
Not-Quite-Supersonic AD
Implementing forward and reverse mode automatic

differentiation in the Futhark interpreter

Bachelor’s thesis

39 pages

Marcus Jensen (pwt746)

Supervised by: Troels Henriksen

August 12th, 2024

Abstract

This thesis covers the theory behind- and the implementation of forward and re-
verse mode automatic differentiation in the Futhark interpreter. Throughout the text,
the interpreter is incrementally improved until it matches that of the Futhark com-
piler. The implementation is then tested for correctness, and benchmarked, and its
efficiency is evaluated. Finally, the thesis outlines the steps needed to be taken before
the implementation can be merged into the Futhark code base.

1

Contents

1 Introduction 3

2 Background 4
2.1 Automatic differentiation . 4

2.1.1 Forward mode . 5
2.1.2 Reverse mode . 7

2.2 Futhark . 10
2.2.1 Representing values . 10
2.2.2 Evaluating a program . 11
2.2.3 Automatic differentiation in Futhark 11

3 Implementation 13
3.1 Forward mode . 13
3.2 Reverse mode . 16
3.3 Bridging the algorithms, and enabling the calculation of n-th derivatives

through nested calls to jvp and vjp . 25
3.4 Bringing the algorithm to the Futhark interpreter 31

4 Testing and benchmarking 34
4.1 Correctness . 34
4.2 Benchmarking . 35

5 Conclusion 38
5.1 Future work . 38

6 References 39

2

1 Introduction

A crucial step in performing machine learning (ML) is calculating the gradient of a loss
function. In order to do this, various partial derivatives of the loss function must be known.
While it is entirely possible to write code which calculates these by hand, the complexity
of modern ML models make this process quite slow and tedious. Instead, an approach
called Automatic Differentiation (AD) is often used, as it can automatically calculate the
derivatives of functions in computer programs. [1]

Futhark is a programming language which seeks to simplify the development of highly
parallel code, such as that used to train ML models. [2] Naturally, the Futhark compiler
supports AD, [5][6] however, the AD implementation for the Futhark interpreter has been
sidelined for over two years.1

This report details the implementation of AD in the Futhark interpreter. Throughout the
report, the implementation will be incrementally updated until it is capable of handling the
same cases as the compiler. It will then be tested for correctness, and benchmarked. The
goal of this project is to provide a clear path for AD to be implemented in the Futhark
interpreter.

The final implementation can be found on GitHub.2

1https://github.com/diku-dk/futhark/commit/d8a2b32d00c2889e0372da1822f9601dc69e99dc
2https://github.com/vox9/futhark/tree/interpreter-ad

3

https://github.com/diku-dk/futhark/commit/d8a2b32d00c2889e0372da1822f9601dc69e99dc
https://github.com/vox9/futhark/tree/interpreter-ad

2 Background

2.1 Automatic differentiation

Automatic Differentiation (AD) [1] is a set of techniques, which compute the derivative of
a function in a program. While several modes of AD exist, this project purely focuses on
forward mode, and reverse mode derivation, as these are supported by the Futhark compiler.
Both modes leverage the property that all scalar calculations in a program are a composition
of a limited set of elementary mathematical operations, referred to as primitive operations;
If the composition solely includes differentiable operations, its derivative can be computed
using the multivariate chain rule, and the partial derivatives of its primitive operations. As
these are well known, the problem becomes trivial.

Unlike symbolic differentiation3, AD does not yield the derived function. Instead, it finds
the value of the derivative for a given input by performing a nonstandard interpretation of
the program, where each scalar is augmented with various information needed to find its
derivative. Whenever such a value is passed to a primitive operation, its scalar half, now
called its primal value, is calculated as it normally would be, while the other half is updated
accordingly. Finally, the differentiated value can be computed.

Example 1
In order illustrate forward mode and reverse mode AD, consider deriving the function

f(x, y) = ((if x > 2 then x + 2 else -x), (reduce (*) [x, y, x]))

at x = 3; y = 2. Note that the function outputs a tuple of two scalars.

AD can be performed knowing only a trace of the primitive operations, which are applied
during the evaluation of a function, as well as their inputs. This can be represented as a
series of intermediary variables. The following is a trace of f(3, 2):

e1 = x (= 3)

e2 = 2

e3 = e1 + e2
e4 = y (= 2)

e5 = e1 * e4
e6 = e5 * e1

Figure 1: The intermediary primitive operations,
and their inputs when evaluating f(3, 2).

The expressions are given in the order of which they were
evaluated, and the outputs of the function are e3 and e6

Deriving expressions of parameters and literals (such as e1, e2, and e4) is simple - if it
corresponds to the variable, which it is being derived with respect to, its derivative is 1, and
otherwise, it is 0. On the other hand, deriving expressions of primitive operations (such as
e3, e5, and e6) necessitates the use of the multivariate chain rule.

In order to understand how the multivariate chain rule can be applied to find the derivative

3Transforming an expression into its differential using the rules of differentiation.

4

of an expression, consider deriving e5. The application of the chain rule on e5 yields the
following equation:

∂e5
∂x

=
∂e5
∂e1

∂e1
∂x

+
∂e5
∂e4

∂e4
∂x

As e5 expresses the application of multiplication, and multiplication has two operands,
applying the multivariate chain rule yields two terms. Each term is the product of a partial
derivative of the primitive operation (multiplication) with respect one of its operands, and
the partial derivative of the operand with respect to the, which is being derived with respect
to. The former will be called the partial derivatives of the operation (in this case the partial
derivatives of multiplication), and can be calculated using only the primal values of its
operands and a set of well-known functions. The latter will be called partial derivatives
with respect to a variable, and are either derivatives of parameters or literals, or expressions
of primitive operations, in which case the chain rule must be applied to them.

Thus, deriving expressions of applications of primitive operators requires knowing the primal
values, and derivatives of their operators. Deriving an expression therefore requires deriving,
and often evaluating, all of its dependencies.

2.1.1 Forward mode

As the dependencies of a derivative mirror those of its expression, one strategy is to cal-
culate each derivative alongside its expression. [1] This can be performed in any order,
which satisfies the dependencies of the expression - including that, which is followed by the
interpreter. Thus, augmenting each scalar with its derivative provides enough information
to calculate the resulting derivative of the application of a primitive operation. This is how
forward mode AD works.

The following is an example of how forward mode AD is performed to derive every ex-
pression in the trace of f(3, 2) (seen in figure 1) with respect to x:

e1 = x = 3 | ∂e1
∂x

= seed(x) = 1

Forward mode AD starts by evaluating the first expression of the trace. While the derivative
of this expression may seem trivial, it is actually not computed. Instead a variable is assigned
its initial derivative. This way, when forward mode AD is run on multivariate functions,
the partial derivative, which must be found, can be selected by assigning each variable a
one-hot-encoded derivative. These are called the seed values of forward mode AD. As the
derivative with respect to x is desired, the seed value of x is 1.

The primal value, and the derivative of e1 have now been computed, and the algorithm can
move on to the next expression.

e2 = 2 | ∂e2
∂x

= 0

This expression is a constant value. The derivative of a constant is 0.

e3 = e1 + e2 = 5 | ∂e3
∂x

=
∂e3
∂e2

∂e2
∂x

+
∂e3
∂e1

∂e1
∂x

= 1 * 0 + 1 * 1

= 1

5

As e3 is an application of a primitive operation, the multivariate chain rule is used. It
produces four derivatives, which must be solved: Two are the derivatives of the operands,
and have thus already been found; and the remaining two are the partial derivatives of the
primitive operation. These are well-known, and hardcoded into the AD implementation
with some mapping to their respective operations. They can be looked up, and are always
calculable using only the primitive values of the operands. The partial derivatives of a + b

are 1, and 1 respectively.

The derivatives of the chain rule can now be substituted by their values, and the derivative
of the expression can be calculated.

e4 = y = 2 | ∂e4
∂x

= seed(y) = 0

This is another expression of a variable, so its derivative can be found using the same method
as for e1. As the variable is y this time, and the derivative is being taken with respect to x,
its seed value is 0.

e5 = e1 * e4 = 6 | ∂e5
∂x

=
∂e5
∂e1

∂e1
∂x

+
∂e5
∂e4

∂e4
∂x

= e4 * 1 + e1 * 0

= 2

As the expression is of the application of a primitives operation, the same methodology can
be used as for e3. The respective partial derivatives of a * b are b and a.

e6 = e5 * e1 = 18 | ∂e5
∂x

=
∂e6
∂e6

∂e1
∂x

+
∂e6
∂e1

∂e1
∂x

= e1 * 2 + e5 * 1

= 12

This is the same case as e5.

The partial derivative of of both outputs of f(3, 2) (e3 and e6) with respect to x have now
been found. They are 1, and 12 respectively. In order to find their partial derivatives with
respect to y, the same method can be followed, setting the seed values of x and y equal to
0 and 1 respectively. This, however, requires calculating each of the derivatives again, as
none of the partial derivatives with respect to x can be used to calculate those with respect
to y.

The time complexity of forward mode AD can be calculated as follows: Let n be the total
number of operations, and m the number of primitive operations, in a function, f , whereof
the partial derivatives of p parameters must be found. As the number of primitive oper-
ations counts towards the total number of operations in f , m ≤ n. In order to compute
the primal values, and follow the control flow of f , the function must be run normally.
This is achieved in O(n) operations. Furthermore, each primitive operation is augmented
to calculate its partial derivative with respect to each of the p parameters. The calculation
of a partial derivative with respect to a variable is done using the chain rule, requiring the
computation of every partial derivative of a primitive operation. Each can be computed
in O(1) operations, whereafter they are multiplied together with the partial derivative of

6

their respective operand, and summed together. The maximum number of operands for a
primitive operation is a constant, k ∈ O(1). Thus, computing one partial derivative with
respect to a variable takes O(1) ·O(k) + 2 ·O(k) ∈ O(1) operations. Computing the partial
derivatives with respect to p variables takes p ·O(1) ∈ O(p) operations. As it must be done
for each of the m primitive operations, it takes m · p ·O(1) ∈ O(m p) operations. Thus, the
time complexity of forward mode AD is O(n+m p) ∈ O(n p).

2.1.2 Reverse mode

Whereas forward mode tackles derivation in the same order as the expression would be
evaluated, it is also possible to calculate the derivatives of a function starting at its outputs.
[1] Here, the values of the partial derivatives of primitive operations are calculated using
the primal values of their operands, while partial derivatives with respect to variables are
expanded using the chain rule. This continues until an expression with no dependencies
is reached, such as one of a parameter, or a literal. Reverse mode AD method poses the
challenge that the primal values, as well as the primitive operations used to compute them,
are accessed in the opposite order of their evaluation. They must therefore be saved when
the function is evaluated. This is the data used to augment each scalar when performing
reverse mode AD. The reward for the extra work is the ability to calculate every partial
derivative of a single output in O(n) time.

While there are many possible representations of the augmented data, this report will use
that of a computation graph, as it is simple to explain. A computation graph can be
constructed from a trace of primitive operations by going through each line of the trace in
the order, they are evaluated, and creating a node for its respective intermediate value. If
a node represents a variable, its name must be saved; and if it represents an application of
a primitive operation, the operation must be saved, and directed edges drawn connecting it
to the nodes representing each of its operands. The edges must be enumerated by the order
of which their respective operand appears in the expression, as it determines which partial
derivative of the operation, their derivatives are multiplied with when applying the chain
rule.

A precise algorithm for constructing a computation graph can be found in section 3.2.

The computation graph for the trace of f(3, 2) (seen in figure 1) is:

7

Figure 2: The computation graph of the trace of f(3, 2).

The partial derivatives of a given output can now be computed by propagating a rolling
product of the partial derivatives of each primitive operation through the graph. This value
is called called a sensitivity. Its initial value, 1, is the seed value in reverse mode AD.
In order to illustrate how the sensitivity is propagated through the computation graph to
calculate the partial derivatives of e6, consider the following visualization:

8

Figure 3: Computing every partial derivative of
e6 in the trace of f(3, 2) using reverse mode AD.

First, the output, which is being derived, (e6) is assigned its seed value, 1 (top left). Then,
the values of the partial derivatives of its operator are multiplied with the seed value. This
produces one sensitivity for each operand, which is passed along to its respective node in
the graph (top right). When a sensitivity reaches a parameter, its value is saved, as it has
now been propagated through the entire graph. If, instead, it reaches another primitive
operation, it is multiplied by each of the partial derivatives of the new operation, and
the resulting sensitivities are, again, propagated to their respective operands (bottom left).
When a sensitivity reaches the node of a parameter, which already has a sensitivity assigned
to it, the sum of the two are taken. This is because each path essentially corresponds to one
term in the chain rule. Reverse mode AD is finished when the partial derivatives of every

9

primitive operation have been calculated, and passed along (bottom right).

The partial derivatives of e6 can now be extracted by reading the sums of the sensitivities,
which are saved in the nodes of the parameters. The derivative of e6 with respect to x is
12, while the derivative of e6 with respect to y is 9.

The time complexity of reverse mode AD can be calculated like so: Let n be the total
number of operations, and m the number of primitive operations, in a function, f , whereof
the partial derivatives of o outputs must be found. As the number of primitive operations
counts towards the total number of operations in f , m ≤ n. In order to compute the
primal values, and follow the control flow of f , the function must be run normally. This
is achieved in O(n) operations. Furthermore, each primitive operation is augmented to
update the computation graph, which is returned along with its output. This can be done
in O(1) time. As it must be done for each of the m primitive operations, the first run
of the function takes O(n) + O(m) · O(1) ∈ O(n + m) time. The sensitivity must now
be propagated through the computation graph of each of the outputs. The computation
graph of an output can contain at most as many primitive operations as the function it was
generated from. It can therefore contain no more than m primitive operations. For each
primitive operation, its respective partial derivatives must be calculated and multiplied with
a sensitivity. The maximum number of operands for a primitive operation is a constant,
k ∈ O(1), and each partial derivative can be calculated and multiplied with a sensitivity
in O(1) time. Thus, the computation of the partial derivatives of the operations, and their
multiplication with the sensitivities takes O(k)·O(1)+O(k) ∈ O(1) operations. Furthermore,
each primitive operation will at most take one parameter per operator, so at most k numbers
will have to be saved or updated per. primitive operation, requiring a maximum of O(m k) ∈
O(m) operations per output. Thus, calculating the partial derivatives of o outputs takes
O(n+m+m o) ∈ O(n o) operations.

End of example

2.2 Futhark

Futhark [2] is a purely functional programming language, created to simplify the develop-
ment of highly parallel numerical software. Its design hinges on keeping the language small,
such that numerous aggressive optimizations can be applied to its code. Thus, the result-
ing programs turn out fairly well-optimized without requiring the programmer to consider
hardware-specific optimizations.

While Futhark is primarily a source-to-source compiler targeting various languages that run
on the CPU or GPU, it also implements an interpreter. Both are written in Haskell, and
have a shared code base. Whereas the compiler produces well-optimized code, the intended
use of the interpreter is testing and debugging code, making its speed less important.

As this project purely focuses on the Futhark interpreter, the following sections will describe
its general structure.

2.2.1 Representing values

Futhark has built-in support for floats, integers, and booleans, as well as arrays, records,
and tuples. In order to operate on any of these values, the interpreter must represent them

10

using a mapping to their Haskell-equivalents. This is achieved using a type, Value, with
the following constructors: [3]

• ValuePrim, which represents a primitive value - a non-composite value, which is built
into the language,

• ValueArray, which represents an array,

• ValueRecord, which represents a record, or a tuple,

• ValueFun, which represents a function and,

• ValueSum, which represents a sum type.

2.2.2 Evaluating a program

The evaluation model of the Futhark interpreter is fairly conventional for a statically scoped,
purely functional language. [3] After lexing, parsing, and type annotation, a program is in-
terpreted by traversing its abstract syntax tree. Every function of the program is given a
single expression for its output value. Running a program entails evaluating the expression
of the entry point, and returning the result. Futhark uses call-by-value semantics, and is
free of side effects, aside from non-termination.

A Futhark program consists of a sequence of declarations, which are placed in the environ-
ment of the interpreter. The environment also contains a set of built-in declarations, many
of which are implemented in Haskell, acting as basic building blocks which enable other-
wise impossible functionality in Futhark. Those of them, which return ValuePrims can be
considered the primitive operations of Futhark. Note that second order functions do not
fall under this definition, as they don not strictly return ValuePrims. Instead, their output
type match that of the function, they are given.

2.2.3 Automatic differentiation in Futhark

In Futhark, AD is initiated using one of two functions - jvp, which performs forward mode
AD, and vjp, which performs reverse mode AD. [5][6] Both take the function to be derived,
along with its input values as parameters. Furthermore, they are given the seed values of
their respective mode, which act as initial values for the derivatives when AD is performed.
In practice, these should be given as a set of one-hot encoded values, selecting which partial
derivative to return, in case of jvp, or which output to derive, in case of vjp.

jvp returns the same output as its given function, with each scalar value replaced by its
derivative. vjp returns the same input as its given function, with every scalar value replaced
by its derivative.

Example 2
To understand how jvp and vjp are used to perform AD in Futhark, examine the following
cases where two functions, f(x, y), and g(x), are derived:

To find the derivative of f(x, y) with respect to x, jvp can be used as follows:

jvp f (x, y) (1, 0)

11

The first parameter, f, is the function, while the second parameter, (x, y), is a tuple
containing the parameters. The final parameter is a tuple of the seeds for each parameter.
Since the derivative of f(x, y) with respect to x is desired, the seed of x is 1, and the seed
of y is 0.

If, instead, both the derivatives of f(x, y) and g(x) are desired with respect to y, they can
be found with a single run to jvp:

jvp (\(x, y) -> (f(x, y), g(x))) (x, y) (0, 1)

As jvp returns the derivative of every output with respect to a single variable, jvp is run
on a lambda function, which returns a tuple of f(x, y) and g(x). As x and y are still the
only variables present, the second parameter remains unchanged. The seeds change, as the
derivative with respect to y is now desired. The seed of x is now 0, and the seed of y is 1.

Finally, if both the partial derivative of f(x, y) with respect to x and y are desired, vjp
must be used like so:

vjp f (x, y) 1

The first parameter is the function, f, and the second parameter is the inputs of the function,
(x, y). The final parameter is the seeds of the outputs of the function. Since f(x, y) outputs
a single scalar value, there is only one seed, and since the partial derivatives of x and y with
respect to the output of f are desired, it must be 1.

End of example

12

3 Implementation

The following part describes the implementation of forward and reverse mode AD. As the
full Futhark implementation includes many details, which are not relevant to portraying the
core idea of the algorithm, the implementation will be presented for a simplified language
with the following properties:

• Like Futhark, the language is purely functional with no side effects.

• All values in the language are untyped scalars.

• AD must be implemented for an interpreter of the language. The interpreter delegates
certain tasks to various functions, including:

– doOp(op, p1...pn), which is used to apply a primitive operation (op) to a list
of parameters (p1...pn). Before the interpreter is extended to support AD, the
implementation of doOp is simply return op(p1...pn).

– evalJvp and evalVjp, which are called to initiate forward mode, and reverse
mode AD respectively. They are initially undefined.

– getPartials(op), which returns a list of the partial derivatives of a primitive
operation (op) with respect to each of its operands.

– eval(exp), which evaluates an expression (exp) using the interpreter, and returns
the result.

3.1 Forward mode

Forward mode AD can be boiled down to three steps:

1. Augmenting each scalar parameter of the input function with its seed value.

2. Performing a non-standard interpretation of the input function, where the application
of primitive operations is augmented to calculate the derivatives of their outputs.

3. Returning the derivative of each scalar output.

Steps 1 and 3 In order to augment scalars, the value type of the interpreter must be
turned into a sum type. Instead of being only scalars, values can now either hold a
Primitive(v), which consists of a single scalar value (v), or a JvpValue(p, d), which
consists of two scalars - a primal value (p), and its derivative (d). In order to incorporate
this change, all code in the interpreter must be updated to deal only in Primitives.

The interpreter now uses Primitive values, and the program should run just as it did be-
fore. If, however, a JvpValue is introduced, the language will not be able to use it, as all
functions are only defined for Primitives. The primal value of a JvpValue must be treated
just the same as a Primitive, so this must be resolved.

All functions which take Primitives as parameters can be categorized into one of two
groups: Those which are derivable, and those which are not. For the sake of simplicity,
all primitive operations are assumed to be derivable, while all other built-in functions are
not. The latter can be made to treat Primitives and JvpValues the same by introducing a
function, getValue(v), which, given a Primitive, returns its value, and given a JvpValue,

13

returns its primal value. Apart from running all scalar inputs through this function, the
non-derivable functions will run as they did before, and any scalar values they output will
be treated as constants. This matches the behavior of the Futhark compiler. (An alterna-
tive approach could be to throw an error when a JvpValue was passed to a non-derivable
function, however this would make the language more restrictive. Furthermore, the output
of a non-derivable function may never be returned, but only used intermediately, for exam-
ple in control flow.) Meanwhile, derivable functions (and thus primitive operations) must
return a JvpValue if their return value has a derivative which is non-zero, so as not to lose
information. The augmentation of primitive operations will be handled later.

A Primitive can now be augmented into a JvpValue using the following function:

augmentJvp(Primitive(v), d):

1: return JvpValue(v, d)

The function takes a Primitive value, and extracts its scalar (v). Furthermore, it takes
the seed value of v (d) - its initial derivative, declared by the programmer. Note that the
function is only defined for Primitives. It will be extended to handle all values in section
3.3.

To extract the derivative of a value, another function is defined.

deriveJvp(JvpValue(p, d)):

1: return d

deriveJvp(Primitive(v)):

1: return 0

Given a JvpValue, it simply returns its derivative (d). It is, however, also possible that a
function returns a Primitive value when performing forward mode AD. As all inputs are
augmented into JvpValues, and all primitive operations will later be modified to return a
JvpValue if any of their parameters was a JvpValue, this only happens when the output
of the function is not the result of a computation involving JvpValues. In this case, the
derivative of the output is 0, and thus, the derivative of a Primitive value is 0.

The evalJvp function can now be defined.

evalJvp(f, v1...vn, s1...sn):

▷ Step 1: Augment each input value with its respective seed value
1: v’1...v’n ← map(augmentJvp, zip(v1...vn, s1...sn))

▷ Step 2: Evaluate the function (through the interpreter) on the augmented inputs
2: o1...om ← eval(f(v’1...v’n))

▷ Step 3: Extract the derivative of each output
3: return map(Primitive ◦ deriveJvp, o1...om)

As augmentVjp only accepts Primitives, v1...vn must all be Primitive values. evalJvp
will later be extended to handle all values.

Step 2 As all primitive operations are handled by doOp, they can be augmented by mod-
ifying the function like so:

doOp(op, p1...pn):

1: pv1...pvn ← map(getValue, p1...pn)

2: pv ← op(pv1...pvn)

14

3: if every value in p1...pn is a Primitive then
4: return Primitive(pv)

5: else
6: pd1...pdn ← getPartials(op)

7: dv1...dvn ← map(deriveJvp, p1...pn)

8: dv ← dv1 · pd1(pv1...pvn) + ... + dvn · pdn(pv1...pvn)

9: return JvpValue(pv, dv)

The function starts by extracting the primal value of every parameter (pv1...pvn) using
getValue (line 1). It then applies the primitive operation (op) to the primal values (line 2),
yielding the primal value of the expression (pv). The function now splits into two branches.
The first branch (line 4) is only run, if every parameter is a Primitive. In this case, the
derivative is always 0, as the expression does not contain the value, it is being derived with
respect to. Thus, the primal value can be returned as a Primitive. If AD is never initiated,
this is the only branch, which will be reached by the interpreter.

The second branch (lines 6-9) runs if one or more parameters is a JvpValue. In this case,
the partial derivatives of the primitive operation (pd1...pdn) are found using getPartials

(line 6). Furthermore, the derivative of every parameter (dv1...dvn) is extracted using
deriveJvp (line 7). The derivative (dv) can now be computed using the multivariate chain
rule, as well as the partial derivatives (line 8). Finally, a JvpValue containing the primal
value, and the derivative is returned (line 10).

Example 3
To understand exactly how this implementation performs forward AD, consider the following
example, where the interpreter must compute the derivative of y ·x ·x+(2+2) with respect
to x, and x = 3 and y = 2.

The interpreter would evaluate the expression:

jvp (λ(x, y) → y * x * x + (2 + 2)) (3, 2) (1, 0)

In step 1 of evalJvp, the input variables ([Primitive(3), Primitive(2)]), and the
seeds ([Primitive(1), Primitive(0)]) are be paired up, and augmented using augmentJvp.
This produces the values [JvpValue(3, 1), JvpValue(2, 0)].

In step 2 of evalJvp, the function (f = λ(x, y) → y * x * x + (2 + 2)) is run
through the interpreter, passing the augmented values to their respective parameters. The
interpreter must now evaluate the following expression:

JvpValue(2, 0)*JvpValue(3, 1)*JvpValue(3, 1) + (Primitive(2)+Primitive(2))

The primitive operations can, of course, be applied in any order, which satisfies the order of
operations. The following is one possible trace of every execution of doOp (and thus every
application of a primitive operation), when evaluating the expression. Note that the output
of an operation is denoted by the name of the operation surrounded by square brackets.

15

Operation 1 Operation 2 Operation 3 Operation 4

Expression
JvpValue(2, 0) *

JvpValue(3, 1)

[Operation 1] *

JvpValue(3, 1)

Primitive(2) +

Primitive(2)

[Operation 2] +

[Operation 3]

Operation * * + +

Branch Second Second First Second
pv1...pvn [2, 3] [6, 3] [2, 2] [18, 4]

dv1...dvn [0, 1] [2, 1] N/A [12, 0]

pd1...pdn
[λ(a, b) → b,

λ(a, b) → a]

[λ(a, b) → b,

λ(a, b) → a]
N/A

[λ(a, b) → 1,

λ(a, b) → 1]

pv 2 * 3 = 6 6 * 3 = 18 2 + 2 = 4 18 + 4 = 22

dv 0 * 3 + 1 * 2 = 2 2 * 3 + 1 * 6 = 12 N/A 12 * 1 + 0 * 1 = 12

Output JvpValue(6, 2) JvpValue(18, 12) Primitive(4) JvpValue(22, 12)

Thus, the output of the function is JvpValue(22, 12).

In step 3 of evalJvp, the output is run through deriveJvp, yielding the value 12. The
value is represented by a Primitive, making the output of evalJvp Primitive(12). This
matches the value of the derivative.

End of example

3.2 Reverse mode

The basic steps of performing reverse mode AD are:

1. Augmenting each scalar parameter of the input function with an initial representation
of its computation graph.

2. Performing a non-standard interpretation of the input function, where the application
of primitive operations is augmented to update combine the computation graphs of
each operand.

3. Calculating every partial derivative of one or more outputs by propagating through
their computation graphs in reverse topological order.

Step 1 As with forward mode AD, the value type of the interpreter must be extended with
a new constructor - VjpValue. Before this can be done, a new type must be created to store
the computation graph. This type will be called Tape, and needs only three constructors.

• TapeVar(id, v) represents a parameter of of input function. These act as free vari-
ables when performing reverse mode AD. In order to tell variables apart, each is given
a unique id. Furthermore, their value, v, is stored.

• TapeConst(v) represents a constant value, v.

• TapeOp(op, tp1...tpn, v) represents the application of a primitive operation, op,
on the values tp1...tpn (represented as tapes). The primal value of the result is
stored in v.

16

As every Tape stores a primal value, VjpValue need not store a primal value itself, but only
a Tape. A function named getTapeValue(tp) can be implemented, performing pattern
matching on a Tape (tp) and returning its primal value, v. This can, in turn, be used to
implement getValue(v) for VjpValues.

Primitives can now be augmented into VjpValues with the following function:

augmentVjp(Primitive(v), id):

1: return VjpValue(TapeVar(id, v))

It simply extracts the value of the Primitive (v), and wraps it in a TapeVar along with an
id. This creates the Tape representation of a variable. It is then wrapped in a VjpValue

and returned.

The first two steps of evalVjp can now be defined as:

evalVjp(f, v1...vn, s1...sm):

▷ Step 1: Augment each input value
1: v’1...v’n ← map(augmentVjp, enumerate(v1...vn))

▷ Step 2: Evaluate the function (through the interpreter) on the augmented inputs
2: o1...om ← eval(f(v’1...v’n))

▷ (...)

Its implementation closely resembles that of evalJvp, however instead of passing seed values
to augmentVjp, the parameters are enumerated. This assigns each a unique ID.

Step 2 As with forward mode AD, the augmentation of primitive operations is imple-
mented by modifying doOp. For simplicity, reverse mode will be implemented without
considering the implementation of forward mode. The two modes will be brought together
in section 3.3.

doOp(op, p1...pn):

1: pv1...pvn ← map(getValue, p1...pn)

2: pv ← op(pv1...pvn)

3: if every value in p1...pn is a Primitive then
4: return Primitive(pv)

5: else
6: tp1...tpn ← map(λp → match p

with Primitive(v): TapeConst(v)

with VjpValue(tp): tp

end, p1...pn)

7: return VjpValue(TapeOp(op, tp1...tpn, pv))

Like its forward mode-enabled counterpart, the function starts by extracting the primal value
of every operator (pv1...pvn), and applying the primitive operation to them to calculate
the primal value of the expression (pv) (lines 1 and 2). If every parameter is a Primitive,
it returns a Primitive without storing the computation graph (line 4). Essentially, this
acts as constant propagation. It ensures that the computation graph will never contain a
primitive operation applied only to constants, as the resulting derivative always would be 0.
Therefore, the operation may as well be computed, and treated as a constant, which may
later be added to the computation graph.

The second branch (lines 6 and 7) runs if one or more parameters is a VjpValue. In this

17

case, every parameter is turned into its Tape representation (lines 6). Primitive values are
turned into TapeConsts, while VjpValues are unwrapped, extracting their tape. Finally,
a TapeOp is returned, storing the primitive operation, which was applied (op), the tapes
of the parameters it was applied to (tp1...tpn), and the primal value of the result (pv)
(line 7). Note that, much like trees, wrapping a Tape in another Tape is assumed to be
done using references, and not by copying, as this would make the operation much slower.
One way to do this is by keeping Tapes in the heap, and only storing references to them
in the VjpValue type. Haskell automatically performs such optimizations using persistent
datastructures with shared structures.

Step 3 Each output of a function, which is given VjpValues as parameters, is now either
a Primitive, or a VjpValue containing a computation graph annotated with the primal
value of each variable, constant, and application of a primitive operation. In the former
case, every partial derivative of the output is 0, and in the latter, the resulting Tape must
be derived. The derivation of a Tape can be implemented as follows:

deriveTape(tp, s, dv1...dvm):

1: match tp

2: with TapeVar(id, v):
3: dvid ← dvid + s

4: return dv1...dvm

5: with TapeConst(v): return dv1...dvm

6: with TapeOp(op, tp1...tpn, v):
7: pv1...pvn ← map(λtp → getTapeValue(tp), tp1...tpn)

8: pd1...pdn ← getPartials(op)

9: pdv1...pdvn ← map(λpd → s · pd(pv1...pvn), pd1...pdn)

10: dv1...dvm ← reduce(λ(dv1...dvm, tp, pdv) →
deriveTape(tp, pdv, dv1...dvm)

, dv1...dvm
, zip(tp1...tpn, pdv1...pdvn))

11: return dv1...dvm

The function is given three parameters - the tape to be derived (tp), the current rolling
multiple of the partial derivatives of the primitive operations (s, i.e. the sensitivity), and
a list of the values of the partial derivatives of tp with respect to each variable, indexed
by the ID of the variable (dv1...dvm). This list is initially populated by zeros, and is
modified throughout the function, before being returned with the proper values of the partial
derivatives.

deriveTape consists of a match case deriving each type of Tape differently. The first case of
the function captures TapeVars. These represent free variables. In this case, the sensitivity
has made its way to the top of the computation graph, and must be added to the value of
the partial derivative with respect to the variable represented by the TapeVar - i.e. dv id.
Finally, the now-modified dv1...dvm is returned (line 4).

The second match case captures TapeConsts. As these represent constants, they do not
modify the value of any partial derivative. Therefore, dv1...dvm is returned unmodified
(line 5).

18

The final match case captures TapeOps - the applications of primitive operations. This is
where the multivariate chain rule is applied. The first step in doing so is extracting the
primal value of each of the operands (line 7). Then, the partial derivatives of the primitive
operation are looked up (line 8). The values of the partial derivatives of the primitive
operation can now be calculated using the primal values of the operands, and multiplied
with the sensitivity (line 9). This calculates the new sensitivities (pdv1...pdvn) - one for
each of the operands. The tapes of the operands (tp1...tpn) are then joined with their
sensitivities (pdv1...pdvn) and passed along to a recursive call to deriveTape. This is done
inside of a reduce statement, with dv1...dvm being the initial value. Thus, each call to
deriveTape can change the partial derivatives for each parameter, which is further along in
the computation graph. Finally, the newly calculated partial derivatives are returned (line
11).

deriveVjp can now be defined as follows:

deriveVjp(VjpValue(tp), s, n):

1: if s ̸= 0 then
2: return deriveTape(tp, s, repeat(0, n))

3: else
4: return repeat(0, n)

deriveVjp(Primitive(v), s, n):

1: return repeat(0, n)

It takes the output value to derive, as well as its seed value (s), and the number parameters
of the function (n). If the derived value is a VjpValue and the seed value is non-zero, it
calls deriveTape on the tape (tp), the seed, and a list of n 0s, which act as placeholders
for the partial derivatives (line 2). Otherwise, every partial derivative is guaranteed to be
0, and the function returns a list of n 0s

Finally, the definition of evalVjp can be updated as follows:

evalVjp(f, v1...vn, s1...sm):

▷ Step 1: Augment each input value
1: v’1...v’n ← map(augmentVjp, enumerate(v1...vn))

▷ Step 2: Evaluate the function (through the interpreter) on the augmented inputs
2: o1...om ← eval(f(v’1...v’n))

▷ Step 3: Derive the outputs of the function
3: return map(Primitive, join((+), map(λ(o, s) → deriveVjp(o, s, n)

, zip(o1...om, s1...sm))))

In step 3, every return value is joined together with its respective seed, and derived. This
results in one list of partial derivatives per. output. The lists are then joined into one by
adding the elements, which are on the same index (line 3). This is the way, the Futhark
compiler handles reverse mode derivation, and thus, it was replicated for compatibility. If
the seeds are one-hot encoded, this strategy results in a list of partial derivatives of the
output, whose seed is 1, with respect to every parameter.

Example 4
In order to understand exactly how this implementation performs reverse mode AD, consider
the following example, where the interpreter must compute every partial derivative of y · x ·
x+ (2 + 2) where x = 3 and y = 2.

19

The interpreter would evaluate the expression:

vjp ((x, y) → y * x * x + (2 + 2)) (3, 2) 1

In step 1 of evalVjp, the input variables ([Primitive(3), Primitive(2)]) are aug-
mented using augmentVjp. This produces the values [VjpValue(TapeVar(1, 3)),

VjpValue(TapeVar(2, 2))].

In step 2 of evalVjp, the function (f = (x, y) → y * x * x + (2 + 2)) is run through
the interpreter, passing the augmented values to their respective parameters. The interpreter
must now evaluate the expression:

VjpValue(TapeVar(2, 2)) * VjpValue(TapeVar(1, 3)) * VjpValue(TapeVar(1, 3))

+ (Primitive(2) + Primitive(2))

The following is one possible trace of every application of doOp (and thus every application of
a primitive operation), when evaluating the expression. Note that the output of an operation
is denoted by the name of the operation surrounded by square brackets. Furthermore, for
brevity, all VjpValues will be denoted only by their internal Tape.

20

Operation 1 Operation 2 Operation 3 Operation 4

Expression
TapeVar(2, 2) *

TapeVar(1, 3)

[Operation 1] *

TapeVar(1, 3)

Primitive(2) +

Primitive(2)

[Operation 2] +

TapeConst(4)

Operation * * + +

Branch Second Second First Second
pv1...pvn [2, 3] [6, 3] [2, 2] [18, 4]

tp1...tpn
[TapeVar(2, 2),

TapeVar(1, 3)]

[[Operation 1],

TapeVar(1, 3)]
N/A

[[Operation 1],

TapeConst(4)]

Output

TapeOp(*,

[TapeVar(2, 2),

TapeVar(1, 3)],

6)

TapeOp(*,

[[Operation 1],

TapeVar(1, 3)],

18)

Primitive(4)

TapeOp(+,

[[Operation 2],

TapeConst(4)],

22)

Output
computation

graph
N/A

Thus, the output of the function is:

TapeOp(+, [

TapeOp(*, [

TapeOp(*, [

TapeVar(2, 2),

TapeVar(1, 3)

], 6),

TapeVar(1, 3)

], 18),

TapeConst(4)

], 22)

which corresponds to the following computation graph:

21

where the fat node is the output of the function, and each variable is marked by its ID
wrapped in curly brackets. Note that the nodes are not named - the only information
needed is the primal value of each node, and what variable or operation it represents, as
well as which operator each of its connected nodes corresponds to.

In step 3 of evalVjp, the output is run through deriveVjp with the seed value 1. As
the seed value is nonzero, and the ouput is a VjpValue, its tape is passed on to deriveTape.

22

Derivation of the output starts at the fat node, where the sensitivity (s) is given its seed
value, 1, and the derivatives (dv1...dvm aka dv) are initiated with the values [0, 0]. The
fat node represents the application of the primitive operation +. Therefore, the chain rule
is applied. The first step is to find the primal values of the operands of the operation (pvn).
These are [18, 4]. Now, the partial derivatives of the operation (pd1...pdn) are looked
up, and their values are calculated and multiplied with the sensitivity to obtain the new
sensitivities. The partial derivatives of + are 1 and 1, and the sensitivity is 1. Thus, the

23

new sensitivities are [1·1=1, 1·1=1]. The sensitivities are now passed to doOp along with
the tape of their respective operands, and the derivatives. This can be done in any order,
but for illustrative purposes, it is easier to do starting at operand #2 (notice the numbers
on the edges). Thus, doOp is called with the tape of operand #2, a sensitivity of 1, and
the derivatives [0, 0]. As operand #2 is a constant value, all this call does is return the
derivatives unchanged. doOp can now be called on operand #1 with a sensitivity of 1 and
the derivatives, which are still [0, 0] (top left).

Operand #1 is another application of a primitive operation - this time *. The primal values
of the new operands are [6, 3], and the partial derivatives of a * b are b and a. Thus, the
new sensitivities are [1·3=3, 1·6=6]. Reduce is now called, calling deriveTape on (new)
operand #2 with a sensitivity of 6, and the derivatives [0, 0]. As operand #2 repre-
sents the parameter whose ID is 1, it adds the sensitivity to the first number in the list of
derivatives. Thus, it returns the new derivatives [0+6=6, 0]. deriveTape is now called on
operand #1 with a sensitivity of 3, and the derivatives, [6, 0]. (top right)

Operand #1 is also an application of multiplication. The primal values of its operands are
[2, 3]. Thus, the new sensitivities are [3·3=9, 3·2=6]. deriveTape is now called on (new
new) operand #2 with its sensitivity, 6, and the derivatives, [6, 0]. As operand #2 also
represents the parameter whose ID is 1, it adds the sensitivity to index 1 of the list, returning
the derivatives [6+6=12, 0]. deriveTape is now called on operator #1 with its sensitivity,
9, and the updated derivatives, [12, 0]. As operator #1 represents the parameter whose
ID is 2, it adds the sensitivity to the second index of the list of derivatives, returning [12,

0+9=9] (bottom left).

The call to deriveTape on the third primitive operation now returns the derivatives [12,
9] to the second call to deriveTape on a primitive operation, which in turn returns them
to the first call to deriveTape on a primitive operation, which, once more, returns the
derivatives. Thus, deriveTape terminates with the output [12, 9] (bottom right).

Finally, each value of deriveTape is packed in a Primitive. Thus, evalVjp returns
[Primitive(12), Primitive(9)]. As the partial derivatives of y · x · x + (2 + 2) with
respect to x and y respectively are 12 and 9 when x = 3 and y = 2, this is correct.

End of example
While illustrating the correctness of this implementation of reverse mode AD, the above
example comes close to showing a more unfortunate property of the implementation. As
the top right node has two incoming edges, deriveTape is called on it twice. Because the
node represents a parameter, this did not have big ramifications on the example. If, instead,
it represented a primitive operation, the entire computation graph of that operation would
have to be traversed once for each incoming edge. This breaks the premise of the time com-
plexity analysis in section 2.1.2, as each node is traversed more than once. In fact, the worst
case time complexity of this algorithm is O(n + o · cm), where o is the number of outputs,
c is the maximum number of operands to a primitive operation, n is the total number of
operations in the function, and m is the total number of primitive operations in the function.
This can be achieved by deriving a function which, using the primitive operation with the
maximum number of operands, performs said operation with all operators being equal to a
single parameter, and then takes the output of that, and runs the operation again with all
parameters equal to the output, and so on. This essentially creates a computation graph,
which would be evaluated much like a tree where each node has c children, the depth of the
tree being equal to the number of primitive operations in the function.

24

In order to solve this, memoization could be implemented in deriveTape. For this to work,
the returned derivatives of the tape would have to be multiplied by their sensitivity after
the execution of the function, as the change in sensitivity would otherwise break the cache.
This, however, has not yet been implemented due to time constraints.

3.3 Bridging the algorithms, and enabling the calculation of n-th
derivatives through nested calls to jvp and vjp

As illustrated, jvp and vjp calculate the derivatives of a function by stepping through
a trace of its primitive operations, and applying the chain rule to them. Thus far, the
calculation of the partial derivatives of primitive operations, as well as the application of
the chain rule, have been handled by mathematical expressions, which are hardcoded into
the AD implementation. However, these calculations purely consist of primitive operations,
and, were they traced, AD could be performed on them. AD can therefore, through nested
calls to jvp and vjp, be used to find higher order derivatives of functions, if the primitive
operations performed when AD is calculating a derivative can be traced.

One way of achieving this in the current AD implementation is to calculate the partial
derivatives of primitive operations, as well as the applications of the chain rule, using calls
to doOp. As partial derivatives are calculated using the primal values of their operands, doing
so would require representations of values in JvpValues and VjpValues to be extended from
scalars to a sum type of Primitives, JvpValues, and VjpValues (henceforth referred to
as ADValue). In order to find the n-th derivative of a function, it would then have to be
nested in n calls to jvp or vjp, each wrapping its parameters in either a JvpValue or a
VjpValue. In the innermost call, the function would be run, each of its parameters wrapped
in n JvpValues or VjpValues. After execution, each call to jvp or vjp would then strip one
JvpValue or VjpValue, eventually resulting in a Primitive of the n-th derivative of the
function.

Example 5
While this approach closely resembles that, which is implemented in the Futhark interpreter,
it has one notable issue, which must be considered before it can be implemented. Consider
evaluating the following expression:

jvp (λx → jvp (λy → x + y) 3 1) 2 1

Following the approach explained above, and keeping consistent with the previous implemen-
tation of jvp, it is clear that x would be augmented to contain the value JvpValue(Primitive(3),
Primitive(1)), while y would be augmented to JvpValue(Primitive(2), Primitive(1)).
Assuming that Primitive values are treated as scalars, doOp would return JvpValue(Primitive(5),
Primitive(2)), when evaluating x + y. Thus the return value of the innermost call to jvp

would be Primitive(2). This is clearly not correct, as the derivative of x+ y with respect
to y is 1.

This issue is also known as pertubation confusion, and is a common problem when imple-
menting forward mode AD[4]. The error happens, as the algorithm has no way to distinguish
the seed values assigned in the innermost call to jvp from those assigned in the outermost
call. Thus, the derivative of x with respect to x is treated as if it was the derivative of x with
respect to y. A similar issue plaques the implementation of vjp, but instead of confusing
the seed values, it would confuse the IDs of the variables, thinking that x and y refer to the

25

same variable.

End of example

The solution to this issue is to save a depth alongside each JvpValue and VjpValue. This
determines which call to jvp or vjp the value is associated with. Higher depths means
that the call, which generated the JvpValue or VjpValue, was further down the call stack
than those of values with lower depths. By the same logic, having different depths means
that values were generated by different calls, and thus that their seed values, or IDs are not
comparable.

When operands are of different depths, the ones of lower depths are treated as constants,
and wrapped in the value representation of the operand of the highest depth. The resulting
value is given the maximum depth of all the operands. In doing so, it is guaranteed that, if
a parameter of the innermost call is present in the expression, which is being derived, the
returned depth will match that of the innermost call. By the constant rule, the derivative
of an expression is known to be 0, if it returns a value of a lower depth than the innermost
call to jvp or vjp. Otherwise, the depth will be equal to that of the innermost call, and
the value will be in the same representation as that which the innermost call augments
its parameters with. Thus, the return value of a function called by jvp is guaranteed to
either have a lower depth than that of the call, in which case the derivative is 0, or be a
JvpValue, which can be derived using deriveJvp. The same argument can be made for
vjp and deriveVjps. Note that this only works because the language, in which AD is being
implemented, is purely functional, and cannot return closures (functions, which pull certain
variables out of scope). If this was not the case, a value could be pulled out of its scope,
and used in calculations at lower depths, which would return a value with a higher depth,
and thus potentially a different type than that of the call to jvp or vjp with a lower depth.
Futhark can return closures, but it places the limit that the return types of functions passed
to jvp or vjp cannot be functions, nullifying this issue.

The inclusion of a depth also solves a separate issue, which prevented the previous forward
mode and reverse mode implementations from coexisting: Applying a primitive operation to
a mix of JvpValues and VjpValues is ill-defined. However, since JvpValues and VjpValues
cannot exist on the same depth, one would be wrapped in the representation of the other.
Thus, after considering the depths of parameters, it is guaranteed that primitive operations
are only applied to values of the same representation, making their application well-defined.

Forward mode and reverse mode AD, which can be nested, can now be implemented in the
following steps:

1. Change the value representation of JvpValues and VjpValues to add a depth, and re-
place all scalars with a sum type of Primitives, JvpValues, and VjpValues (ADValue).

2. Modify doOp to handle depth, and contain a version of its jvp and vjp enabled logic,
which operates on ADValues instead of on scalars.

3. Modify deriveTape, evalJvp, and evalVjp to account for the above changes.

Step 1 Modifying JvpValue is simple - the type of its primitive value and derivative must
be changed to ADValue, and a scalar depth must be added. The new definition of JvpValue
is JvpValue(p, d, dep) where p is the primal value, d is the derivative, and dep is the

26

depth.

As the primal value of a VjpValue is saved in its Tape, each constructor of Tape must be
modified to swap the type of its primitive from a scalar to an ADValue. Furthermore, a
depth must be added to VjpValue. The new definition of VjpValue is VjpValue(tp, dep)

where tp is its Tape, and dep is its depth.

As the definitions of JvpValue and VjpValue have changed, so must the functions which
operate on them. Whereas getValue(v) used to return a scalar of the primal value of v, it is
now less clear what it should return. Instead, two functions can be defined: getPrimal(v)
which returns the primal value of v as an ADValue, and getScalarPrimal(v) which returns
the primal value of v as a scalar. They can be defined as follows:

1: getPrimal(JvpValue(p, d, dep)): return p

2: getPrimal(VjpValue(tp, dep)): return getTapeValue(tp)

3: getPrimal(Primitive(v)): return Primitive(v)

4: getScalarPrimal(Primitive(v)): return v

5: getScalarPrimal(v): return getScalarPrimal(getPrimal(v))

Given a JvpValue, getPrimal simply unwraps and returns its primal value (line 1). Given
a VjpValue, it calls getTapeValue, and returns the result (line 2). Note that getTapeValue
now returns an ADValue, and not a scalar, as the type definition of Tape has changed. Fi-
nally, given a Primitive, getPrimal returns the primitive itself (line 3). While a Primitive
does not have a primal value per se, the idea behind primal values is that they hold the
value, which would have been held, if the innermost layer of AD was not present. Since
Primitives do not store AD information, they remain the same when when running AD.
Therefore their regular values are also their primal values.

Whereas getPrimal strips the innermost layer of augmented AD data, getScalarPrimal
must strip every layer to obtain only the primal value with no augmented information. This
function will be used to modify the values, which are passed to non-derivable operations, as
they are only designed to work with scalars. To achieve this, getScalarPrimal recursively
calls itself, stripping one layer at a time using getPrimal (line 5). When a Primitive value
is reached, it unwraps and returns its scalar value (line 4).

With the addition of depths, it is useful to define a new function, getDepth(v), which
returns the depth of a value. It can be defined as follows:

1: getDepth(JvpValue(p, d, dep)): return dep

2: getDepth(VjpValue(tp, dep)): return dep

3: getDepth(Primitive(v)): return 0

The first two lines are trivial - they simply return the depths of JvpValues and VjpValues
respectively. However, for Primitives, the returned depth is 0 (line 3). This is because
values of lower depths act as constants for those of higher depths. As Primitives should
always act as constants, their depths should be lower than any JvpValues and VjpValues.
Note that this requires that the minimum depth given to a JvpValue or a VjpValue is 1.

Finally, augmentJvp and augmentVjp can be updated like so:

1: augmentJvp(v, d, dep): return JvpValue(v, d, dep)

2: augmentVjp(v, id, dep): return VjpValue(TapeVar(id, v), dep)

The primal value of a JvpValue and a VjpValue can now be any ADValue. The same is
true for the derivatives of JvpValues. Meanwhile, id and dep are scalars.

27

Step 2 With the value type of JvpValues and VjpValues changed, doOp can now be
modified. It can be rewritten recursively, each call updating the augmented information
of the innermost layer of AD on the operands, stripping that layer off, and calling itself
on the stripped operands. This updates the information on every layer of AD, until the
operands are stripped of all AD information, and are thus Primitives. Their scalar values
can then be extracted, the operation run, and its result returned as a Primitive, ending
the recursion. Finally, each call to doOp will augment the Primitive with its updated AD
information.

The updated version of doOp is as follows:

doOp(op, p1...pn):

1: (mv, md) ← maxBy(getDepth, p1...pn)

2: match type of mv

3: with Primitive:
4: pv1...pvn ← map(getScalarPrimal, p1...pn)

5: return Primitive(op(pv1...pvn))

6: with JvpValue:
7: p’1...p’n ← map(λv → if getDepth(v) = md

then v

else JvpValue(v, 0, md)

, p1...pn)

8: pv ← doOp(op, map(getPrimal, p’1...p’n))

9: dv ← calculateJvpDerivative(p’1...p’n)

10: return JvpValue(pv, dv, md)

11: with VjpValue:
12: p’1...p’n ← map(λv → if getDepth(v) = md

then v

else VjpValue(TapeConst(v), md)

, p1...pn)

13: pv ← doOp(op, map(getPrimal, p’1...p’n))

14: tp ← updateVjpTape(op, p’1...p’n, pv)

15: return VjpValue(tp, md)

First, the operand with the maximum depth (mv), as well as its depth (md) are found (line
1). If several operands share the same depth, any one of them can be chosen. The type
of mv now determines the type of the outermost layer of AD, which is currently present
in the operands. Thus, the return type of doOp must match the type and depth of mv.
If mv is a Primitive, is it guaranteed that every operand is a Primitive, as no operand
has a higher depth than 0. In this case, the scalar value of each operand is extracted with
getScalarPrimal (line 4), and the primitive operation can be applied to the scalar values,
the result returned as a Primitive (line 5). If AD is not running, this is the only case,
which the code will reach.

If, instead, mv is a JvpValue or a VjpValue, it means the output of the function must be
augmented with the AD information, which is appropriate to the respective type. In order
to do this, every operand must be updated to have the same representation as mv. If the
depth of the operand is equal to that of mv, it need not be modified, as it already has the

28

correct representation. Otherwise, it must be represented as a constant would for jvp or
vjp, depending on the type of mv. A JvpValue is a constant, if its derivative is 0 (line 7),
and a VjpValue is a constant, if its Tape is a TapeConst (line 12).

In order to calculate the value of the previous layer of AD (i.e. the primal value of the cur-
rent layer of AD), each operand must be stripped of its outermost layer of AD information
by using getPrimal. The stripped operands can now be passed to doOp along with op. This
handles every layer of AD beneath that of mv (lines 8 and 13).

The AD information of the innermost layer of AD can now be calculated. As the function is
already quite long, this is handled by two new functions, calculateJvpDerivative(p1...pn)
and updateVjpTape(p1...pn, p), which calculate the derivative of the resulting JvpValue,
or the tape of the resulting VjpValue respectively (lines 9 and 14). These functions will be
described in the following text.

Finally, a JvpValue or VjpValue can be assembled, and returned (lines 10 and 15). Note
that the returned value is given the same depth as mv.

calculateJvpDerivative and updateVjpTape will now be defined. Note that, in order
to avoid endless recursion, they must never pass a value of the highest depth (such as one of
the parameters, p1...pn) to doOp. This will not be an issue for the implementations below.

calculateJvpDerivative can be defined as follows:

calculateJvpDerivative(p1...pn):

1: pd1...pdn ← getPartials(op)

2: pv1...pvn ← map(getPrimal, p1...pn)

3: dv1...dvn ← map(deriveJvp, p1...pn)

4: return eval(dv1 · pd1(pv1...pvn) + ... + dvn · pdn(pv1...pvn))
The code is nearly identical to that of the second branch of doOp in the implementation
of forward mode, however it is functionally different. As in the original implementation,
the function starts by retrieving the partial derivatives of op (line 1). It then extracts
the primal values (line 2), as well as the derivatives (line 3) of the operands. Note that
deriveJvp now returns an ADValue instead of a scalar, due to the modification of JvpValue.
Both the primal values and the derivatives will be of a lower depth than the operands, as
values cannot contain values of an equal or higher depth. The biggest difference between
the old implementation and this one is that the application of the chain rule, as well as
the computation of the partial derivatives, is run through the interpreter (line 4). This is
essentially syntactic sugar meaning that every primitive operation of the calculation is run
through doOp. The result is a JvpValue of the same depth as the deepest primal value or
derivative of the operands. Note that this will still be of a lower depth than the operands.
Finally, the function returns the calculated derivative (line 4).

updateVjpTape can be defined as follows:

updateVjpTape(op, p1...pn, pv):

1: tp1...tpn ← map(λ(VjpValue(tp, dep)) → tp, p1...pn)

2: return TapeOp(op, tp1...tpn, pv)

As every operand is guaranteed to be a VjpValue, the function must simply unwrap the
tape of the operands (line 1), and return a TapeOp with the operator, the tapes, and the
primal value, which was calculated in doOp.

29

Step 3 Much like calculateJvpDerivative, the only change which must be made to
deriveTape is running its calculations through eval. These include the calculation of its
sensitivity (when deriving a primitive operation; line 10), and the addition of sensitivities
(when deriving a variable; line 3). Doing so results in the following code:

deriveTape(tp, s, dv1...dvm):

1: match tp

2: with TapeVar(id, v):
3: dvid ← eval(dvid + s)

4: return dv1...dvm

5: with TapeConst(v): return dv1...dvm

6: with TapeOp(op, tp1...tpn, v):
7: pv1...pvn ← map(λtp → getTapeValue(tp), tp1...tpn)

8: pd1...pdn ← getPartials(op)

9: pdv1...pdvn ← map(λpd → eval(s · pd(pv1...pvn)), pd1...pdn)

10: dv1...dvm ← reduce(λ(dv1...dvm, tp, pdv) →
deriveTape(tp, pdv, dv1...dvm)

, dv1...dvm
, zip(tp1...tpn, pdv1...pdvn))

11: return dv1...dvm

evalJvp and evalVjp can now be modified as follows:

evalJvp(f, v1...vn, s1...sn):

1: dep ← getDepth()

▷ Step 1: Augment each input value with its respective seed value
2: v’1...v’n ← map(λ(v, s) → augmentJvp(v, s, dep)

, zip(v1...vn, s1...sn)

▷ Step 2: Evaluate the function (through the interpreter) on the augmented inputs
3: o1...om ← eval(f(v’1...v’n))

▷ Step 3: Extract the derivative of each output
4: return map(deriveJvp, o1...om)

evalVjp(f, v1...vn, s1...sm):

1: dep ← getDepth()

▷ Step 1: Augment each input value
2: v’1...v’n ← map(λ(v, id) → augmentVjp(v, id, dep)

, enumerate(v1...vn))

▷ Step 2: Evaluate the function (through the interpreter) on the augmented inputs
3: o1...om ← eval(f(v’1...v’n))

▷ Step 3: Derive the outputs of the function
4: return join(λ(a, b) → eval(a + b)

, map(λ(o, s) → deriveVjp(o, s, n)

, zip(o1...om, s1...sm)))

30

Both functions must now initially get a depth (line 1 of both functions). This can be
implemented in many ways - for example by taking the length of the call stack. The
augmentation functions are run as they were before, but they must now also take the depth
(line 2 of both functions). The function is then evaluated with the augmented parameters,
as it was before (line 3 of both functions). Finally, the outputs are derived and returned (line
4 of both functions). There are two changes to the code on line 4: Firstly, the return values
of the derive functions are now ADValues, so they need not be wrapped in Primitives.
Secondly, in evalJvp, the addition operation in the join function is wrapped in eval. Note
that the second branch of deriveVjp must be modified to return Primitives instead of
scalars, when the seed of an output is 0.

3.4 Bringing the algorithm to the Futhark interpreter

To aid the explanation of the AD implementation in the above sections, the language, for
which it was implemented, was highly simplified. Futhark, however, has typed primitives,
and composite types, and it lacks definitions of doOp, and eval, which are as versatile as
those used in the pseudo code. The following section will briefly mention some of the previ-
ously unaddressed decisions and challenges in implementing AD for the Futhark interpreter.

Implementing ADValue

As mentioned in section 2.2.1, Futhark already stores its values in a sum type, one of its
constructors, ValuePrim, representing all primitive values. While it may seem intuitive
to replace the scalar value in that constructor with an ADValue, as these, too, can store
Primitives, it was ultimately decided against, so as to reduce the impact of the AD imple-
mentation on the runtime of programs, which do not use AD. Instead, a separate constructor,
ValueSeed, was made to store either JvpValues or VjpValues. If a primitive operation is
applied only to ValuePrims, the operation is handled by the preexisting code in the inter-
preter. If, instead, one or more of the operators is a ValueSeed, it is passed to doOp, and
handled by the AD implementation.

Implementing doOp

Whereas every primitive operation goes through doOp before AD is implemented in the
simplified interpreter, the logic for calling and applying primitive operations was initially
split over many parts of the Futhark interpreter. In order to bring these functions together,
doOp was implemented. The Futhark interpreter initially had a few types, which were used
to differentiate primitive operations. These essentially grouped the operations into four
categories, each contained in a different type:

• BinOp, which stores binary arithmetic operations,

• CmpOp, which stores binary comparison operations,

• UnOp, which stores unary operations, and

• ConvOp, which stores operations, which convert a ValuePrim from one type to another.

Furthermore, Futhark has built in mathematical functions, which may take any number of
parameters. These are differentiated by their names, which are stored as strings.

31

The first step in implementing doOp was to create a sum type, Op, to hold any type of
operation, including functions. This is essentially the op parameter of doOp, save for the
fact that it cannot be applied as a function.

The parts of the code, which were responsible for applying primitive operations could now be
directed to doOp. As each part had its own logic for type checking operators, and choosing
the appropriate version of a primitive operation to apply (such as single and double precision
floating point operations), this, too, had to be implemented in doOp. Finally, doOp applies
the primitive operation. A minor difference between the implementation in the Futhark
interpreter, and that in section 3.3 is that in Futhark, the calculation of the outermost
Primitive value is calculated in doOp, while the info for the remaining layers of AD is
handled in a separate function called handleOp. This is purely a style choice to keep the
functions shorter and more focused.

Updating the different layers of the AD information works much like it did in section 3.3,
with one major difference: The calculation of partial derivatives is not run through the
interpreter.

Calculating the partial derivatives without eval

AD has already been implemented in the Futhark compiler, and the code base therefore has a
list of partial derivatives. As these must be calculated in the program, which is output by the
compiler, the derivatives are not implemented as functions, but rather in the form of syntax
trees containing solely mathematical operations. As these are all primitive operations they
can be run through doOp. Thus, the primitive operations are essentially calculated in the
AD implementation of the Futhark interpreter by running their syntax trees through a tiny
interpreter (a function called runPrimExp), which offloads the application of all primitive
operations to doOp, effectively recursively calling itself, when AD is being used to calculate
higher order derivatives. The chain rule is also applied using doOp, however without using
runPrimExp. Note that each call to doOp must pass an operation, which matches the type
of the operands. This is simply achieved by matching the operation to the type of the
operands. deriveTape (called deriveVjp in the Futhark interpreter) is implemented in a
similar manner.

Implementing evalJvp and evalVjp

As Futhark has composite values, and can pass them to evalJvp and evalVjp (called jvp2

and vjp2 in the code), its implementation of these functions is considerably more complex.
If composite values are passed to jvp2, the structure of the value holding the primal values
and that of the value which holds the seeds must be identical. The primal values and the
seeds are then be paired up, and traversed, returning a composite type with an identical
structure, holding the augmented values. The same is true for the seed values, and the
outputs of a function in vjp2. This is achieved by performing an in-place replacement
of the primal values with their augmented counterparts. In vjp2, this must be done while
maintaining an incrementing value, which is used to generate the unique ID for each variable.
Furthermore, as vjp2 must return the value of the partial derivative of each parameter in
the same type as the parameter, it must collect the types of the parameters, when their
values are augmented. When the output values are joined together and returned, it must
then represent constants as the type of their respective parameter.

32

Type conversion of ADValues

As ValuePrims in Futhark support type conversion, so must ADValues. In forward mode
AD, this simply entails converting the primal value as well as its derivative to the desired
type. In reverse mode, the initial value of a sensitivity (the seed value) for each output
must match the primal value of the output, such that it matches the primal values of the
operands of the final primitive operations in its computation graph. However, if a type
conversion occurs for an ADValue, it must be performed in reverse, when moving up the
computation graph, such that the sensitivity continues to match the types of the operands
for the consequent primitive operations. Type conversions must therefore be stored in the
Tape just like any other primitive operation.

33

4 Testing and benchmarking

The implementation can now be tested for correctness, and benchmarked.

4.1 Correctness

As the Futhark compiler already has an AD implementation, a series of relevant tests exist
in the code base. These include tests of various primitive operations, control flow, higher
order function calls, type conversions, and previous implementation issues for forward mode,
and reverse mode AD.

Running the Futhark interpreter through the full AD test suite reveals that 11 / 151 test
cases are simply so intensive that they take too long, or too much memory, for the interpreter
to run. Some of these are benchmarks, while others are real world examples. Disabling these
tests reveals that 136 / 140 remaining tests pass. In order to know if there truly are issues
with the AD implementation, the failing tests will be examined:

• cmp0.fut. In this test, the interpreter is being asked to derive a = b with respect to
a and b using forward mode and reverse mode AD. If the two numbers are equal, the
derivative must be true or 1, and otherwise false or 0. However, this is not derivable
when a = b, and so the value of the actual derivative is undefined. Therefore, the AD
implementation for the Futhark interpreter returns 0.

• iota0.fut. In this case, the sum of iota must be equal to the number of elements
in it, if the number of elements is defined by the variable, which the partial derivative
is taken with respect to. The AD implementation in the Futhark interpreter does not
consider iota a primitive operation, as it does not output a single scalar, and, even
if it did, the value of each scalar is not dependent on the input to iota. The scalars
output by iota are therefore considered constants.

• reducebyindex5.fut. This test covers the derivative of a second order function called
reduce by index. The function acts as reduce, however it only reduces certain el-
ements in the input list, given by a list of indexes. Interestingly, when running the
Futhark compiler on reducebyindex5.fut, reduce by index will provably return the
value of a parameter (thus not a constant), yet performing reverse mode AD returns
a partial derivative of 0 for said parameter. While this result seems wrong, the test
expects this output. The interpreter implementation outputs 1, as should be expected.
The maintainer of Futhark has been notified of this, however, no response has been
given at the time of writing. Whether this result is due to an error in the compiler and
the expected output in the test, or the test gives an invalid input to reduce by index,
or there is a flaw in this analysis is therefore unknown for the time being.

• Due to time constaints, an analysis of reducebyindex1.fut is still pending, however
the possible flaw in reducebyindex5.fut brings the validity of this test into question.
It should also be noted that there are six test cases for reduce by index, the remaining
four passing.

As the former two failing tests clearly test quirks in the AD implementation of the Futhark
compiler, and not whether or not the AD implementation returns the correct derivative
when given a derivable function, they can be said to be irrelevant in testing the correctness
of an AD implementation. The third test is likely flawed, and the validity of the fourth is

34

questionable, given that it tests the same function as the third. Testing has therefore likely
not found any errors in the AD implementation of the Futhark interpreter.

4.2 Benchmarking

In benchmarking the AD implementation, two queries were of interest: How much slower a
program runs when applying AD, as opposed to running it normally; and whether or not the
existence of the AD implementation slows down a program when AD is not applied. Testing
the former requires timing the execution of a program when applying no AD, forward mode
AD, and reverse mode AD, and calculating the factor of which performing AD increases the
runtime of the program. The latter can be tested by running a program without AD using
the interpreter before and after AD support was added.

In order to test these queries, a Futhark program was written to provide a workload of ample
size to benchmark the implementation. The following is the program used in benchmarking:

def f (x: f32) =

loop x = x for i < 100000 do

let s = (i32.f32 (x * 10)) %% 4 in

if x > 100 then

if s == 0 then 1 + f32.sin x else

if s == 1 then 1 + f32.cos x else

if s == 2 then f32.log1p x else

if s == 3 then f32.sqrt x else

x / 13

else

if s == 0 then x + 10 else

if s == 1 then x ** 3 else

if s == 2 then f32.exp (x / 10) else

if s == 3 then reduce (*) x [2, x, 5] else

x * 1.3

def main (d: i32) (x: f32) =

if d == 0 then f x

else if d == 1 then jvp f x 1

else if d == 2 then vjp f x 1

else 0

It consists of a function, f, which takes a single floating-point parameter, x, and modifies
it through a process using various primitive operations, control flow, and second order
functions, before finally returning it. The modification of x is performed in a loop, the
number of iterations determining the amount of work of the benchmark.

The entry function, main, takes two parameters: d, which determines whether to perform
no AD (0), forward mode AD (1), reverse mode AD (2), or returning 0 without running the
function (3); and x, which determines the initial value of x in f.

When the Futhark interpreter runs a program, it must first perform lexing, parsing, and type
checking. This adds a constant amount of time to each of the rest runs, pushing the factor
of execution time with vs. without AD towards 1. As only the slowdown of evaluating a
function with AD is desired, this constant factor must be removed. Benchmarks are therefore

35

performed not only for no AD, forward mode AD, and reverse mode AD, but also for the
branch, which returns 0. The execution time of the latter benchmark is then subtracted
from those of the former three to obtain a time, which better represents only the evaluation
of the function.

The benchmarks were performed using hyperfine with 5 warmup runs followed by 50 runs.
The initial value of x was 3. The results are as follows:

Branch Execution time Evaluation time Factor vs. no AD
Constant (3) 175 ms ± 7 ms 0 ms N/A

No AD (0) 871 ms ± 14 ms 696 ms 1.000

Forward mode AD (1) 2008 ms ± 26 ms 1833 ms 2.634

Reverse mode AD (2) 1637 ms ± 21 ms 1462 ms 2.101

Figure 4: Benchmarks of the implementation when performing forward mode and reverse
mode AD. It contains the execution time of a constant function (3), the benchmarked

function without applying AD (0), the benchmarked function when applying forward mode
AD (1), and the benchmarked function when applying reverse mode AD (2). For each

benchmark, data is included on the time it took to lex, parse, and evaluate; an estimate of
the time it took to evaluate; and the evaluation time estimate divided by the evaluation

time estimate when performing no AD (0).

Version Execution time (0) Constant time (3) Evaluation time Factor vs. before AD
Before AD 871 ms ± 14 ms 175 ms ± 7 ms 696 ms 1.000

After AD 867 ms ± 17 ms 175 ms ± 8 ms 692 ms 0.994

Figure 5: Benchmarks of the implementation when not performing AD. It contains the
execution time of the benchmarked function without running AD on the interpreter before,
and after AD was added. For each benchmark, data is included on the time it took to lex,
parse, and evaluate the benchmarked function; the time ot took to lex, parse, and evaluate

the constant function; an estimate of the time it took to evaluate the benchmarked
function, produced from the two former results; and the evaluation time estimate divided
by the evaluation time estimate when when running the version of the Futhark interpreter

before AD was added.

The results indicate no increase of evaluation time of programs, which do not apply AD after
modifying the interpreter (figure 5). In fact, the results show an insignificant decrease in
computation time, however this is likely due to a small inaccuracy in the time measurement.
This is not surprising, as the value type of the Futhark interpreter was already a sum type.
In fact, no new match cases have been added to any part of the code, which runs when
AD is not applied, so assuming that sum types are stored as enumerations in Haskell, there
should be no increase in the number of operations performed by the modified interpreter.

There is an approximate slowdown of factor 2.634 when performing forward mode AD, and
factor 2.101 when performing reverse mode AD (figure 4). Forward mode is most likely
slower, as it, unlike reverse mode, calculates the derivatives of s, which are not part of the
computation graph of the output. Given that the calculation of a partial derivative, and the
application of the chain rule tends to make the calculation of a derivative more intensive

36

than that of its primal value, this degree of slowdown can be considered small, however
there are a few important caveats:

Caveat #1 As this implementation of AD runs in an interpreter, there is a lot of overhead
in evaluating programs. While the main factor contributing to the speed of a program may
still be the application of its primitive operations, the extra overhead of traversing the syntax
tree of a function, and handling value types adds a constant overhead to the execution of a
function, with or without AD. This sways each factor closer to 1.

Caveat #2 More importantly, this is only a benchmark of a single program. While this
program was in no way designed to play into the strengths of the current implementation,
it may not be representative of the broad array of cases for which AD is used. As stated at
the end of section 3.2, a program could easily be designed to tank the execution time of the
current implementation of reverse mode AD. In fact, this could be done by taking the sum
of every value in the loop.

37

5 Conclusion

AD was successfully implemented in Futhark, and the implementation passed 136 / 138
relevant tests in the Futhark AD test suite. Of the failing tests, one is seemingly flawed,
while the validity of the second is questionable.

The implementation is able to perform both forward mode and reverse mode AD, and it
supports nesting the AD functions to calculate higher order derivatives. While both modes
performed well in benchmarks, the reverse mode AD implementation is suboptimal as its
performance can tank, if it is run on programs with primitive operations, where many of
the operands refer to the same value.

5.1 Future work

Before this implementation can be adopted into the Futhark code base, a few important
issues must be solved:

The suboptimal implementation of reverse mode AD The implementation of re-
verse mode AD must be optimized to avoid performing duplicate work. This might be solved
by taking a dynamic programming approach, uniquely tagging every Tape, and performing
memoization on each call to deriveTape.

Compatibility with the Futhark compiler Some derivatives produce differing results
in the Futhark compiler, and in the implementation for the Futhark interpreter. While
these derivatives are all of non-derivable operations, making the correct answer undefined,
it should be considered whether or not the compiler and the interpreter must produce the
same result, and, if so, what the result should be.

The state of the code base Due to time constraints, the code base for the AD imple-
mentation is fairly messy. Before merging it into the official Futhark code base, it would
have to be cleaned up, and made to follow the style of the existing code more closely. Cer-
tain functions, such as those for type checking and conversion, can possibly also be replaced
by ones, which already exist in the code base.

Unifying the value representations, and the primitive operation calls? As the
AD implementation adds a new value type, which simply wraps around primitive values
(Primitive), and adds a function, which applies primitive operations to said values (doOp)
it may be possible to remove the old primitive operation application logic, and run solely off
the new logic. This would reduce the complexity of the code, but require a rewrite of certain
parts of the interpreter. It may be interesting to explore, if this is a viable approach.

38

6 References

[1] Henriksen, T. (2017) Design and implementation of the Futhark programming lan-
guage. thesis. University of Copenhagen, Faculty of Science Department of Computer
Science.

[2] Baydin, A.G. et al. (2018) ‘Automatic Differentiation in Machine Learning: a Survey’,
Journal of Machine Learning Research

[3] diku-dk/futhark | A data-parallel functional programming language GitHub. Avail-
able at: https://github.com/diku-dk/futhark (Accessed: 11 August 2024).

[4] MANZYUK, O. et al. (2019) ‘Perturbation confusion in forward automatic differenti-
ation of higher-order functions’, Journal of Functional Programming, 29.
doi:10.1017/s095679681900008x.

[5] Forward-mode automatic differentiation Futhark-Lang.org. Available at: https://

futhark-lang.org/examples/forward-ad.html (Accessed: 11 August 2024).

[6] Reverse-mode automatic differentiation Futhark-Lang.org. Available at: https://

futhark-lang.org/examples/reverse-ad.html (Accessed: 11 August 2024).

39

https://github.com/diku-dk/futhark
https://futhark-lang.org/examples/forward-ad.html
https://futhark-lang.org/examples/forward-ad.html
https://futhark-lang.org/examples/reverse-ad.html
https://futhark-lang.org/examples/reverse-ad.html

