UNIVERSITY OF COPENHAGEN

Data-Parallel Coherency Sensitive Hashing for
Approximate Nearest Neighbour Fields

Department of Computer Science
University of Copenhagen

May 31, 2021

Kristian B. Andreasen <ncx523@alumni .ku.dk>
Supervisor: Cosmin Eugen Oancea

Contents

1 Introduction

2 Related Work
2.1 Locality Sensitive Hashing
22 PatchMatch
2.3 Propagation-Assisted K-DTrees
3 Futhark: The programming language
31 Functions.
311 Tota . ..o e
312 Map . .. e
313 Reduce
314 Scan
315 Scatter
32 Costanalysis
3.3 Other considerations o
3.3.1 Coalesced accesstomemory
332 Thread Divergence
4 Coherency Sensitive Hashing
41 Walsh-Hadamard kernels
42 Indexing e
43 Searching e
431 Candidatecreation
432 CandidateRanking
433 High-level CSH: the algorithm
434 Knearestneighbours. L
5 Data Parallel CSH
51 Projectingthepatches.
5.1.1 Translating Sequential Recurrences into Parallel Scans
5.1.2 Implementing Efficient Walsh Hadamard transformation in Futhark . . .
52 Creatinghashvalues
53 Creatinghashtables,
54 Propagation e
54.1 Findingnew candidates L.
54.2 Computingthedistance
543 Pickingthebestcandidate
55 Costofdata-parallel CSH,
6 Performance/Accuracy Trade-offs for CSH
6.1 KNearest Neighbours
6.2 Generatinglesscandidates L L.
6.2.1 LessKNN: Decreasing the impact of KNN on candidates created
6.2.2 LessDir: Decreasing the impact of coherency on candidates created
6.3 Earlystopping e

Y

Q1= W W

O O O 0WWOWNNNSTSS

7 Results

71 Experimentalsetup e
72 Baseline. e e e
7.3 Lesscandidatesbased on KNN
74 Less candidates based oncoherency 0L
75 Hardware utilization e
7.6 ComparisonwithCPU-CSH
7.7 Comparison withKD-tree
8 Improvements and issues
8.1 PossibleImprovements L L L o
8.2 ISSUES e e e e e

9 Conclusion
A Glossary

References

27
27
28
29
30
31
32
33

33
33
34

34
35

35

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

Abstract

Finding similar patches in two images is an often used technique in computer vision. Methods
that achieve this purpose, known as Nearest Neighbour Fields, are slow and expensive and
modern demands have only served to increase the resolution of the images these techniques
are used on. To alleviate this issue approximate solutions are computed, which trade exactness
for speed. Recent research has shown that highly parallel implementations that use GPUs for
computing can be used to achieve large speedups with no impact on accuracy. In this thesis
I propose a data-parallel implementation of Coherency Sensitive Hashing(CSH). CSH, when
using CPUs, has been observed to achieve good performance by exploiting the coherency of
images and similarity between patches. The data-parallel implementation shows a significant
increase in speed at no cost to accuracy and is quick enough to be run in real time on high
quality images. The performance of data-parallel CSH has been verified using an image set of
133 image pairs.

1 Introduction

Similarities between pictures is an often visited concept in computer vision. Finding similarities
has been used for a variety of purposes,such as retargeting [2], which allows for dynamically
sizing images to new aspect ratios while keeping the image looking good. Another purpose is
image completion [11], which allows the user to remove objects and the area removed is then
painted in to look natural.

One way of describing such similarities is through Nearest Neighbour Fields(NNFs). Images
can be divided into overlapping fields with each field or patch being comprised of a number of
pixels. For a patch a in image A an NNF is a patch b in an image B such that no other patch
in image B has a lower distance to patch a. The brute force approach to computing the set of
NNFs requires finding the distance from all fields in image A to all fields in image B. This is
clearly a challenge that suffers from the curse of dimensionality, which is only becoming worse
as the resolution of our images continue to increase. To prevent NNFs from becoming a large
computational bottleneck for computer vision an approximate solution is instead used.

Approximate Nearest Neighbour Fields(ANNFs) finds a decent match for each patch rather
than the exact match. This reduces the computational load at the cost of accuracy. There are a
variety of methods used for this purpose, which makes use of properties relating to images or
data-structures to achieve good accuracy without a corresponding large run-time.

KD trees [1] is a data structure based algorithm that uses a k-dimensional tree to guide the
search for the nearest neighbour field. It is possible to use KD trees to obtain an exact NNF [5],
but the run-time cost of this is typically far too high. Various methods are instead used to
prune which branches or leaves are visited, such that only a limited number of candidates are
generated instead of the worst case scenario, which is every single field. A KD tree can be
viewed as a R? ordering of the fields.

This is quite similar to the idea behind Locality Sensitive Hashing [4], which instead use a
RY hash function on the fields and generates candidates based on collisions coming from those
hashes. The number of candidates generated from this is typically low and multiple such hash
functions are instead used to generate a rich field of candidates. Both of these approaches are
examples of locality sensitive based algorithms, which exploit the content of the fields to find
fields with similar content.

These performance of these approaches were beaten by that of PatchMatch [2], which uses
coherency to propagate good ANNFs to nearby patches. PatchMatch uses the fact that images
are coherent, which means that neigbouring patches are likely to have neighbouring ANNFs.
In other words, if a pair of patch/match covers the left part of an apple we would expect the
right neighbour to the patch to have a match that covers the middle of an apple(or slightly less

1/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

left part of an apple), which would correspond to the right neighbour of the match. PatchMatch
makes use of random starting conditions and so several iterations of propagation are required
before a good ANNF has been computed.

Locality Sensitive Hashing and PatchMatch inspired the creation of Coherency Sensitive
Hashing [12], which makes use of both locality sensitivity and coherency. Similar to LSH it
makes use of hashing to obtain collisions and similar to PatchMatch good matches are propa-
gated to neighbouring patches, unlike both of them candidates are also generated from a com-
bination of the two. Like PatchMatch multiple iterations are required for a good result, however
the use of both coherency and locality means the algorithm performs better than those it were
inspired from.

This in turn was improved on by Propagation Assisted KD trees [7], which instead of solely
relying on KD trees, computes the NNF for a row of the image and propagates this to the next
row. The next row then uses this information to lookup which leaves to use as candidates.
This combination allows the creation of a rich field of candidates at a low run-time cost, while
pruning unlikely candidates, which allows for the cost of ranking the candidates to remain low.

The methods mentioned above typically have run-times far lower than that of exact meth-
ods, however even then the computational load remains high. Modern demands means that
size of images grow and they are now comprised of millions of pixels. As such the computation
of ANNFs continue to exist as a computationally heavy problem. One solution to this is to use
the old solution of throwing more computational power at the problem. Today that solution
is achieved by implementing highly-parallel algorithms that can make use of parallel process-
ing power, such as that delivered by graphical processing units (GPUs). Propagation Assisted
KD trees has been implemented using highly parallel approach [13] and allows for the use of
ANNFs in real time.

Propagation Assisted KD trees have been implemented in the language Futhark. Futhark
has previously been used to parallelize other applications, where runtime is of paramount im-
portance, such as using satellite data to detect changes in the landscape [6].

Earlier methods, such as CSH, have been implemented using a CPU-based approach and
not a highly parallel approach. It is relevant to investigate the increase in performance such
methods may achieve from changing the approach. Implementing algorithms such that it can
be run using highly parallel devices are not without issues and the goal of this thesis is to
implement CSH in a parallel fashion, such that these challenges are handled properly. CSH is
an interesting problem for this as the original implementation contains several sequential parts
that are not trivial to handle when implementing a parallel version.

I have implemented and investigated the performance of a data-parallel version of CSH
in Futhark and as part of this process I have identified and solved two critical challenges. The
method used for reducing dimensionality has a linear recurrence that is not trivially parallelized
with a scan. This has been solved using linear function composition and a scan. Ranking can-
didates is a sequential operation in the original CSH. A naive parallelization of this results in
poor performance due to a high degree of thread divergence. I have solved this through a brute
force approach that utilizes intra-group parallelism.

In this thesis I will present a highly parallel implementation of CSH' using the language
Futhark. Section 2 presents related algorithms that compute ANNFs using a different approach
than CSH. Section 3 presents Futhark, which is the language I have implemented data-parallel
CSH in. Section 4 presents the original CSH. Section 5 presents the implementation details of
and reasoning behind data-parallel CSH. Section 6 presents various trade-offs that may improve
the performance of CSH. Section 7 presents the experimental results of data-parallel CSH in
comparison to the original CSH, propagation-assisted KD trees and the variations presented in
section 6. Section 8 presents various issues and improvements that future work may address.
Section 9 is the conclusion.

1Github Repository: github.com/mavion/annf

2/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

2 Related Work

2.1 Locality Sensitive Hashing

Locality Sensitive Hashing(LSH) is an approach that uses information
about the local space to generate candidates. This is done through a hash-
ing scheme followed by exploring the candidate set generated.

The algorithm is comprised of two stages: Indexing and searching. In
the indexing stage LSH functions are used to create hash tables in which
similar points index into the same hash bins with high probability. A num-
ber of such hash functions are concatenated together to create a code for
the purpose of increasing the difference in probability of similar points
and dissimilar points hashing to the same bin. These codes are used to
create a single hash table, which is used in the search stage. In the search
stage points are hashed into the table in order to find nearest neighbour
candidates. For the purpose of increasing the probability of finding good
candidates multiple random codes are generated, which are searched se-
quentially in the search stage. The scheme used by Datar et al. [4] uses the
family of LSH functions of the shape:

hap(o) = O

where 7 is a predefined integer defining the width of a bucket, b is a ran- Each field —in the
dom value in the interval [0,7) and a is a d-dimensional vector with entries S0urce image A has a
chosen randomly from a Gaussian distribution. v is the vector represent- C”Viflf’ ondu?gl J @eare;t
ing the patch. In short the vector v is projected onto a line 4, offset by b Zzerlgge ; ?nZZngZ eB g;lt Z
and then divided by r with the final result being the bin it hashes into. very small mir;orityyof
The maximum number of bins depends on the magnitude of v and scales 4145 are shown.
inversely with .

Hashing patches into bins is a way of compacting information into a
more usable format. This way of quantizing information has some issues, such as binning
similar patches with similar hashes into separate bins solely because the bin edge happened
to be between the two. To address this issue a random offset b is used, which increases the
probability that similar patches hash into the same bucket. In short, b is used to neutralize the
quantization effects of fixed binning.

A number of such hash functions with independently chosen random variables are used to
create a hash code:

He(0) = ey py (0) e Hig, 1, (0) @

which is concatenation of m different hash functions. This is then repeated to create a num-
ber of hash tables where each patch has a hash code for each hash table. To summarize: the
LSH algorithm is called with two images. All patches in both images are hashed using a ran-
dom family of hash functions to generate a hash for each patch. Collisions between patches in
separate images are considered candidates for nearest neighbour field. Multiple such hashes
are generated, so as to generate a richer field of candidates. To keep it tractable the number of
candidates generated per hash is upper bounded.

The method for LSH to achieve it’s accuracy is through the assumption that nearest neigh-
bour fields are similar to each other and that similar fields hash similarly. Improving the ac-
curacy of LSH is done by generating more candidates either through hashing more times or
by increasing the number of collisions per hash, which can be done by increasing bin width
or using more representatives. This comes with a natural increase in run-time, which can be
mitigated by using a GPU based solution, such as that presented by Pan and Manocha [14].

3/36

DIKU

Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021
> |
| N
-
\ —l

EENENEEEENNEVAIIEEEEN
AN
PN

Figure 1: The hashing and collision scheme used by LSH. The patch in the left image has two different
hash values corresponding to the two hash tables in the middle, these hash into different bins
and the collisions from these bins generate candidates in the right image.

2.2 PatchMatch

A A A
[/
B 'B &
i
(a) Initialization (b) Propagation (c) Search

Figure 2: The 3 phases used by the PatchMatch algorithm. (a) initially matches are randomly distributed.
(b) red propagates it’s good match to the neighbouring blue. (c) A random search is performed
for blue. b and cis repeated several times until a good result is found or a set number of iterations
have been performed.

PatchMatch [2] is an approach that makes use of the coherency of images. This is done by
generating random candidates and propagating good candidates to neighbouring fields.

PatchMatch is comprised of two stages: initialization and iteration. Initialization consists
of setting the initial matches for each patch, which can be done either by using random starts
or by using prior information. One approach suggested by Barnes et al. [2] is generating prior
information by running the algorithm on a downscaled version of the images.

Iterating is done in two steps(figure 2): Propagation and random search. Propagation is
done using coherency, which means that patches within an image and between two images are
correlated. In other words if an object appears in both images then the patches that correspond
to that object are related. If a patch finds a match on that object then the neighbours of that

4/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

patch likely also have a good match on that object, which is likely next to the original match. In
other words if a patch/match are close then the patches to the right of those two are likely close
as well. As such good matches can be propagated to neighbours, which can then propagate
them further.

Propagation to neighbours however run into the issue of getting trapped in local minima.
To mitigate this issue random candidates are generated. The approach used by Barnes et al. [2]
generates random candidates based on the currently found match. Candidates are more likely
to be generated the closer they are to the current match.

2.3 Propagation-Assisted K-D Trees

Propagation-Assisted K-D Trees is a variant of K-D trees that use the coherency of the image to
propagate good matches to neighbouring patches.

K-D trees are a data structure for a point set P C RY, where the root of the tree corresponds
to all points in P. Each level of the tree divides the tree along one of the dimensions, such that the
set of points is evenly divided along the two branches. The branches are then further divided
evenly until such a stopping criteria is reached, which typically corresponds to each leaf con-
taining less than a set number of points. In other words K-D trees are a K dimensional analogue
to binary trees.

A K-D tree can be used to find the exact nearest neighbour for a point q. This is done by
traversing the tree from top to bottom to find the leaf that q would fit into. The points in that
leaf are then stored as the k nearest neighbours. The tree is then fully traversed from bottom
to top while only checking those branches that are necessary. It is only necessary to check a
branch if the distance from q to the box surrounding that branch is less than the distance from q
to any of the k nearest neighbours. This set of k nearest neighbours may be updated whenever
a branch is checked.

For a low number of dimensions this substantially improves the running time compared to
brute forcing the nearest neighbour fields, but for a large number of dimensions branches will
often be checked and so there’s little to no benefit for the running time. This can be mitigated
by reducing the dimensionality of P, which can be done through methods such as Principal
Component Analysis or similar.

Propagation-Assisted K-D trees is a novel approach that makes use of coherency to remove
the need for traversing the tree when finding the nearest neighbour fields. This approach was
first shown by He and Sun [7] and later improved by Oancea et al [13].

The approach is comprised of 5 steps:

1. Reducing the dimensionality. Less dimensions means that traversing the KD tree is less
costly and it reduces the cost of computing the distance from a point to another point.
This comes at the cost of accuracy.

2. Building the KD tree.

3. Find the Exact KNN for the first row. The method that has been described already is used
on the first row and only the first row.

4. Propagate using the results from the first row. The results from previous row is propa-
gated as seen in figure 3.

5. Pick from KNN using full dimensionality. The KNN found in step 3 and 4 were found
using reduced dimensionality and so the current ranking may not be accurate.

To summarize: Propagation-assisted KD trees use KD trees to initialize a row with good
matches. These matches are then propagated to neighbouring patches, which makes use of the
coherency of the image. The leaves of the KD tree these candidates belong are used to enrich
set of candidates, which is an example of locality sensitivity.

5/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

pafzy + 1) |- :H
palz{y) Al |

pa(z]y])

Figure 3: The propagation performed by KD trees. The two neighbours of patch/match pair are a patch/-
candidate pair. For each such candidate the leaf in the KD-tree that contains the candidate are
also candidates for said patch.

3 Futhark: The programming language

The implementation of the algorithms are done in Futhark [8] [9]. Futhark is a programming
language designed to generate efficient parallel code. It is statically typed, data-parallel, and
purely functional. The Futhark compiler can generate both multi-threaded CPU code and opti-
mized parallel GPU code.

Futhark provides a number of functions for writing parallel programs. Readers that are
familiar with other parallel languages may recognize these. The most relevant are shown here.

Name | Function type
iota (n: 164) — [n]i64

map (a = x) = [n]a — [n]x
reduce | (a—a—a)—a—[nla—a
scan (a—a—a)—a—[nla—[n]a

scatter | *[n]d — [m]i64 — [m]d — [n]d

Table 1: Parallel functions for writing parallel code in Futhark. — indicates that the left hand side is used
to produce the right hand side. A sequence of arrows can be read as multiple inputs to the same
function. Arrows inside parentheses(like in map) indicates that the input is a function. A unique
input is denoted by * and its semantics is that it is consumed by the corresponding operation, such
as scatter, i.e., it is illegal to access it on any execution path following the consuming operation.

3.1 Functions
3.1.1 Iota

Iota has the function type: (n: i64) — [n]i64, where [n]i64 denotes the type of an array of n
64-bit integral elements. It has one input and one output. The input is a 64-bit integer while the
output is a list of integers of the same length as the value of the input. The output is a list of the
integers from 0 to n-1 ordered in ascending order.

6/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

1| let a = iota 5

This snippet in Futhark is the equivalent to the following snippet in C-like code:

1| int =a;

2| for (int i=0; i<5;i++){
3 ali] = 1;

4/}

Implicit indexing is a common technique, but the index may be needed. In sequential program-
ming the index is often produced through an iterator as part of a loop or similar, but in parallel
programming this is less than ideal. A way is needed to produce the index cheaply, which iota
is suited for.

3.1.2 Map

Map has the function type: (a — x) — [n]a — [n]x. It takes two inputs; a function, and an array,
while it outputs an array of the same size as the input array. Map is used to apply a function to
each element of an array.

1| let a = map (+2) (iota 5)

This snippet in Futhark is the equivalent to:

1| int =a;

2| for (int i=0; i<5;i++){
3 al[i] = i+2;

4/}

3.1.3 Reduce

Reduce has the function type (a — a — a) — a — [n]a — a, where a is an anonymous type
that does not change between the elements. There are 3 inputs; an associative operator ©, the
neutral element of the operator and an array. The semantics are as follows:

reduce ® ne [ay, ..., 4,] = a1 @ ay... © ay

The following is an example of summation implemented in Futhark, which can be done
easily using reduce.

—_

let sum as = reduce (+) 0 as
let a = sum (iota 5)

N

3.1.4 Scan

Scan has the function type (a —+ a — a) — a — [n]Ja — a, where a is an anonymous type. There
are 3 inputs; an associative operator ©, the neutral element of the operator and an array. Scan
outputs an array of the same size as the input array, where each element has the value that is
the equivalent of having performed a reduce up to that element. In other words:

scan @ ne [ay, ..., 4] = [reduce ® ne [a7], reduce © ne [a1, a3}, ..., reduce @ ne [ay, ..., ay]]

The following declarations of b have the same values:

1| let b = scan (+) 0 (iota 5)

2| let sum bs = reduce (+) 0 bs

3| let b = [sum (iota 1), sum (iota 2), sum (iota 3),
4 sum (iota 4), sum (iota 5)]

5/let b = [0,1,3,6,10]

7/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

In C-like code scan can be done as follows:

int =*a;

a[0] = 0;

for (int i=1; i<5;i++){
ali] = i;

}

for (int i=1; i<5;i++){
ali] Ali-1]+al[i];

OO UT = WN -

}

3.1.5 Scatter

Scatter takes a destination array, an array of array indexes, and an array of values. The output
is the first array with values updated in the positions pointed too by the second array, while the
values are supplied by the third.

1| let a = iota 5 —— [0,1,2,3,4]
2| let inds = [3,2,1,0]
3| let a = scatter a inds (iota 4) — [3,2,1,0,4]

Scatter is used to perform a large amount of in place memory updates in parallel. The behaviour
is undefined if the same index is updated with multiple values unless those values are identical.
Scatter can be implemented sequentially as follows.

1| void scatter (int* dest, int* inds, int* as, size){
2 for(int i; i< size, i++){

3 dest[inds[i]] = as[i];

4 }

5

3.2 Cost analysis

For sequential programming one way of denoting cost is the number of operations needed as
this typically correlates linearly with run-time, which is what we’re typically trying to optimize
for. However this does not accurately the behaviour of parallel programming.

Parallel programming utilizes a number of threads to run operations in parallel. The same
number of operations is executed in less time if more of them can be run in parallel. To describe
this I will use two concepts: Work and span. Work is the number of operations performed,
while span is the number of operations performed by a single thread if an infinite number of
threads were available.

The costs for the functions described in this section can be seen in table 2. The costs for the
sequential equivalents have not been included, but in all cases have the same asymptotic work.

Name Work Span
iotan O(n) o)
map f (as: [n]t) OM*W(f)) | O(W(f))

reduce f ne (as: [n]t) | OM*W(f)) | O(log(n)*W(f))
scan f ne (as: [n]t) Om*W(f)) | O(log(n)*W(f))
scatter d (i: [n]i64) v | O(n) o)

Table 2: Costs for parallel functions as seen in Futhark. Types have been included where relevant for the
cost.

8/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

3.3 Other considerations

Futhark has a highly efficient compiler, which handles a lot of the low implementations details,
which allows the programmer to focus on the larger issues with the implementation. When
compiled to GPU code the Futhark programmer does not need to take care of threads, their ids
or similar, but they still exist and can have an impact on the performance of the code.

An important detail is the existence of warps. Threads are grouped together in a warp and
on GPU, threads in a warp execute in SIMD fashion.

3.3.1 Coalesced access to memory

Reading data from global memory is a slow process. As such reducing the number of global
memory accesses is important for programs where memory is the bottleneck. Warps are imple-
mented such that threads in the same warp requesting access to global memory can be done
using a lower number of accesses if the requested memory is located consecutively. Access is
coalesced when the threads in a warp access consecutive memory locations.

3.3.2 Thread Divergence

Threads in the same warp work in lockstep, which means that they execute the same operation
simultaneously, but with different data. This is what allows the previously mentioned coa-
lesced memory accesses, but it has a negative impact on performance for branching statements.
Suppose you have a function similar to the following:

map (\x —> if x % 16 then x
else reduce (+) 0 (iota 100)) (iota 1000)

N —

If the content of the map is executed sequentially then 1 out of 16 threads have much more work
to accomplish. With a warp of size 16 this means that all threads will either need to wait for or
perform the reduce. The example is of course a bit sought as a good compiler should be able to
optimize that away.

4 Coherency Sensitive Hashing

Coherency Sensitive hashing is an approach that makes use of Locality Sensitive Hashing,
which was first introduced by Indyk and Motwani [10]. LSH functions has the feature that
points that are similar have a higher probability of hashing to the same bucket than dissimilar
points have. In this section I will outline the specific version used for CSH.

4.1 Walsh-Hadamard kernels

CSH generates a number of hash tables in the indexing stage, making use of the same general
framework as LSH. However Korman and Avidan [12] found that the use of Walsh-Hadamard
kernels(WH kernels) as the family of functions used for hashing was crucial for performance as
they allow for the efficient computation of hash codes and lower bounding of the L, distance.
The L, distance is used in the search stage for comparing similarity of patches.

WH kernels are a subset of Gray code kernels. Gray code kernels have two properties that
are relevant for ANNF: they represent a way of reducing dimensionality and they can be com-
puted effficiently [3]. A grey code kernel can be computed in only two additions per pixel
given the existence of a related kernel. Related kernels are kernels that differ only in a single
step when looking at the recurrence they correspond to.

9/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

=

LLLEE
",
i

Figure 4: The 8x8 set of Walsh Hadamard kernels. A valid gray code sequence is shown. This is not the
only valid sequence.

1D WH kernels are generated through the following recurrence:

WHp = 1 ®)
WHy = {wy_1 +rag * we_q} s.t. we_g € WHy_q, a4 € {+1, -1} 4)

A graphical example of this is shown in figure 5. The operator +- indicates concatenation. For
each kernel wy,_1 in a set WHj_1, two kernels of the next level wy are produced by concatenating
the kernel with itself or the additive inverse of itself. This recurrence creates a set of size 2 1D
kernels. 2D kernels are generated through the following formula:

WH,% ={w1 @wy} st wy,w; € WH,} (5)

WHkD is the set of Walsh Hadamard kernels of dimensionality D and size k, where k is the size
along all dimensions. WH3 is the full set of WH kernels of size 8x8. WH3 is computed by taking
all kernels from WHJ, pairing each kernel up with all kernels from WH} and applying the outer
product to all such pairs. WH3? is shown in figure 4, which forms the complete basis for 8x8
patches. Only a part of the set is used for CSH.

The standard approach is to use a function that projects the patch onto a 1-dimensional sub-
set(a line). Ideally the dispersion of the projections of the image onto the line is such that similar
patches end up close to each other, while patches with large differences are easily discriminated
between. One way of accomplishing this is by taking the eigenvalues of the covariance matrix of
the entire set of image patches. For natural images the eigenvalues turn out to form a sinusoidal
basis, ordered in increasing frequency. WH kernels, when ordered by increasing frequency(fig
5), produce a similar set of projection lines.

These projections have been shown to be effective for pattern matching in images by [3].
The full set of WH kernels form a complete and ortogonal basis, which means that it is possible
to compute the squared L, distance by summing the difference between the projections of two

10/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

[ss]/ s\[s_s]
N TN

Canm
-
=FI-T"

= = =

Figure 5: The 4x4 set of Walsh Hadamard kernels ordered by increasing frequency. Lowest frequency is
top left. The two binary trees are the recurrences that generate the 1D WH kernels. The matrix
is the 2D WH kernels generated through applying the outer product to the 1D WH kernels.

[s-s s-s] [s-s-s s] [s s-s-8] [s s s 8]

patches onto the basis elements:

lp1 = pall> = Y (w; - p1 — wj - p2)*, w; € WHY (6)
=1

where p; is a patch in vector representation, w; is a WH kernel in vector representation, n is the

number of elements in the vectors and WHY is the full set of WH kernels of that size.

Patches without any transformation has the information spread equally amongst it’s fea-
tures, which means that computing the L, distance the total accumulates at a constant pace.
WH kernels, when ordered by frequency, has more of the information contained in earlier fea-
tures. This means that a good lower bound on L, can be computed using less than the full
amount of kernels.

Furthermore, assuming that the projections have been computed already, it has been shown(Ben-
Artzi et al. [3]) that the summation can be done by using only two additions per patch per kernel
if the summation of the kernels is done in a specific order. This ordering forms a Gray-Code
sequence of the WH kernels. In CSH the projection of patches onto Walsh Hadamard kernels
serve as a form of reduced dimensionality. The projections are computed once and used multi-
ple times.

A WH kernel can only be computed efficiently from a different WH kernel if the two are
closely related. Two WH kernels are closely related if the recurrence(equation 4) that created
them differs only in a single sign. As an example(figure 5) the kernel [s s s s] is closely related
to[ss-s-s]and [s -s s -s], but not [s -s -s s]. The efficient computation is done pixelwise through
the following formula

WH4(x) = WH_(x) + WHy(x — k) + WH_(x — k) (7)

where the sign is based on what sign they have, x is the pixel, and k is a constant that depends

11/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

on where in the recurrence the sign differed. A similar equation exists for WH_ (x), which is
trivial to isolate.

4.2 Indexing

Indexing in the CSH algorithm works similar to that of LSH: to obtain the indexes several hash
functions are applied and the results are concatenated together. The hash functions used for
CSH differ from those of LSH, which has some implications for the results.

¢ 2D Walsh-Hadamard kernels are used instead of the family of hashing functions used in
Locality Sensitive Hashing. Each patch is transformed using a predefined set of lowest
frequency WH kernels instead of a random set of lines.

a-v+b

e LSH uses multiple random functions of the form h(v) = to compute the hash

codes, where r is the width of the bins, b is a random value in the interval [0,r), v is a
vector representing a patch, and a is a vector of the same size as v with random entries
in the interval [0,1). The values of v are upper bounded as they are the intensities of an
image, which means that the number of bins depends inversely on r.

In CSH a fixed number of bins is assigned to each projection. This is done to reflect some
projections containing more information than others. It should be noted that the number
of bins has an impact on the number of bits in the final hash code.

* LSH has fixed width spacing. This means that all bins has intervals of the same size,
while the number of elements in each bin may be and likely is different. CSH has variable
width spacing. This means that the edges of the bins are chosen such that the amount of
elements in each bin is the same. The size of the intervals of the bins may be and likely is
different.

The set of kernels used and the number of bins for CSH was determined by Korman and Avidan
offline for their implementation and I have used the same values. For the sake of convenience
these are shown in table and are fixed for all images. These numbers were chosen for their per-
formance and reflects their observations regarding WH kernels and the impact of each channel.

patch dim. YO,O Cbo/o CI‘(),Q Yl,O YO,l Y1,1 Y2,1 YLQ
160r8 RG22 (402 186 [8@) [2() [20) [2()
4 32(5) | 4(2) |42) [83)|8@3) |- 2(1) | 2(1)
2 2G) 402 [402) [83) 80 |- - -

Table 3: Bit/kernel allocations. The table shows the number of bins allocated per kernel with the corre-
sponding number of bits in parenthesis. Patch dim corresponds to the patch size, i.e. 16 corre-
sponds to patches of 16x16. Y, Cb, and Cr are the channels used for each bit. Subscript indicates
what projection is used with 0,0 indicating the upper left-most kernel as seen in figure 4. These
numbers are calculated offline and has been copied from Korman and Avidan [12].

The even amount of patches per bin means that the bin edges needs to be computed before
binning is possible. This is done by taking a large sample of patch projections and using those
to place the edges at the relevant percentiles. Like in LSH a random offset is applied to the bin
edges so as to avoid the effect of quantization on bin limits. The expectation is that all bins have
the same number of elements with the exception of the first and last bin.

The result of binning is a number of bits per patch per kernel, which are concatenated to
create a hash code per patch for a specific set of offsets. The offset is the only source of variability
for CSH and so the construction of the L hash tables depend on this.

12/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

4.3 Searching

The search stage makes use of the L hash tables constructed in the indexing stage. The hash
tables exhibit local sensitivity, i.e. that similar patches hash to the same bin. The LSH approach
is to exploit this by searching each of the L bins that a patch hashes for candidates and then
compare these candidates.

This does not make use of spatial arrangement nor does it propagate information to neigh-
bouring patches.

4.3.1 Candidate creation

CSH expands on the LSH algorithm by considering candidates based on more than just the
hash.

For each iteration of the algorithm, which each makes use of one of the L hash tables, the
purpose is to generate candidate patches for each patch in the source image. Candidate patches
are found in the target image and are candidates for being the nearest neighbour patch of a
specific patch.

Korman and Avidan [12] make use of four observations for determining good candidates.
Let s; denote a patch in the source image and t; denote a patch in the target image

1. If s and t hash to the same entry then t is a good candidate for s. This is the kind of
candidates that LSH uses exclusively.

2. If t is a candidate for s; then ¢ is also a candidate for any patch s, that hashes to the same
entry as sq.

3. If t; is a candidate for s then any patch ¢, that hashes to the same entry as t; is a candidate
fors.

4. If t1’s left neighbour ¢, has a candidate s, then s;’s right neighbour is a candidate for t;.
This goes for all four cardinal directions.

Observations 1-3 follows from the local sensitivity property of the hash function used to create
the hash tables. Observation 4 comes the assumption that patches in images have some sort
of coherency to them. These combine into 3 types of candidates, which are shown in figure 6.

ST

L3R
EafEgiss

Figure 6: The various types of candidates created in CSH. For each type we have the source image on the
left, the target image on the right and the hash table in the middle. (left) These are type 1 patches,
which are patches that hash into the same index. (middle) These are type 2 patches, where
patches propagate good matches to neighbouring patches. (right) These are type 3 patches,
where patches propagates matches to patches that share the same hash.

This creates a number of candidates. The number depends on the width k of hash table, which
is the number of patches per entry that is stored. The original paper(and us) uses a width of
2. Type 1 generates k candidates, type 2 generates k+1 candidates per cardinal direction, and
type 3 generates k candidates. These candidates may overlap. The total number of candidates
is 6k+4 or 16 with a width of 2.

13/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

4.3.2 Candidate Ranking

Given a set of candidates it is necessary to rank them. Computing the distance of each candidate
is the main time consumer of the function. As such an approximation of the L, distance is used.
This approximation is based on Walsh-Hadamard kernels as mentioned earlier.

Each patch is randomly assigned a current match for nearest neighbour at the start of the
search stage. The lower bound for the match is computed using the full set of L, kernels. It
should be noted that this set is still just a subset(23 out of 192) of the actual full set of kernels. As
mentioned previously the earlier kernels capture more of the information regarding the distance
between two patches. This not only allows the lower bounding to be used without suffering
significantly from lack of precision, but is also means that candidates can be rejected quickly, as
bad candidates are likely to grow over the estimate quickly.

4.3.3 High-level CSH: the algorithm

1 function Project (image, a);

Input : Animage of shape (x,y,3), where x and y are the dimensions of the image and 3
is the channels. A positive integer a, which corresponds to the size of patches.

Output : An array of shape (x+1-a,y+1-a,t)=(r,s), where r and s are the dimensions of
the patches, while t is the number of kernels.

Purpose: Apply the Walsh Hadamard transformation on the patches of an image to
achieve reduced dimensionality.

2 function Create_hashes (projs, projt, 1);

Input :The projections for the source and target image with shapes (x,y,t) and (n,m,t)
respectively, where x,y,n,m are the dimensions and t is the number of
projections. A positive integer 1, which is the number of iterations in the
propagation stage.

Output : Two arrays of shape (x,y,l) and (n,m,l), which corresponds to the hash codes of
the source and target images respectively.

Purpose: Use the input to create b hash functions. Apply each hash function to each
pixel. Return 1 hash codes per patch.

3 function Create_tables (hashes,] k);

Input :The hashes for an image of shape (x,y 1), such as those created by
"Create_hashes", where x,y are the dimensions of the image. Two positive
integers 1 and k, which is the number of iterations and the width of the hash
table respectively.

Output : A hash table of shape (I,n, k) where n is a constant and Lk is copied from the
input.

Purpose: Takes a set of values, for each unique value finds the indexes containing that
value. Returns a hash table that contains k representatives for each unique
value.

4 function Initialize_matches (projs, proj:);

Input : The set of projections for two images, such as those generated by
"Create_hashes". These have shape (x,y,t) and (n,m,t) respectively.

Output : Two arrays of shape (x,y).

Purpose: Takes the Walsh Hadamard projections of two images and returns an array of
size (x,y) of tuples of integers with values in the range (0:n, 0:m). This array is
the set of matches for each patch of the first image. Also returns the distance
to each match.

14/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

5 function Find (hashg, hashy, table;, table;, matches);

Input : An array of hashes of shape (x,y). An array of hashes of shape (n,m). A hash
table of shape (x,y,k). A hash table of shape (n,m k). An array of matches of
shape (x,y).

Output : An array of candidates of shape (x,y,c), where c is a constant.

Purpose: Finds the type 1, 2, and 3 candidates for each patch and returns them. There
are c candidates for each patch.

6 function Distance (projs, proj:, candidates);

Input : An array of projections of shape (x,y,t). An array of projections of shape
(n,m,t). An array of candidates of shape (x,y,c), where c is the number of
candidates. The projections were created by "Project” and the candidates by
"Find"

Output : An array of distances of shape (x,y,c).

Purpose: Given a set of candidates returns the distance to each candidate. The
projections are the coordinates of the points representing each candidate.

7 function Pick (matches, match_dist, candidates, cand_dist);

Input :Two arrays for the matches containing their ID and distance respectively, both
are of shape (x,y). Two arrays for the candidates containing their ID and
distance respectively, both are of shape (x,y,c), where c is the number of
candidates per patch.

Output : Two arrays of shape (x,y).

Purpose: Takes the candidates and compares them to the matches patch-wise. For each
patch returns the match or candidate with the lowest distance along with the
distance.

8 function CSH (images, imagey, a,b);

Input :Two images of shape (x,y,3) and (n,m,3) respectively. Two positive integers a
and b, which is the size of the patches and the number of iterations in the
propagation stage respectively.

Output : An array of size (x+1-a, y+1-a).

9 projs = Project(images, a);
10 proj; = Project(imagey, a);
11 hashg,hash; = Create_hashes(projs, projt, b);
12 table; = Create_tables(hashg, b, 2);
13 table; = Create_tables(hashy, b, 2);
14 matches, dist = Initialize_matches(projs, proj;);
15 fori =0to b do
16 cands = Find(hash;, hashy, tables, table;, matches);
17 cand_dist = Distance(projs, proj:, cands);
18 matches, dist = Pick(matches, dist, cands, cand_dist);
19 end
20 return matches;

The high level algorithm is shown in terms of purpose, input and output of each step. The
final algorithm shows the complete algorithm and how each part contributes to the complete
algorithm. KNN and the width of the hash table are input parameters in the final version, but
have been left out for simplicity.

4.3.4 K nearest neighbours

The use of reduced dimensionality may mean that the found nearest neighbour is not the op-
timal one and that a better candidate was checked, but that the lower bound used for ranking
candidates ended up ranking them inversely.

15/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

A K nearest neighbour approach can be used to mitigate this. Saving several matches per
patch allows one to rank them using the full and original set of features for a more accurate
ranking. This changes the algorithm in two places.

1. Finding candidates now have a greater number of matches to work with. This allows the
creation of a richer set of candidates per iteration. The tradeoff is an increased cost per
iteration, which means that less iterations can be done in the same amount of time.

2. Picking the best candidate now has to consider multiple matches instead of one.

Finding the K best candidates can no longer be done merely by finding the minimum value in
a list. The simple approach is to brute force it, which would result in something similar to the
following when done sequentially:

1/ # Input consists of arrays corresponding to a single patch.

2 # For each candidate, check if it is better than the worst match

3| # If it is better sort it into the list of matches and evict the worst match
4| # Performs inplace updates of matches and match_dist

5| def brute_force_pick(matches, match_dist, cands, cand_dist):

6 KNN = len(matches)

7 for i in range(len(cands)):

8 if cand_dist[i]l>=match_dist[knn-1]: continue

9 else:

10 cur_dist = cand_dist[i]

11 cur_cand = cands[i]

12 for j in range (KNN):

13 if cur_dist < match_dist[j]:

14 cur_dist, match_dist[j] = match_dist[j], cur_dist
15 cur_cand, match[j] = match[j], cur_cand

16

17

18| # Input is the full arrays, i.e matchess has size (patch_count, KNN)

19 # Is the functional equivalent of a map over all patches

20| # Performs inplace updates of matchess and match_dists

21| def brute_force_pick_all(matchess, match_dists, candss, cand_dists):

22 for i in range(len(matchess[:,0]):

23 brute_force_pick(matches[i], match_dists[i], candss[i], cand_dists[i])

The alternative to bruteforcing it is to sort the array, however the above algorithm is O(kn) and
so sorting provides no asymptotic benefit.

5 Data Parallel CSH

In this section I will describe the implementation of data parallel CSH. The high-level descrip-
tion is the same as sequential CSH, but there are important differences in implementation. Crit-
ical sections are projecting the Walsh Hadamard Kernels and picking the best candidates as
these would be bottlenecked by sequential operations without changes.

The algorithm is assumed to be limited by memory and not by operations performed. It is
of interest to establish an estimate of how many memory operations each part requires as this
provides a way to determine how efficient the implementation is at utilizing the hardware.

5.1 Projecting the patches

This section details the work required to transform an image represented as fields to one with
lower dimensionality where the features have been computed by Walsh Hadamard transforma-
tions. Efficiently computing the projection of the patches on Walsh-Hadamard kernels requires
a previous Walsh-Hadamard kernel to have been computed. As such each channel requires

16/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

a starting projection to be computed using a slower approach. All 3 channels use the same
projection as their first projection, which is done by summing the features.

1| let p0 (image: [n][m]i32) =

2 map (\x —>

3 map(\y —>

4 reduce (+) 0 (map (reduce (+) 0) (image[x-7:x+1, y-7:y+1])
5) (iota m)

6) (iota n)

In the preceding snippet we see the code required for computing the initial Walsh Hadamard
projection. For the sake of simplicity this code does not handle boundary issues, which in
practice is handled by treating out of bound accesses as zeroes.

Computing the initial projection is a slow process as each pixel requires summing the entire
field, which for an 8x8 is 64 values. The efficient computation of a Walsh Hadamard projection
requires the existence of a related projection to precede it. No such kernel can exist for the first
projection, which is why the slow approach is necessary. The kernels used for CSH are related
to each and can be computed using the Gray code steps shown in figure 7.

Figure 7: Sequence for computing the Walsh Hadamard projections for a patch size of 8x8. 15 kernels are
computed for the shown channel. Steps along the rows are done on the preceding kernel, while
steps along the column is done on the transposition of the preceding kernel and produces the
transposed kernel. This is done so that data can be accessed in coalesced fashion.

5.1.1 Translating Sequential Recurrences into Parallel Scans

The sequential approach to computing the projections of a 1D image efficiently uses one of the
two following formulas depending on the relation between the two projections. As seen with
equation 7 the relation between kernels depends on what sign they differ in in the recurrences
that generated them. The first projection of a channel py(j) is computed using the slower ap-
proach. The rest are computed using the efficient approach, which is given by:

pi(j) = pi(G —k) + pi1(j) + pi-1(j — k) ®)
pi(j) = —pij —k) + pi-1(j) — pi-1(G — k))

where i denotes the projection number, j the patch number and k depends on how the two pro-
jections are related. As written this is an inherently sequential operation, but it can be rewritten
and computed in parallel using a scan and linear function composition. This increases the cost
of the scan by a constant scalar.

17/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

To parallelize the recurrence we want the recurrences to be in a format that scan has a known
solution for. I start with the simple case of k=1, which can later be generalized. To start with I
group the constant terms into a single term and introduce s, which is either + or -, which allows
the two equations to be grouped as one.

pi(j) = s+ pi(j = 1) +a(j),a(j) = pia() +s*pia(j—1) (10)

The term a(j) can be computed before the scan. The above recurrence, if s was +, corresponds
to the typical inclusive scan. The case where s is - is not so simple however and the recurrence
10 can instead be solved using linear function composition. The generic form for solving linear
recurrences using function composition is as follows:

fo(x) =ag+ b *x
fi(x) =ay+ by xx
f1o fo(x) =ag + by * (ap + bp * x)
fl ofo(x) = (a1+b1*a0)+b1*bo*x
This allows us to extract
frofo(x) =f(x) =a'+b'xx (11)
a' = (ay + by *ap) (12)
b = by = by (13)

By putting in values where relevant it can be done using a scan such as the following.

1| let scanvals =

2 scan (\(a0,b0) (al,bl) —> (al + blxa0, b0Oxbl)
3) (0,1) vals

4| in map (\(a,b) —> a+b#x) scanvals

where vals is a list of tuples (a,b) where a is given by 10 and b is the sign. It is important to note
two things.

¢ The solution has been shown for scans with recurrences of stride 1(i.e. f(x) = f(x-1)), but
we need something that can handle other strides. We observe that for a stride of 2 there
are two non-overlapping sequences: fo(x), f2(x), fa(x), ..., fom(x] and another offset by
1: fi(x), f3(x), f5(x), ..., fom+1(x), where each element depends on the prior element. A
single sequence can be solved using the same scan that was the solution to stride 1. Similar
can be observed for recurrences with a stride above 2.

In summary: the solution to recurrences with a stride greater than 1 is to segment the
recurrence and scan each segment separately.

* What is x? Patches are computed using a patch to the left of them. If we go far enough to
the left we exit the image, where we can set pixels to any value. If we set these pixels to 0
then the Walsh Hadamard projection based on them is also 0, which is what x is. This is
the reason why the image is padded, as x would depend on the leftmost pixels otherwise.

5.1.2 Implementing Efficient Walsh Hadamard transformation in Futhark

The parallel version has been shown using scans, however scans work based on stride 1, which
as a recurrence has the form p;(j) = p;(j — 1) + p;(j), but the mentioned formula has stride k.
The recurrence does not overlap, which means one can simply partition each recurrence into
it’'s own segment and scan them separately.

The scan for a row is done as follows:

18/36

DIKU

Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

1| — Input is a row of (sign, val)

2| —— output is the computed projection for those values

3| let gray_code_step_segment vals =

4 let scanvals =

5 scan (\(a0,b0) (al,bl) —> (al + blxa0, b0Oxbl)

6) (0,1) vals

7 in map (\(left,_) —> left) scanvals

8

9|—- Input is the sign and stride (both determined by the relation of the two
projections)

10| —— Prior is the previous projection

11| — output is the projection that is computed

12| —— Sign is either -1 or +1 for Walsh Hadamard transformations

13 Stride is 2”m where m depends on the relation

14 let gray_code_step [n] sign stride (prior: [n]i32) =

15 let afuns =

16 map (\i —>

17 if stride - 1 < i

18 then (prior[i] + (sign = prior[i-stride]), sign)

19 else (prior[i], sign)) (iota n))

20 let res =

21 loop res = afuns for j < stride do

22 let res[j:m:stride] = gray_code_step_segment

23 (map (\x —> (sign, x)) res[j:m:stride]

24 in res

25 in res

The above code is 1 dimensional and the scans are computed using a sequential loop for the sake
of simplicity. The scans are independent and can be computed in parallel. The dimensionality
does not matter when it comes to computing the projections. The inputs to the function are the
sign and the prior. The prior is the projection that can be used to compute the next projection,
while the sign is either 1 or -1 depending on how the projections relate to each other. More
information on this was shown in section 4.1.

A naive approach to calculating the number of global memory accesses assumes values are
not kept in local memory for long. This is a reasonable assumption as each projection depends
on the prior projection and values are typically not reused for each index, with the sole excep-
tion to this being the scan. The cost of computing the projections can be divided into two parts:
the initial projection pg for each channel and the remaining 20 projections.

Computing the initial projection requires accessing all features of the patch and writing the
final sum, which is 64 reads and 1 write for an 8x8 patch. This needs to be done for all patches
and all 3 channels. The remaining 20 projections can be done efficiently through a gray code
step. The code is primarily composed of a map with two reads and two writes, a scan with
one read and one write, and finally a map with one read and one write. More than this may be
necessary depending on how available parallelism is best utilized, but it would not change the
lower bound.

The use of padding means more patches need to be handled and for this stage only the
number of patches is equal to the number of pixels. The amount of global memory accesses for
computing the projections for one image is 65*3+8*20=355 accesses per pixel.

5.2 Creating hash values

Creating the hash values is done using the Walsh-Hadamard projections. As mentioned pre-
viously each projection contributes a number of bits of the final hash code. The process for a
single projection is as follows:

1| let create_hashes [n] [m] [r]
2 (projs_s: [r][n]i32)
3 (projs_t: [r][m]i32)

19/36

DIKU

Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

4 (1: i32)

5 =

6 let arg_sort_both =

7 map2 (\x y —> radix_sort_int_by_key (\(_,i) —> i)

8 i32 .num_bits i32.get_bit

9 (zip (iota (n#m)) (x ++ y))

10) projs_s projs_t

11 let both_pos =

12 map (\x —>

13 let (y,_) = unzip x

14 in scatter (replicate count_sum 0) y (iota count_sum)

15) arg_sort_both

16 let projs_sort_s = both_pos[:,0:n]

17 let projs_sort_t = both_pos[:,n:]

18 —— Initialize various constants and randomization

19 —— f g and h are used as stand in functions to simplify the code

20 let rand_offsets = ... :> [1][r]i32

21 let bin_count = ... :> [r]i32

22 let conc_offsets = ... :> [r]i32

23 let hash_s =

24 map (\x —>

25 map (\y —>

26 let vals = map (\i —>

27 let hash_i = (projs_sort_s[i,y]+bin_count[i] + rand_offset[i])/
count_sum)

28 in hash_i<<conc_offsets[i]) (iota r)

29 in reduce (+) 0 vals

30) (iota n)

31) (iota 1)

32 let hash_t = ... —— same to hash_s

33 in (hash_s, hash_t

The above code show the implementation for computing the hashes. Some parts have been left
out for brevity. The function takes the projections of both images as input along with an integer
1, which is the number of iterations in the propagation stage. Not all projections are used for
creating the hash values. For a patch size of 8x8 the count is 8 out of 23.

Creating the hash code for a patch is composed of two parts: For each projection find the bin
the current patch would hash into. These bin numbers are then concatenated to create the hash
code. In my implementation these steps are handled as follows:

¢ Finding the bins: The input projections have type [r][n] and [r][m], which means the total
amount of patches is n+m, while the number of projections is r. Each of these projections
is sorted individually using radix sort for the purpose of finding the index each patch
would sort into for that specific projection.

This index is then translated into a bin number using the formula (projs_sort_s[i,y] *

bin_count[i] + rand_offset[i])/count_sum), which has the same shape as M. I pre-

viously claimed(section 4.2) that such a function led to a variable amount of patches in
each bin. This is not the case here due to using a sorted list, which is a list of values that
are evenly spaced. Applying the hash function to a list of evenly spaced values yields an
equal amount of patches in each bin.

rojs_sort_s[i,y] . . o . .
projs_sort_sliy] is a number in the range [0,1), while bin_count is an integer equal to the
count_sum

number of bins for the i'th projection. The number of bins for a given projection depends
on the importance of the projection. These values are determined offline.

The array rand_offsets is the equivalent of b and is an offset to the placement of the bin
edges. It's purpose is to neutralize the effect fixed bin edges has on the probability of two
similar values binning similarly.

20/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

¢ The produced hash codes are integers, which were produced by the concatenation of in-
tegers with a smaller bit-count, fx. two 2-bit integers produces a 4-bit integer: 11 ++10 =
1110. This can also be done through addition if an appropriate offset is applied to the
integers, which is what the combination of reduce (+) and left shifting is used to achieve.

Sorting and applying the hash function is the main sources of memory accesses for creating
the hash values. Radix sort is done in several passes. Each pass consists of a scan and scatter.
The scan requires 1 read and 4 writes while the scatter requires 4 reads and 1 write. The number
of passes depends on the size of the keys used for sorting. 2 bits per key is handled each pass,
which means 32 bit integers requires 16 passes. 8(the used number of projections) calls to Radix
sort is issued, which makes the total cost 16*10*8=1280 accesses per patch.

Applying the hash function is done once per patch per iteration per Walsh-Hadamard kernel
used. For both patch size 8 and 16 the number of used kernels is 8, so this comes out to 8 accesses
per iteration per patch.

5.3 Creating hash tables

The purpose of the hash tables is to enable figuring out what patches have the same hash value,
i.e. to find collisions. The width of the hash table is fixed, which is done to keep the array
regular. An entry in the hash table contains the indexes of patches that would hash into that
entry.

Creating the hash table requires finding the patches that would hash into the same entry.
This can be done by sorting the patches by their hash values, which would place patches with
the same hash value in consecutive order. The hash table can then be generated from this sorted
list merely by picking random elements from each group. For the sake of simplicity the elements
that are picked are the first two.

1| let create_hash_table [n]

2 (hash: [n]i32)

3 (span: i64)

4 (width: i64)

5 : ([span][width]i32) =

6 let (ind_r, hash_r) = unzip (radix_sort_int_by_key (\(_,i) —> i)

7 i32 .num_bits i32.get_bit (zip (iota n) hash))
8 —— pick width codes to keep

9 let flags = map2 (\i j —> i != j) (rotate (-1) hash_r) hash_r
10 let offsets segmented_scan (+) 0 flags (replicate n 1)

11 let indices = map2 (\offset x —>

12 if offset <= width

13 then x:width+offset -1

14 else -1

15) offsets hash_r

16 let spanwidth = spanxwidth

17 let hash_table_flat = scatter (replicate spanwidth 0) indices ind_r)
18 in map (unflatten span width) hash_table_flat

The shown function generates a hash table given an array of hashes and two integers span
and width, which define the dimensions of the hash table. A hash is an integer in the interval
[0,span). Sorting is used to group patches by their hash. Lines 9-15 is used to pick the elements
that are going to make up the hash table. The first map is used for finding the first element
of each group. The scan is then used to number each patch by their position in their group.
The second map is used to pick the elements that are going to make up the hash table. All
patches are either assigned a unique index in the hash table or given an out of bounds memory
location(-1). Scatter handles out of bounds writes by ignoring them. The hash table is finally
constructed using a scatter.

The cost of this is dominated by the sorting, which requires 160 accesses per iteration per
patch.

21/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

5.4 Propagation

Propagation is composed of 3 parts:
1. Picking candidates.
2. Calculating the distance of candidates.
3. Picking candidates to keep as matches

Initially a set of random patches is used as the first set of matches. As the set of matches is much
smaller than the set of candidates for even a single iteration this part is not performance critical
and won’t be discussed further.

5.4.1 Finding new candidates

Picking the candidates is based on the set of methods described in section 4.3.1. 3 different
types of candidates exist(figure 6), where type 1 candidates exploit the similarity of patches,
type 2 propagate good matches to neighbouring patches, and type 3 propagate good matches
to similar patches. The implementation of these are similar and in the following code only type
1 candidates are shown.

let find_all [n] [o] [w]
(hash_s: [n]i32)
(hash_table_t: [o][w]i32)

[n][1i32 =

let find_i i =
let typel = hash_table_t[hash_s[i],:]
in typel

1
2
3
4
5
6
7
8 in map (find_i) (iota n)

The function find_all takes as input two arrays. The array hash_s contains the hashes of the
patches of the source image. These hashes are used to index into hash_table_t, which contains
patches from the target image that would hash into that index. The hash table contains w
representatives per index. Only type 1 candidates are shown, but the process of finding type
2 or type 3 candidates are no different and only differ in the specific arrays used. Finding
candidates is a process of chain indexing, where the result of indexing into one array is used to
index into the next array.

The majority of indexing when finding candidates are random accesses to memory. If we
only exploit the outer parallelism of the map then the first set of memory accesses can be done
in coalesced fashion. Threads in the same warp will have consecutive values of i, which means
the threads perform memory accesses to hash_[i] in consecutive order. The result of these ac-
cesses are not ordered however, which means the next step of reading from hash_table_t is not
done to consecutive locations in memory. A similar behaviour can be observed for type 2 and
type 3 candidates. Most steps for finding candidates does not involve coalesced access to mem-
ory(figure 8). In practice finding the candidates has proven to be a minor contributor to the
run-time and so further optimizations has not been pursued.

5.4.2 Computing the distance

The second part of propagation is calculating the distance for each candidate. Calculating the
distance is expensive and is the primary motivation for using reduced dimensionality. This is
done via:

1| let dist2 [k] (xs: [k]f32) (ys: [k]f32) : f32 =
2 reduce (+) 0 (map2 (\x y —> (x-y)=*(x-y)) Xs ys)
3| let candidatesl2 =

22/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

Figure 8: Type 2 candidates. Stepping to the neighbour can be done coalesced, however the match(green
arrow) and hash(red arrows) are random access and is unlikely to be coalesced.

4 map2 (\x ys —>
5 map (\y —> dist2 wh_src_trs[x,:] wh_trg_trs[y,:]
6) ys) (iota patch_count) candidates

Finding the distance between two points is a straight forward issue. It is the root of the sum of
the difference between each feature. In this case the root has been left out as the distance is used
for comparisons and x> > y? returns the same result as x > y for positive x and y, which is the
case for distances.

5.4.3 Picking the best candidate

The last part of propagation is picking the nearest neighbours. Given a sorted list of k matches
and n candidates the goal is to find the best matches. This could be done by sorting directly,
however the list of candidates is much longer than the list of matches and by proxy the cost of
sorting too expensive.

A sequential approach to bruteforcing has been shown previously. This approach sorts a
candidate into the list of matches, which is repeated until all candidates for the current patch has
been checked. This approach would not work well in a parallel regime. The lack of parallelism
means that threads in the same warp would be working on different patches. It is possible to
order the data such that coalesced access happens, but the method used to sort requires a lot
of if-statements, which means the sequential approach would suffer from thread divergence if
implemented in a parallel language.

A different approach that makes use of intra-group parallelism can instead be created. As
with the sequential approach coalesced access to memory happens, but thread divergence will
no longer be an issue. As mentioned previously the divergence happens when sorting candi-
dates into the list of matches, which means a parallel variant needs to avoid or mitigate this.

This is done by iterating over two steps. The first step is taking the current list of candidates
and finding the one with the lowest distance. The second step is comparing the candidate to one
match to determine whether it’s worth keeping and replaces that match if so. This is repeated
until all matches have been replaced or the best candidate isn’t worth keeping. Candidates that
have been found the best are ignored for these repetitions. The result of the loop is a list where
any remaining matches are in the start of the list in ascending order and the rest of the list are
the kept candidates, which are in descending order. This is then sorted sequentially.

The first step uses a simple reduce pattern, which is an example of intra-group parallelism.
The second step does branch, but this does not result in thread divergence. The branching

23/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

statement determines whether or not to repeat, however the warp is working on the same patch,
which means the result of that branch is the same for all threads in the warp.

1| let bruteForcePar [k] [n]

2 (matches: [k]i32)

3 (match_dist: [k]f32)

4 (candidates: [n]i32)

5 (candidate_dist: [n]f32)

6 ([k]i32, [k]f32) =

7 let knn = copy (zip matches match_dist)

8 let dists = copy candidate_dist

9 let cycle = true

10 let j = 0i64

11 let op = \(il,vl) (i2,v2) —

12 if vl < v2 then (il, vl) else

13 if vl > v2 then (i2, v2) else

14 (if il <= i2 then il else i2, vl)
15 let (_, knn, _, _) =

16 loop (dists, knn, j, cycle)

17 while cycle && (j < k) do

18 let (min_ind, min_val) =

19 reduce_comm op

20 (n, £32.highest)

21 (zip (iota n) dists)
22 in if min_val < (knn[k-1-j].1)

23 then let dists[min_ind] = f32.highest
24 let knn[k-1-j] =

25 (candidates[min_ind], min_val)
26 in (dists, knn, j+1, true)
27 else (dists, knn, j, false)
28 let knn_sort = sortPartSortedSeqs knn

29 in unzip knn_sort

The number of memory accesses for each iteration is:
¢ Finding candidates contributes roughly 2 accesses per candidate per patch.

¢ Computing the distance contributes twice the number of features per candidate per patch.
The number of features for something of patch size 8x8 is 23.

¢ The loop that picks candidates is run at most k times, where k is the number of nearest
neighbours found for each patch. Each loop has an amount of accesses equivalent to the
number of candidates. Merging two sorted lists can be done with a number of accesses
equivalent to the number of elements, which is k. The total cost is k accesses per (candi-
date+1) per patch.

This version of CSH only finds the nearest neighbours for the first image.

5.5 Cost of data-parallel CSH

CSH is a memory bound algorithm, which is why the number of accesses have been calculated
for each part of CSH. Showing that my algorithm can utilize the GPU thus requires showing
that it utilizes the bandwidth provided.

As can be seen in table 4 the propagation stage dominates the number of accesses performed
for CSH when the number of iterations is high. Furthermore calculating the distance is the main
bottleneck until K becomes high.

24/36

DIKU

Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021
Source Amount
Projection 355*[pixels in both images]
Hashing (1280+8*I)*[patches in both images]
Hash Tables 160*T*[patches in both images]

Picking Candidates | 2*I*C*[patches in source image]
Calculating Distance | 2*WH*I*C*[patches in source image]
Picking Candidates | K*I*C*[patches in source image]

Table 4: Amount of memory accesses for patch size of 8. Each access is 32bit. I is the number of iterations
performed. C is the number of candidates per patch. WH is the number of projections used,
which is 23 for a patch size of 8. K is the number nearest neighbours found.

6 Performance/Accuracy Trade-offs for CSH

In this section I introduce various possible changes to CSH that attempt to improve the perfor-
mance of CSH. These are distinct from the changes made to go from sequential to parallel CSH
in that they do not attempt to improve the use of the underlying hardware, but rather attempt
to improve the algorithm itself.

6.1 K Nearest Neighbours

KNN is a modification of the algorithm such that k nearest neighbour fields are produced for
each field instead of 1 neighbour per field. This is done for two reasons:

® The ground truth produced using reduced dimensionality is not necessarily the ground
truth when using full dimensionality. To mitigate this issue a good reduction is necessary,
which is what the use of Walsh Hadamard kernels is supposed to achieve, but this merely
reduces the risk. Producing multiple candidates per field is a way of mitigating this issue
further as lower ranked candidates may in fact perform better on the full dimensionality
set.

¢ In each iteration of the propagation stage candidates for nearest neighbours are produced
from the current set of nearest neighbours. More neighbours allows for more candidates.

In both cases the addition of more candidates comes at a run-time cost when keeping the num-
ber of iterations constant. As such increasing K is a trade-off that should increase accuracy, but
does so at the cost of an increase to runtime.

6.2 Generating less candidates

Calculating the distance to each candidate is the most expensive step. Less candidates generated
will decrease the cost of such a step. In this section I will show two approaches to generating
less candidates as outlined in figure 9.

6.2.1 LessKNN: Decreasing the impact of KNN on candidates created

The nearest neighbours produced from increasing K may not be useful. Locality is the assump-
tion that similar patches hashes similarly, which is what most of the candidate creation is based
on. The nearest neighbours of a field are similar patches, otherwise they would not have be-
come the current nearest neighbours. This in turns means that they are likely to hash similarly,
which would result in the creation of duplicate candidates. Duplicate candidates only serve to
increase runtime and is something that should be avoided.

There are two approaches to this:

25/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

/
_——
e
N N
7
_q X
x
N
7

(a) Green arrows indicate matches. Candidates are ignored
based on the rank of the match. Corresponds to the
LessKNN approach. Shown is a match and the 3 candi-
dates beloning to it being ignored, two of the candidates
are duplicates.

(b) Grey boxes indicate neighbours. In the LessDir ap-
proach neighbours in certain directions are not visited.
For the sake of simplicity the last step, which involves
the hash table in the middle, is not shown.

Figure 9: Two ways of reducing the number of candidates generated. The two top images indicate base-
line, while the two bottom images indicate the changed variant. Both variants primarily remove
candidates created through type2.

* Sorting the list of candidates and removing duplicates: Sorting is an expensive opera-
tion and would create an irregular sized array of candidates. The size of the hash table
was chosen such that only a few patches should hash into the same index. As such the
expectation is that only a few duplicates would exist. As the run-time cost of sorting is ex-
pected to be higher than the time saved on less candidates, I have not created the variant
suggested in this bullet point.

¢ Ignoring the lower ranked neighbours: If lower ranked neighbours are likely to produce
duplicates then ignoring the lower ranked neighbours when it comes to creating candi-
dates is a viable option. This approach can be seen in figure 9(a)

Decreasing the number of nearest neighbours used for the creation of candidates should result
in a decrease in run-time at the cost of decreased accuracy when compared to the full KNN
approach. It does however preserve the advantage of being able use full dimensionality to
choose between several nearest neighbours.

26/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

6.2.2 LessDir: Decreasing the impact of coherency on candidates created

Candidates are divided into 3 types of which type 2 generates the most candidates. The types
were described in section 4.3.1 and figure 6. The summary of type 2: Visit the left neighbour,
go to that neighbour’s match, go to that match’s right neighbour, use that neighbour and the
patches that hash to the same entry as candidates. This is repeated for each cardinal direction.

This creates a large number of candidates, which are based on the concept of propagating
good matches to neighbours. Reducing the number of cardinal directions visited would de-
crease the run-time, but would likely do so at a cost of accuracy.

6.3 Early stopping

Early stopping is a way of reducing the average cost of comparing the distance of a candidate

to a match. The distances computed using the reduced dimensionality are a lower bound of

the true distance which requires the full dimensionality. The distance between two points j and
N

kis Y ||pij — pi||. Most importantly each term in the sum is positive, which means that if

m 0 M N

Y lIpij = piell > x then Y [Ipij — pull + Y |lpij — pixl| > x, where x is the already known

i=0 i=0 i=M+1

distance to the current match.

In other words if a lower bound is greater than a number then the whole sum will also be
greater than that number. Early stopping makes use of this by making periodic checks when
computing the distance, which reduces the average number of operations and memory accesses
needed to process a candidate. This approach was used by Korman and Avidan [12] in their
sequential implementation of CSH.

The same approach can however not be used for the parallel implementation due to poor
performance. Early stopping can be handled by a parallel implementation in two ways. Either
by using outer parallelism and letting one thread handle summation and comparison of one
pair of points or by using the inner parallelism and letting a warp handle the summation.

The first approach suffers from introducing thread divergence. Threads in the same warp
execute in lockstep, so all threads would need to stop early before any of them actually stop
early. The likelihood that one thread in the warp has a good candidate is however high and so
the end result is requiring more comparisons without any benefit.

The second approach suffers from lack of parallelism. An 8x8 patch has 23 features, which
is not enough to fully utilize a warp and so further reducing the amount of features per sum-
mation would simply result in more threads idling.

This serves as an example that the optimal approach for a sequential implementation is not
necessarily a good starting point for a data-parallel implementation.

7 Results

In this section results and their implications are shown and discussed.

7.1 Experimental setup

All experiments in this section were performed on Intel system with 20 GB DRAM, 16 Intel(R)
Xeon(R) CPU E5-2650 cores using 2-way multithreading. The GPU used is a Geforce RTX 2080
Ti with 11 GB DRAM, 4352 cores running at 1.35Ghz under CUDA 11.0. It has a maximum
bandwidth of 616 GB/s.

27/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

The Data-parallel CSH code has been written in Futhark, compiled using Pyopencl, and run
using Python. The KD-tree code was written in Futhark, compiled using opencl, and run using
Python. The performance of sequential CSH is not measured in this report as the run-time is far
worse than that of data-parallel KD-tree [13]. The accuracy reported by Korman and Avidan [12]
is used for comparison. As dataset I used the VidPairs dataset used in [12], which consists of

Figure 10: 8 pairs out of the 133 image pairs used as dataset.

133 pairs of images taken from movies. Each pair is taken from the same scene with a number
of frames between each image(figure 10). This allows for some motion and perspective changes
to happen between the images.

Results are obtained by running each pair of images once per entry and taking the average
time and error as the results. In both cases a Python module is used to measure the time elapsed.
The error is found as the average of the average distance between patches for each pair. The
images are of roughly the same size and so any issues due to averaging results based on variably
sized images is for the most part avoided.

7.2 Baseline

—e— KNN=1 3201 —e— KNN=1
1107 —o— KNN=4 —e— KNN=4
—o— KNN=38 300 4 —o— KNN=8
100 4
280
90
260
§ 80 E 240
§ &
7 220
200
60 +
180
50 1
160
05 1.0 15 2.0 2.5 1.0 1.5 2.0 2.5 3.0
Time (s) Time (s)
(a) Patch size is 8x8. (b) Patch size is 16x16.

Figure 11: Error/Time tradeoffs of CSH using 3 different values of K for K nearest neighbours. Averages
are over the 133 pairs of the VidPairs data set. Markers indicate the result after each itera-
tion. Errors are given as the average 1, distance between patches using the best match of the K
matches.

28/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

The goal of this experiment is to investigate the effect finding a varying amount of nearest
neighbours has on the run-time and accuracy on CSH. Figure 11 shows that increasing K has a
positive effect on accuracy, but comes at a large cost to run-time. This is the case for both patch
sizes.

The cost of run-time scales linearly with the amount of candidates created, which is not
surprising. Increasing the number of candidates does increase the amount of parallelism, which
can be exploited when it comes to determining the number of candidates to keep, however the
primary cost is computing the distance, which does not benefit from the increased parallelism.

There are three distinct levels of parallelism when it comes to computing the distance of
which only the feature level can avoid uncoalesced access. Using a warp for finding and sum-
ming the differences allows coalesced access as all data accesses for that warp will access the
same set of features, which can be found consecutively in memory.

The alternatives has a thread compute the distance on it’s own. This means threads in the
same warp are accessing candidates, which aren’t located consecutively. They would still be ac-
cessing source patches, which are located consecutively and be accessed in a coalesced fashion.
Increasing the number of candidates technically helps with that last part, however the number
of patches is above 1.5 million, which is more than enough to saturate the outer parallelism.

7.3 Less candidates based on KNN

110 [] —8— LessKNN=4
—8— LessKNN=8
—8— KNN=1
100 4 —0— KNN=4
—8— KNN=8
90 -
e
S 80 1
-
[}
70
60
50
T T T T T
0.5 1.0 1.5 2.0 2.5

Time (s)

Figure 12: Error/ Time tradeoffs of CSH. LessKNN is a method that disregards part of the K matches found
when it comes to creating candidates. KNN is the baseline approach.

This experiment is to investigate the effect of reducing the number of matches used for
creating candidates. LessKNN is a variation that only generates candidates using the better
half the matches. The better half is determined on a per patch basis. Figure 12 shows that the

29/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

run-time is lower, which is predictable as half the number of distances need to be computed.
The change has had a small negative effect on accuracy.

Predictably iteration 1 is unchanged. Good candidates for iteration 1 will come from either
locality sensitivity, which does not depend on knn, or on propagation from randomly gener-
ated matches. Random generation is unlikely to result in good matches, which makes it ex-
tremely unlikely for a patch to have more than one good match before propagation. As only the
best matches are used for generating candidates this makes it very likely that all good random
matches are used for generating candidates for iteration 1.

From iteration 1 and on it is to be expected that some patches have many good matches,
which would explain the difference between LessKNN and KNN from iteration 2 and on. Even
the worst half of the matches candidates that are useful.

7.4 Less candidates based on coherency

120
—8— LessDir KNN=1
I —8— LessDir KNN=4
110 4 LessDir KNN=8
—8— KNN=1
100 4 —8— KNN=4
—8— KNN=8
90 +
|-
e
o 80+
70 4
60 4
50 ~
0.5 1.0 1.5 2.0 2.5

Time (s)

Figure 13: Error/Time tradeoffs of CSH. LessDir KNN is a method that propagates in less directions when
it comes to creating candidates. KNN is the baseline approach.

This experiment is to investigate the effect of reducing the amount of type 2 candidates
created. Type 2 candidates utilize the coherency of the image to propagate good matches to
neighbouring patches. LessDir KNN is a variation of CSH that propagates in the right and
down directions. Figure 13 shows that the run-time is lower for similar iterations. This comes
at a rather large hit to accuracy.

It should be noted that the accuracy in iteration 1 is lower for LessDir KNN. Good candidates
for iteration 1 are generated via local sensitivity, which is unchanged or via propagation from
good matches found via random initialization. Furthermore the trends that can be seen shows
that LessDir starts out with a better run-time/accuracy ratio, but eventually loses that edge.
This is a clear indication that the coherency aspect of CSH works.

30/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

7.5 Hardware utilization

Total ms | Propagation ms | Total GB/s | Propagation GB/s
KNN=8 I=1 613304 292783 84.6 133.6
KNN=8 I=5 1708588 | 1316262 123.3 147.9
KNN=81=10 | 2974319 | 2482298 137.9 156.2
KNN=1I=1 266940 43403 67.3 126.4
KNN=11=5 | 503598 203377 81.5 135.9
KNN=1I=10 | 791669 396932 88.3 137.3

Table 5: KNN is the number of nearest neighbours found, I is the number of iterations in the propagation
stage. The first two columns indicate the amount of time it took the opencl version to execute
the entire program and all iterations of the propagation stage respectively given in ms. The last
two columns indicate the amount of memory bandwidth usage of the GPU. The GPU used has a
maximum bandwidth of 616 GB/s

This experiment is to investigate how well the baseline implementation of data-parallel CSH
utilizes the underlying hardware. CSH is a memory bound algorithm, the amount of operations
per memory access is low and the nature of the propagation step prevents temporal locality
from being of much use. As such I am primarily interested in the utilization of the memory
bandwidth for the entire algorithm and for the propagation step.

To find this I am running the program on a single pair of images of size 1920x800 and using
the inbuilt profiler to obtain the exact run-times. This does not cause a loss of generality as it is
expected that best and worst case run-time is close.

As can be seen in table 5 the utilization of the memory is not ideal. For a large amount of
iterations the propagation stage is the largest contributor to the run time. As increasing the
number of iterations is the primary source of increased error this part has been the focus of
optimizations.

The bottleneck and the primary source of global memory accesses in the propagation stage
is the part where the distance is computed. All versions used does not utilize intra-group par-
allelism for it. This means that the distance between a patch and a candidate patch is computed
by a single thread. However candidate patches are not expected to be located consecutively
in memory, which means threads in the same warp are not accessing memory in a coalesced
fashion.

The intent of the Futhark compiler is to generate multiple versions of the same kernels,
where each version is a different way to utilize the parallelism of the kernel. This is then com-
bined with an autotuner to figure out which version works better when given an input of a
specific size. Currently this does not use the intra-group version that is desired.

Isolating the function that computes distance has been done and Futhark is capable of gen-
erating and picking an intra-group version. This version achieves the expected speedup.

The critical code is:

1| let candidatesl2 = map2 (\x ys —>
2 map (\y —> dist2 proj_s[x,:]

3 proj_t[y,:]

4) ys

5) (iota patch_count) candidates

This code snippet assumes the existence of a projection for each image named proj_s and proj_t,
the number of patches and the list of candidates. When isolated and given input of appropriate
size the performance seen in table 6. This kernel is run once per iteration and is the source of the
majority of the cost of propagation. The exact percentage is not feasible to discover as Futhark
fuses the different parts of propagation into a single kernel. Futhark, and the languages it

31/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

compiles to, can’t accurately profile the parts of a fused kernel. Preventing Futhark from fusing
the kernel lets us reason about this relation, but in this case the combined cost of the unfused
kernels is far greater than the cost of the fused kernel, which makes it a poor option.

Inspecting the generated opencl code shows that the final program does not make use of the
intra-group version, but rather corresponds to the version without autotune that is indicated in
table 6.

With Autotune | Without Autotune
23ms | 45ms

Table 6: The effect of autotune on a performance critical kernel. Autotune does not work on this kernel
when used as part of the full program and is the reason why the bandwidth usage is poor. This
kernel was run with input appropriate for a 1280x800 image using KNN=1. It was generated and
run using opencl.

7.6 Comparison with CPU-CSH

This subsection compares the accuracy of parallel CSH to the implementation of CSH reported
by Oancea et al. [13]. This paper is used instead of the original implementation by Korman and
Avidan as the original implementation used downsizing and sampling often for experimental
results, which makes direct comparison difficult.

—— New

&= New —e— Original

185
56 4 —&— Original

54 180 4

Error
Error

50 1 170 4

48 1 165

T v v i i v v T 6 8 10 12 14 16 18 20
3 4 5 6 7 8 9 10 Iterations
Iterations

(b) Patch size is 16x16. This was ran on the first 25 pairs
of the VidPairs dataset using the alphabetical increasing
order.

(a) Patch size is 8x8. This was ran on the full 133 pairs of the
VidPairs dataset.

Figure 14: Error/Iteration tradeoffs of CSH. New is the data-parallel version described and implemented
in this paper, while original is the CPU version it was based on. Both methods use KNN=8

The new data-parallel and the original CPU implementation of CSH is compared in figure
14. The results between the two are quite close in performance. The early advantage for the
sequential version is presumably a difference in initialization, while the later difference comes
from the propagation step. This is a bit odd however as the changes made to the baseline
version has been focused on making it parallel or are pure run-time optimizations and so can’t
explain an increase in accuracy. However as has been discussed in the data-parallel section
there are differences in how it was created, which may have had an impact on the quality of the
candidates.

32/36

DIKU

Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021
110 a —&— Parallel C5H KNN=1
—&— Parallel C5H KNN=4
—&— Parallel C5H KNN=8
100 - ® KD-frees
90 A
S 80
|-
i
70 1
60
50
T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5
Time(s)

Figure 15: Error/Time tradeoffs of CSH and KD-trees when tested on the 133 image pairs of the VidPairs
dataset. Both methods use reduced dimensionality of 23 and patch size of 8x8. CSH markers
corresponds to iterations 1 through 14. KD-tree uses KNN=1,4,8 with higher KNN correspond-
ing to higher run-time. The green line is the accuracy of KD-tree with KNN=8.

7.7 Comparison with KD-tree

Parallel KD-trees has previously been noted to have better accuracy and run-time than sequen-
tial CSH [13]. Predictably the conversion from sequential CSH to parallel CSH has not changed
the accuracy. CSH is quicker than KD-trees when both the number of iterations and KNN is
low, but the accuracy is significantly worse within this region. The accuracy of CSH approaches
that of KD-trees when the run-time is more than 3 times greater than that of KD-trees. Pre-
viously in this section I have mentioned that the hardware utilization of CSH is around 25%,
which suggests that a fully optimized CSH may have accuracy and run-time comparable to that
of KD-trees.

8 Improvements and issues

8.1 Possible Improvements

* No pruning of candidates is performed. Two variants of pruning were shown in the ex-
perimental section. Other variants, such as random sampling, may perform better.

* The initial set of matches are determined through random means. As CSH uses coherency
to propagate good matches it may be worth spending computational power to create an
initial set of matches that rank well. This may be done by computing an exact set of
matches for a subset of the patches.

33/36

DIKU

Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

8.2

Creating the hash codes by sorting the full set of patches. Using a set of representative
instead may reduce the time needed for indexing.

The hash tables are created using the first two patches for each index. Swapping to ran-
dom patches may improve accuracy by increasing the diversity of the candidates.

Various values relating to the setup of hash codes are currently determined offline. Creat-
ing a variant or function that allows for rapid prototyping of these would allow for easy
exploration of parts of the trade-off space that has not been visited in this thesis.

Issues

Computation of the distance to candidates is done without intra-group parallelism. This
prevents coalesced access and is a large run-time issue.

Duplicate candidates are allowed, which increases the number of operations and memory
access without any tangible benefit.

9 Conclusion

In this thesis I have implemented a massively parallel version of Coherency Sensitive Hashing
for computing Approximate Nearest Neighbour Fields. This version has been implemented
such that it makes good use of the underlying hardware, although some issues with the chosen
language has been encountered, which prevents said version from running. I have explored
trade-offs relating to CSH exploring the impact of iteration count, K nearest neighbour and two
variants of pruning. I have compared parallel CSH to Propagation-Assisted KD trees, which
shows that Parallel CSH is a competitor in terms of run-time and is close in terms of accuracy.

34/36

DIKU

Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021
A Glossary
Name Description Type
Image Images are represented in 2D format with 3 channels per pixel. [n][m][3]u8.
Field A field is a square of pXp pixels from an image. It is identified [p][p]lu8
by the upper leftmost pixel. All pixels have a corresponding field
unless their field would extend outside the bottom or right edge.
The number of fields in an image is P,
Patch Patch is the index of a field. Patch is used to signal that two pieces 32
of information refer to the same field.
Py The number of patches in an image. Value depends on the image i32
and the patch size p. P, = (n+1-p)(m+1-p). This value is useful as
we typically work on the flattened set of patches.
WH Ker- A matrix that can be applied to a field to create a transformation. [p][p]i32
nel Is a 2D matrix unless otherwise specified and has the same size as
the field.
Projections The result of applying selected WH kernels to the image. Asnotall [P,][r]f32
WH kernels are used, this achieves reduced dimensionality.
Hashes Each patch is assigned a number of hash code. The amount of hash [i][P;]i32
or hash codes depends on the number of iterations i in the propagation
codes stage
Hash ta- Contains k representatives for each unique hash code. The num- [i][P,][k]i32
ble ber of unique hash codes is determined offline and for a field size
of 8x8 is 2!8. The hash codes are changed every iteration i of the
propagation stage, which also applies to the hash tables. There ex-
ists a hash table for each of the two input images.
Source The image that contains the fields we want to find nearest neigh-
bours for.
Target The image that we look in for fields that are nearest neighbours to
the fields in the source image.
Feature One of the values of a patch. E.g with a patch size of 8x8 a patch is
comprised of 64 pixels with 3 channels, which makes a total of 192
features. These patches are later projected onto WH kernels, which
reduce them down to 23 features.
Match A match is the (approximate) nearest neighbour field in the target i32
image for a patch in the source image.
Candidate A candidate is a patch in the target image, which is under consid- 132

eration as a possible match. Candidates are ranked compared to
matches and either replace a match or are discarded.

Table 7: The description of various terms used as part of CSH. If applicable the size and type is shown

References

[1] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu.
An optimal algorithm for approximate nearest neighbor searching fixed dimensions. J.
ACM, 45(6):891-923, November 1998. 1

35/36

DIKU
Data-Parallel Coherency Sensitive Hashing for Approximate Nearest Neighbour Fields May 31, 2021

[2] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. Patchmatch: A
randomized correspondence algorithm for structural image editing. ACM Trans. Graph.,
28(3), July 2009. 1, 4,5

[3] G. Ben-Artzi, H. Hel-Or, and Y. Hel-Or. The gray-code filter kernels. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(3):382-393, 2007. 9, 10, 11

[4] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the Twentieth Annual Sym-
posium on Computational Geometry, SCG ‘04, page 253262, New York, NY, USA, 2004. As-
sociation for Computing Machinery. 1, 3

[5] Fabian Gieseke, Justin Heinermann, Cosmin Oancea, and Christian Igel. Buffer k-d trees:
Processing massive nearest neighbor queries on gpus. Proceedings of the International Con-
ference on Machine Learning, ICML, 1:172-180, 01 2014. 1

[6] Fabian Gieseke, Sabina Rosca, Troels Henriksen, Jan Verbesselt, and Cosmin E. Oancea.
Massively-parallel change detection for satellite time series data with missing values. In
2020 IEEE 36th International Conference on Data Engineering (ICDE), pages 385-396, 2020. 2

[7] Kaiming He and Jian Sun. Computing nearest-neighbor fields via propagation-assisted kd-
trees. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 111-118,
2012. 2,5

[8] Troels Henriksen, Sune Hellfritzsch, Ponnuswamy Sadayappan, and Cosmin Oancea.
Compiling generalized histograms for gpu. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC '20. IEEE Press, 2020.
6

[9] Troels Henriksen, Frederik Thorge, Martin Elsman, and Cosmin Oancea. Incremental flat-
tening for nested data parallelism. In Proceedings of the 24th Symposium on Principles and
Practice of Parallel Programming, PPoPP '19, pages 53-67, New York, NY, USA, 2019. ACM.
6

[10] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, STOC 98, page 604-613, New York, NY, USA, 1998. Association for Computing
Machinery. 9

[11] Nikos Komodakis and Georgios Tziritas. Image completion using efficient belief propaga-
tion via priority scheduling and dynamic pruning. IEEE Transactions on Image Processing,
16(11):2649-2661, 2007. 1

[12] S. Korman and S. Avidan. Coherency sensitive hashing. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 38(6):1099-1112, 2016. 2, 9, 12,13, 27, 28

[13] Cosmin Oancea, Ties Robroek, and Fabian Gieseke. Approximate nearest-neighbour fields
via massively-parallel propagation-assisted k-d trees. pages 5172-5181, 12 2020. 2, 5, 28,
32,33

[14] Jia Pan and Dinesh Manocha. Fast gpu-based locality sensitive hashing for k-nearest neigh-
bor computation. In Proceedings of the 19th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, GIS "11, page 211-220, New York, NY, USA,
2011. Association for Computing Machinery. 3

36/36

