
all parallel implementations compared to the sequential implementation, for both
single (floats) and double precision respectively. Even though the sequential code
could be further optimized, it does already provide a useful metric for comparing
datasets with different workloads. As it can be seen, CUDA-option is the principal
winner of this comparison, with speed-ups up to ~529× faster than the sequential
implementation on floats and up to ~87× faster on doubles. CUDA-multi prevails
on dataset 4 - Skewed with a speed-up of ~161× on floats and ~54× on doubles.

Here we find out that if the data distribution is skewed on both heights and widths,
it is better to exploit both levels of parallelism because this allows to further opti-
mize thread divergence. This feature of the dataset can easily be computed using
the skewness statistical measure. Dataset 4 - Skewed has 2.40 skewness on heights
and 5.19 on widths (as seen in Appendix A.5), in contrast with other datasets that
have skewness close to zero on heights or widths or both.

Additionally, the experiments we have performed on smaller datasets1 (see fig. 9.21
and 9.22) have exposed that CUDA-multi outperforms CUDA-option up to ~13× in
runtime when the datasets are small enough. Furthermore we can see that the per-
formance of CUDA-option and Futhark-basic increases with the number of options,
while CUDA-multi is not affected by it. This leads us to believe that there exists a
certain threshold for each data distribution, which can be used to dynamically switch
between CUDA-multi and CUDA-option for optimal performance.

1Even more experiments can be seen in Appendix C.4

111

Chapter 9. Experimental Results

Figure 9.19: Comparisons of parallel speed-ups over sequential implementation using
single precision. CUDA-option is faster on all datasets except 4 - Skewed, where
CUDA-multi is faster.

112

Chapter 9. Experimental Results

Figure 9.20: Comparisons of parallel speed-ups over sequential implementation using
double precision. CUDA-option is faster on all datasets except 4 Skewed, where
CUDA-multi is faster.

113

Chapter 9. Experimental Results

Figure 9.21: Comparisons of parallel speed-ups on smaller datasets over sequential
implementation using single precision.

114

Chapter 9. Experimental Results

Figure 9.22: Comparisons of parallel speed-ups on smaller datasets over sequential
implementation using double precision.

115

Chapter 9. Experimental Results

9.4 Key findings

The experiments have shown that:

• Memory coalescing has positive impact on the runtime performance of CUDA-
option, at the cost of higher memory consumption. It is therefore important to
optimize the global arrays and reduce their padding as much as possible. Coa-
lescing on CUDA-multi on the other hand did not appear to be as effective but
more granular padding has shown performance gains, most probably because
of improved locality of reference (caching).

• Sorting has shown positive performance impact on both CUDA-option and
CUDA-multi runtimes at neglectable runtime costs. An exception can be found
when the data distribution is uniform, and consists of the same option repli-
cated many times. However, this seems highly impractical in real life situations
and can be easily detected. In terms of choosing the order, descending sorting
by both width and height has shown the best results, but we have also shown
that the correct choice is mostly dependent on the data.

• Choosing the correct block sizes has also shown to produce significant run-
time impact on CUDA-option. However, this is also dependent on the data
distribution, as skewed datasets tend to benefit more from larger block sizes,
such as 256 and 512, while uniform and random datasets tend to have highest
performance with block size of 128. For CUDA-multi, it is best to chose block
size 1024 to pack in as many options as possible, while limiting the number of
registers to 32 to achieve full occupancy of SMs.

• In terms of runtime, CUDA-option has been dominant on all datasets except 4
- Skewed, where CUDA-multi wins by almost a double margin. This discovery
underlines the statement that parallel optimization is often sensitive to the
dataset, hence it is important to explore the impacts of different degrees of
parallelism. Furthermore, this allows the use of dynamic analysis in order to
determine the optimal strategy for each dataset.

116

Chapter 9. Experimental Results

• There exists a certain threshold for the number of options in each data distribu-
tion, which can be used to dynamically choose CUDA-multi over CUDA-option
if the dataset has small enough number of options.

Another interesting finding of less relevance to the thesis is that the sequential
implementation is on average 15% faster with doubles than with floats (can be seen
on the figures in Appendix C.4). In all our parallel implementations, float achieves 2
to 6× higher speed-ups than double. This difference can be explained with the fact
that double precision (taking twice the memory) is much heavier on registers and
cache which are more complex on the CPU cores than on the GPU’s CUDA cores.

Summary

This chapter has shown the experiments we have performed to put our implementa-
tions to the test. It has introduced the impacts of the optimizations we have done,
both in terms of runtime and memory consumption. Later in this chapter we have
shown a comparison of all implementations, which has also led to the most impor-
tant discovery - that CUDA-multi can show speed-up over CUDA-option on some
datasets. Additionally, we describe all key findings of our experiments in the end of
the chapter, with the idea of drawing meaningful conclusions later in the thesis. The
next chapter will introduce related work on the topic, leading up to our conclusions,
which will follow right after.

117

10
Related Work

In comparison with CPU-oriented architectures, modern many-core hardware offers
much higher theoretical peak performance, but it also require significantly more ef-
fort and expertise in order to unlock this power. It follows that a rich body of work
was aimed at porting and optimizing real-world applications for the many-core archi-
tectures. This chapter reviews several related research directions and is structured
as follows: Section 10.1 reviews work aimed at accelerating various important algo-
rithms by means of libraries, and concludes that an accelerated implementation of
trinomial pricing is, to our knowledge, not publicly available. Section 10.2 surveys
several data-parallel languages and argues that none of them can derive the two ef-
ficient code versions presented in this thesis. Finally, Sections 10.3 recounts several
static, dynamic and hybrid analysis techniques, and points out the ones that have
inspired our implementations.

10.1 Library Solutions

Library solutions have been aimed at providing efficient implementations for common-
used algorithms. For example, Nvidia provides cudnn for accelerating deep learning
algorithms [27], and more recently, Mathworks and Nvidia are working together to
accelerate Matlab libraries, resulting in the Matlab Parallel Computing Toolbox1.
The toolbox provides high-level constructs, parallel for-loops, special array types
and parallelized numerical algorithms.

1More information can be found on https://www.mathworks.com/products/parallel-
computing/features.html

118

Chapter 10. Related Work

Furthermore, a more related body of work has been carried out on investigating the
acceleration (in OpenCL) of risk modelling and derivative pricing using Monte-Carlo
simulations [1, 29]. The findings of this studies have led to extending the Futhark
language with new constructs and compiler analysis, which are useful and applicable
in general (i.e., beyond the scope of the studied applications).

This thesis takes a similar approach, by providing a CUDA-library solution for
accelerating trinomial pricing of options, which we are not aware of being publicly
available before. Also we hope that this work will inspire new language/compiler
technology, because, as the next section will show, none of the data-parallel languages
can generate both efficient code versions that have been studied in this thesis.

10.2 Data-Parallel Language Design

The design of data-parallel languages is another research direction that has received
a lot of attention in the past decade. The main idea here is (i) for the language
to support a (smallish) set of operators, which have inherently parallel semantics
(map, reduce, scan, etc.), and (ii) to build programs like puzzles by combining such
parallel operators either horizontally (i.e., composition) or also in a nested fashion.
This allows the language to statically provide not only safety guarantees—e.g., the
absence of data races, but also cost-model guarantees—e.g., modeling the operational
(asymptotic) complexity of the program. Unfortunately, as of today, the parallel-
language technology is not at the stage where it can efficiently and reliably execute
complex real-world applications, such as the one discussed in this thesis.

For example SAC [9, 10, 11] is a data-parallel language that uses an imperative-C
notation aimed at achieving widespread use, but is purely functional underneath.
It supports (i) shape polymorphism—i.e., one can write functions that operate uni-
formly on arrays of arbitrary rank, and (ii) a parallel construct named “with-loop”,
which can be seen as a sophisticated composition of map-reduce operators. Un-
fortunately, the optimizing compiler is mainly aimed at multi-cores, rather than
many-cores, architectures.

Accelerate [23] is an array language, embedded in Haskell, aimed at GPGPU exe-

119

Chapter 10. Related Work

cution. It initially supported neither nested parallelism nor expression of sequential
recurrences (loops) inside parallel code, but recent extensions [5] support a limited
form of nested parallelism that is amenable to streaming. It follows that neither the
one-option-per-thread nor the multiple-options-per-block code versions of trinomial
pricing could be expressed in or derived by Accelerate. (We expect that the fully flat
version can be written by hand in Accelerate, much like it has been done in Futhark.)

The seminal work on Nesl shows that it is possible to support the expression of
arbitrary-nested and irregular parallelism, by a transformation named “flattening”,
which systematically rewrites the nested parallelism into only flat-parallel opera-
tors [3], which can be further mapped to GPGPU hardware [2]. More importantly,
this transformation guarantees that the resulted (flat-parallel) program respects the
work-depth (operational) asymptotic of the original (nested-parallel) program. Un-
fortunately, while this transformation is theoretically appealing, it is sometimes in-
feasible in practice because full utilization of application parallelism prevents locality-
of-reference optimizations and may require asymptotically-larger memory footprint.
It follows that Nesl would allow to elegantly express the trinomial pricing in its
nested-parallel fashion, and it would automatically derive the fully-flat implementa-
tion. However, it would not be able to derive the two (more efficient) code versions,
which are the subject of this thesis.

Finally, Futhark [16] is another data-parallel purely-functional language, whose
design seeks a common-ground with imperative solutions. For example, it supports
sequential loops with in-place modifications of array elements inside parallel regions,
and an aggressive fusion mechanism [15]. It also supports a “regular” flavor of nested
parallelism—i.e., the sizes of the array dimensions produced at any program point
should be invariant to the parallel-nest in which the array is defined. In this context,
the flattening transformation (i) is implemented by a combination of imperative
transformations [17], such as map interchange and map fission (distribution), and
(ii) it features the nice property that it can stop at an arbitrary level in the par-
allel nest and sequentialize from there all inner parallelism. In essence, the latter
property allows further optimization of locality of reference. Finally, Futhark allows
easy integration [14] of computational kernels written in it, with real-world applica-

120

Chapter 10. Related Work

tions written in mainstream-productivity languages such as Python and C. In what
trinomial-option pricing is concerned, Futhark supports reasonably well the code ver-
sion that executes one option per thread, and it also allows manual expression of the
fully-flattened program. However, Futhark cannot derive the other efficient version
that processes several options in one CUDA block. We believe that this work will
provide useful insights into how to engineer a restricted flavor of flattening irregular
parallelism, which is carried out in fast memory and is thus efficient.

10.3 Compiler Analysis

In this thesis we have studied how to accelerate trinomial pricing: we have identified
several important performance trade-offs and have addressed each one by hand, by
taking inspiration from related compiler analysis literature. This section surveys
such analyses and discusses the ones that we have used.

10.3.1 Static Analysis

Static analysis refers to analysis performed at compile time, which by definition does
not take into account the particularities of the input datasets. Such analysis carries
no runtime overhead, but it may be inaccurate (i.e., yields conservative results).
For example, analysis based on the polyhedral model [32, 4, 43] can reliably and
aggressively optimize locality of reference and identify the parallelism of sequentially-
written loops as long as the program is affine2. This is achieved by composing a
sequence of non-trivial transformations such as loop interchange, loop distribution,
various kinds of loop tiling [12]. However, if the program is not affine (e.g., due
to subscripted subscripts) then analysis is likely to fail. Analysis failing does not
necessarily mean that a certain loop is not parallel, it simply means that the static
analysis was not able to prove some required property. Even worse, if that property
refers to a subscripted subscript, and the indirect array is part of the dataset, then

2In affine code, all array subscripts and branch conditions are expressed as affine formulas in
terms of the loop-nest indices

121

Chapter 10. Related Work

it follows that no static analysis can possibly prove that property (because its proof
requires information about the elements of the indirect array, which is unknown until
runtime).

Another example of static analysis is the flattening transformation [3], which allows
for increasing the amount of parallelism that can be statically mapped to hardware
and which has been mentioned in the previous section. It is worth noticing that
flattening is more general than the combination of loop interchange and distribution
supported by Futhark—for example, Blelloch’s transformation applies to parallelism
which is even nested inside divide-an-conquer function calls (e.g., it is possible to
flatten quicksort starting from its clearest and simplest divide-and-conquer formu-
lation). However, even if flattening guarantees to preserve the work-depth asymp-
totics of the original nested-parallel program, the analysis is still inaccurate because
it fails to take into consideration communication costs or locality of reference. For
example the resulted parallel (flat) operators will not contain any (sequential) re-
currences/loops. While this can be good for the purpose of vectorization, it does
not suit well many-core architectures and makes it impossible to optimize locality of
reference.

Our implementations took inspiration from several static analyses. For exam-
ple, in the one-option-per-thread implementation, we have performed loop fusion by
hand and we have optimized spatial locality by working on the arrays in their trans-
posed form [29] as a way to create array accesses that are coalesced in memory—i.e.,
consecutive threads access consecutive memory addresses. This memory access pat-
tern is efficiently supported by GPGPU hardware: it leads to optimal utilization
of global-memory bandwidth and thus it reduces the query time of data, resulting
in significant speedups. Similarly, in the multiple-options-per-block implementation,
we have taken inspiration from loop distribution (map fission) and more generally
from the flattening transformation, to preform the flattening of the parallelism of
several options that fit in a CUDA block.

122

Chapter 10. Related Work

10.3.2 Dynamic Analysis

Dynamic analysis refers to optimizations that aggressively rely on inspecting the data
at runtime. The result of this inspection is used to reorganize the data layout or the
scheduling of instructions (commonly entire loop iterations) in a way that optimizes
the data locality or the degree of parallelism, or the code on the hot execution path.
The runtime of the code that is performing the inspection and the reorganization
constitutes pure overhead; it follows that the performed optimization need to be
highly profitable in order to outset the inspection overhead.

An illustrative example of dynamic analysis is thread-level speculation [6, 34]
(TLS). TLS speculatively executes loop iterations concurrently without any static
guarantees that the loop is actually parallel. The inter-iterations dependencies are
tracked and “fixed” at runtime. When such dependences are detected, the state is
rolled back to a previously-known correct state, and speculation is resumed from
there. This analysis is implemented by instrumenting each read and write access
to memory with code that resembles an enhanced cache-coherency protocol—in fact
TLS has been successfully implemented in hardware. On the plus side, TLS can be
safely applied to automatically parallelize any application, it can exploit partial par-
allelism, and can be also used to optimize communication overhead in a distributed
setting [28]. The shortcomings are that the overheads (both runtime and memory)
are high, which makes it suboptimal in all cases and prohibitively expensive in many
cases. This is because TLS has no “smarts”, in that it does not use any static in-
formation related to the code it attempts to parallelize. While various optimizations
have been proposed, such as aimed at optimizing the footprint or the data layout of
speculative memory [30], TLS’ overheads remain significant, which has caused TLS
to loose ground in favor of techniques that combine static and dynamic analysis.

While in the case of TLS the inspection and execution of the data and code are
intermingled, most of the other instances of dynamic analysis are separating the two
stages: an inspector is extracted by slicing the code of interest, and it reorganizes the
data layout or the schedules of instructions, in a way that improves the execution of
the original code. For example, such analysis has been used to separate at runtime the

123

Chapter 10. Related Work

execution of (originally) dependent loops, into waves that can be safely executed in
parallel [35]. Similarly, it has been used to optimize communication in a distributed
setting [36]—here the inspctor solves a graph-partitioning problem at runtime in
order to determine the optimal scheduling of loop iterations to nodes.

10.3.3 Hybrid Analysis (Static + Dynamic)

Hybrid analysis attempts to find a common ground between static and dynamic
analysis that combines the advantages of each, i.e., accurate analysis carrying small
runtime overhead. For example, seminal work has shown how to optimize locality
of reference of highly irregular computations [7, 38], such as from the molecular-
dynamics field, which make heavy use of statically-unanalyzable subscripted sub-
scripts. This is achieved by an inspector that permutes both the array layout and
the order in which loop iterations are scheduled. The technique however is enhanced
to make use of static analysis: for example it fires the transformation only when
the inspector overhead can be amortized (e.g., by hoisting it outside a loop), and it
rewrites the code in a manner that minimizes the number of subscripted subscripts
(which requires two memory operations and puts pressure on the cache system).

Other examples of hybrid analysis are related to aggressive automatic-parallelization
technique aimed at statically-unanalyzable Fortran loops. There, memory accesses
are summarized at instruction, iteration and loop level under a symbolic-set repre-
sentation and loop parallelism is then modeled as an equation on these sets [13, 37].
These equations can then be solved at runtime, but the corresponding inspector has
a sequential nature and it would lead to significant overhead in many cases. Instead,
the equation is mapped to a language of predicates, by a logical inference analysis
that extracts sufficient conditions under which the equation holds [24, 31]. The re-
sulting predicates have a parallel semantics, and incur negligible runtime overhead
in most cases, and, in the worst case, an overhead that scales down with the degree
of parallelism.

Our implementation takes inspiration from such hybrid analyses. For example, we
have used inspectors that sort the options in descending order of the height/width of

124

Chapter 10. Related Work

their trinomial tree, and we have shown that (i) this data re-ordering has a positively-
high impact on performance, and that (ii) the overhead introduced by sorting is
small in practice, because the sorting time is asymptotically smaller than the work
necessary to price the options. Similarly, we have argued that a measure of the
divergence overhead can be similarly derived by a lightweight inspector, and that a
simple predicate can be autotuned to predict the most-suitable version of the code
for the current dataset.

125

11
Conclusion

This thesis has presented multiple different parallelization strategies for the Hull-
White Single-Factor Model with the use of the trinomial trees numerical method.
The main purpose of these implementations is to improve the model performance,
by pricing as many options in as little time as possible.

We have presented a sequential implementation, serving as a proof-of-concept and
used it for validating the correctness of our parallel approaches. We have shown
two parallel one-option per thread implementations — one in CUDA and another
one in Futhark, exploiting only outer parallelism. We have demonstrated the steps
applied to transform the one-option per thread version into a multiple options per
thread block parallel version in CUDA, in an attempt to harness the possibilities
of inner parallelism. We have also derived and presented a fully-flattened parallel
approach written in Futhark, showing an important trade-off, that fully optimizing
thread divergence comes with the price of degrading locality of reference.

We have created 7 distinct datasets, and ran numerous experiments to highlight the
impact of our implementations and we have achieved as much as ~529× performance
increase of CUDA-option over the sequential implementation. These experiments
have also validated our claims that there is no single implementation which works
best for all data distributions, by demonstrating that CUDA-multi can result in
a speedup of ~2× on skewed datasets and up to ~13× on smaller datasets over
CUDA-option. We have demonstrated that optimizations such as memory coalescing,
sorting and block size choices can have a high positive impact on the performance of
the parallel implementations (both in terms of runtime and memory consumption).
Despite that, we have also established that each of these optimizations comes with

126

Chapter 11. Conclusion

its trade-offs (e.g. coalescing improves the runtime, but also increases the memory
consumption, smaller block sizes may result in block execution overhead, while larger
block sizes may degrade thread divergence), which need to be considered. This has
led up to the usefulness of dynamic analysis, which can be used to determine the
optimal implementation based on the dataset.

All code and datasets used in this project can be found on our public GitHub
repository:

https://github.com/MartinMetaksov/diku.OptionsPricing

Limitations and Future Work Despite answering the research questions,
further optimizations could be done to decrease the runtimes of our implementations
even more. The primary example of this is CUDA-multi, where option packing
is not optimal and is done sequentially. As mentioned in chapter 6.1.2, this is a
combinatorial NP-hard problem, which can be researched separately. There is a
high possibility that an optimized bin packing solution may have some impact on
the overall performance of CUDA-multi, making it a potential candidate for future
improvements.

Furthermore, we could derive an inspector/executor technique that chooses be-
tween the two of our fast parallel implementations — CUDA-option and CUDA-multi
based on the size, skewness and option widths of an input dataset.

Finally, another downside was the lack of optimizations on Futhark-flat. As men-
tioned in chapter 7, height-size arrays are padded on global-level, potentially degrad-
ing the performance. While we still do not expect it to outperform CUDA-option,
we believe that fully optimizing this version can potentially lead to new discoveries.

127

Appendices

128

Appendix A. Generated Data

A.1 Uniform

Widths:
min: 47
max: 47
mean: 47.00
variance: 0.00
std: 0.00
skewness: 0.00
kurtosis: −3.00

Heights:
min: 109
max: 109
mean: 109.00
variance: 0.00
std: 0.00
skewness: 0.00
kurtosis: −3.00

129

Appendix A. Generated Data

A.2 Random

Widths:
min: 7
max: 511
mean: 259.78
variance:
21293.52
std: 145.92
skewness: −0.01
kurtosis: −1.20

Heights:
min: 13
max: 1201
mean: 606.26
variance:
120065.68
std: 346.50
skewness: 0.00
kurtosis: −1.20

130

Appendix A. Generated Data

A.3 Random with Constant Height

Widths:
min: 7
max: 511
mean: 258.52
variance:
21358.88
std: 146.15
skewness: −0.00
kurtosis: −1.20

Heights:
min: 109
max: 109
mean: 109.00
variance: 0.00
std: 0.00
skewness: 0.00
kurtosis: −3.00

131

Appendix A. Generated Data

A.4 Random with Constant Width

Widths:
min: 47
max: 47
mean: 47.00
variance: 0.00
std: 0.00
skewness: 0.00
kurtosis: −3.00

Heights:
min: 13
max: 1201
mean: 607.04
variance:
119714.09
std: 346.00
skewness: −0.00
kurtosis: −1.20

132

Appendix A. Generated Data

A.5 Skewed

Widths:
min: 7
max: 511
mean: 60.90
variance:
2490.82
std: 49.91
skewness: 5.19
kurtosis: 40.29

Heights:
min: 13
max: 1201
mean: 195.35
variance:
17598.95
std: 132.66
skewness: 2.40
kurtosis: 14.07

133

Appendix A. Generated Data

A.6 Skewed with Constant Height

Widths:
min: 7
max: 511
mean: 61.06
variance:
2493.88
std: 49.94
skewness: 5.15
kurtosis: 39.87

Heights:
min: 13
max: 1201
mean: 602.58
variance:
121471.29
std: 348.53
skewness: 0.01
kurtosis: −1.22

134

Appendix A. Generated Data

A.7 Skewed with Constant Width

Widths:
min: 7
max: 507
mean: 254.24
variance:
21164.27
std: 145.48
skewness: 0.02
kurtosis: −1.21

Heights:
min: 13
max: 1201
mean: 194.23
variance:
17615.88
std: 132.72
skewness: 2.41
kurtosis: 14.05

135

Appendix B. CUDA-option Experiments

B.1 Version Experiments (Best Runtimes)

136

Appendix B. CUDA-option Experiments

137

Appendix B. CUDA-option Experiments

B.2 Block Size Experiments (Best Runtimes)

138

Appendix B. CUDA-option Experiments

139

Appendix B. CUDA-option Experiments

B.3 Sorting Experiments (Best Runtimes)

140

Appendix B. CUDA-option Experiments

141

Appendix B. CUDA-option Experiments

B.4 Version Experiments (Average Memory)

142

Appendix B. CUDA-option Experiments

143

Appendix C. CUDA-multi Experiments

C.1 Version Experiments (Best Runtimes)

144

Appendix C. CUDA-multi Experiments

145

Appendix C. CUDA-multi Experiments

C.2 Block Size Experiments (Best Runtimes)

146

Appendix C. CUDA-multi Experiments

147

Appendix C. CUDA-multi Experiments

C.3 Sorting Experiments (Best Runtimes)

148

Appendix C. CUDA-multi Experiments

149

Appendix C. CUDA-multi Experiments

C.4 Version Experiments (Average Memory)

150

Appendix C. CUDA-multi Experiments

151

Appendix D. Implementations Experiments

D.1 Parallel Implementations (Best Runtimes)

152

Appendix D. Implementations Experiments

153

Appendix D. Implementations Experiments

D.2 Speed-up on Small Datasets (Float)

154

Appendix D. Implementations Experiments

D.3 Speed-up on Small Datasets (Double)

155

Bibliography

[1] Christian Andreetta, Vivien Bégot, Jost Berthold, Martin Elsman, Fritz Hen-
glein, Troels Henriksen, Maj-Britt Nordfang, and Cosmin E. Oancea. Finpar:
A parallel financial benchmark. ACM Trans. Archit. Code Optim., 13(2):18:1–
18:27, June 2016.

[2] Lars Bergstrom and John Reppy. Nested data-parallelism on the GPU. SIG-
PLAN Not., 47(9):247–258, September 2012.

[3] Guy E Blelloch, Jonathan C Hardwick, Jay Sipelstein, Marco Zagha, and Sid-
dhartha Chatterjee. Implementation of a Portable Nested Data-Parallel Lan-
guage. Journal of parallel and distributed computing, 21(1):4–14, 1994.

[4] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A
practical automatic polyhedral parallelizer and locality optimizer. In Proceedings
of the 29th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’08, pages 101–113, New York, NY, USA, 2008. ACM.

[5] Robert Clifton-Everest, Trevor L. McDonell, Manuel M. T. Chakravarty, and
Gabriele Keller. Streaming irregular arrays. In Proceedings of the 10th ACM
SIGPLAN International Symposium on Haskell, Haskell 2017, pages 174–185,
New York, NY, USA, 2017. ACM.

[6] Francis Dang, Hao Yu, and Lawrence Rauchwerger. The R-LRPD Test: Spec-
ulative Parallelization of Partially Parallel Loops. In Int. Par. and Distr. Pro-
cessing Symp. (PDPS), pages 20–29, 2002.

[7] Chen Ding and Ken Kennedy. Improving cache performance in dynamic applica-
tions through data and computation reorganization at run time. In Proceedings
of the ACM SIGPLAN 1999 Conference on Programming Language Design and
Implementation, PLDI ’99, pages 229–241, New York, NY, USA, 1999. ACM.

[8] Myron Scholes Fischer Black. The pricing of options and corporate liabilities.
1973.

156

Bibliography

[9] Clemens Grelck. Shared memory multiprocessor support for functional array
processing in SAC. Journal of Functional Programming (JFP), 15(3):353–401,
2005.

[10] Clemens Grelck and Sven-Bodo Scholz. SAC: A functional array language
for efficient multithreaded execution. Int. Journal of Parallel Programming,
34(4):383–427, 2006.

[11] Clemens Grelck and Fangyong Tang. Towards Hybrid Array Types in SAC. In
V. Zsók, Z. Horváth, and R. Plasmeijer, editors, 7th Workshop on Prg. Lang.,
(Soft. Eng. Conf.), pages 129–145, 2014.

[12] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and Sven
Verdoolaege. Hybrid hexagonal/classical tiling for gpus. In Procs. Int. Sympo-
sium on Code Generation and Optimization, CGO ’14, pages 66:66–66:75. ACM,
2014.

[13] Mary W. Hall, Saman P. Amarasinghe, Brian R. Murphy, Shih-Wei Liao, and
Monica S. Lam. Interprocedural Parallelization Analysis in SUIF. Trans. on
Prog. Lang. and Sys. (TOPLAS), 27(4):662–731, 2005.

[14] Troels Henriksen, Martin Dybdal, Henrik Urms, Anna Sofie Kiehn, Daniel
Gavin, Hjalte Abelskov, Martin Elsman, and Cosmin Oancea. APL on GPUs:
A TAIL from the Past, Scribbled in Futhark. In Procs. of the 5th Int. Work-
shop on Functional High-Performance Computing, FHPC’16, pages 38–43, New
York, NY, USA, 2016. ACM.

[15] Troels Henriksen, Ken Friis Larsen, and Cosmin E. Oancea. Design and GPGPU
performance of futhark’s redomap construct. In Proceedings of the 3rd ACM
SIGPLAN International Workshop on Libraries, Languages, and Compilers for
Array Programming, ARRAY 2016, pages 17–24, New York, NY, USA, 2016.
ACM.

[16] Troels Henriksen and Cosmin E. Oancea. Bounds checking: An instance of
hybrid analysis. In Proceedings of ACM SIGPLAN International Workshop on

157

Bibliography

Libraries, Languages, and Compilers for Array Programming, ARRAY’14, pages
88:88–88:94, New York, NY, USA, 2014. ACM.

[17] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cos-
min E. Oancea. Futhark: Purely functional gpu-programming with nested par-
allelism and in-place array updates. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2017,
pages 556–571, New York, NY, USA, 2017. ACM.

[18] John C. Hull. Options, Futures, And Other Derivatives, volume 8. Pearson
College Div, 2011.

[19] Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, and Vivek Sarkar. Com-
piling and optimizing java 8 programs for gpu execution. In Proceedings of
the 2015 International Conference on Parallel Architecture and Compilation
(PACT), PACT ’15, pages 419–431, Washington, DC, USA, 2015. IEEE Com-
puter Society.

[20] Alan White John Hull. Numerical procedures for implementing term structure
models I: Single-factor models. The Journal of Derivatives, 1994.

[21] Alan White John Hull. Using Hull-White interest-rate trees. The Journal of
Derivatives, 1996.

[22] Selcuk Keskin, Ömer Çetin, and Taşkın Koçak. Real-time fft computation using
gpgpu for ofdm-based systems. 35, 06 2015.

[23] Trevor L. McDonell, Manuel M.T. Chakravarty, Gabriele Keller, and Ben Lipp-
meier. Optimising purely functional gpu programs. In Proceedings of the 18th
ACM SIGPLAN International Conference on Functional Programming, ICFP
’13, pages 49–60, New York, NY, USA, 2013. ACM.

[24] Sungdo Moon and Mary W. Hall. Evaluation of Predicated Array Data-Flow
Analysis for Automatic Parallelization. In Int. Symp. Princ. and Practice of
Par. Prog. (PPoPP), pages 84–95, 1999.

158

Bibliography

[25] Gordon E. Moore. Cramming more components onto integrated circuits. 1965.

[26] G.R. Mudalige, M.B. Giles, J. Thiyagalingam, I.Z. Reguly, C. Bertolli, P.H.J.
Kelly, and A.E. Trefethen. Design and initial performance of a high-level un-
structured mesh framework on heterogeneous parallel systems. Parallel Com-
put., 39(11):669–692, November 2013.

[27] NVIDIA. CUDNN library user guide du-06702-001 v07. Technical report,
NVIDIA Corporation, 2017.

[28] C. E. Oancea, J. W. A. Selby, M. Giesbrecht, and S. M. Watt. Distributed
Models of Thread-Level Speculation. In Proceedings of the PDPTA’05, pages
920–927, 2005.

[29] Cosmin E. Oancea, Christian Andreetta, Jost Berthold, Alain Frisch, and Fritz
Henglein. Financial Software on GPUs: Between Haskell and Fortran. In Pro-
ceedings of the 1st ACM SIGPLAN Workshop on Functional High-performance
Computing, FHPC ’12, pages 61–72, New York, NY, USA, 2012. ACM.

[30] Cosmin E. Oancea and Alan Mycroft. Set-congruence dynamic analysis for
thread-level speculation (TLS). In José Nelson Amaral, editor, Languages and
Compilers for Parallel Computing, pages 156–171, Berlin, Heidelberg, 2008.
Springer-Verlag.

[31] Cosmin E. Oancea and Lawrence Rauchwerger. A Hybrid Approach to Proving
Memory Reference Monotonicity. In Int. Languages and Compilers for Parallel
Computing (LCPC’11), volume 7146 of LNCS, pages 61–75, 2013.

[32] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ra-
manujam, P. Sadayappan, and Nicolas Vasilache. Loop transformations:
Convexity, pruning and optimization. In Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’11, pages 549–562, New York, NY, USA, 2011. ACM.

159

Bibliography

[33] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. Halide: A language and compiler for opti-
mizing parallelism, locality, and recomputation in image processing pipelines. In
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, pages 519–530, New York, NY, USA,
2013. ACM.

[34] L. Rauchwerger and D. Padua. The LRPD Test: Speculative Run-Time Par-
allelization of Loops with Privatization and Reduction Parallelization. IEEE
Trans. Parallel Distrib. System, 10(2):160–199, 1999.

[35] Lawrence Rauchwerger, Nancy Amato, and David Padua. A Scalable Method
for Run Time Loop Parallelization. Int. Journal of Par. Prog, 26:26–6, 1995.

[36] Mahesh Ravishankar, John Eisenlohr, Louis-Noël Pouchet, J. Ramanujam,
Atanas Rountev, and P. Sadayappan. Automatic parallelization of a class of
irregular loops for distributed memory systems. ACM Trans. Parallel Comput.,
1(1):7:1–7:37, October 2014.

[37] Silvius Rus, Jay Hoeflinger, and Lawrence Rauchwerger. Hybrid Analysis: Static
& Dynamic Memory Reference Analysis. Int. Journal of Par. Prog, 31(3):251–
283, 2003.

[38] Michelle Mills Strout, Larry Carter, and Jeanne Ferrante. Compile-time com-
position of run-time data and iteration reorderings. In Proceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implemen-
tation, PLDI ’03, pages 91–102, New York, NY, USA, 2003. ACM.

[39] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf, Hassan
Chafi, Martin Odersky, and Kunle Olukotun. Delite: A compiler architecture
for performance-oriented embedded domain-specific languages. ACM Trans.
Embed. Comput. Syst., 13(4s):134:1–134:25, April 2014.

[40] Joel Svensson. Obsidian: GPU Kernel Programming in Haskell. PhD thesis,
Chalmers University of Technology, 2011.

160

Bibliography

[41] Yuan Tang, Rezaul Alam Chowdhury, Bradley C Kuszmaul, Chi-Keung Luk,
and Charles E Leiserson. The pochoir stencil compiler. In Proceedings of the
twenty-third annual ACM symposium on Parallelism in algorithms and archi-
tectures, pages 117–128. ACM, 2011.

[42] Ehsan Totoni, Todd A. Anderson, and Tatiana Shpeisman. HPAT: High Perfor-
mance Analytics with Scripting Ease-of-use. In Proceedings of the International
Conference on Supercomputing, ICS ’17, pages 9:1–9:10, New York, NY, USA,
2017. ACM.

[43] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Chris-
tian Tenllado, and Francky Catthoor. Polyhedral parallel code generation for
cuda. ACM Trans. Archit. Code Optim., 9(4):54:1–54:23, January 2013.

[44] N. Whitehead and A. Fit-Florea. Precision and Performance: Floating Point
and IEEE 754 Compliance for NVIDIA GPUs. Technical report, NVIDIA Cor-
poration, 2018.

161

	Abstract
	Acknowledgments
	Contents
	Introduction
	Background
	Hull-White Single-Factor Model
	Sequential Implementation
	One Option per Thread
	Multiple Options per Thread Block
	Full Flattening
	Experimental Methodology
	Experimental Results
	Related Work
	Conclusion
	Appendices
	Generated Data
	CUDA-option Experiments
	CUDA-multi Experiments
	Implementations Experiments
	Bibliography

