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Abstract

Among programming languages supporting arrays, there are those
that raise runtime errors when an array is indexed out of bounds and
those that omit these checks for the sake of performance as dynamic
array bound check takes time during execution. Futhark is a pro-
gramming language designed to target general purpose computing on
graphics processing units (GPUs). We propose that extending the
Futhark type system with refinement types will allow the program-
mer to refine a program using types in such a way that array bounds
checking can be avoided at runtime. In this thesis we present a small
subset of the Futhark language with additional refinement type anno-
tations and a transformation function that transforms programs to an
internal language representation. The internal language features ex-
plicit polymorphism, dependent quantifiers and refinement types. We
also present a set of bidirectional type rules for the internal language
and a type checker implemented in Haskell based on the type rules.
We have shown that we can refine the types of a small program in
such a way that array bounds checks can be safely omitted.
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1 Introduction

Among programming languages supporting arrays, there are those that raise
runtime errors when an array is indexed out of bounds and those that omit
these checks for the sake of performance as dynamic array bounds checks
take time during execution. Futhark is a programming language designed
to target general purpose computing on graphics processing units (GPUs).
Futhark also has a C backend. In Futhark, array accesses are checked at
runtime unless these checks are turned off by the programmer using the
keyword unsafe [7, 12, 17]. Omitting array bounds checks makes it easy to
introduce hard-to-find bugs and in many programming languages, checking
array bounds has a negligible influence on performance, which make array
bounds checking a practical solution in many contexts. In the context of
the Futhark language and its implementation targeting GPUs, the goal is
to generate high-performance code, which means that it becomes paramount
to avoid runtime array bounds checking. Moreover, it is often unclear what
should happen in the case of a runtime error on the GPU since all threads
need to finish before the error can be propagated to the CPU, which in the
end is responsible for reporting the error to the user.

For now, the Futhark compiler will refuse to compile programs with runtime
array bounds checks for the GPU and thus, Futhark programmers have to
turn array bounds checks off using unsafe if they want to run their code on
the GPU.

One solution for avoiding runtime array bounds checks, while still making
sure that all array accesses are in-bounds, is to use a type system that allows
the compiler to reason about array indexing at compile time. Refinement
types provide us with such a type system [25].

In the most general sense, a refinement type system is an extension of a base
type system that adds an extra layer of precision to the type system. It is
a conservative extension in the sense that all programs that are typeable in
the refinement type system are also typeable in the base system. That is,
refinement types do not make more programs typeable.

The added information to the type system can be used to express the length
of an arrays as part of the type or that all elements of an array are in the
range 0 to 5.

Consider the following function from the Futhark segmented library [13,
15]:

1 val replicated_iota [n] : [n]i32 -> []i32
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The expression replicated_iota reps returns an array with each index (start-
ing from 0) repeated according to the repetition array reps. As an example,
replicated_iota [2,3,1] returns the array [0,0,1,1,1,2]. A property of this
function, which will be useful later, is that all values in the result array
are nonnegative and strictly less than n, the length of the argument array.
Refinement types can be used to express this property:

1 val replicated_iota [n] : [n]i32 -> []{i32(i) | i >= 0 && i < n}

Below is a Futhark function segmented_replicate, which uses an unsafe array
access and, which uses the replicated_iota function:

1 let segmented_replicate [n] (reps:[n]i32) (vs:[n]i32) : []i32 =

2 let idxs = replicated_iota reps

3 in map (\i -> unsafe vs[i]) idxs

Because the function replicated_iota is used to create the indices that are
used in the array access, the compiler can use the extended type information
to establish that the array access is safe.

Even for the Futhark C backend, bounds checking slows down the perfor-
mance because more instructions need to be executed. Thus, also in this
case, we can benefit from a refinement type system. We can evaluate the
performance benefits of omitting runtime array bounds checks by comparing
the execution times of programs with and without array bounds checks.

We propose that extending the Futhark type system with refinement types
will allow the programmer to refine a program using types in such a way that
array bounds checking can be avoided at runtime.

We will test this hypothesis by (1) designing a refinement type system for
Futhark, (2) implementing it in a small compiler that erases the types and
produces safe Futhark code without checks, and (3) evaluating its use based
on a number of small and medium examples. Moreover, we will evaluate
the usability of the refinement type system, for instance by comparing ex-
ample refinement-type-annotated Futhark programs with their unannotated
versions to inspect the added complexity.

1.1 Our approach

To not complicate the types of Futhark too much, we have specified an inter-
nal language with fully indexed types and given so-called bidirectional type
rules for refinement types in the internal language.

5



CONTENTS

The internal language is verbose and does not resemble Futhark very much,
thus we have also specified an external language, which is a subset of Futhark
with the addition of allowing a few extra type annotations.

To type check programs in the external language, we have designed a trans-
formation function that transforms programs in the external language to
programs in the internal language.

By transforming programs, we also simplify our type rules because they do
not have to deal with the quirks of Futhark.

The type rules are inspired by previous work on refinement types [10,24,25].
Our rules are very similar to the algorithmic rules of [10] and we change the
rules or add our own as needed.

The type rules are deterministic in the sense that for every subderivation
at most one rule is applicable, and algorithmic, which means that the types
the rules are used on are deterministically determined from the input. This
means that rules are directly implementable without any other decisions in
the implementation. We have implemented a typechecker in Haskell based
on the type rules.

1.2 Report overview

In Section 1, we present the motivation for the work and present the the-
sis. In Section 2, we briefly cover some preliminaries including, the Futhark
language, bidirectional typing, refinement types, dependent types and index
refinements. In Section 3, we introduce the syntax and key elements of our
internal language. In Section 4, we introduce our external language, which,
for demonstration purposes, is a subset of the Futhark language. In Sec-
tion 5, we present a transformation function that transforms a program in
the external language to the internal language representation. In Section 6,
we present the bidirectional type rules for typecheking a program in the in-
ternal language. In Section 7, we describe and discuss our implementation
of the rules presented in Section 6. We also describe the implementation of
the parser, the transformation function between the external and internal
language, the erasure function and a small solver. In Section 8, we eval-
uate our implementation, its effect on runtime performance, the usefulness
of the solution and the process of the project. In Section 9, we discuss our
type rules, the coverage of Futhark, the expressiveness of refinement types,
challenges with existential types, type inference and constraint solving. In
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Section 10, we present related work. In Section 11, we conclude and discuss
future work.

1.3 Methods and tools

In this section, we present how we have approached the development of the
implementation. We also introduce the concept of bidirectional typechecking
that we have used when developing type judgements and rules.

1.3.1 Development style

When developing the implementation, we have used examples to guide focus
and direction. Before writting the implementation of a rule, we wrote an
example of its application as a test in the file /test/Spec.hs.

1.3.2 Bidirectional type rules

Bidirectional typechecking is a technique for designing type systems in which
terms in some context either synthesize a type or are checked against a known
type. It makes it easy to make the type rules syntax directed or almost
syntax directed so that they are easily implemented as recursive functions
that pattern match on the syntax. Type annotations only have to be added
where they are necessary. It is the middle ground between fully annotated
systems, which are easy to design and implement but are annoying to use,
and type inference, which is difficult to understand and extend to handle
types that are not simple.

Because of these properties, bidirectional typechecking is a popular choice
for designing type systems with advanced types [9]. We follow the same
approach as has been used in previous systems [9, 10, 24, 25] and present a
bidirectional type system for refinement types in Futhark.

1.3.3 Haskell

We have used GHC Haskell (https://www.haskell.org/) for our imple-
mentation, but we have not used any significant GHC extensions. Monads
are used to structure our implementation.
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2 Preliminaries

In this section we describe relevant parts of the Futhark language. We also
briefly explain refinement types and dependent types as well as index refine-
ments.

2.1 The Futhark language

Futhark [7,12,17] is a a statically typed, data-parallel, and purely functional
array language with a higher-order ML-style module system [11] and limited
support for higher-order functions [18].

Futhark has a type system featuring parametric polymorphism and type
inference.

At the core of Futhark is a number of built-in functions, such as iota, map

and filter, the so-called SOACs (second order array combinatores). These
combinators express the inherent parallelism of the programs in which they
are used and are a key part of Futhark and are the reason that Futhark
code can be compiled for parallel execution, as the SOACs have parallel
semantics.

To make array programming more ergonomic, arrays in Futhark carry around
their size, which can be passed implicitly to functions by the compiler. For
example, the length function in Futhark is defined as follows:

1 let length [n] ’t (_: [n]t): i32 = n

The function takes an array of size n and returns a signed 32bit integer.
The [n] here is a size parameter, which makes the compiler pass in the
length of the array implicitly and the size variable n can be used in the
body of the function. Even though the size is a runtime construct, the
size here is syntactically part of the array type, and so, it is also useful for
documentation. For example, the reverse function returns an array of the
same size as the input array, which is expressed in its type:

1 let reverse [n] ’t (x: [n]t): [n]t = x[::-1]

The invariant that the size of the input and the output is the same is checked
at runtime (if it cannot be garuanteed by the compiler at compile time). Both
functions are polymorphic in the array element type and the type parameter
is declared with a ’t. Thus, size parameters and type parameters are in the
same syntactic category. Futhark also supports using program variables as
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sizes in array types. For example, the iota function returns an array of size
n containing values between 0 and n.

1 let iota (n: i32): [n]i32 = 0..1.. <n

One of Futhark’s features is that it can be compiled for execution on GPUs,
which are notoriously difficult to program in low level languages such as
CUDA [1]. As a consequence, array bounds checks in Futhark can be turned
off using the keyword unsafe. The reason is that there is no good way to deal
with out of bounds errors during the execution of the GPU code as many
threads are executed in a SIMD fashion and some of them may encounter
errors while others may not. Since threads may do synchronization, it is
not a good idea just to terminate the threads that go wrong because that
may send the program into deadlock. Even if all threads are terminated, it
would be difficult to propagate a helpful error message to the user besides
that ”some array index error happened”.

2.2 Refinement types

A refinement type system is used to extend an already existing type system.
Specifically, refinement types can express the fact that a value is in a subset
of values of a specific type. For instance, the integers that are odd numbers is
a refinement on the integer type. These subsets of types are types themselves
in a refinement type system. That is, they can be argument types, return
types, or variable types.

Refinement types is a conservative extention in the sense that they do not
allow more programs to type check than the un-refined type system does
[14].

An interesting subset of arrays is the subset of arrays of a specific length. By
expressing the length of an array as part of its type, it is possible to reason
about which subset of integers may be used to index the array.

2.3 Dependent types

Dependent types are types that depend on a value. In full spectrum depen-
dent types, this value can be any value of the language, even functions. For
example, an array type may be indexed by an integer representing the size
of the array. The type indices can be quantified over by the Π quantifier,
which is a universal quantifer, and the Σ quantifier, which is an existential
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quantifier. In a fully dependently typed language, the type checker might go
into an infinite loop since a type can contain any term, which in general need
not succeed at evaluating to a value.

Examples of programming languages with dependent types include Coq [4],
Agda [2, 26], and Idris [5].

2.4 Index refinements

Combining type refinements and dependent types, we arrive at index refine-
ments, where the terms used to index the type are refined. This means that
it is possible to form subsets of families of types instead of subsets of sets
of values directly. This technique was used to implement a restricted form
of dependent types in Dependent ML [24, 25]. We use the same technique.
Dependent ML is further discussed in Section 10.

3 Internal Language

In this section, we present the internal language, which is used for type
checking. We later present type rules over the syntax of the internal language.
All types in the internal language are indexed to support index refinements.
The syntax can be seen in Figure 1. The syntax is inspired by the work
in [10] and [25].

In the internal language, expressions consist of variables x; lambda expres-
sions λx.e; let expressions let x = e1 in e2; function application e s+; pairs
〈e1, e2〉 and annotated expressions (e : τ).

Instead of the usual application form e1 e2, we instead follow [10] and apply
a function to a whole sequence of arguments called a spine. Application and
spines both use juxtaposition, thus, spines have higher syntax precedence
than applications. For example, e1 e2 e3 is parsed as e1 applied to the spine
e2 e3.

Index objects can be index variables a; integers n; pairs 〈i1, i2〉; function
applications f(i) and binary functions i1 + i2.

Types are indexed by index objects i, which themselves are typed. To avoid
confusion, the types of index objects are called sorts and are denoted by γ.
For better readability, sorts are written in italic and types in typewriter.
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Also, f is used for interpreted index functions (like +), and functions of sort
γ → bool are called predicates and are denoted by the symbol p.

Types can be pairs τ1 ∗ τ2; function types τ1 → τ2; universal types ∀a :
κ.τ ; existential types ∃a : γ.τ ; guarded types P ⊃ τ and asserting types
τ . P .

We use ∀ and ∃ for universal and existential types instead of the more tra-
ditional Π and Σ from dependent types. The quantifiers can quantify over
both types and indices so ∀ is used for both parametric polymorphism and
Π-types.

Guarded types are types that can only be used if the property guarding the
type can be proved. Most often they guard function types with the intention
that a function cannot be applied unless the argument type satisfies some
property. Asserting types are types that establish some property about the
type they contain. For example, we can say that some number is positive if
it can be assigned the type i32(n) . (n > 0) for some index n in scope.

We use P for propositions over indices, which are used in guarded and as-
serting types.

We use δ for base type families (e.g., i32, i64, bool, array) and b for
base index sorts (e.g., int, bool). Types have to be indexed by index objects
of the appropriate sort (e.g., i32 and array have to be indexed by objects
of sort int and so on). Notice that the type families i32 and i64, which are
indexed by objects of sort int, have a limited range whereas their indices do
not.

expressions e ::= x | λx.e | let x = e1 in e2 | e s+ |
〈e1, e2〉 | (e : τ) | fst(e) | snd(e)

spines s ::= · | e s
nonempty spines s+ ::= e s
index objects i ::= a | n | 〈i1, i2〉 | f(i) | i1 + i2
types τ ::= δ(i) | τ1 ∗ τ2 | τ1 → τ2 | ∀a : κ.τ | ∃a : κ.τ |

P ⊃ τ | τ . P
index sorts γ ::= b | γ1 ∗ γ2
kinds κ ::= ? | γ
index propositions P ::= > | ⊥ | p(i) | i1 ≤ i2 | P1 ∧ P2 | P1 ∨ P2

Figure 1: Syntax of the internal language.
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3.1 Representing unindexed types

Since all types in the internal language are indexed, one might wonder how
to opt out of refinement types in parts of the program. It should be possible
in the type system to represent good old types such as i32, i64, []i32,

bool, and so on. Furthermore, it should also be possible to apply functions
that expect indexed types to unindexed types. Otherwise we would have to
use different functions for indexed and unindexed types. For example, (+)
for indexed i32 has the type:

∀n : int .∀m : int .i32(n)→ i32(m)→ i32(n+m)

We would like to be able to use this one type of (+) for both unindexed
and indexed arguments since having multiple types and picking the right one
would be overly cumbersome for the programmer.

To represent such unindexed types, we follow [25] and use existentially quan-
tified types so that i32 becomes a shorthand for ∃a : int.i32(a). Such a type
can be interpreted as at type where the index is unknown. The term i32 can
mean several different things; it is used to denote the shorthand described
above and the type family of which the type i32(i) is a member (for any
i).

For integer types, an unknown index means that the value is unknown be-
cause it is a singleton type whereas for arrays, an unknown index means that
the size of the array is unknown.

3.2 Existential types

Our type system supports existential types. For example, a monomorphic
version of filter has the type:

∀n : int.(i32→ bool)→ i32 array(n)→ ∃m : int.i32 array(m) . (m ≤ n)

The above function uses an existentially quantified type as the return type.
The reason is that the size of the returned array is not known; it depends on
how many elements satisfy the predicate.

Our existential types are also first-class. For example, they can appear as
array element types; without this feature, we would only be able to represent
types of arrays that contain identical elements.

12
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Existential types introduce complications into the use of the type system.
Values with existential types cannot be used as arguments to functions which
universally quantify over the same parameters. Consider the following ex-
pression, which is not directly typeable:

1 map (+2) (filter even [1,2,3])

Here the type of map is

∀n : int.∀α.∀β.(α→ β)→ α array(n)→ β array(n)

The array returned from filter is packed in an existential type, thus, it
cannot be passed to map because map expects an array. In a sense, we have
en array of unknown length but we need an array of known length. To
work around this problem, we can transform the program to the following
equivalent form:

1 let arr = filter even [1,2,3] in map (+2) arr

The rules for let-expressions allow us to unpack such an existential type.

The typing rules are presented in Section 6.

4 External Language

The external language closely resembles a subset of Futhark with a few ex-
tensions that make it possible to decorate programs with refinement type
annotations. The language could easily be changed such that the extended
type annotations were contained in comments in the style of Liquid Haskell
[20, 22].

One of the design goals is for the extended annotations to be as close as
possible to the way Futhark’s types are already expressed.

The syntax is shown in Figure 2. Expressions can be variables x, lambda
expressions λp+ → e, function application e1 e

+
2 , binary operators e1 ⊕ e2,

array indexing x[e], let bindings let x = e1 in e2, and let bound functions
let x tp∗ p∗ : τ = e1 in e2.

Functions can have type-level parameters which can be either type parame-
ters, which are prepended with a single quote, or size parameters, which are
surrounded with square brackets. A function parameter can be annotated
with a type.

13
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The expression syntax is purely a subset of Futhark.

Types however have been extended. As in Futhark, we have type variables α,
integer types i32, boolean types bool and array types [ ]τ and [i]τ . But we
have added new types: Indexed integer and boolean types i32(i), bool(i),
and property types {τ | P}.
Type indices can be index variables, integer literals, or boolean literals. As
in the internal language, types have to be indexed by indices of the correct
sort.

A property type is used to establish some proposition involving one or more
indices. If an indexed type is used outside of braces, any index variable has
to refer to a variable already in scope, but if it is used inside a pair of braces,
any index variables in the type are brought into scope and can be used in
the proposition after the pipe.

For example, {i32(n) | 0 ≤ n} is the type of nonnegative integers.

Expressions e ::= x | n | λp+ → e | e1 e+2 | e1 ⊕ e2 | x[e] |
let x = e1 in e2 |
let x tp∗ p∗ : τ = e1 in e2

type paramater tp ::= ′α | [a]
parameter p ::= x | (x : τ)
types τ ::= α | i32 | bool | i32(i) | bool(i) | [ ]τ | [i]τ |

{τ | P} | τ1 → τ2
type index i ::= a | n | b
proposition P ::= P1 ∧ P2 | i1 ≤ i2 | i1 < i2

Figure 2: Syntax of the external language.

5 Program Transformation

The transformation of programs from the external language (presented in
Section 4) to programs in the internal language (presented in Section 3) is
split in two transformation functions Tτ and Te and an auxillary function for
function parameters Tφ. The functions transform the types of the external
language and the expressions of the external language to the internal language
types and expressions, respectively.

14
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The transformation of types and expressions from the external language to
the internal language can be seen in Figure 3 and Figure 5. The auxillary
transformation can be seen in Figure 4.

In the internal language, we use type indices that do not exist in the exter-
nal language. The type indices therefore have to be generated during the
transformation. The base type i32 is transformed to an existential type
∃m : int.i32(m) in the internal language. This means that the types has the
index m but that m is unknown at this time. Likewise with the base type
bool that can be either true or false. When the actual value is unknown, it
is transformed to an existential type ∃m : bool.bool(m).

An array can be declared with or without a size variable (length) in the
external language. In the case where it has no length given, the array type
[ ]t will be transformed to an existential type ∃a : int.Tτ (t)array(a) . (0 ≤ a)
and the transform function is called on the type of the array. We use an
asserting type here because an array always has a nonnegative length. If a
length is given, the array is simply transformed to an array of that length,
and like before, the type of the array is transformed recursively. We use [n]t
for constant size arrays and [a]t for arrays where the size is expressed with a
variable.

Function types in the external language are transformed to function types in
the internal languages and the types of arguments are found by calling the
transform function recursively.

The function F produces a list of variables φ that should be bound in ∀
quantifiers. A variable should be bound in a ∀ quantifier if it is referenced in
other parameters or the return type. The FV(rt) is the set of free variables
in the return type and the condition from before is equivalent to checking
if the variable is in that set. We define ∀φ.τ inductively according to the
following equations:

∀(n : int), φ.τ = ∀(n : int).∀φ.τ ∀ · .τ = τ

The F function can be seen in Figure 6.

In the internal language array indexing is represented with a built-in function
.index which has the type

.index : ∀α : ?.∀n : int.α array(n)→ fin(n)→ α

When we transform a function body we prepend it with the unsafe key-
word.
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Tτ (i32) = ∃a : int.i32(a)

Tτ (bool) = ∃a : bool.bool(a)

Tτ (i32(i)) = i32(i)

Tτ (bool(i)) = bool(i)

Tτ ([ ]t) = ∃a : int.Tτ (t)array(a) . (0 ≤ a)

Tτ ([a]t) = Tτ (t)array(a) . (0 ≤ a)

Tτ ([n]t) = Tτ (t)array(n)

Tτ (τ1 → τ2) = Tτ (τ1)→ Tτ (τ2)

Tτ ({i32(a) | P}) = ∃a : int.(i32(a) . P )

Tτ ({[a]t | P}) = ∃a : int.([a]Tτ (t) . P ∧ (0 ≤ a))

Tτ (α) = α

Figure 3: The transformation of types from the external to the internal
language.

Tφ([n] tps∗, p∗, rt) = ∀n : int.Tφ,n(tps∗, p∗, rt)

Tφ(’a tps∗, p∗, rt) = ∀a : ?.Tφ(tps∗, p∗, rt)

Tφ(·, (x : t) p∗, rt) = Tτ (t)→ Tφ(·, p∗, rt)

Tφ(·, (n : i32) p∗, rt) =

{
i32(n)→ Tφ(·, p∗, rt) n ∈ φ
Tτ (i32)→ Tφ(·, p∗, rt) n /∈ φ

Tφ(·, ·, rt) = Tτ (rt)

Figure 4: The transformation of parameters to types in the internal language.
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T (let f tp∗ p+ : rt = e1 in e2) = let f = (T (λp+ → e1) : ∀φ.Tφ(tp∗, p+, rt)) in T (e2)

where φ = F (p+, rt)

T (let x = e1 in e2) = let x = T (e1) in T (e2)

T (λ(x : τ) p∗ → e) = λx. T (λp∗ → e)

T (λx p∗ → e) = λx. T (λp∗ → e)

T (λ · → e) = T (e)

T (e1 e2) = T (e1)T (e2)

T (x) = x

T (n) = n

T (x[e]) = .indexT (e)x

T (e1 ⊕ e2) = T (e1)⊕ T (e2)

Figure 5: The transformation of expressions from the external to the internal
language.

F ((n : τ) ps, rt) =

{
(n : τ), F (ps, rt) n ∈ FV(ps) ∪ FV(rt), τ ∈ {i32, bool}
F (ps, rt) otherwise

F (·, rt) = ·

Figure 6: Helper function that produces a list of variables that needs to be
bound by forall quantifiers.
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The erasure function that transforms a program in the external language to
a Futhark program can be seen in Figure 7.
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ERe(let f tp∗ p+ : rt = e1 in e2) = let f tp∗Ep(p
+) : ER(rt) = ERe(e1) in ERe(e2)

ERe(let x = e1 in e2) = let x = ERe(e1) in ERe(e2)

ERe(λp
+ → e) = λEp(p

+)→ ERe(e)

ERe(e1 e2) = ER(e1) ER(e2)

ERe(x) = x

ERe(n) = n

ERe(x[e]) = x[ERe(e)]

ERe(e1 ⊕ e2) = ERe(e1)⊕ ERe(e2)

ERe(e1 e2) = ERe(e1) ERe(e2)

Ep(x p
∗) = xEp(p

∗)

Ep((x : τ) p∗) = (x : ER(τ))Ep(p
∗)

Ep(·) = ·
ER(i32) = i32

ER(i32(i)) = i32

ER(bool) = bool

ER(bool(i)) = bool

ER([ ]t) = [ ]ER(t)

ER([a]t) = [a]ER(t)

ER([i]t) = [ ]ER(t)

ER(τ1 → τ2) = ER(τ1)→ ER(τ2)

ER({t | P}) = ER(t)

ER(α) = α

Figure 7: The erasure functions
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5.1 Some examples

The length function in Futhark is given as:

1 let length [n] ’t (_: [n]t) = n

In classic Futhark, there is no way to express in the return type that the
number returned is equal to n; we can at best write

1 let length [n] ’t (_: [n]t) : i32 = n

Since arrays carry their size in their type we extend integers to carry their
value in their types so the implementation becomes

1 let length [n] ’t (_: [n]t) : i32(n) = n

Which in the internal language becomes

∀n : int.∀α : ?.α array(n) . (0 ≤ n)→ i32(n)

Notice that we do not know that the size of the array returned by length

is positive. The transformation function does not capture the fact that the
index variable n originates from an array. The property must be established
somewhere else.

Functions like iota and replicate reference parameter names as size variables,
and since they are parameter names they, are not declared as type parameters
in the front of the function; their types are:

1 let iota (n: i32): [n]i32 = 0..<n

2 let replicate ’t (n: i32) (x: t): [n]t = map (const x) (iota n)

We produce the following types for iota and replicate:

∀n : int.i32(n)→ i32 array(n) . (0 ≤ n)

∀α : ?.∀n : int.i32(n)→ α→ α array(n) . (0 ≤ n)

In a sense we ’promote’ some variables to the front of the type and bind them
in a ∀ if they are used in other parts of the type because then they have to
be scoped to the whole type.

Note that that the types of iota and replicate tell us that the array produced
will have a positive length. An arguably better approach would be to instead
require that the input is positive by using guarded types. To figure out which
types should be guarded requires more complicated transformation rules than
those presented here.
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6 Type checking the Internal Language

In this section, the elements of type checking are presented. We first give
the definition of the context and then we briefly introduce the concept of
constraints before giving the type rules. Finally, we present some examples
of type derivations.

6.1 Context

The context structure can be seen in Figure 8.

Contexts contain information about type variables, index variables, and pro-
gram variables.

Type variables and index variables can be universal variables α : κ or exis-
tential variables α̂ : κ, and existential variables may be solved to a particular
type α̂ : κ = τ .

As type variables and index variables share syntax, they are distinguished
from each other by their kind κ, where the kind of types is ? and the kind of
an index variable is its sort, like for example int.

Program variables are mapped to their types x : A. Markers Iu are used to
mark a spot in the context that split the context in two Γ,Iu,∆ so that we
can denote the different parts of the context.

Finally the context also contains subtype constraints A ≤ B.

A context Γ is ordered and objects in the context may only reference variables
to the left of the object itself.

We can use the information in the context to substitute into types using the
notation [Γ]A. For example ([α̂ : κ = τ ]α̂) = τ .

Universal variables α, β

Existential variables α̂, β̂
Variables u ::= α | α̂
Contexts Γ,∆,Θ ::= · | Γ, α : κ | Γ, α̂ : κ | Γ, x : A |

Γ, α̂ : κ = τ | Γ,Iu| Γ, A ≤ B

Figure 8: Syntax for the context.
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6.2 Constraints

The process of type checking generates, if successful, a program and a set
of constraints that has to be solved to find out if the program is correctly
typed. The constraints are inequality constraints.

If a type derivation can be constructed for an expression the process will
generate a set of inequality constraints. Only if the constraints are proven
to be always satisfied are we sure that the program is safe.

The judgement Γ ` P true that is used in Figure 12 and Figure 13 is not
derived but used to construct a constraint that is collected into a constraint
set that is checked by a solver. To produce the constraint to be satisfied
when our derivation includes Γ ` P0 true we use the following relation

Φ(P,Γ) = P ⊃ Φ(Γ)

Φ(∀a : γ,Γ) = ∀a : γ.Φ(Γ)

Φ(·) = P0

Φ( ,Γ) = Φ(Γ)

Using this relation naively we can construct a set of constraint or one big
constraints using conjunction: (∀a : γ.P ⊃ P1) ∧ (∀a : γ.P ⊃ P2). In a
practical implementation we should instead construct these constraints so
that they can share prefixes and produce constraints on the form ∀a : γ.P ⊃
(P1 ∧ P2) which is equivalent to (∀a : γ.P ⊃ P1) ∧ (∀a : γ.P ⊃ P2).

6.3 Judgements and rules

The rules use the bidirectional type checking approach and as such we have
two mutually recursive judgements for type synthesis and type checking.
Each syntactic form has either a checking rule or a synthesis rule but not
both. The type checking and type synthesis rules are mutually recursive.
Also there is a mutually dependent cycle between the check, synthesis and
spine rules. Most of the judgements and many of the rules are not new
[10].

The connection between the judgements can be seen in Figure 10. There is
an arrow from judgement A to judgement B if there is a rule of judgement
A that uses judgement B.
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6.3.1 Checking rules

The judgement Γ ` e ⇐ A a ∆ means that the expression e is checked
against type A in context Γ and the checking produces a context ∆. The
rules can be seen in Figure 12.

The Sub rule is identical to that of [10]. It is the rule that allows subtyping
to be integrated. We will see later how big an effect that will have. The
rule also has the role of changing the direction of type checking when we
want to check terms that are synthesizing. The subtype relation is polarized,
which will be explained later. It is through the subtyping rules we instantiate
existential variables.

Note that the rules ∀I, ∃I, ⊃ I and .I unlike the other rules are used for
multiple syntactic constructs. Those constructs are the checked introduction
forms and e chk-I means that expression e is a checked introduction form;
right now these are the lambdas and pairs. A let-expression is a checked
form but not an introduction form. If the construct is a synthesizing form,
the Sub rule is used instead.

6.3.2 Synthesizing rules

The judgement Γ ` e ⇒ A a ∆ means that the type A is synthesized
for expression e with output context ∆. The rules are deterministic and
typechecking starts either in the checking or the synthesis rules depending
on the syntax of the expression. The rules can be seen in Figure 11.

The Anno rule, like the Sub rule, changes direction of type checking. In the
Anno rule, we switch from synthesis to checking. The Anno rule supports
the intuition that we can tell the type system what type a term should have
by giving it a type annotation.

6.3.3 Spine rules

To synthesize a type for function application, we use the spine judgement
to check types of function arguments. The judgement Γ ` s : A � C a ∆
means that applying a function of type A to a spine s synthesizes the type
C with output context ∆. The rules can be found in Figure 13. In the spine
rule→Spine, the arguments are checked using the checking judgement.
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pol(∀α : κ.A) = −
pol(∃α : κ.A) = +
pol(A . P ) = +
otherwise = ◦

join(+,P) = +
join(−,P) = −
join(◦,P) = P

Figure 9: The join and pol functions

6.3.4 Let-binding checking rules

The let construct has the role of unpacking existential and asserting types.
The idea of limiting the scope of existentially quantified type indices to the
scope of the variable of the indexed type is not new [10,25]. It has been done
with the case construct and the let construct.

There are no case expressions in the language but let bindings are a special
form of case with one branch thus we used them for existial unpacking.

Having let bindings in their own judgement aids the readability of both check
and let-bindings by seperating them. The judgement Γ ` x : A in e� C a
∆ means that expression e is checked against type C in context Γ while x
has type A. The rules for let-bindings can be seen in Figure 18.

The Let∃ rule deconstructs an existential type while making sure the (in-
dex/type) variable is only scoped in the subderivation, thereby controlling
the scope of the existential. The Let. rule deconstructs an asserting type
and in the same way as before making sure the proposition is only assumed
in the subderivation. Finally, the LetBase rule is used when there are no
more existential or asserting types. The let-bound variable is put into con-
text while the expression is checked against the type. This rule is similar to
how a regular let-rule looks like.

6.3.5 Subtyping rules

Γ ` A ≤P B a ∆ means that A is a subtype of B in context Γ with output
context ∆. The rules can be seen in Figure 14. The subtype relation is po-
larized, which means that it is split into two mutually recursive subtype rela-
tions, ≤+ and ≤−. When used from the Sub rule, the polarity of the subtype
relation is determined by the polarity of the expression join(pol(B), pol(A)).
The join and pol functions can be seen in Figure 9. The join allows the
programmer to chose which subtype relation to use by using a type annota-
tion. The choice of subtype relation determines whether to deconstruct the
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universal or the existential quantifiers first. If the ≤− relation is used, all
universal quantifiers are deconstructed first, before the relation is switched
to ≤+ if there are any existential quantifiers. The opposite is true for the ≤+

relation, for which all existential quantifiers are deconstructed first. If the
types are neither positive or negative, they have to be equivalent according
to the equivalence rules.

This notation comes from the fact that existential types are positive types in
logic and universal types are negative [10]. Furthermore, asserting types are
positive and guarded types are negative. We also give asserting type rules to
support cases like ∃n : int.i32(n) . (n < 5) ≤+ ∃n : int.i32(n) . (n < 6) to
support array indexing.

An exception for subtyping is made for existential variables, for which sub-
type constraints are put into the context and later checked in their own rules
dα̂e. We don’t know if the variable will later be instantiated for a positive or
negative type so we delay subtype checking.

Note that array types do not have a subtype rule. The reason for this is
variance. Since we do not want to deal with variance, array types only have
an equivalence rule.

6.3.6 Type equivalence and related rules

The judgement Γ ` A ≡ B a ∆ means that the types A and B are equivalent
in context Γ with output context ∆. The rules can be seen in Figure 15.

The δ≡ rule reduces type equivalence to index equality $. Since index equal-
ity is decidable it means that type equivalence is decidable. S(δ) is the sig-
nature of the type family and gives the sort of the the index, e.g. we have
S(i32) = int→ ?.

When an existential variable α̂ is encountered, the instantiation rules are
used to instantiate the variable to the other type.

The judgement Γ ` i $ j a ∆ means that the indices i and j are equal. The
rules can be seen in Figure 16. If any of the indices are existential variables,
the instantiation rules are used just like for types. Note that we do not have
a rule for the case of f(i) $ g(j) because we currently do not support the
kind of constraints the rule would require us to solve. The case f(i) $ α̂ and
α̂ $ f(i) are handled by the instantiation rules.

The judgement Γ ` α̂ := τ : κ a ∆ means that the existential variable α̂
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index equality
Γ ` t1 $ t2 : γ a ∆

instantiation
Γ ` â := τ : κ a ∆

checking
existential
variables
Γ ` dα̂e a ∆

type equivalence
Γ ` A ≡ B a ∆

spine typing
Γ ` s : A� C a ∆

subtyping
Γ ` A ≤P B a ∆

type synthesis
Γ ` e⇒ A a ∆

type checking
Γ ` e⇐ A a ∆

let-bindings
Γ ` x : A in e� C a ∆

Figure 10: Dependencies between the type judgements.

should be instantiated to the type τ . The rules can be seen in Figure 17.

6.3.7 Existential variable subtype checking rules

The judgement Γ ` dα̂e a ∆ means that all subtype constraints of the form
A ≤ α̂ and α̂ ≤ A in context Γ are checked. This judgment is original and
is needed to support the case where an existential variable might later be
instantiated to an existentially quantified type. The rules can be seen in
Figure 19.

If α̂ is unsolved then we find the first subtype constraint α̂ ≤ A or A ≤ α̂
after the variable is declared and require α̂ ≡ A, which ends up using the
instantiation rules to instantiate α̂ to A. If α̂ is solved to type A and there
still is a subtype relation α̂ ≤ B in the context, then we must derive A ≤ B.
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Γ ` e⇒ A a ∆ type A is synthesized for expression e with output
context ∆.

Num
Γ ` n⇒ i32(n) a Γ

(x : A) ∈ Γ
Var

Γ ` x⇒ [Γ]A a Γ

Γ ` A type Γ ` e⇐ [Γ]A a ∆
Anno

Γ ` (e : A)⇒ [∆]A a ∆

Γ ` e⇒ A a Θ Θ ` s : A� C a ∆ →E
Γ ` e s⇒ C a ∆

Figure 11: Type synthesis rules
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Γ ` e⇐ A a ∆ expression e is checked against type A in context Γ
producing context ∆

Γ ` e⇒ A a Θ Θ ` A ≤join(pol(B),pol(A)) B a ∆
Sub

Γ ` e⇐ B a ∆

v chk-I Γ, α : κ ` v ⇐ A a ∆, α : κ,Θ ∀I
Γ ` v ⇐ ∀α : κ.A a ∆

e chk-I Γ, α : κ ` e⇐ [α̂/α]A a ∆
∃I

Γ ` e⇐ ∃α : κ.A a ∆

v chk-I Γ,Ip, P a Θ Θ ` v ⇐ [Θ]A a ∆,Ip,∆
′

⊃I
Γ ` v ⇐ P ⊃ A a ∆

e not a let Γ ` P true a Θ Θ ` e⇐ [Θ]A a ∆
.I

Γ ` e⇐ A . P a ∆

Γ, x : A ` e⇐ B a ∆, x : A,Θ →I
Γ ` λx.e⇐ A→ B a ∆

Γ[α̂1 : ?, α̂2 : ?, α̂ : ? = α̂1,→ α̂2], x : α̂1 ` e⇐ α̂2 a ∆, x : α̂1,∆
′

→Iα̂
Γ[α̂ : ?] ` λx.e⇐ α̂ a ∆

Γ ` e1 ⇐ A1 a Θ Θ ` e2 ⇐ [Θ]A2 a ∆ ×I
Γ ` 〈e1, e2〉 ⇐ A1 × A2 a ∆

Θ ` e2 ⇐ [Θ]α̂2 a ∆

Γ[α̂1 : ?, α̂2 : ?, α̂ : ? = α̂1 × α̂2] ` e1 ⇐ α̂1 a Θ ×Iα̂
Γ[α̂ : ?] ` 〈e1, e2〉 ⇐ α̂ a ∆

Γ ` e1 ⇒ A a Θ Θ ` x : A in e2 � C a ∆
let

Γ ` let x = e1 in e2 ⇐ C a ∆

Figure 12: Typechecking rules
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Γ ` s : A� C a ∆ applying a function of type A to a spine s synthe-
sizes the type C with output context ∆

Γ, α̂ : κ ` e s : [α̂/α]A� C a Θ Θ ` dα̂e a ∆ ∀Spine
Γ ` e s : ∀α : κ.A� [∆]C a ∆

Γ ` e s : A� C a Θ Θ ` [Θ]P true a ∆ ⊃Spine
Γ ` e s : P ⊃ A� C a ∆

EmptySpine
Γ ` · : A� A a Γ

Γ ` e⇐ A a Θ Θ ` s : [Θ]B � C a ∆ →Spine
Γ ` e s : A→ B � C a ∆

Γ[α̂1 : ?, α̂2 : ?, α̂ : ? = α̂1 → α̂2] ` e s : (α̂1 → α̂2)� C a ∆
α̂Spine

Γ[α̂ : ?] ` e s : α̂� C a ∆

Figure 13: Spine typing rules
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Γ ` A ≤P B a ∆ A is a subtype of B under context Γ

A,B not headed by ∀/∃ or a α̂ Γ ` A ≡ B a ∆ ≤Equiv
Γ ` A ≤P B a ∆

≤α̂β̂L
Γ[α̂ : ?][β̂ : ?] ` α̂ ≤P β̂ a Γ[α̂ : ?, α̂ ≤ β̂][β̂ : ?]

≤α̂β̂R
Γ[α̂ : ?][β̂ : ?] ` β̂ ≤P α̂ a Γ[α̂ : ?, β̂ ≤ α̂][β̂ : ?]

A is not β̂ ≤α̂L
Γ[α̂ : ?] ` α̂ ≤P A a Γ[α̂ : ?, α̂ ≤ A]

A is not β̂ ≤α̂R
Γ[α̂ : ?] ` A ≤P α̂ a Γ[α̂ : ?,A ≤ α̂]

B not headed by ∀ Γ,Iα̂, α̂ : κ ` [α̂/α]A ≤− B a ∆ Iα̂,Θ ≤∀L
Γ ` ∀α : κ.A ≤− B a ∆

Γ, β : κ ` A ≤− B a ∆, β : κ,Θ ≤∀R
Γ ` A ≤− ∀β : κ.B a ∆

Γ, α : κ ` A ≤+ B a ∆, α : κ,Θ ≤∃L
Γ ` ∃α : κ.A ≤+ B a ∆

A not headed by ∃ Γ,Iβ̂, β̂ : κ ` A ≤+ [β̂/β]B a ∆ Iβ̂,Θ ≤∃R
Γ ` A ≤+ ∃β : κ.B a ∆

Γ,IP , P ` A ≤+ B a ∆,IP ,Θ ≤.L
Γ ` A . P ≤+ B a ∆

nonpos(A) Γ ` P true Γ ` A ≤+ B a ∆ ≤.R
Γ ` A ≤+ B . P a ∆

Γ ` A ≤− B a ∆

(neg(A) ∧ nonpos(B)) ∨ (nonpos(A) ∧ neg(B)) ≤−+
Γ ` A ≤+ B a ∆

Γ ` A ≤+ B a ∆

(pos(A) ∧ nonneg(B)) ∨ (nonneg(A) ∧ pos(B)) ≤+−
Γ ` A ≤− B a ∆

Figure 14: Subtyping rules
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Γ ` A ≡ B a ∆ types A and B are equivalent in context Γ with output
context ∆.

≡Var
Γ ` α ≡ α

≡Exvar
Γ ` α̂ ≡ α̂

S(δ) = γ → ? Γ ` i $ j : γ a ∆
≡δ

Γ ` δ(i) ≡ δ(j) a ∆

Γ ` i $ j : int a Θ Γ ` [Θ]A ≡ [Θ]B a ∆ ≡array
Γ ` A array(i) ≡ B array(j) a ∆

Γ ` A1 ≡ B1 a Θ Γ ` [Θ]A2 ≡ [Θ]B2 a ∆ ≡→
Γ ` A1 → A2 ≡ B1 → B2 a ∆

Γ, α : κ ` A ≡ B a ∆, α : κ,∆′ ≡∀
Γ ` (∀α : κ.A) ≡ (∀α : κ.B) a ∆

Γ, α : κ ` A ≡ B a ∆, α : κ,∆′ ≡∃
Γ ` (∃α : κ.A) ≡ (∃α : κ.B) a ∆

α̂ /∈ FV (τ) Γ[α̂ : ?] ` α̂ := τ : ? a ∆
≡:=L

Γ[α̂ : ?] ` α̂ ≡ τ a ∆

α̂ /∈ FV (τ) Γ[α̂ : ?] ` α̂ := τ : ? a ∆
≡:=R

Γ[α̂ : ?] ` τ ≡ α̂ a ∆

Figure 15: Type equivalence rules
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Γ ` t1 $ t2 : γ a ∆ means that the indices i and j are equal

$INum
Γ ` n $ n : int a Γ

$IVar
Γ ` a $ a : γ a Γ

$ExIVar
Γ ` α̂ $ α̂ : γ a Γ

α̂ /∈ FV (i) Γ[α̂ : γ] ` α̂ := i : γ a ∆ $:=L
Γ[α̂ : γ] ` α̂ $ i a ∆

α̂ /∈ FV (i) Γ[α̂ : γ] ` α̂ := i : γ a ∆ $:=R
Γ[α̂ : γ] ` i $ α̂ a ∆

Figure 16: Index equality rules

Γ ` α̂ := τ : κ a ∆ the existential variable α̂ should be instantiated to
the type τ

Γ0 ` τ : κ
:=Solve

Γ0, α̂ : κ,Γ1 ` α̂ := τ : κ a Γ0, α̂ : κ = τ,Γ1

β̂ ∈ unsolved(Γ[α̂ : κ][β̂ : κ])
:=Reach

Γ[α̂ : κ][β̂ : κ] ` α̂ := β̂ : κ a Γ[α̂ : κ][β̂ : κ = α̂]

Θ ` α̂2 := [Θ]τ2 : ? a ∆

Γ[α̂2 : ?, α̂1 : ?, α̂ : ? = α̂1 → α̂2] ` α̂1 := τ1 : ? a Θ
:=→

Γ[α̂ : ?] ` α̂ := τ1 → τ2 : ? a ∆

f : γ1 → γ2 Γ[α̂1 : γ1, α̂ : γ2 = f(α̂1)] ` α̂1 := i : γ1 a ∆
:=IFun

Γ[α̂ : γ2] ` α̂ := f(i) : γ2 a ∆

:=Num
Γ[α̂ : int ] ` α̂ := n : int a Γ[α̂ : int = n]

Figure 17: Instantiation rules
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Γ ` x : A in e� C a ∆ expression e is checked against type C in
context Γ while x has type A.

A not headed by . or ∃ Γ, x : A ` e⇐ C a ∆, x : A,∆′
LetBase

Γ ` x : A in e� C a ∆

Γ, α : κ ` x : A in e� C a ∆, α : κ,Θ
Let∃

Γ ` x : (∃α : κ.A) in e� C a ∆

Γ,IP , P a Θ Θ ` x : A in e� C a ∆,IP ,∆
′

Let.
Γ ` x : A . P in e� C a ∆

Figure 18: Rules for let-binding.

Γ ` dα̂e a ∆ Under context Γ check that all subtype constraints

involving α̂ in Γ are satisfied

α̂ not followed by α̂ ≤ A or A ≤ α̂ in Γ
α̂≤Base

Γ ` dα̂e a Γ

Γ[α̂ : ?] ` A ≡ α̂ a Θ Θ ` dα̂e a ∆
α̂≤Unsolved

Γ[α̂ : ?,A ≤ α̂] ` dα̂e a ∆

Γ[α̂ : ? = B] ` A ≤ B a Θ Θ ` dα̂e a ∆
α̂≤Solved

Γ[α̂ : ? = B,A ≤ α̂] ` dα̂e a ∆

Figure 19: Rules for checking subtype constraints for existential variables.
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6.4 Example of type derivations

We illustrate the type rules with some type derivations.

6.4.1 replicate

Suppose we have a function replicate, defined in a context Γ with the
type

∀α : ?.∀n : int.i32(n)→ α→ α array(n) . (0 ≤ n)

We expect the expression replicate 5 0 to be a subtype of (i32(0)) array(5).

We use the →E rule, which as a premise uses the spine rules and we show
how the type rules derive:

Γ ` (5 (0 ·)) : A� (i32(0)) array(5) . (0 ≤ 5) a Γ, α̂ : ? = i32(0), β̂ : int = 5

where A is the type of replicate.

First the ∀Spine rule is applied and it substitutes α for a new existential
variable α̂ which represents the instantiation of the universal variable α. The
new existential variable is added to the context. We now must derive

Γ, α̂ : ? ` (5 (0 ·)) : ∀n : int.i32(n)→ α̂→ α̂ array(n) . (0 ≤ n)� C a Γ2

and construct the derivation D1 of Γ2 ` dα̂e a Γ3. The ∀Spine rule is used a
second time and our new goals are

Γ, α̂ : ?, β̂ : int ` (5 (0 ·)) : i32(β̂)→ α̂→ α̂ array(β̂) . (0 ≤ β̂)� C a Γ4

and the derivation D2 of Γ4 ` dβ̂e a Γ2.

Now the →Spine rule is applied and we derive (details omitted)

Γ, α̂ : ?, β̂ : int ` 5⇐ i32(β̂) a Γ, α̂ : ?, β̂ = 5 : int

and must now derive

Γ, α̂ : ?, β̂ = 5 : int ` (0 ·) : α̂→ α̂ array(5) . (0 ≤ 5)� C a Γ4

since [Γ, α̂ : ?, β̂ = 5 : int](α̂ array(β̂) . (0 ≤ β̂)) = α̂ array(5) . (0 ≤ 5).
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We apply the →Spine rule one more time and we derive (details omit-
ted)

Γ, α̂ : ?, β̂ : int = 5 ` 0⇐ α̂ a Γ, α̂ : ?, i32(0) ≤ α̂, β̂ = 5 : int

and must derive

Γ, α̂ : ? = i32(0), β̂ = 5 : int ` · : α̂ array(5) . (0 ≤ 5)� C a Γ4

The only spine rule left to apply is the EmptySpine rule, and after applying
it we have that

C = α̂ array(5) . (0 ≤ 5)

and
Γ4 = Γ, α̂ : ?, i32(0) ≤ α̂, β̂ = 5 : int

We now construct D2 using the α̂≤Base rule so we derive Γ4 ` dβ̂e a Γ4 and
so we have Γ2 = Γ4.

To constructD1 we use the α̂≤Unsolved rule and derive (details omitted)

Γ, α̂ : ?, i32(0) ≤ α̂, β̂ = 5 : int ` i32(0) ≡ α̂ a Γ, α̂ : ? = i32(0), β̂ = 5 : int

and use the α̂≤Base rule to derive

Γ, α̂ : ? = i32(0), β̂ = 5 : int ` dβ̂e a Γ, α̂ : ? = i32(0), β̂ = 5 : int

so Γ3 = Γ, α̂ : ? = i32(0), β̂ = 5 : int

Finally we substitute [Γ, α̂ : ? = i32(0), β̂ = 5 : int](α̂ array(5) . (0 ≤ 5) and
get i32(0) array(5) . (0 ≤ 5).

6.4.2 segmented replicate

We now turn our attention to the main example of this thesis. Checking the
type of segmented_replicate involves using a refined array element type with
map and making use of the refinement inside of the functional argument to
map. The most interesting part is the derivation of

Γ ` map (λi→ vs[i]) idxs⇒ C a ∆

of which the main part is the derivation of

Γ ` (λi→ vs[i]) idxs : A� C a ∆
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where A is the type of map

∀n : int.∀α.∀β.(α→ β)→ α array(n)→ β array(n)

We also assume that we have a variable vs and a variable idxs defined in the
context Γ, with the types i32 array(n) and fin(n) array(l) where fin(n) is
a shorthand for ∃m : int.i32(m) . (0 ≤ m ∧ m < n). The ∀Spine is used
to replace the universal variable with existential ones and turn the type of
map into a function type. Then →Spine is used and as the first premise we
construct a derivation

D1

Γ1, i : α̂ ` vs[i]⇒ i32 a Γ3

D2

Γ3 ` i32 ≤ β̂ a Γ2
Sub

Γ1, i : α̂ ` vs[i]⇐ β̂ a Γ2, i : α̂,∆ →I
Γ1,` λi→ vs[i]⇐ α̂→ β̂ a Γ2

where Γ2 = Γ3[α̂ : ?, i32 ≤ β̂]. with subderivations D1 and D2. We turn our
attention to D1, since vs[i] is just syntactic sugar for .index vs i we construct
the derivation

D3

Γ1 ` (vs (i ·)) : A� i32 a Γ3 →E
Γ1, i : α̂ ` .index vs i⇒ i32 a Γ3

With subderivation D3 and where A is the type of .index which we assume
is defined in the context

.index : ∀α : ?.∀n : int.α array(n)→ fin(n)→ α

We omit the subderivation D3 here but note that Γ3 = Γ4[α̂ : ?, α̂ ≤ fin(n)]
where Γ3 = Γ1, i : α̂.

Crucially the subtype constraint is checked after α̂ is solved to fin(n) by
unification with the element type of the idxs array.

6.5 Properties

If a program typechecks in the internal language, the erasure of the corre-
sponding external language program typechecks in Futhark.

Let ex be a program in the external language. If T [ex] = e and · ` e ⇐
i32 a ∆ and the contraints produced in the type checking can be solved by
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a solver, then there exists a Futhark program ef such that ER[ex] = ef and
`f ef : i32.

If a program typechecks in the internal language, the erasure of the corre-
sponding external language program never accesses an array out of bounds.

Let ex be a program in the external language. If T [ex] = e and · ` e⇐ i32 a ·
and the contraints produced in the type checking can be solved by a solver,
then if ef ↪→f v then v 6= indexError. We do not give the semantics of
Futhark here, but refer the reader to previous work [18].

7 Implementation

In this section, a Haskell implementation of the type rules is presented. This
typechecker is divided into four parts: a parser of the external language, a
function that transforms a program in the external language to a program
in the internal language, a checker that typechecks a program in the internal
language and a pretty printer that outputs a Futhark program where all the
refined type annotations are erased. These parts are implemented in distinct
modules.

7.1 Imports

Our implementation supports import statements to make it easier to use code
written in Futhark together with code with refinement types.

When finding an import statement, the Futhark compiler looks for a file with
the .fut extension. Our tool smilarly looks for a file, but with an .rfut ex-
tension. The reason for this is that it enables us to give type definitions
for functions even though our implementation does not support the Futhark
implementation of the function body. Also we can give type definitions with
extended annotations in the .rfut file that the Futhark compiler cannot un-
derstand. It is up to the programmer to make sure the type annotations in
the .rfut file matches the names of the functions in the .fut file.

7.2 How to use the tool

The tool can be compiled and installed using stack
(https://www.haskellstack.org), by executing the command
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1 stack install

in the root directory of the project. The source code is available at
https://github.com/akiehn/refinedfuthark.

Our program takes a file as input, and if type checking succeeds, outputs a
Futhark program to standard output. If type checking fails, an error message
is written to standard error. The resulting Futhark program can also be
written to a file using the -o flag. Assuming the current directory contains a
file segrep.rfut containing

1 import "repiota"

2
3 let segmented_replicate [n] (reps : [n]i32) (vs : [n]i32):

[]i32 =

4 let idxs = replicated_iota reps

5 in map (\i -> vs[i]) idxs

6
7 let main [n] (reps : [n]i32) (vs : [n]i32): []i32 =

8 segmented_replicate reps vs

and a file repiota.rfut containing

1 let map ’t [n] ’x (f: t -> x) (as: [n]t): [n]x = undefined

2
3 let replicated_iota [n] (reps : [n]i32) : []{i32(i) | 0 <= i

&& i < n} = undefined

type checking and Futhark code extraction can be done by executing the
following command:

1 refinedfuthark segrep.rfut -o segrep.fut

The file segrep.rfut has an import "repiota" statement at the top and the
tool will use the declarations in repiota.rfut when checking segrep.rfut . If the
Futhark compiler and OpenCl has been installed, and the current directory
contains a file repiota.fut containing

1 let segmented_scan [n] ’t (op: t -> t -> t) (ne: t)

2 (flags: [n]bool) (as: [n]t): [n]t

=

3 (unzip (scan (\(x_flag ,x) (y_flag ,y) ->

4 (x_flag || y_flag ,

5 if y_flag then y else x ‘op ‘ y))

6 (false , ne)

7 (zip flags as))).2

8
9 let replicated_iota [n] (reps:[n]i32) : []i32 =
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10 let s1 = scan (+) 0 reps

11 let s2 = map (\(i:i32) -> if i==0 then 0 else unsafe s1[i

-1]) (iota n)

12 let tmp = scatter (replicate (unsafe s1[n-1]) 0) s2 (iota

n)

13 let flags = map (\(x:i32) -> 0 < x) tmp

14 in segmented_scan (+) 0 flags tmp

the generated Futhark file segrep.fut can be compiled with the command

1 futhark -opencl segrep.fut

As an alternative the file can be compiled to C code with the command

1 futhark -c segrep.fut

Finally the generated executable can be executed

1 ./ segrep [1,2,3] [4,5,6]

The files mentioned in this section are available in the folder /examples/ of
the project.

7.3 The parser

To implement the parser, we have studied the Futhark parser, which is im-
plemented using the happy library of parser generators [7]. We have used
the parsec library of parser combinators instead. Since we only work with
a subset of the Futhark language, large parts of the Futhark syntax is not
supported. We have made a few extensions to the syntax to support refine-
ment type annotations. The extended type annotations syntax is {t | P}
and i32(n). The parser takes a Futhark program and returns an abstract
syntax tree of the program. The module with the source code for the parser
is available in the file
/src/RefinedFuthark/Parser.hs.

7.4 The transform function

The transformation function is implemented as three recursive functions
transformExp, transformType and transformParams in the file
/src/RefinedFuthark/Transform.hs. The implementation directly corresponds
to the functions described in Section 5.
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7.5 The checker

The source code for the checker can be found in
/src/RefinedFuthark/TypeCheck.hs.

We export one function from the module RefinedFuthark.TypeCheck that has
the following type typeCheck :: Program -> Either Error [Constraint].

The implementation of the type checker follows closely the type cheking rules
described in Section 6. Each judgement roughly corresponds to a function
and each rule roughly corresponds to a pattern match case. We have not
implemented all the rules and we prioritized the rules that would help us
check our examples.

The type checker uses a monad internally to keep track of state and to report
errors. The interface exported by the module is monad-free and returns either
an error or a set of constraints. The constraints are also checked by a very
simple checker before the function returns. The internal state of the type
checker consists of the context, a generator of fresh variable names, and the
set of constraints produced so far.

The context Γ, which is used by all judgements, is represented by a list of
context items and a map that maps existential type and index variables to
their solutions. A context item is represented by a data type and includes
term variable bindings and type and index variable declarations.

The function typeCheck is simply a wrapper for passing the initial environment
and unpacking the monadic result of type checking, which is computed by the
function checkProgram. The checkProgram function calls checkDec on each top-
level declaration and then gets the generated constraints from the internal
state.

Finally the checkDec function calls checkType, which corresponds to the check-
ing judgement from the type rules as described in Figure 12.

1 checkType :: Exp -> TypeExp -> TypeM ()

2 checkType e t = case e of

3 Lambda p ta e1 -> checkLambda p ta e1 t

4 Let binds e’-> checkLet binds e’ t

5 Var _ -> checkSub e t

6 Apply _ _ -> checkSub e t

7 IntLit _ -> checkSub e t

8 Index _ _ -> checkSub e t

9 _ -> throwError $ "Cannot yet check syntactic form "

10 ++ prettyExp e
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If the expression to be checked is a synthesizing form, the function checkSub is
called, which first synthesizes a type using the synthType function, which im-
plements the synthesizing judgement from Figure 11. The function checkSub

then continues by checking if the synthesized type is a subtype by calling the
function isSubtypeOf, which implements the subtype judgement described in
Figure 14.

Several other functions correspond to judgments, for example, let expressions
are handled by the function checkLet and implements the let-rules described
in Figure 18.

1 checkLet :: [(Ident , Maybe TypeExp , Exp)] ->

2 Exp -> TypeExp -> TypeM ()

3 checkLet [] e2 t2 = checkType e2 t2

4 checkLet ((ident ,ta,e1):binds) e2 t2 = do

5 t’ <- case ta of

6 Nothing -> synthType e1

7 Just t’’ -> checkType e1 t’’ >> return t’’

8 c <- getContext

9 m <- getExVarMap

10 checkLet1 (replaceContext c m t’)

11 where

12 checkLet1 t = case t of

13 AssertingType t’ p -> do

14 v <- newMarker

15 consCond p

16 checkLet1 t’

17 removeAfter v

18 SigType ident ’ _sort t’ -> do

19 consContext (UVar ident ’)

20 checkLet1 t’

21 removeAfter ident ’

22 _ -> do

23 addVar ident t

24 c <- getContext

25 m <- getExVarMap

26 checkLet binds e2 (replaceContext c m t2)

27 removeAfter ident

The function handles a whole list of let-bindings at once. We could also have
nested the let-expressions first so that we only had to handle one binding
at the time but a list of bindings is closer to how the program looks in the
source code. If the expression is annotated with at type, it is checked against
a type; otherwise a type is synthesized for the expression.

The type is then unpacked if it is an existential or asserting type and finally
it is bound to the variable before the other bindings are checked.
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7.6 Type erasure

The implementation of the erasure function is based on the function described
in Figure 7. The code for the function can be found in /src/RefinedFuthark/-
Transform.hs.

The erasure function takes a program written in the internal language and
removes all the extended type information by recursivly going through the
types.

7.7 The pretty printer

The pretty printer takes an AST of a program written in the external lan-
guage and transforms it to a Futhark program where the unsafe keyword is
added. The code for the pretty printer is in /src/RefinedFuthark/Pretty.hs.
We have only implemented enough of the pretty printer for our examples to
work.

7.8 The constraint solver

We have implemented a very simple constraint solver that checks the con-
straints before reporting that type checking succeeded. It is limited to check-
ing constant inequalities and inequalites that are part of the premises.

The constraint solver lives in the type checking module and consists of the
function solveConstraint.

8 Evaluation

In this section, we will evaluate to which degree we have obtained the goals
set forth in the introduction.

8.1 Testing

To test the correctness of our implementation and find bugs, we have de-
veloped a test suite. We have also manually applied the main executable
to the programs with extension .rfut found in /examples/. The test suite
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is implemented in Haskell, in the file /test/Spec.hs, using the ’tasty’ testing
framework library.

To run the tests execute the command
stack test

in the root folder.

We tested both the parser and the type checker separately. We have used
positive white-box testing of the parser and both positve and negative white-
box testing of the type checker.

8.1.1 Parser tests

For each test case, the test framework parses a program and fails the test
case if the program could not be parsed. We have also implemented some
test cases that parse a program and then pattern match against an expected
syntactic structure to check if the produced syntax tree is of the expected
form. The test case fails if the syntax tree is of the wrong form because
of pattern match failure. This technique is used to make the test cases
simpler.

We have not used negative tests for the parser which would be an obvious
improvement. Another improvement to testing the parser would be to use
randomized testing with quickcheck with the predicate
pred p = p == parse (pretty p).

8.1.2 Type checker tests

For each test case, the test framework parses, transforms the program, and
then type checks the input program. The test case succeeds if the program
is correctly typed.

We can think of the syntax and type rules as a kind of test specification in
that we can use that to plan the coverage of our test cases. For example, we
should have a test case for each syntactic construct to check that there is a
rule for each construct. Then, we should also have a test case for each rule
to check that the rule is implemented. Further tests should be designed to
test that different rules correctly interact.

Since the test output space is so simple (the program is correctly typed or it
is not) it is hard to be confident of the corectness of the implementation just
by the kind of testing mentioned above.
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Positive tests only check that correctly typed programs can be type checked.
On the other hand, negative tests check that incorrectly type programs are
rejected. Failure to reject bad programs can go completely unnoticed since
the programs can be executed just as correctly typed ones. This probem is
enhanced by the fact that type checking includes collecting and solving con-
straints and forgetting a constraint can make the type checker accept a bad
program. Lastly our subtype checking of existential type variables involves
adding subtype constraints to the context and checking them later, which
again can lead to forgetting them and accepting bad programs. Because of
the problems above, we have also employed negative tests.

Even though we have negative tests, it is hard to be confident that our
implementation is correct in general. It is difficult to enumerate badness
and due to the problems discussed above, we feel like a lot of things can go
wrong.

Apart from having tests covering all of the positive cases outlined above, as
well as more negative tests, we could improve our testing by testing with a
bigger output space since our type checker generates constraints. We have
not explored this option.

In any case much more extensive testing is needed before we can be con-
fident that our implementation is correct and never accepts incorrect pro-
grams.

8.1.3 Known bugs

There are at least two bugs that we know of. The first is the combination
of existential variable subtype checking together with the →Iα̂ rule. The
rule splits an existential variable into two new existential variables, which
it then can solve separately. The problem is that our existential variable
subtype constraints do not currently track these newly created variables.
These variables are tricky since they are created in the middle of the context
as opposed to the tail. This pattern of creating variables in the middle of
the context is used in several different rules and we are yet to find a way to
handle them. For now we have disabled the →Iα̂ rule.

The other bug is name clashing as several different universal type variables
with the same name can be in the context at the same time. We should gen-
erate a unique tag for them to distinguish between them just as we generate
fresh names for existential variables. They should keep their names as they
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are referenced in the program and could be used in error messages to the
user.

8.2 Runtime improvement

If we require that array access is safe and accept that our type checker is
correct, then the performance benefits are the difference between sequential
and parrallel execution. We will not explore here how large the speedup is
of parallel programs compared to their sequential equivalents. But if one
regards unsafe array access as acceptable then there are no performance
benefits but instead a greater assurance of correctness.

We can say that our type system introduces no slowdown as opposed to
other potential type systems because the types can be erased at compile
time. The main goal of the project was to enable safe array indexing on
parallel architectures and not to speed up sequential programs.

8.3 Usefulness

We have shown that refinement types can express the conditions necessary
for safe array indexing. For example the function

1 let myget [n] ’t (x : { i32(m) | m < n && 0 <= m})

2 (arr : [n]t) : t = arr[x]

encapsulates array indexing in a function. We can even check that array in-
dexing is safe when the index is drawn from an array, which is not uncommon
in Futhark.

1 let segmented_replicate [n] (reps : [n]i32)

2 (vs : [n]i32): []i32 =

3 let idxs = replicated_iota reps

4 in map (\i -> vs[i]) idxs

This example also illustrates that we can use refinement types inside of func-
tion arguments to higher order functions like map. Also a common occur-
rence in Futhark. Furthermore the map function is polymorphic so we have
shown the ability to support polymorphism together with refinement types
and are even able to instantiate polymorphic type variables with existential
types.
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8.4 The user experience

A drawback of our system is that the users sometimes have to write the
program using let expressions in order for existential and asserting types to be
unpacked. However, Futhark programs are often already written in let heavy
style so it is not dissimilar to how Futhark code is normally written.

As we have shown in Section 4, we have only introduced a few new type
annotations and have used existing Futhark type annotations where possible,
which we transform to refinement type annotations. The type annotations
are fairly lightweight and do not complicate the reading of the program.

Another benefit of our approchs is that if library maintainers check their
library code using refinement types, a user of these libraries can use the
checked code without having to use refinement types themselves.

Without adding any aditional type annotations, other than those already in
Futhark libraries, our system allows static type cheking of array sizes. The
type annotations also serve as documentation.

8.5 The process

We had decided to use the work presented by Xi and Pfenning [23, 25] and
base our solution on the rules presented there. After reading and designing
some rules we started implementing the solution in Haskell to get a more
hands on experience of the problems we might encounter.

We had started implementing universal dependent types but had only started
on existential dependent types and found that quite difficult. We also dis-
covered that implementing polymorphism would require essential changes to
the system. Finally, the system required that the program was on A-normal
form.

We discovered the work of Dunfield and Krishnaswami [10] that was similar
in many regards and that handled the above mentioned problem as well as
had other advantages. As mentioned, the rules described how to deal with
existential variables and also polymorphism in a more clean way. We did,
however, later discover that it did not solve the necessity of A-normal forms.
We decided to change framework and instead based our rules on the new
work.
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The original work by Xi and Pfenning was some of the first that used re-
finement types and we felt it gave us a good understanding of refinement
types.

Even though we spend time on implementing part of the solution in the first
framework and did not end up using it, the understanding we gained from
studying and implementing the work by Xi and Pfenning was valuable.

Implementing the type rules was not too difficult but extending the system
proved more complicated. We lifted the restriction that type variables could
only be instantiated to monotypes but this involved creating rules for exis-
tential variable subtype checking, which do not feel very satisfying or easy
to work with. We think it is because they do not have a solid theoretical
foundation.

The algorithmic type rules, which we have adapted, are guided by a set of
declarative type rules and existential variable instantiation models ordinary
unification. Dunfield and Krishnaswami mention that to extend this notion
to polytypes an approach would be to use nominal unification instead. We
lack knowledgde in proof theory and logic to truly understand the under-
pinings of their theory so we did not know how to develop rules based on
nominal unification.

8.6 Conclusion

The purpose of this thesis was to discover if extending the Futhark type sys-
tem with refinement types would allow the programmer to refine a program
using types in such a way that array bounds checking can be avoided at
runtime.

We said we would test this hypothesis by (1) designing a refinement type
system for Futhark, (2) implementing it in a small compiler that erases the
types and produces safe Futhark code without checks, and (3) evaluating its
use based on a number of small and medium examples. Moreover, we said we
would evaluate the usability of the refinement type system, for instance by
comparing example refinement-type-annotated Futhark programs with their
unannotated versions to inspect the added complexity.

We have shown that, at least for a limited language, it is possible to verify
the safety of array indexing at compile time. Refinement types can be used
together with higher-order functions and polymorphism.
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Users sometimes have to write more type annotations since unification based
type inference is no longer used, this is discussed in Section 9.5. Existential
types complicate things, and sometimes expressions have to let-bound to
make programs type correct Section 8.4.

It is difficult to determine if our findings can be generalized to more realistic
programs in a more realistic setting since we have only covered a small subset
of Futhark and have therefore not been able to apply our type checker to more
example programs. More exploration would be needed to really be sure how
practical refinement types would be in larger programs, but we think they
have potential.

What was maybe most encouraging was how reinterpreting array size anno-
tations as array type indices led us to develop the syntax {t(x) | P (x)}, a sort
of pattern matching on type indices, which we think is very neat and can be
used both for arrays and integers. The usual syntax is {x : t | P (x)} which
is neat in some cases but does not work very well for arrays. For example
the type of map in Liquid Haskell is
(a -> b) -> xs : List a -> { ys : List b | len xs == len ys } 1, on the other
hand {i32(n) | 0 < n} is not much worse than {n : i32 | 0 < n} We imagine
the syntax could also be generalized for pair types {(i32(n),i32(m)) | n < m}

and index pairs {sometype(n,m) | n < m}.

9 Discussion

In this section we discuss our work, what we have learned, and what we
would have done differently.

9.1 The type rules

Even though our goals are more alike DML, that is to refine the type indices
of some base types which can be erased, we have chosen to base our rules
mostly on the work by Dunfield and Krishnaswami [10].

The type rules in DML have some drawbacks, the constraints generated do
not only contain inequalities in the integer domain, but also the equality
constraints produced by type variable instantiation. This means that instan-
tiation failure cannot be detected and reported until the solver is applied to

1https://stackoverflow.com/questions/56326273
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constraints, or atleast not during the application of the rules themselves. Of
course the implementation can be modified to catch some failures earlier but
the rules do not reflect that.

There is also a separate step of eliminating existential variables from the
constraints which further seperates constraint solving from rule application.
These steps are an integrated part of the rules by Dunfield and Krishnaswami
[10].

9.2 Coverage of Futhark

We have only covered enough of Futhark to support array indexing and our
examples. Notable omissions are: Multidimensional array indexing, modules,
loops, algebraic datatypes and uniqueness types.

We do however support polymorphism, higher-order functions and let ex-
pressions.

We cannot parse most real Futhark programs because we cannot parse of
check most of Futhark, but we think that we support most of the diffucult
and most illustrative constructs.

But the intention from the start was exactly to support a small core function-
ality only for the purposes of exploring refinement types for use of checking
array indexing.

We think that this is a good starting point to explore refinement types in
larger programs, especially because of the composable nature of types. The
composibility means that we can check the parts of the program that we
want. We can also let types express properties that we cannot check and
check the rest of the program under the assumption that the property holds.
This is also useful if we want to define refinement types for built-in functions
and/or define different refinement types for the same function in different
parts of the program.

We can check the refinement types of a small library of Futhark functions
defined in examples/lib.rfut. We can express refinement types of yet more
functions defined in examples/prelude.rfut. These types can be used in other
rfut files. This is nessesary in order to express/override the types of the
SOACs that are built into Futhark.
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9.3 Expressiveness of Refinement Types

Our refinement type system is an example of a form restriced dependent
types.

In our approch it is possible to erase the types, but this is not always possible
when using fully dependent types. This means that refinement types are a
zero cost abstraction, that is, they do not slow down the execution of the pro-
gram which is important in Futhark as speed is an important feature.

That the types have to be erasable creates limitations. In general this means
that it is not possible to type programs that are ill-typed in Futhark, the
extension is conservative. Dependent types are an example of an extension
that is not conservative but so is for example polymorphism. When a lan-
guage incorporates polymorphism the implementors have to chose one of
several strategies of implementation, all of which have implications for code
generation or runtime representation.

There are properties that we cannot express, for example it is not possible
to express or prove that the elements of an array are sorted. In general,
we can only express position-independent properties such as all numbers are
positive and so on. It is not clear how to even express relations between
elements in an array in our case, since the maintaining of such properties
are traditionally tied to the value construtors of the type, which is not how
arrays are created.

Because of subtyping we can gracefully handle properties that are implied
by stronger properties for example:

1 let x : {i32(n) | n < 5} = 4

2 let y : {i32(n) | n < 6} = x

Which is close to how humans would reason about programs. The type
annotations can also be thought of as fairly uninstrusive documentation of
the program.

9.4 Existential types

Existential types are really difficult to deal with but they are very powefull.
They make it possible to use the functions with dependent types on regular
types.

50



CONTENTS

An original feature of our type rules is the ability to substitute existential
types for type variables. The fact that we can instantiate polymophic type
variables with existential types allows us to use the combinators with their
standard types together with refinement types which is powerfull since we do
not have to make new combinator types or understand them, the programmer
can simply use the combinators they are used to. To represent an array of
positive integers we simply use a regular array type that contains existentially
quantified integers that are positive.

1 let as : [5]{ i32(n) | 0 < n} = iota 5

Even though the machinery is complicated the end result is very simple to
understand and hopefully therefore easy to use.

9.5 Type inference

Since Futhark has type unfication and our system does not make sense to
ask how much difference there is in terms of type annotations needed. It is
good practice to write the full type of at least top-level functions so we can
focus on local declarations.

The syntactic forms are all either checked or synthesizing forms, could we
make them all synthesizing? If so, it would mean that we have the same
functionallity as unification.

We can probably not achieve full type inference in the face of existential
types but maybe we can achieve it for the subset that is Futhark. So the
programmer only pays with extra type annotations when they use the fea-
tures.

A pair type can be synthesized if both of the types of the types of the
componenets can be synthesized.

An interesting case is the lambda expression but a synthesizing rule for
lambda expressions in bidirectional typing has been shown before [10].

Γ,Iα̂, α̂, β̂, x : α̂ ` e⇐ β̂ a ∆,Iα̂,∆
′ ~̂ε = unsolved(∆′)

Γ ` λx.e⇒ ∀~α.[~α/~̂ε][∆′](α̂→ β̂) a ∆

So this is actually possible. Let expressions could be synthesizing if not for
the fact that they have to unpack existential and asserting types, so this
meets our expection that it is the existential types that stand in the way of
type inference.
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9.6 Constraints and the constraint solver

We have implemented a simple constraint solver discussed in Section 7. Ide-
ally we would like to use an SMT solver like Z3 [3,6] since they are fast and
can solve many kinds of constraints.

This is also the aproach chosen by Liquid Haskell [20, 22].

Another option would be to use constraint solver we had developed ourselves,
this is the option chosen by DML. This has the advantages that the user does
not have to install a solver, however the users that have to install the solver
are limited to library maintainers that use refinement types or users that
want to check refinement types themselves. Users can still use pre-checked
libraries without installing a solver.

However, even with our very simple solver we were suprised with the pro-
grams that could be checked, this is due to the fact that the type system
substitutes index variables so many of the inequalities are either constant or
identical to inequalities in the premises.

This variable solving by the rules reduces the need for equality constraints
in our constraint set but there is still an equlity case that our type rules
cannot handle and that is the case where we have f(i) $ g(j). This could for
example be the linear constraint we x+ y $ a+ b. Right now this form does
not have a rule but if the solver supported equality constraints the above
form could be handled by adding the equality constraint to the constraint
set.

10 Related Work

Refinement types first appered in work by Freeman and Pfenning [14]. Later
Phenning and Xi developed restricted dependent types [23–26] where they
added indices to types for type refinements. This work resulted in DML
(Dependent ML). Dunfield distinguised between datasort refinements, intro-
duced as refinment types by Freeman and Phenning, and index refinements
(the technique used to implement retricted dependent types by Xi and Pfen-
ning) and combined the two in his dissertation [8].

DML extends a subset og the programming language ML with a restricted
form of dependent types where the index domain is linear arithmetic. In Xi’s
dissertation he first extends a monomorphic subset of ML with Π-types and
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afterwards Σ-types before adding polymorphism and effects. He introduces
three sets of rules for internal type checking, elaboration and constraint gen-
eration. The type rules are bidirectional. To handle existential types all
programs are transformed to A-normal form which in turn makes some pro-
grams not typable.

Our type rules borrow most heavily from the work of Dunfield and Krish-
naswami [10], who formulated indexed types in terms of concepts from logic
and proof theory. Their aim was to reduce GADTs to these concepts.

Our goals are rather different and match the goals of DML much more
closely.

Other work on refinement types include Liquid Types [20,22], which extend
Haskell with refinement types. It differs from previously mentioned work by
refining base types with (some restricted set of) program terms instead of
indices. Refinement type annotations are expressed as Haskell comments.
Because Haskell is lazy the variables can be bound to abitraty terms instead
of values, using their refinments can result in inconsitency. Therefore, terms
are checked to see if they diverge, converge to a value in head-normal form
or converge to a finite value. Only refinments on converging terms can be
used to build constraints. The constraints are solved using the Z3 SMT
solver.

Other work where array types annotated with sizes are used when targeting
Futhark include Tail2Futhark [16,19].

Dependent types have been used to address array bounds checking for a
functional array calculus [21]. Integer vectors of staticly unknown length are
used to index array types. Constraints on the vectors are resolved to integer
scalars.

11 Conclusion and Future Work

In this section we will present some ideas for future work and conclude.

11.1 Future work

There is a lot of work still to be done before refinement types in the context
if array bounds checking in Futhark is sufficiently explored. More of Futhark
has to be covered by the external language in order to type check larger and
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more realistic Futhark programs. With support for more of Futhark we could
maybe type check replicated_iota or qsort from
https://github.com/diku-dk/sorts which uses existential dependent pairs,
stored in an array, to represent segments. This would also serve to test our
implementation better. An obvious place to extend the external language
would be to add conditionals.

Proofs of soundness, completeness, progress and preservation would help a
lot to verify that the type checking rules are properly designed.

There is a lot that can be done to improve the usability of the implemen-
tion. Type abbreviations could be added to shorten the longer types. For
example

1 type fin(m) = {i32(n) | 0 <= n && 0 < m}

makes the type of replicated_iota shorter

1 let replicated_iota [n] (reps: [n]i32): []fin(n) = undefined

Existential types can be cumbersome to use. A rule that unpacks existential
without having to use let-bindings would diminish how much programs have
to be changed to use refinement types.

One feature we hoped bidirectional type checking would enable are descrip-
tive error messages and for that we would like to add location information
to the syntax tree so we could display the line the error occured on.

The index domain could be extended, for example i1 + i2 would allow us to
type concat

1 let concat ’t [n] [m] (xs: [n]t) (ys: [m]t): [n+m]t = xs ++ ys

We could also include index pairs 〈i1, i2〉.
Finally we would like to use a real solver like Z3 to solve constraints or
implement a solver for linear constraints like Xi and Pfenning.

11.2 Closing remarks

In this thesis we have shown that it is possible to add refinement types to
a subset of Futhark and leverage refinement types to check at compile-time
the safety of array accesses. We have presented bidirectional type rules for
refinement types in a subset of Futhark and implemented a type checker
based on these rules. The type checker is part of a compiler that, after type
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checking, erases the types and outputs Futhark code that is known to be safe
and does not contain any runtime bounds checks.

To simplify the type rules while keeping the source language close to Futhark,
we have presented two languages. The first language is an external source
language, which is a small subset of Futhark with a few extra kinds of type
annotations. The type annotations guide the type checker but are also useful
as documentation and are not so big as to be instrusive. The second lan-
guage is an internal language, which is designed to simplify the type rules.
To complete the type checking process we have specified a transformation
function, which transforms programs in the external language to programs
in the internal language. We have evaluated the type checker by running it
on some example programs.
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