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Abstract
Writing parallel programs can be difficult, but can be offloaded by compilers through code
transformations. Since parallelism is a finite resource on actual hardware, once the parallelism
available is saturated, choosing to sequentialize some parts of computation can potentially
result in speedups. In this thesis, it is shown how efficient sequentialization can be imple-
mented as an automatic code transformation technique targeting intra-block parallelism on
GPUs. Transformation rules and implementations are shown for the four parallel operators,
map, reduce, scan, and scatter in the Futhark compiler. The optimization showcases how
affected programs can achieve a speedup of 2 by introducing additional sequentialization to
otherwise parallel programs.
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1 Introduction

With the continuous rise of compute-intensive applications processing vast amounts of data and the in-
creasing complexity of the underlying parallel hardware architectures, programming models that enable
programmers to take advantage of this hardware are needed. GPGPUs are at the very core of this trend
and through language extensions like CUDA and OpenCL, programmers can take advantage of the mas-
sive parallelism available on the hardware for accelerating their programs. However, optimizing programs
in this manner often leads to expensive and unmaintainable programs, calling for another approach. One
possibility is to offload the work to a compiler that can perform the optimizations automatically. Mapping
a program that can express unlimited parallelism to parallel hardware with finite levels available is however
challenging. Determining how to utilize the hardware requires smart compiler transformation techniques to
do this efficiently.

One such technique involves the concept of efficient sequentialization. Sequentialization can be said to
define the division of labor. A parallel program that computes 𝑛 results may achieve this through 𝑛 threads,
each computing a single result. However, the same result can be achieved with 𝑛/𝑞 threads, if each thread
produces 𝑞 results. Here 𝑞 is dubbed the sequentialization factor. In this way, sequentialization can be used
as a code transformation technique to sequentialize excess parallelism.

In the CUDA programming model, parallelism can only be expressed in two levels on a GPU, at the grid
and block level, and there is a finite cap to the number of threads that can execute in parallel. Once the
parallelism of the hardware is saturated, there are no more benefits for increasing the degree of parallelism.
Instead, it can be beneficial to sequentialize computations.

This thesis will explore how efficient sequentialization can be applied as an automatic compiler optimization
for code running at the intra-block level on a GPU, and assess its potential with regard to the never-ending
quest for performance. Specifically, the project will implement efficient sequentialization as a compiler
pass inside of the compiler of the functional data-parallel programming language Futhark [19]. First by
developing code transformation rules for four of the most commonly used parallel operators, map, reduce,
scan, and scatter, and then showcasing how the language is extended to support the transformations.
Finally, the optimization will be assessed in terms of the speedup achieved in several programs running
with and without the optimization.

1.1 Terminology

Throughout this thesis, we will use terminology for concepts that sometimes have different names in dif-
ferent contexts. One such is the naming of the different levels of hardware parallelism. Futhark itself uses
OpenCL naming convention with group, whereas CUDA uses block. We will use both interchangeably.
Also, even though scatter is not a SOAC per definition, it will sometimes referred to as such since it
is used in the same contexts. Thus, map, reduce, scan, and scatter may be referred to both as the
SOACs or the parallel operators.
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1.2 Repositories

All code for this project is available at the following repository links:

https://github.com/CKuke/futhark-seq/
https://github.com/kaff3/intraseq/

The most central parts are also included in the appendices B, C, D and E.

2 Related work

We were not able to find any other literature that specifically explores the concept of compiler-driven effi-
cient sequentialization of parallelism. However, much has been written about the difficulty of maintaining
high-performance programs across a variety of different platforms and the different approaches to achiev-
ing this. This is similar to how a platform-agnostic language like Futhark is designed to have a highly
optimizing compiler generate efficient code for a variety of platforms through code transformations and an
internal representation of parallel constructs while being completely invisible to the programmer. Thus,
many of these ideas are related to the motivation for implementing an optimization like efficient sequential-
ization.

Ben-Nun et al. [2] introduce the concept of performance-portable which is used to characterize a code
base that from the domain programmer’s view of "what is being computed" remains unchanged as the
code is optimized for different architectures. To achieve this, they present the idea of a data-centric in-
termediate representation enabling separating program definition from its optimization dubbed the Stateful
DataFlow multiGraph (SDFG). The motivation for SDFG is to enable the separation of the work of the do-
main programmers from the work of the performance programmers. This is because architecture-specific
performance optimizations do not modify the computations of a program, but can still vary largely between
platforms. One prime example of this is data movement since data locality is central to high-performance
computing, but the implementation-specific details can vary largely between platforms. To preserve perfor-
mance portability, Ben-Nun et al. therefore present a full implementation of a programming environment
dubbed DaCe where the domain programmer can work in a well-known language like Python specifying
the computations of the program. A compiler then transforms this into an SDFG which the performance
programmer can work on to define the performance transformations.

Others have also explored the concept of performance portability. Moses et al. [13] highlight how par-
allelism is the main source of performance, but the diverse field of architectures in the parallel hardware
landscape often leads to expensive application re-engineering. Language extensions like OpenCL have
been proposed as a solution, but still require legacy applications to be reworked. The main contribution of
the paper is a compiler-based solution to this problem. Specifically, they present a fully automated com-
piler based on a high-level and platform-agnostic representation of SIMT-style (single instruction, multiple
threads) parallelism that can translate code from CUDA into a binary targeting CPU threads. They achieve
an efficient translation partly due to a refined analysis of barrier semantics. Synchronization barriers are
traditionally treated by compilers as forbidden territory regarding code transformations, but this is solved by
extending the internal compiler representation of barriers to include memory properties including locations
and access types.
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One of the primary components of the efficient sequentialization transformations presented in this thesis is
taking advantage of the different kinds of memory of the GPU architecture to achieve good performance.
This is, however, not always straightforward as the fastest types of memory are typically limited resources.
In their work on implementing automatic differentiation, Moses et al. [12] have explored the tradeoff of
generating code that uses shared memory and registers on the GPU for fast access while keeping a balance
such that it does not lower the available parallelism if the kernel requests too much.

3 Theory

This section will present the theory that this thesis builds upon. First, a high-level overview of the Futhark
programming language will be provided by introducing the SOACs and the scatter operator central
to Futhark programming and this thesis. A cost model will then be introduced that is used to argue the
performance of these parallel operators based on an idealized hardware model called PRAM. Following
this, a brief introduction to the concepts of flattening and fusion is given, both central to Futhark and to
the actual implementation of the transformations inside of the Futhark compiler. Next, we will define
what is meant by efficient sequentialization and show how list homomorphisms provides a mathematical
foundation for this kind of optimization. Furthermore, some motivational context will be provided as to
why sequentialization can result in performance gains.

3.1 Futhark

Futhark [10] is a statically typed, data-parallel, and purely functional array language designed to be com-
piled to efficient parallel code. Through a heavily optimizing compiler, data-parallel array computations are
accelerated by utilizing the computing power of some underlying parallel hardware such as multi-threaded
CPUs, or GPUs. The language supports regular nested parallelism as well as an imperative style of in-place
updates of arrays.

Futhark programs are typically expressed in terms of a set of combinators that due to their parallel se-
mantics enable the compiler to generate parallel code that performs bulk transformations of arrays. Most
significant are the second-order array combinators (SOACs) that constitute the core of Futhark program-
ming [19].

3.1.1 Second-Order Array Combinators

A SOAC is a second-order array combinator that transforms an array based on a functional argument.
These can be arbitrarily nested and one of the primary goals of the Futhark compiler is then to map this
nested parallelism efficiently to parallel hardware, as further explored in section 3.1.4. We will now present
the types and semantics of each of the three basic SOACs, namely, map, reduce, and scan, together
with simple examples of them in Futhark that could be mapped to intra-group parallelism by the Futhark
compiler.
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Map

The map SOAC is used to apply some function to all elements of some array, producing an array of the
same size. but possibly of a different type. The types and semantics of the map SOAC can be seen below.
The type signature states that map takes as its first argument a unary function that accepts an argument of
type 𝛼 and produces something of type 𝛽, and takes as its second argument, an array with elements of type
𝛼 of length 𝑛. As the function is mapped to each value of the input array the return type is thus [𝑛]𝛽.

map : (𝛼 → 𝛽) → [𝑛]𝛼 → [𝑛]𝛽

map 𝑓 [𝑎1, . . . , 𝑎𝑛] = [𝑓 𝑎1, . . . , 𝑓 𝑎𝑛]

As an example, a map nest could be used to update each element of a matrix, in Futhark expressed as a
two-dimensional array. Given an array xss of integers with dimensions [𝑛][𝑚], the Futhark program in
listing 1 would add 2 to each element of xss. The idea is that the outer map would, as an argument, get
each inner array, xs, of size [𝑚] and then use an inner map to map over all 𝑚 elements.

1 map (\xs ->

2 map (\x -> x + 2) xs

3 ) xss

Listing 1: map nest in Futhark

Reduce

The reduce SOAC iterates over all elements of some array, reducing it to a single result. The types
and semantics of the reduce can be seen below. The reduce SOAC takes, as the first argument, some
associative binary function, ⊕, some neutral element of said operator, 0⊕, and finally an array of some
type [𝑛]𝛼. The result is then produced by applying the ⊕ operator to each element of the input array, for
each element supplying the current element and the current intermediate reduction result as arguments to
⊕, resulting in a final single value of type 𝛼 once all elements are processed.

reduce : (𝛼 → 𝛼 → 𝛼) → 𝛼 → [𝑛]𝛼 → 𝛼

reduce ⊕ 0⊕ [𝑎1, . . . , 𝑎𝑛] = 0⊕ ⊕ 𝑎1 ⊕ · · · ⊕ 𝑎𝑛

Similar to the previous map example, given an array of integers, xss, with dimensions [𝑛][𝑚], a reduce nested
inside of an outer map could be used to compute the sum of all 𝑛 inner arrays of size 𝑚. This is shown
below in listing 2.

1 map (\xs ->

2 reduce (+) 0 xs

3 ) xss

Listing 2: reduce nest in Futhark
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Scan

The scan SOAC works very similarly to reduce, but instead of a single result, it produces an array of
all the intermediate results. A common use of scan is to compute the prefix sum of some array. The types
and semantics of scan can be seen below. As the first argument, it takes an associative binary operator, ⊕,
some neutral element of said operator, 0⊕, and lastly the array of type [𝑛]𝛼 to perform the scan over. As
such the return type is also of type [𝑛]𝛼.

scan : (𝛼 → 𝛼 → 𝛼) → 𝛼 → [𝑛]𝛼 → [𝑛]𝛼

scan 𝑖𝑛𝑐𝑙 ⊕ 0⊕ [𝑎1, . . . , 𝑎𝑛] = [0⊕ ⊕ 𝑎1, 0⊕ ⊕ 𝑎1 ⊕ 𝑎2, . . . , 0⊕ ⊕ 𝑎1 ⊕ · · · ⊕ 𝑎𝑛]

scan in Futhark is inclusive where the first element of the result array is the result of applying the operator
to the first input of the input array and the neutral element, as shown in the semantics above. An alternative
version is the exclusive scan, where the first element of the result array is simply the neutral element. The
semantics of exclusive scan is shown below.

scan 𝑒𝑥𝑐𝑙 ⊕ 0⊕ [𝑎1, . . . , 𝑎𝑛] = [0⊕, 0⊕ ⊕ 𝑎1, . . . , 0⊕ ⊕ 𝑎1 ⊕ · · · ⊕ 𝑎𝑛−1]

An example of using scan to compute the prefix sum of each row of a matrix in Futhark is given below in
listing 4. xss is a two-dimensional array of size [𝑛][𝑚] so by nesting the scan inside of a map, each row
of size 𝑚 is scanned, producing a new array containing the prefix sum of all inner arrays.

1 map (\xs ->

2 scan (+) 0 xs

3 ) xss

Listing 3: scan nest in Futhark

3.1.2 In-place updates

Another core feature of Futhark is the notion of in-place updates. Traditionally, in a pure language, an array
update would take time proportional to the size of the array as the entire array would have to be copied.
This can, be mitigated, if it can be guaranteed that the original array will not referenced after the update has
taken place. This way, the array can simply be updated in place effectively reducing the work required to be
proportional to the single update. Futhark achieves this through its type system, allowing for bulk in-place
updates of arrays in parallel. [10]

With in-place updates being a cornerstone of Futhark programming, these are also of great interest to this
project since supplying transformation rules for scatter will significantly increase the set of programs
to which the efficient sequentialization optimization can be applied.
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Scatter

In Futhark, updates are commonly expressed through the use of the scatter function. The type signature of
scatter can be seen below.

scatter : [𝑚]𝛼 → [𝑛]i64 → [𝑛]𝛼 → [𝑚]𝛼

The scatter function is used to perform bulk parallel in-place updates of an input array. The first argu-
ment of type [𝑚]𝛼 is the array to be updated. The second array of type [𝑛]i64 is the indices to write to in
the array of the first argument and the final argument of type [𝑛]𝛼 is the values to write to the array of the
first argument. The most clear way of describing the semantics of scatter is with an imperative loop. Let
ds, is and vs be the first, second, and third argument respectively, then the semantics can be described by
the loop below.

for j = 0 to n do

let i = is[j]

let v = vs[j]

ds[i] = v

In Futhark, scatter ignores out-of-bounds writes and since it is a parallel operator, any duplicate values
in the array of indices to write to are considered undefined behavior [6].

A simple example of a Futhark program using scatter to update an array is given below where dss is
the array to update, iss are the indices to update, and vss are the values to write to the indices. Note
that Futhark only accepts this program if it can ensure that the original dss array would not be used
afterward.

1 map3 (\ ds is vs ->

2 scatter ds is vs

3 ) dss iss vss

Listing 4: In-place updates with scatter in Futhark

The scatter function is not an actual SOAC as it takes no functions as arguments. We will however
throughout the report reference all these 4 operators as the SOACs for simplicity.
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3.1.3 Cost Analysis in Data Parallel Programming

Since Futhark is a data-parallel programming language, we need some way to reason about the complexity
of parallel programs. For instance, for a sequential implementation, the complexity of a map over an array
of size n would be O(n), but a parallel implementation running on a machine with n available threads would
only be O(1), as each thread could process an element in parallel.

In this section, we will discuss the properties of parallel programs using an idealized hardware model
named parallel random access machine (PRAM) and use it to argue the complexity of the parallel operators
presented. This model ignores issues related to synchronization and communication and further assumes
that [16]:

• There are 𝑃 processors all with a unique identifier 𝑖 such that 0 ≤ 𝑖 ≤ 𝑃 .

• All processors are connected to the same shared memory.

• All processors execute instructions in lock-step, i.e. a processor cannot start the next instruction until
all cores have finished the previous. If a branch is encountered, the processors not on the branch will
have to wait for the ones that are to finish.

• Each parallel instruction takes unit time.

With this in mind, we define the work-depth asymptotic complexity of a parallel program running on a
PRAM machine with 𝑃 = ∞ (i.e. an infinite amount of processors) as [16];

• Work complexity. The total number of operations, across all processors, required to run the program.
It is denoted as 𝑊 (𝑛) where 𝑛 is the size of the workload.

• Depth complexity. The amount of sequential steps needed to run the program. It is denoted as 𝐷(𝑛)

where 𝑛 is the size of the workload.

• Work efficient. A program is said to be work efficient if its work complexity is asymptotically
equivalent to that of the best-known sequential algorithm.

Naturally, real machines do not have an infinite amount of processors, but knowing the work and depth of
an implementation on a PRAM machine enables us to derive a bound on the complexity of the program
on a PRAM machine with a finite 𝑃 amount of processors. To do this, we use Brent’s theorem as defined
below:

Theorem 1 (Brent’s Theorem [16]). A parallel implementation that has Depth 𝐷(𝑛) and work 𝑊 (𝑛) can
be simulated on a 𝑃 -processor PRAM in time complexity 𝑇 such that;

𝑊 (𝑛)

𝑃
≤ 𝑇 ≤ 𝑊 (𝑛)

𝑃
+𝐷(𝑛)

With these definitions, we can analyze the work and depth complexity of all the operators of this paper.
The results are summarised in table 1. The actual work and depth complexity of the three SOACs depends
on the complexity of either the function 𝑓 used in map or the operator ⊕ used in scan and reduce. For
simplicity of this analysis, we assume the work and depth of both are constant. For some input 𝑎 of size 𝑛

we have;
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• Map. As the function 𝑓 has to be applied once to every element of 𝑎, it must be applied 𝑛 times
giving a work complexity of 𝑊 (𝑛). As the model assumes an infinite amount of processors all these
applications can be done in parallel giving a depth complexity of 𝐷(1).

• Reduce. The reduction of an array of length 𝑛 can be achieved by giving two elements to each
processor that would apply ⊕, meaning we would need 𝑛

2 processors. After the first step, there would
then be 𝑛

2 elements to be processed and so on, leaving 𝑛
2𝑖 elements at step 𝑖. This would give a work

efficient complexity of 𝑊 (𝑛). For the depth, assume 𝑛 = 2𝑘 for some 𝑘 ≥ 1. We have to look at
how many of these reduction steps are needed. At step 𝑘, we will have the remainder of the elements
being 𝑛

2𝑘
= 1. Since 𝑛 = 2𝑘 then 𝑘 = lg 2𝑘 = lg 𝑛, meaning we have depth complexity of 𝐷(lg 𝑛).

• Scan. The algorithm for parallel scan is slightly more involved and we will not delve into the
specifics here. However, scan can be implemented as first a parallel reduce and then adding one
more pass of the same structure with the same work and depth. Thus, the same reasoning for used
reduce can be applied to scan since they only diverge in the constant factors, giving 𝑊 (𝑛) and
𝐷(lg 𝑛). [16]

• Scatter. This analysis is straightforward. We have 𝑛 elements split between 𝑛 processors, giving
𝑊 (𝑛) and as they can all be done in parallel we have 𝐷(1).

The work and depth complexities of the parallel operators introduced are summarised below in table
1.

Work Depth
map 𝑊 (𝑛) 𝐷(1)
reduce 𝑊 (𝑛) 𝐷(lg 𝑛)
scan 𝑊 (𝑛) 𝐷(lg 𝑛)
scatter 𝑊 (𝑛) 𝐷(1)

Table 1: Work and depth complexity of the SOACs

3.1.4 Flattening

We have now presented the basic parallel building blocks for writing parallel programs in Futhark. The next
logical step then is how the Futhark compiler generates code for these programs. As shown, SOACs can
be arbitrarily nested, but the hardware has a finite amount of parallelism to exploit, so the question is how
should these programs be mapped to physical hardware. One of the main goals of the Futhark compiler is
how to perform this mapping and it is necessary to have a basic understanding of this process in order to
make any changes to the code generated by the compiler.

There have been many attempts at code transformations for improving the amount of nested parallelism
that is mapped to hardware, but common for them all is that the program produced is only truly efficient for
one class of workloads [11]. One such transformation that has been broadly explored [4] [10] [11] is the
concept of flattening. Flattening is a transformation that rewrites a program exhibiting nested parallelism
into a semantically equivalent one operating on one-dimensional vectors.

However, Futhark does not rely on a "one-size-fits-all" approach by choosing a specific mapping of par-
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allelism to hardware and producing a single code version [11]. Instead, the compiler utilizes incremental
flattening which is a compiler-driven analysis that clusters datasets by several near-optimal code versions
that are discriminated at runtime. The compiler does this by introducing different code versions, guarded
by some threshold, at each point where it encounters a map operator that is to be mapped to some level 𝑙
of hardware parallelism. Essentially, the thresholds determine what degrees of sequentialization and flat-
tening there should be applied at runtime. [11]. After applying incremental flattening the different code
versions will end up in a tree-like structure as illustrated in figure 1. Here, 𝑉 1, . . . , 𝑉 4 illustrate different
code versions generated, (𝑛1, 𝑛2, 𝑛3) is some dataset and (𝑝1, 𝑝2, 𝑝3) are some threshold parameters used
to determine which code version will be run.

Figure 1: Branching tree produced by incremental flattening [11].

This distinction between different code versions is particularly important to this thesis, as the optimizations
specifically target the intra-group code version of the generated GPU code. This is a code version in which
some outer map has been mapped to hardware level 1, i.e. the grid, and remaining SOACs to hardware
level 0, which is equivalent to a block. These different levels will be discussed further in section 3.2. The
optimization will be applied inside the compiler at a stage where the different versions have already been
generated, so it is important to operate on the correct code version. Working at the intra-group level also
means we can assume that locally created arrays will be allocated in shared memory [11]

Once our implementation has been applied, it will have changed the number of threads used by the intra-
group SOAC, meaning the threshold for determining if the intra-group version should run, should also be
modified. This is however outside the scope of this thesis, and as we shall see later a program can be
annotated to specify that only the intra-group code versions should be produced.
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3.1.5 Fusion

Another core part of the Futhark compiler internals is the concept of fusion. Fusion is a code transformation
technique that combines multiple code constructs into one. For instance, using a map to transform an array
with the function 𝑓 and then transform the result with another map with the function 𝑔 is effectively the
same as transforming the array with a single (fused) map with the function 𝑔 ∘ 𝑓 [9]. Fusion is widely used
in Futhark as a way to remove the need for intermediate arrays and iterating more times than necessary over
the same array, while still allowing the programmer to express their programs as simple compositions of
SOACs.

While fusion does not have any direct impact on the transformations presented in this thesis, the concept
is largely reflected in the compiler internals where several code constructs like SegOps and Scremas,
described in section 6.2, are designed to handle multiple fused SOACs.

3.2 GPU Programming model

While this project will not be making any direct changes to the GPU code itself generated by the compiler,
it is still necessary to have a basic understanding of GPU programming to achieve desirable performance.
Different programming models exist for GPUs including CUDA and OpenCL which both provide an ab-
straction level between the program and the actual hardware implementation of the specific GPU. In this
section, we will use the CUDA programming model [14] to introduce these different concepts. This will
only be a brief overview with more information available at [14].

The CUDA programming model assumes that CUDA threads execute on a discrete device that acts as a
coprocessor to the host. This is the case when the program mainly runs on the CPU and launches kernels
to run on the GPU. It is assumed that the host and device have separate memory spaces called host memory
and device memory with functionality for copying data between both.

Thread Layout

In CUDA, threads are organized into two parallel levels, namely, thread blocks which themselves are
grouped into a grid of multiple thread blocks as illustrated in figure 2. The maximum number of threads
pr. block is 1024. This means if, for some problem, each thread will process a single element, and if
the problem size 𝑛 > 1024, then multiple blocks are needed. However, all blocks within a grid have the
same size, even if not all threads for some of the blocks are going to be used. CUDA exposes a set of
variables that can be used to identify the given thread and block inside of a kernel. The two most notewor-
thy are blockIdx.x and threadIdx.x which can be used to get the ID of the current thread and in
which block it is executing. This is usually used for determining which elements a specific thread should
access.
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Figure 2: Grid with thread blocks [14].

Memory Hierarchy

Each thread may access data from multiple places during execution. All threads in a single block have some
shared memory. That is, threads from across different blocks are not able to access the shared memory of
the block the other thread resides in. This essentially works as a user-managed cache. The shared memory
is split up into banks, the exact size of which is determined by the specific GPU compute capability. If 𝑛
memory accesses across 𝑛 threads are performed and these addresses fall into 𝑛 distinct banks, they can all
be served in parallel. If however multiple threads try to access the same banks a bank conflict occurs. When
this happens the memory transfers are split up into as many conflict-free memory accesses as needed which
will be served sequentially, reducing the overall throughput. Finally, there is global memory which is shared
across all blocks in the grid and it is in this memory data is staged when copied from the host to the device.
Since shared memory essentially works like an L1 cache and is expected to be near the processor core with
low latency, it is much faster to access shared memory in comparison to global memory [14].

SIMT Execution

The hardware itself is built around an array of streaming multiprocessors (SMs) to which blocks of some
kernel are distributed when launched by the host program. One SM can execute multiple blocks as long as
they do not exceed the SM execution capacity. As blocks terminate, new blocks are launched to take up the
vacated SMs.

The SM executes threads in groups of 32 parallel threads called warps. All such threads within a warp start
at the same program address but are free to branch and execute independently. However, all threads within
a warp execute in lockstep meaning that one common instruction is executed at a time, implying divergent
threads within a warp will not execute at the same time, they will be inactive when the current instruction is
not on their code path and active when it is. While all threads will at some point reach the same instruction
again, it is possible to make sure all threads wait at specific points through synchronization and barriers.
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This is especially useful when the program needs to be sure that all memory for some computation has been
updated by all warps.

Performance Considerations

To achieve the best performance we want to minimize data transfers with low bandwidth by maximizing the
use of on-chip memory in the form of caches and shared memory. One way to achieve this is to stage the
data the kernel needs in shared memory, and perform the needed work there before finally writing the result
back to global memory. If the block would need to access the data from global memory multiple times, we
can instead do that only twice. Once for reading and once for writing.

We also want to consider the data access patterns when reading from global memory into shared memory as
this will affect the throughput of memory by orders of magnitude [14]. An instruction that reads addressable
memory might need to be re-issued multiple times depending on the memory addresses read by each thread
across a warp. When a warp performs a memory access, all the accesses of the individual threads will be
coalesced to one or more memory transactions. The amount of transactions depends on the size of the word
accessed and the distribution of memory addresses used across the threads. As such we want to maximize
the amount of coalesced access to ideally only have single memory transaction pr. warp by having the
threads of a warp read consecutive memory addresses.

3.3 Efficient Sequentialization

Efficient sequentialization is a code transformation that sequentializes excess parallelism. Doing so allows
the program to better utilize the hardware by reducing the amount of inter-thread communication. The
transformation rests on a mathematical foundation based on list homomorphisms. This section will first
introduce the mathematical background and use it together with Brent’s theorem to show a better bound on
the runtime of reduce on a 𝑃 processor machine. The section will then end with a discussion of the runtime
benefits the transformations give us on actual hardware.

3.3.1 List Homomorphisms

Homomorphisms are functions that match the divide-and-conquer paradigm and are thus well suited for
parallel execution [7]. More formally we have;

Definition 1 ( [3, 7]). A function ℎ defined on lists is a homomorphism if and only if there exists a binary
associative operator ⊕ with neutral element 0⊕ such that for all lists 𝑥 and 𝑦 we have

ℎ(𝑥++𝑦) = ℎ(𝑥)⊕ ℎ(𝑦)

where ++ is list concatenation and ℎ([]) = 0⊕

The intuition here is that we can take any list 𝑧 = 𝑥++𝑦 where 𝑥 and 𝑦 are an arbitrary split of 𝑧 and apply
ℎ to each sublist in isolation and apply ⊕ to combine the results. That is, we have a divide-and-conquer
scheme in which the problem is split into two new subproblems that add up to the result of the original
problem in the end. Further, if we define 𝑓𝑎 = ℎ([𝑎]) then ℎ can be determined by 𝑓 and ⊕ alone [3]. This
leads us to the first homomorphism lemma.
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Theorem 2 (First Homomorphism Theorem [3, 7]). A function ℎ is a homomorphism with respect to ++ if
and only if it can be factored into the composition

ℎ = (reduce ⊕ 0⊕) ∘ (map 𝑓)

for some function 𝑓 and binary operator ⊕. map and reduce has the semantics as described in section
3.1

From this theorem we can see that map and reduce by themselves are homomorphisms by the following
[3]:

map 𝑓 = (reduce ++ []) ∘ (map 𝑓)

reduce ⊕ 0⊕ = (reduce ⊕ 0⊕) ∘ (map 𝑖𝑑)

where 𝑖𝑑 is the identity function.

Next up we have the promotion lemmas that can be seen as rewrite rules that allow us to optimize the
program in various ways.

Lemma 1 (Promotion Lemmas [3, 16]). Given unary functions 𝑓 and 𝑔, an associative binary operator ⊕
with neutral element 0⊕ then the following identities hold.

1. (map 𝑓) ∘ (map 𝑔) ≡ map (𝑓 ∘ 𝑔)
2. (map 𝑓) ∘ (reduce (++) [ ]) ≡ (reduce (++) [ ]) ∘ (map (map 𝑓))
3. (reduce ⊕ 0⊕) ∘ (reduce (++) []) ≡ (reduce ⊕ 0⊕) ∘ (map (reduce ⊕ 0⊕))

1. The first identity is the same as the map-map fusion as described earlier. It essentially allows the
program to reduce the amount of memory access. Instead of storing the result of map 𝑔 first before
applying map 𝑓 the composition 𝑓 ∘ 𝑔 can just be used directly.

2. This rule is especially useful in the rightwards (⇒) direction. It states that if some function 𝑓 is to
be applied to all elements of some [𝑛][𝑚] array flattened, then that is the same as applying 𝑓 to all
𝑛 inner arrays and concatenating the result. That is, if we have excess parallelism that the hardware
cannot handle, then it is possible to sequentialize this [16]. That is assuming the innermost map
would run sequentially.

3. Like for the second rule, this is useful in the rightwards (⇒) direction. Like before it states that
we can sequentialize the excess parallelism, and do some of the reduction sequentially on multiple
processors, before doing the final reduction across all the pr. processor results.

With these rules in hand, we can prove the optimized map-reduce lemma.

Lemma 2 (Optimized map-reduce [16]). Assume an associative binary operator ⊕ with neutral element
0⊕ and a function 𝑓 , then the following always hold

redomap ⊕ 𝑓 0⊕ ≡ (reduce ⊕ 0⊕) ∘ (map (redomap ⊕ 𝑓 0⊕)) ∘ split𝑝

17



where split𝑝 :: [𝛼] → [[𝛼]] splits a list into 𝑝 subsists all of the same size, and where redomap is
defined as redomap ⊕ 𝑓 0⊕ ≡ (reduce ⊕ 0⊕) ∘ (map 𝑓).

Proof. To prove the above equivalence we first note that (reduce (++) [ ]) ∘ split𝑝 ≡ id, where id is
the identity function. The intuition here is that if we split some array up in 𝑝 chunks and simply concatenate
them all again, we will have the original array as the output of the composed function. Using this we get
the following derivation;

redomap ⊕ 𝑓 0⊕ ≡ (reduce ⊕ 0⊕) ∘ (map 𝑓)

≡ (reduce ⊕ 0⊕) ∘ (map 𝑓) ∘ (reduce (++) [ ]) ∘ split𝑝

≡ (reduce ⊕ 0⊕) ∘ (reduce (++) [ ]) ∘ (map (map 𝑓)) ∘ split𝑝

≡ (reduce ⊕ 0⊕) ∘ (map (reduce ⊕ 0⊕)) ∘ (map (map 𝑓)) ∘ split𝑝

≡ (reduce ⊕ 0⊕) ∘ (map ((reduce ⊕ 0⊕) ∘ (map 𝑓))) ∘ split𝑝

≡ (reduce ⊕ 0⊕) ∘ (map (redomap ⊕ 𝑓 0⊕)) ∘ split𝑝

where first the definition of redomap is applied, which is composed of the identity function. Then the
promotion lemmas, in order 2, 3, and 1, are applied, when then finally the definition of redomap can be
applied in the other direction.

The results of this theorem tell us if we have some function 𝑓 that is to be applied to all elements of some
array, which is then to be reduced with ⊕, then that is the same as first splitting the array up into 𝑃 equal
sized chunks, reducing over each chunk to produce 𝑃 results and then finally reducing over the 𝑃 results to
produce the single final reduction result.

This has great implications for efficient sequentialization of reductions. Essentially, for a reduce the
proof enables us to partition it into two steps by first assigning each thread a chunk of elements that can be
reduced sequentially before then doing a block-wide reduction over the sequential results. Given 𝑃 chunks
that split a total workload of size 𝑛, the optimized map-reduce theorem is essentially limiting the number
of processors used to 𝑃 . This means, that the depth of the parallel reduction is reduced which should result
in speedup. Assuming a PRAM machine, we can apply Brent’s theorem to show a new bound for this
reduction, utilizing that 𝑃 ≤ 𝑛

𝑂
(︁ 𝑛

𝑃

)︁
≤ 𝑂

(︁ 𝑛

𝑃
+ lg𝑃

)︁
≤ 𝑂

(︁ 𝑛

𝑃
+ lg 𝑛

)︁
3.3.2 Practical Details

We have now seen that splitting up the work between multiple processors is mathematically sound. In our
case, these processors are the threads within a thread block, which means this new chunk of work has to be
performed sequentially as we have no more parallelism to exploit at that hardware level.

There are also additional benefits of doing such transformations that are not explicitly clear from the above
lemmas and theorems, but more stems from how it would be executed in actual hardware. As briefly
mentioned in the explanation of the first transformation in lemma 1, it saves on the number of memory
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access needed to do the computation. If said memory to access were to global memory then savings would
be far greater than if it were shared memory. The second and especially third transformations would allow
for the work distribution between threads to be more balanced. If we were to just do a single reduction
across the entirety of the array, we would have many threads idling as the computation is going down the
reduction tree. Instead, it is preferable to have all the threads perform more initial work, each producing an
intermediate result, and then have them reduce across these cooperatively. Then the same amount of work
could also be achieved using fewer threads, theoretically letting more blocks execute in parallel, or just use
the same amount of threads to process even more. There would still be threads idling, but not as many pr.
block, and not for so long as before.

4 Preliminary Work

Before establishing the SOAC transformation rules, some preliminary work was done to investigate the
effects of increased sequentialization. Specifically, an experiment with two different intra-block scan im-
plementations using CUDA was conducted to give a rough estimation of the potential speedups. The effect
of increasing the sequentialization factor was further investigated using an intra-block implementation of
radix sort in CUDA.

4.1 Scan

To get a rough estimation of the potential speedups that can be achieved with sequentialization, two different
versions of an intra-block inclusive scan were implemented in CUDA. scan was chosen as the operator
since its transformation is the most complex, requiring several intermediate steps.

The first version is fully parallel where a thread is spawned for each element in the block to be scanned.
The scan uses an intra-warp scan subroutine, see 3, to first do an inclusive scan of each warp. Each warp
then copies its last element to the first warp which is then scanned again. Finally, the scanned results from
the first warp can be used to accumulate the correct results across all warps. It should be mentioned that
this algorithm is not work efficient as it has 𝑊 (𝑛 lg 𝑛). However, since threads execute in lockstep on the
GPU, this is the typical CUDA implementation for scanning a warp [16].

The second version is sequentialized where each thread processes 𝑐ℎ𝑢𝑛𝑘 number of elements by sequen-
tially scanning its 𝑐ℎ𝑢𝑛𝑘 elements locally inside of its registers. The final element of each local scan is
then written to shared memory which can then be scanned (using the first version as a subroutine) to get the
offsets for each element. Finally, each thread can then update its 𝑐ℎ𝑢𝑛𝑘 elements sequentially and write
back the results. This algorithm is outlined below in figure 4.
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Figure 3: Warp-level inclusive scan [17]

Figure 4: Sequentialized intra-block inclusive scan with (+) as operator. Each thread processes chunk
elements

The results of comparing the two versions on different numbers of blocks can be seen in table 2. The results
clearly show the potential of applying sequentialization with a consistent speedup of ≈ 1.8 and give an
estimation of what can be expected for scan.

Number of blocks 100k 200k 300k 400k 500k
Speedup 1.89 1.83 1.82 1.81 1.81

Table 2: The speedup of the sequentialized scan version vs. the fully parallel on different number of blocks.
The block size is fixed at 1024. Benchmarks run on NVIDIA A100.
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4.2 Radix Sort

Radix sort is one of the oldest and best-known sorting algorithms. It assumes keys are 𝑑-digit numbers
and sorts one key at a time. The complexity is 𝑂(𝑛𝑑), but since 𝑑 is considered constant, i.e. is decided
upon beforehand and does not depend on the input the complexity is linear in 𝑛. The algorithm used for
sorting within each of these 𝑑 passes is usually counting sort, which is fairly easy to parallelize as a scan
operation [18]. As such it has the potential to reap the benefits of efficient sequentialization.

Overall the algorithm can be split into three kernels [18]

1. Each block loads and sorts its tile in on-chip memory, computes a histogram with a bin for each
possible digit, describing how many of the elements in the tile have the specific digit, and writes both
back to global memory.

2. Performs a scan across all the block histograms to compute the global ranks of all elements within
each tile.

3. Using the results of the previous scan, each block can now scatter their elements to the correct output
position.

As we are working with the optimization of intra-group kernels, we will focus on the first of these kernels,
each performing a block local radix sort.

To test the effects of efficient sequentialization on this kernel it has been implemented in CUDA in such
a way that the sequentialization factor and group size can be altered through template parameters. Setting
the sequentialization factor to 1 will therefore result in a fully parallel version, but since the implemen-
tation expects that each thread will process multiple elements, this does result in each thread doing some
redundant work. However, this experiment is merely to show that sequentialization does impact the perfor-
mance.

We wanted to test the effect of the sequentialization factor. We tested the implementation with a fixed
block size of 256 threads, working on a data set of size 227. The results can be seen below in table 3. It
is clear to see that having each thread process multiple elements increases the overall performance of the
algorithm. While it shows that a factor of 23 is the fastest, the actual results of all, but that of a factor of
1, kept fluctuating. As such the only conclusion we can draw from is, is that efficient sequentialization is
desirable, but not by what factor. In [18] from which our implementation is based, they use 4 elements pr.
thread and so will we. Finally, the factor of 23 might seem odd but was found by NVIDIA to yield the best
performance in their implementation of radix sort [1].

Sequentialization Factor 1 4 8 23
Run time (𝜇𝑠) 26829 14013 16008 13744

Table 3: Run time of running or implementation on a size of 227, with 256 threads pr. block and differing
sequentialization factors. Run on NVIDIA A100.
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5 Transformation Rules

This section will present the derived transformation rules for efficient sequentialization of the SOACs.
Before introducing the transformation rules some notation will be defined that allows us to view the trans-
formation through different lenses. First, a functional Futhark-like language is used as this gives the most
intuitive idea of what the transformation is to achieve at a high-level. Second, a language similar to that
of the intermediate representation used within the compiler where segmented operators are now the main
parallel constructs will be used. As this is most similar to the representation the transformation is going to
be applied to within the compiler it can be used to guide the implementation. Finally, these intermediate
rules will also be expressed more imperatively with parallel loops and more explicit memory management
for clarity’s sake.

Originally formal rules were developed to be in line with already existing notation, like the one used for
describing Futharks flattening algorithm [11]. However, these turned out to be more complex than needed
for the transformations of this thesis. That said, they are still to be found in appendix A for the curious
reader.

5.1 Notation

Neither of the languages used for the transformations needs a completely formal definition. The high-
level language is essentially Futhark with some added benefits that allow us to focus on the problem at
hand and not get bogged down in language specifics. Likewise, the intermediate language is much like
the intermediate representation within the compiler but with a much simpler syntax similar to that of the
high-level language. But as this language is a bit more esoteric still, more time will be spent on it, with
imperative examples.

5.1.1 High Level Language

The high-level language is essentially Futhark. Variables are bound in let-statements and the parallel oper-
ators are the SOACs with the same semantics as described in section 3.1. To explain the efficient sequen-
tialization transformation we introduce the split𝑝 function, which given some array splits it up into 𝑝

chunks of equal size. The type is;

split𝑝 : [n]𝛼 → [n/p][p]𝛼

5.1.2 Intermediate Language

The intermediate language has all the same syntax as the high-level one, but with the modified semantics
in that, all the SOACs are now considered sequential. Further, we also allow the use of redomap and
scanomap as a composition of map-reduce and map-scan composition respectively. They are defined
as

redomap ⊕ f 0⊕ ≡ (reduce ⊕ 0⊕) ∘ (map f)

scanomap ⊕ f 0⊕ ≡ (scan ⊕ 0⊕) ∘ (map f)
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Additionally, three new segmented operators segmap, segred and segscan are introduced as the par-
allel constructs. Formally they are to be considered a perfect map-nest on top of some bottommost compu-
tation of a map, redomap or scanomap respectively.

As we are working in a setting where there will always be two levels of parallelism, we will express these
segmented operators in style with the actual intermediate representation. This is also more in line with how
you would write an actual kernel in e.g. CUDA as launch parameters for the number of blocks and block
sizes will be specified. Note, that the Futhark compiler conventionally uses OpenCL naming conventions
where instead of block, group is used. Thus, to denote a segmented operator operating at the group(block)
level, we will write

segmap(group, n, m):

let x = ...

in f x

where n specifies the number of groups and m the number of threads pr. group. The mapping part consists
of reading and computing some value which is finally returned. However, before returning the map function
f has to be applied on the value. All segmented operators nested inside will implicitly have m threads. We
also use the magic variables gid and tid to denote the group id and thread id of the current group and
thread respectively. This is akin to the blockIdx.x and threadIdx.x in CUDA.

As we are working on the intra-group version the outermost segmented operator, that is at group level,
will always be a segmap. As such segred and segscan can only be defined on thread level. Like
redomap and scanomap their segmented counterparts also require some binary operator ⊕ and neutral
elements 0⊕. For a segmented reduction, we would e.g. write;

segmap(group, n, m):

segred(thread) ⊕ 0⊕:

let x = ...

in f x

in which each thread cooperating on the segmented reduce will read and compute some value x which
is returned for the inter-thread reduction for the final result. However, note that before returning x some
function f is applied to it. This is because a segred is in the end is a redomap which has a map function
f. If f is simply the identity function, this would result in an inter-thread reduction of their respective
elements.

Values can be read with the slice syntax, in which the total number of elements in each dimensions to
be read has to be specified. For some array xss of shape [n][m], xss[i][j], would simply return
a scalar, while xss[i][0:m:1] would return the entirety of the i’th inner array. Note that in the slice
syntax x:y:z, x is the starting position of the slice, y is the number of elements to be read, and z is the
stride to use when reading those elements.

Imperative
To solidify the semantics of nested segmented operators we will use a simplified, imperative-like language
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in which the segmented operators have been replaced with parallel forall loops. That is, the loops can
be understood sequentially, but they are executed in parallel. As an example the above segmap-segred
nest can be described in terms of parallel loops as

forall gid < n do

let ac = 0⊕

forall tid < m :

let x = ...

ac = ac ⊕ (f x)

Furthermore, the imperative rules have been extended with a function barrier() that indicates where
thread synchronization would be required. scratch n creates an array of size n. Finally, the following
three functions map , redomap , scanomap are defined as following imperatively:

redomap ⊕ f 0⊕ xs

≡
let ac = 0⊕

for i = 0 < length xs do

ac = ac ⊕ (f xs[i])

Listing 5: Imperative definition of redomap.

scanomap ⊕ f 0⊕ xs

≡
let tmp = scratch (length xs)

let ac = 0⊕

for i = 0 < length xs do

ac = ac ⊕ (f xs[i])

tmp[i] = ac

Listing 6: Imperative definition of scanomap.

map f xs

≡
let tmp = scratch (length xs)

for i = 0 to length xs do

tmp[i] = f xs[i]

Listing 7: Imperative definition of map.

5.2 Rules

This section will introduce the transformation rules for each SOAC. They will be presented in both the
high-level functional language and the one similar to the intermediate representation used inside of the
compiler. Following these, we will also have the intermediate representation rules expressed as parallel
loops with explicit barriers, to further solidify the understanding of the transformation. Having the rules at
a high level gives the best intuition, coming from Futhark, on what the transformation is doing, while the
intermediate rules are closer to the format that we are going to be working with within the compiler. They
are however still high level enough that we do not need explicit memory allocation and can thus focus on
the transformations themselves.
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5.2.1 Map

Input: array xss[n][m]

Output: array of size [n][m]

map (𝜆xs → map f xs) xss

≡
map (𝜆xs →
map (𝜆x →
map f x

) (split𝑚/𝑞 xs)

) xss

Listing 8: High-level map transformation rule.

Input: array xss[n][m]

Output: array of size [n][m]

segmap(group, n, m):

segmap(thread):

let x = xss[gid, tid]

in f x

≡
let m' = ⌈m/q⌉
segmap(group, n, m'):

let tile = xss[gid, 0:m:1]

segmap(thread):

let idx = tid·q
let chunk = tile[idx:q:1]

in map f chunk

Listing 9: Intermediate map transformation rule. f
is the mapping function of the segmap in the orig-
inal program.

The transformation rule for map in both formats can be seen in listings 8 and 9. It is assumed the array xss
has shape [n][m]. This is the most simple of all the transformations as we do not require any intermediate
steps. All that is happening is that the mapped over array xs is split into chunks on which the function f is
then mapped. The transformation in the intermediate rules sheds some more light on how the data will be
read and which parts are parallel and which are sequential. There, it is also possible to see explicitly that
the number of threads has been reduced to m’. The final thing worth noting is that the splitting up of xs
happens implicitly as each thread simply reads the elements needed directly from the tile which just comes
from the xss array. A rule showing the imperative semantics is shown in listing 10.

Work
Assuming the work complexity of the map function f is constant, we have a work complexity of 𝑊 (nm)

as each inner map maps over a size m and that is done n times. In the transformed program the inner-most
map works on x of size q, which is done m’ times, which is all done n times, giving a work complexity of
𝑊 (nm) as well.

It is worth noting why the reading of tile and the sequential map in the transformed program of the
intermediate rule do not add to the work complexity. For the former, we are only reading m elements which
is also linear. For the latter, it is simply because sequential work does not add to the work complexity. We
will look at this again for the depth.

Depth
Assuming the depth complexity of the map function f is constant, we have a depth of 𝐷(1). All nm
elements can be processed in parallel so no sequential steps are needed. Now, recall that in the high-level
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rules, we assume all SOACs are parallel meaning the depth of the transformed program is also 𝐷(1). We
can however see from the intermediate rule that not all parts are parallel. First, the reading of tile of size
m happens using only m’ threads. As such some of those elements must be read sequentially, but at most
q elements pr. thread. However, as q is considered constant for any program, i.e. it does not depend on
the input size, the reading of tile is constant depth. The same logic applies to the sequential map, which
maps over an array of size q, but as q is constant this is also constant depth. As such, the transformation
preserves the depth complexity of the program.

Imperative map rule

Input: array xss[n][m]

Output: array out[n][m]

forall gid = 0 to n do

forall tid = 0 to m do

let x = xss[gid, tid]

out[gid, tid] = f x

≡
let m' = ⌈m/q⌉
forall gid = 0 to n do

let tile = xss[gid, 0:m:1]

barrier()

forall tid = 0 to m' do

let idx = tid·q
let chunk = tile[idx:q:1]

tile[idx:q:1] = map f chunk

barrier()

out[gid, 0:m:1] = tile

Listing 10: Imperative version of the map transformation rule.
barrier() indicates a thread synchronization step. f is the
mapping function. q is the sequentialization factor.
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5.2.2 Reduce

Input: array xss[n][m]

Output: array of size [n]

map (𝜆xs → reduce ⊕ 0⊕ xs) xss

≡
map (𝜆xs →

let ys = map (𝜆x →
reduce ⊕ 0⊕ x

) (split𝑚/𝑞 xs)

in reduce ⊕ 0⊕ ys

) xss

Listing 11: High-level reduce transformation rule.

Input: array xss[n][m]

Output: array of size [n]

segmap(group, n, m):

segred(thread) ⊕ 0⊕:

let x = xss[gid, tid]

in f x

≡
let m' = ⌈m/q⌉
segmap(group, n, m'):

let tile = xss[gid, 0:m:1]

let ys =

segmap(thread):

let idx = tid·q
let chunk = tile[idx:q:1]

in redomap ⊕ f 0⊕ chunk

in segred(thread) ⊕ 0⊕:

let x = ys[tid]

in x

Listing 12: Intermediate reduce transformation
rule. f is the mapping function of the segred in
the original program.

The transformation rule for reduce in both formats can be seen in listings 11 and 12. It is assumed the
array xss has shape [n][m]. As there is a dependency between the computation of earlier elements and
later, the rule needs to produce code to handle this. As the inner reduce computes the reduction of x of
size q we will end up having a pr. chunk reduction, which is saved in ys. Once this is done, the reduction
across all chunks can occur using the same operator and neutral element. A rule showing the imperative
semantics is shown in listing 10.

Note that in the intermediate rule, we also have a function f applied to the element x before it is reduced.
This is the case since segred is just a perfect map nest on top of some bottommost redomap that applies
the function f before reducing. For the same reason a redomap is used in the transformed program, so
that f can applied. If f is simply the identity function, this would just be a normal reduction. Finally, a
segred can be used to compute the reduction result across threads, but note here that f is not applied,
since it already was on the intermediate results.

Work
The work complexity of the program is 𝑊 (nm) as we have nm elements to process. In the transformed
program the first reduction happens on x of size q, but happens m’ times giving 𝑊 (m) which happens n
times, giving a final work complexity of 𝑊 (nm) as in the original program. As explained for the map rule,
the reading of tiles and the sequential SOACs do not affect the work complexity.
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Depth
For the high-level rule, the depth complexity is 𝐷(lg m) as each inner reduce performs a reduction on an
array of size m. In the transformed, this is the case as well since the inner reduce works on a chunk of
size q giving 𝐷(lg q). These, pr. chunk reduction results are then reduced, and as there are m/q of these,
this gives 𝐷(lg m/q). Adding this up we finally have 𝐷(lg q+ lg m/q), but since q is considered constant
this is 𝐷(lg m).

In the intermediate rule, the depth is also 𝐷(lg m), as this is the size of the segmented reduction. It is
however now as clear for this rule that the depth is not altered by the transformation. In the first segmap
each inner redomap works on a chunk of size q, but now sequentially giving 𝐷(q). This gives the m/q
intermediate results that are reduced in parallel, giving 𝐷(lg m/q). Adding this up we have 𝐷(q+lg m/q),
but since q is constant, this is still 𝐷(lg m) meaning the depth is unaltered by the transformation.

Imperative reduce rule

Input: array xss[n][m],

reduce operator ⊕,
neutral element 0⊕

Output: array out[n]

forall gid = 0 to n do

ac = 0⊕

forall tid = 0 to m do

let x = xss[gid, tid]

ac = ac ⊕ (f x)

out[gid] = ac

≡
let m' = ⌈m/q⌉
forall gid = 0 to n do

let tile = xss[gid, 0:m:1]

barrier()

let tmp = scratch m'

forall tid = 0 to m' do

let idx = tid·q
let chunk = tile[idx:q:1]

tmp[tid] = redomap ⊕ f 0⊕ chunk

barrier()

ac = 0⊕

forall tid = 0 to m' do

let x = tmp[tid]

ac = ac ⊕ x

out[gid] = ac

Listing 13: Imperative version of the reduce transformation rule.
f is the mapping function. q is the sequentialization factor.
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5.2.3 Scan

Input: array xss[n][m]

Output: array of size [n][m]

map (𝜆xs→ scan ⊕ 0⊕ xs) xss

≡
map (𝜆xs →
let ys = map (𝜆x →
reduce ⊕ 0⊕ 𝑥

) (split𝑚/𝑞 xs)

let zs = scanexcl ⊕ 0⊕ ys

in map2 (𝜆x z →
scan ⊕ z x

) (split𝑚/𝑞 xs) zs

) xss

Listing 14: High-level scan transformation rule.
map2 maps over two arrays of equal size.

Input: array xss[n][m]

Output: array of size [n][m]

segmap(group, n, m):

segscan(thread) ⊕ 0⊕:

let x = xss[gid, tid]

in f x

≡
let m' = ⌈m/q⌉
segmap(group, n, m'):

let tile = xss[gid, 0:m:1]

let ys =

segmap(thread):

let idx = tid·q
let chunk = tile[idx:q:1]

in redomap ⊕ f 0⊕ chunk

let zs =

segscanexcl(thread) ⊕ 0⊕:

let x = ys[tid]

in x

in segmap(thread):

let d = zs[tid]

let idx = tid·q
let chunk = tile[idx:q:1]

in scanomap ⊕ f d chunk

Listing 15: Intermediate scan transformation rule.
f is the mapping function of the segscan in the
original program.

The transformation rule for scan in both formats can be seen in listings 14 and 15. It is assumed xss

has shape [n][m]. To successfully split the scan up between multiple chunks, each chunk needs to know
the final result of the previous chunk to use as the accumulator. This can be achieved by first computing
a reduction of each chunk which is stored in ys. This is, however, on a pr. chunk basis. To add the
results of the previous chunks so that it becomes a running accumulator across chunks a scan (exclusive)
is performed, which then computes the starting accumulator of each chunk. Finally, the chunks can be
scanned with this accumulator. A rule showing the imperative semantics is shown in listing 10.

It should be noted how the scan transformation rule presented here differs slightly from the sequentialized
intra-block version shown in figure 4. Rather than doing an initial reduction using redomap as in the
first segmap at the thread level, a scan could also be performed using a scanomap instead. This way no
scan would have to be done in the final segmap which could save some computations of applying f. If
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f is some expensive computation, this would be the preferred implementation. However, when f is small,
i.e. a simple arithmetic operator, this version did not show any performance improvement and compiled to
CUDA code that used more registers. For this reason, and since the version shown in listing 15 allowed for
code reuse in the eventual implementation, see section 7.2.3, this was chosen.

Work
The work complexity of the original programs is 𝑊 (nm) as we have nm elements to process. In the trans-
formed program, the first map-reduce nest has 𝑊 (m), the intermediate scan 𝑊 (m’) and the final map-
scan nest has 𝑊 (𝑚), as m’ depends on m, adding all these up we have 𝑊 (𝑚), but it happens n times
giving a final work complexity of 𝑊 (𝑛𝑚).

Depth
For the high-level transformation rule, the depth complexity of the original program is 𝐷(lg m) as each
inner scan process m elements. For the transformed program we have the map-reduce nest has a depth
of 𝐷(lg q) as each reduction reduces q elements. The intermediate scan has a depth of 𝐷(lg m/q), and
finally the map-scan nest has a depth of 𝐷(lg q). Adding ll these up gives 𝐷(lg q + lg m/q + lg q), but
since q is constant this is 𝐷(lg m).

For the intermediate transformation rule, the depth complexity of the original program is 𝐷(lg m) as each
inner scan process m elements. We know from the analysis of reduce that the depth of the sequential
redomap is 𝐷(q). The depth of the intermediate scan is 𝐷(lg m/q) and the depth of the sequential
scanomap depth is also 𝐷(q). Adding these up we have a depth of 𝐷(lg m+q+q), but as q is constant,
we still have a depth of 𝐷(lg m).
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Imperative scan rule

Input: array xss[n][m],

scan operator ⊕,
neutral element 0⊕

Output: out[n][m]

forall gid = 0 to n do

let ac = 0⊕

forall tid = 0 to m do

let x = xss[gid, tid]

ac = ac ⊕ (f x)

out[gid, tid] = ac

≡
let m' = ⌈m/q⌉
forall gid = 0 to n do

let tile = xss[gid, 0:m:1]

barrier()

let ys = scratch m'

forall tid = 0 to m' do

let idx = tid·q
let chunk = tile[idx:q:1]

ys[tid] = redomap ⊕ f 0⊕ chunk

barrier()

let zs = scratch m'

let ac = 0⊕

forall tid = 0 to m' do

zs[tid] = ac

let x = ys[tid]

ac = ac + x

barrier()

forall tid = 0 to m' do

let d = zs[tid]

let idx = tid·q
let chunk = ys[idx:q:1]

tile[tid] = scanomap ⊕ f d chunk

barrier()

out[gid, 0:m:1] = tile

Listing 16: Imperative version of the scan transformation rule.
Barrier() indicates a thread synchronization step. f is the
mapping function. q is the sequentialization factor.
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5.2.4 Scatter

Input: array xss[n][m]

Output: array of size [n][m]

map (𝜆 ds is vs →
scatter ds is vs

) dss iss vss

≡
map (𝜆 ds is vs →

map (𝜆 i v →
scatter ds i v

) (split𝑚/𝑞 is vs)

) dss iss vss

Listing 17: High-level scatter transformation rule.

Input: array xss[n][m]

Output: array of size [n][m]

segmap(group, n, m):

let ds = dss[gid, 0:m:1]

segmap(thread):

let i = iss[gid, tid]

let v = vss[gid, tid]

in ds with [i] = v

≡
let m' = ⌈m/q⌉
segmap(group, n, m'):

let ds = dss[gid, 0:m:1]

let is = iss[gid, 0:m:1]

let vs = vss[gid, 0:m:1]

loop ds' = ds

for j = 0 < q do:

segmap(thread):

let idx = tid·q+j
let i = is[idx]

let v = vs[idx]

in ds' with [i] = v

Listing 18: Intermediate scatter transformation
rule. q is the sequentialization factor.

The transformation rule for scatter can be seen in listings 17 and 18. Here we have three arrays. First
is dss of shape [n][k] which is the destination array of the scatter. Second is both iss and vss of
shape [n][m], where k might be different from m. Note that in the transformed program, the inner map is
only over the chunks of is and vs, as we still want to be able to scatter to all locations within the original
ds and not just a chunk of it. A rule showing the imperative semantics is shown in listing 19.

There is no actual segmented scatter operator present in the intermediate representation. Instead a scatter
is represented with a segmap that does an in-place update instead of returning a value. Also note that in
the intermediate rule in the original program, ds is already implicitly a tile of dss, so in the transformed
program we only need to tile the remaining two. Now, as we do not know to which indices the scatter is
going to write, we have to update the array using a sequential loop with q iterations, where each iteration
of a thread reads a new element of iss and vss to scatter to the array.

Work
The work complexity of the original program is 𝑊 (nm). The inner size k of dss does not affect the
complexity. For the transformed program, the analysis is much the same as for map. Each inner scatter
now processes q elements, this is done m’ times which is done a total of n times across all groups. As such
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the work complexity of the transformed program is also 𝑊 (nm).

Depth
The depth complexity of the original program is 𝐷(1). Each thread reads a single index and value and
writes it to the output array. The same can be said for the transformed program in the high-level rule.
However, in the intermediate rule we now have a loop representing the sequential part, rather than a SOAC
as in previous rules, which wraps the inner segmap. But even here the same logic applies in that q is
considered constant, meaning the loop executes a constant amount of times. It is not dependent on the input
size.

Imperative scatter rule

Input: array dss[n][k], iss[n][m], vss[n][m]

Output: dss[n][k]

forall gid = 0 to n do

forall tid = 0 to m do

let i = iss[gid, tid]

let v = vss[gid, tid]

dss[gid,i] = v

≡
let m' = ⌈m/q⌉
forall gid = 0 to n do

let ds = dss[gid, 0:m:1]

let is = iss[gid, 0:m:1]

let vs = vss[gid, 0:m:1]

forall tid = 0 to m' do

forall j = 0 to q do

let idx = tid·q+j
let i = is[idx]

let v = vs[idx]

ds[i] = v

Listing 19: Imperative version of the scatter transformation rule.
Barrier() indicates a thread synchronization step. q is the se-
quentialization factor.
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6 Compiler Internals

While the rules of the previous sections serve their purpose well for explaining how the transformations
work both at a high abstraction and also at a lower level, the internals of the compiler are a bit more abstract
and have slightly different semantics. This section will go over how the different concepts discussed so far
map to internal structures in the compiler and where their semantics differ.

6.1 SOACs

The semantics used for the SOACs, both normal and segmented, so far do not match exactly the semantics
of the ones used in the compiler. The compiler uses a tuple-of-arrays representation for arrays of tu-
ples, meaning all SOACs accept multiple parameters and can produce multiple values. Further, redomap
and scanomap both accepts multiple binary operators and can produce both reduced/scanned results
and mapped results. For some binary operators ⊕ = ⊕1 · · · ⊕𝑘 with corresponding neutral elements
0⊕ = 0⊕1

· · · 0⊕𝑘
and some arrays xs = xs1 · · ·xs𝑗 for some 𝑗 ≥ 𝑘, the semantics of redomap can be

understood as;

redomap ⊕ f 0⊕ xs

⇓
let x1 . . . x𝑘 . . . x𝑗 = map f xs

let y1 = reduce ⊕1 0⊕1 x1

...
...

...

let y𝑘 = reduce ⊕𝑘 0⊕𝑘
x𝑘

in y1 . . . y𝑘 x𝑘+1 . . . x𝑗

That is, the map produces 𝑗 different elements, of which the first 𝑘 are passed to the binary operators in
order. The remaining 𝑗 − 𝑘 results are simply returned as one of the mapped results. The same applies to
scanomap. The semantics of segred and segscan are altered accordingly as they are still a perfect
map nest on top of either a redomap or scanomap. Note that when there is only a single binary operator
and neutral element, it has the same semantics as when used in the rules.

6.2 Intermediate Representation

At the most basic level, the intermediate representation (IR) is a textual representation of the abstract syntax
tree of the program. This representation is morally identical to the one introduced in section 5.1.2, but with
the new semantics, meaning that segmented operators are used to express parallel operations and it is these
that represent the kernels that will ultimately be generated by the compiler. We will spend some time going
over the most essential data structures inside the compiler that are needed to apply the optimization.

The SegOp type, representing a segmented operator and seen in listing 20, is generic over some types
lvl and rep. The rep type is not that important for the transformations as they do not change the
internal representation of the program. Just know that it is set to represent that we are working at GPU
representation. The lvl type is to represent at which hardware level the segmented operator is to be
mapped. Since the GPU has two levels, this can either be the block level (named Group inside the compiler)
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or the thread level. For this project, the lvl type is always set to that of SegLevel which has two
constructors, mapping the SegOp to either hardware level. With all this, the concrete type of the segmented
operators is SegOp SegLevel GPU.

1 data SegOp lvl rep

2 = SegMap lvl SegSpace [Type] (KernelBody rep)

3 | SegRed lvl SegSpace [SegBinOp rep] [Type] (KernelBody rep)

4 | SegScan lvl SegSpace [SegBinOp rep] [Type] (KernelBody rep)

5 | SegHist lvl SegSpace [HistOp rep] [Type] (KernelBody rep)

6 deriving (Eq, Ord, Show)

Listing 20: Type definition of a SegOp

The SegSpace type encodes the shape of the segmented operators. Say if we had a kernel operating on two
dimensional array, then the outer SegOp at group level would encode the first dimension, and inner SegOps
the inner dimensions. The SegBinOp type represents the binary operator of the segmented operator, which
is why it is only present for SegRed and SegScan. Note that it is an array of SegBinOps as there can be
multiple operators applied. Also, note that despite the name, a single SegBinOp might take more than two
arguments due to being fused. The Type type represents the types of the results produced by the SegOp,
and as it can produce multiple results this is an array. Finally, the KernelBody represents the body of the
kernel produced. It is here it will read the values from different arrays, maybe do some prepossessing on
them, before handing them off to the SegBinOps.

Another internal compiler construct of significance to this project is the SOAC type and specifically its value
constructor Screma. A single Screma represents a combination of scans, reduce, and maps. A Screma

contains a ScremaForm that describes its functionality. It is illustrated in listing 21. This construct allows
the new semantics described earlier. The Lambda is the map part, and then it can contain any number
of scans and reductions. That is, if it contained some map function and some reductions then it would
represent a redomap , while if the Lambda was the identity function and it contained only one Scan
then it would have the semantics of a scan as described at the beginning of the report.

1 data ScremaForm rep

2 = ScremaForm

3 [Scan rep]

4 [Reduce rep]

5 (Lambda rep)

6 deriving (Eq, Ord, Show)

Listing 21: Type definition of a ScremaForm

The semantics of a SegOp, or more precisely the two SegOps to contain SegBinOps have very similar
semantics to that of a Screma except they are exclusive to only do scans or reductions. Each SegBinOp
takes two or more arguments, some of which are the neutral element/accumulator and they are fed the
remaining arguments from the KernelBody which might produce multiple values.
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With these similar semantics between SegOps and Scremas, and the fact that they both mostly consist
of inner Lambdas makes it fairly trivial to convert from SegOp to Screma which is what we want for the
sequential parts illustrated in the transformation rules.

We have the structure for an actual statement within the IR reproduced in listing 22. The stmPat contains
the left-hand side of the binding along with information on which type each bound variable in the pattern
should have. stmExp represents the expression that produces the values to be bound to the pattern. All the
segmented operators can be used as an expression, but we also have basic expressions for arithmetic, loops,
branches and so on.

1 data Stm rep = Let

2 { -- | Pat.

3 stmPat :: Pat (LetDec rep),

4 -- | Auxiliary information statement.

5 stmAux :: StmAux (ExpDec rep),

6 -- | Expression.

7 stmExp :: Exp rep

8 }

Listing 22: The structure of a statement in the IR is a let-binding with type information and an expression.

The Futhark compiler has a set of core representations of which we are interested in the ones related to GPU
code generation, namely the GPU representation and the GPUMem representation. In the GPU represen-
tation flat segmented operations, as those from section 5.1.2, are used to express parallelism [19] and can
be considered a pre-stage to the GPUMem representation as this is where memory information is added.
For this project, it was decided to work on the GPU representation, as this is considerably more straight-
forward than the GPUMem representation and it should be sufficient for demonstrating the effects of the
optimization. Furthermore, while the optimization is concerned with how data is stored in memory, i.e.
operating on shared memory as opposed to global memory and keeping intermediate thread local results in
registers, this can still be somewhat controlled at the GPU representation. Results of segmented operators
can be instructed to be kept in registers, and since we are in the intra-group version intermediate arrays can
be allocated in shared memory [11].
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7 Implementation

This section will cover the most interesting implementation-specific details of our transformations. Some
of these details are not specific to the transformation of any specific operation but are something the im-
plementation needs to be aware of. Next, the specific transformations for each operator will be explained.
Finally, we will describe how our optimization decides whether it should apply itself to the program, both
at compile time and at run time.

7.1 Optimization Passes

The Futhark compiler can roughly be broken down into three parts: frontend, middle-end, and backend.
The frontend is responsible for parsing the source language, type-checking, and generating the core IR
which is then passed to the middle-end. The middle-end transforms the IR through a set of optimization
passes, based on the backend chosen. This middle-end is the part of the compiler we concern ourselves
with, as this is where the optimization will be added. Finally, the backend is responsible for the final code
generation based on the IR passed from the middle-end. [19]

In short, a compiler pass is a pure function that when given a program as input produces another program
as output. Since the Futhark compiler is heavily optimizing and can produce code for multiple backends
with different hardware specifics, this is a convenient way of structuring the architecture as it enables
constructing pipelines. A pipeline is a composition of passes that dictates how an IR program should be
transformed into another IR program. This makes it easy to extend the compiler with new transformation
techniques, as one can extend a pipeline with the given transformation.

Our optimization has been implemented as a single module in the file IntraSeq.hs, which exposes a
function that is added as a pass to the GPU pipeline. The implementation relies on two other passes, namely
simplifyGPU and unstreamGPU. The simplifyGPU pass does what the name implies, including
removing dead bindings. This simplifies the implementation of our pass, as then we can create statements
that might or might not be used later on, letting the simplifyGPU pass remove them if they are not. For
the code that is to be executed sequentially, we use the built in SOACs as these are simple to work with but
they cannot be translated to actual GPU code. As such the unstreamGPU pass is used to convert these
SOACs into loops which can be translated. Ultimately, the required pipeline for running the IntraSeq
optimization is seen below.

simplifyGPU: It is assumed a simplifyGPU runs before our optimization pass. This is mostly for
precaution to make sure that there a no leftover statements from an earlier pass that the code might
not know how to handle and fail when it could have produced a working program.

intraSeq: This is our optimization pass. As we shall see shortly this will potentially generate redundant
code which makes the implementation more straight forward.

simplifyGPU: Another simplify pass is added after our to ensure that the program is left in a clean state,
with no dead bindings and redundant computation before the next pass takes over.

unstreamGPU: This pass is needed to convert the generated Screma to sequential loops. Later on in the
compilation process, Futhark will throw an error if any SOACs remain.
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7.2 Code generation

This section will outline the main implementation details of the transformations. There are multiple com-
mon transformations regardless of the operator which will be introduced first, after which details of each
operator will be looked at.

During the transformation, some information about the context in which the transformation is happening
is needed. This is encoded in the Env data type shown in listing 23. The two variables, grpId and
threadId, are equivalent with CUDA blockIdx.x and threadIdx.x, and are needed to know from
where data should be read. The group size of the original SegOp and the updated one after sequential-
ization are stored in grpSize and grpsizeOld respectively. nameMap is a mapping from arrays used
in the original program to the tiles produced for them. Finally, the sequentialization factor decided by the
programmer is stored in seqFactor. seqFactor is the same value that is denoted as q in the transfor-
mation rules and pseudocode presented in this thesis.

1 data Env = Env {

2 grpId :: SubExp, -- The group id

3 grpSize :: SubExp, -- The group size after sequentialization

4 grpsizeOld :: SubExp, -- The group size before sequentialization

5 threadId :: Maybe VName, -- The thread id if available

6 nameMap :: M.Map VName VName, -- Mapping from arrays to tiles

7 seqFactor :: SubExp -- The sequentialization factor

8 }

Listing 23: Environment data type

7.2.1 Tiles and Chunks

Tiling is the process of copying data from global memory to shared memory, such that a kernel has access
to all the data it needs in shared memory. This is an important step in the transformations to ensure that
the number of accesses to the slow global memory is minimized. When introducing sequentialization,
care must be taken with regard to the access pattern. Before the sequentialization transformation has been
applied, the kernel has implicit coalesced access to global memory as each thread simply accesses a single
element, and all adjacent threads access adjacent elements. This is however not necessarily the case after the
transformation has been applied. If a thread is simply instructed to read consecutive elements into shared
memory then the access will not be coalesced as the threads in the same warp will then access elements
with a stride. Instead, all threads will first cooperate to move the data from global to shared memory, as
illustrated in figure 5. Once in shared memory, the threads are free to read a chunk of consecutive elements
to process.

Another important job of the tiling code is to ensure that once an array is loaded into shared memory, it is
padded to ensure its size is a multiple of the sequentialization factor, this is also illustrated in figure 5. This
is to avoid any potential out-of-bounds access and will be discussed in more detail.
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Figure 5: Coalesced access to global memory for 4 threads with a sequentialization factor of 4. In a single
access, the warp with threads 𝑡1, . . . 𝑡4 accesses consecutive elements in global memory. From shared
memory, each thread can then read its chunk of consecutive elements.

The actual IR code generated to allow for this access pattern is fairly simple as by using the internal compiler
construct for slices, Futhark will already compile this to a coalesced access pattern. The pseudo-IR of listing
24 illustrates the IR generated by the optimization pass. An intermediate scratch array of size tile_size,
which is the size of the data rounded up to the closest multiple of the sequentialization factor, q, is allocated.
Then the data is read from the global array a and is put in the scratch array. As these statements are
at the group level Futhark knows how to use the threads available to read the data coalesced based on the
slice. Finally, the segmap at the thread level is used to get each thread to read their respective chunks of
the tile and save them into registers as indicated by the private annotation.

let m' = ⌈m/q⌉
let tile_size = m'·q

segmap(group, n, m'):

...

let tile_scratch = scratch(tile_size)

let slice = a[gid, 0:m:1]

let staging = (tile_scratch with [0:m:1] = slice)

let tile =

segmap(thread):

let start = q·tid
in private chunk = stagning[start:q:1]

...

Listing 24: Pseudo tiling code generated for an array a:[m][m]. q is the sequentialization factor.

The optimization also has to determine which arrays to create tiles for by identifying the arrays read that
are currently not stored in shared memory. To determine this, we take advantage of the invariant that once
we encounter SegMap at group level, i.e. signaling the start of a new kernel, then all arrays in scope must
necessarily be located in global memory and should be tiled. If tiling code is generated for an array that is
unused in the kernel, then the simplifyGPU pass can be relied on to remove it.
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Transposed Tiles

Initially, the tiling code did not work for transposed arrays. Once a source Futhark program that uses
transpose has been compiled to IR code, the transposition is implicit, as all future accesses to the transposed
arrays just have their indices flipped. This means that during the generation of the tiling code, it has to be
detected if the array being tiled has in fact been transposed. For two-dimensional arrays, this can be done
by looking at the shape of the SegMap at the group level and comparing it to the type of the array. If we
have some array a of shape [n][m], but the SegMap is mapped across the m dimension, then it means the
array has been transposed, and we need to fix the indices accordingly.

7.2.2 Reshaping results

When applying the optimization on a kernel it will inevitably change the return type of that kernel. Assume
we had an array a of size [n][m]. This will result in a kernel with 𝑛 blocks with 𝑚 threads each before
sequentialization and 𝑚′ = ⌈𝑚/𝑞⌉ threads after. However, after sequentialization, each thread now poten-
tially produces arrays rather than single values which causes type errors. The problem is illustrated below
in listing 25 where the pseudocode has been extended with type annotations. In the original, a segmap at
thread level produced an intermediate array of type [m]𝛼, but after sequentialization, it now produces an
intermediate array of type [m’][q]𝛼. This gives a type error, but it is not possible to simply change the
type of xs since it might be used by statements later in the program, so a pass over all statements would be
required to adjust this. Instead, it is ensured that the type of the original bound variable remains unchanged
by first saving the result of the inner segmap in zs which can then be flattened to the original and correct
size before returning.

let xs : [n][m]𝛼 = segmap(group, n, m):

let ys : [m]𝛼 = segmap(thread):

<body>

in ys

⇓
let xs : [n][m]𝛼 = segmap(group, n, m'):

let zs : [m'][q]𝛼 = segmap(thread):

<optimized body>

let ys : [m]𝛼 = flatten zs

in ys

Listing 25: IR showing how the flattening of results is used to keep the program type safe.

7.2.3 Transformations of SOACs

This section will present an outline of the implementation-specific details for each of the operators. The
implementation is largely a direct mapping of the intermediate-level rules presented in section 5.2 and thus
focus will be on the specific parts that deviate from these.
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Common Transformations

There are a couple of common transformations that need to be applied to all the operators. First, the
SegSpace has to be modified to reflect that we now have 𝑚′ = ⌈𝑚/𝑞⌉ threads, where 𝑚 was the original
amount of threads.

Secondly, if any statement inside of a sequentialized SegOp uses the original tid in some computation,
then this must be replaced by the new thread ID multiplied by the index of the element in its chunk the
thread is currently processing. To see this, look at the following example using iota1operator. Much like
with transpose, the usage of iota can be made implicit in the generated IR without any explicit invocation
of iota. An example is illustrated in listing 26 which maps over an array xss of shape [n][m] and uses
iota inside of the outer map to add the values 0, . . . ,𝑚− 1 to each respective value of xs. This program,
when translated to an intra-group kernel in the IR is equivalent to the one in listing 27. As can be seen, the
threadID tid of the inner segmap is used in place of the reading an actual value from some iota array.
This optimization saves on the memory used by the program but causes the program to produce incorrect
results after sequentialization since each thread now processes consecutive elements. This means that thread
with ID 0 should add the values, 0, 1, 2, and 3 to its elements, the thread with ID 1 should add 4, 5, 6, and
7 to its elements, and so on.

1 let xss' = map (\ xs ->

2 let xs' = map2 (\x i -> x + i) xs (iota m)

3 in xs'

4 ) xss

Listing 26: Simple Futhark program utilizing iota

segmap(group, n, m):

segmap(thread):

let x = xss[gtid, tid]

let res = x + tid

in res

Listing 27: IR code generated for the program from listing 26

To solve this issue, an iota over the sequentialization factor, 𝑞, is created producing an array of the values
0, . . . , 𝑞 − 1 which each thread can then use to get the correct offset. If unused, the SimplifyGPU pass
will remove it.

Map

The implementation of the map rule essentially follows the transformation rule. The body of the segmap,
namely the statements that read elements and the application of the map function f, is split up. The latter is
converted to a sequential map, and the former is now replaced with statements that read from the respective
tile instead of directly from the input array.

1iota is a function that takes an integer 𝑛 and returns an array of consecutive integers from 0, . . . , 𝑛− 1
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Reduce

The implementation of the reduce rule does not follow the transformation rule exactly due to technical
limitations within the compiler. As mentioned, if the size of the array is not a multiple of the sequentializa-
tion factor q then the last thread might have fewer elements to process. At a glance, it would seem simple
to just have each thread compute the size of its chunk to be reduced and simply perform a reduction of
that size. However, Futhark does not currently support this kind of irregularity of the threads, resulting
in a compiler error. This implies that a thread that does not have q elements to process sequentially will
still have to loop q times. This is no issue for the other operators since padding is added to the tiles, so
the threads that do not have q elements to process will simply produce some unused results. However,
since a reduction produces a single value as its result, these excess computations will corrupt the reduction
result of the thread that does not have q elements to process. A straightforward way to handle this is to
simply generate a scanomap instead of the redomap, utilizing that a scan is essentially the same as a
reduce that just produces all the intermediate results. Each thread then simply has to return the result of
the scanomap that corresponds to its final reduction result. This index can be calculated with some simple
arithmetic instructions to avoid the use of a branching instruction.

For example, since a thread now uses a scanomap instead of a redomap, it produces an array of size 𝑞

instead of a single result. To find the element in the array of scan results that corresponds to the last valid
reduction result for a thread that has processed 𝑞′ elements sequentially, its reduction result would be that
at index [𝑞′ − 1] of the scanomap result.

Pseudo IR code representing the actual implementation of the reduce transformation rule is given in
listing 28.
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segmap(group, n, m):

segred(thread) ⊕ 0⊕:

let x = xss[gid, tid]

in f x

≡
let m' = ⌈m/q⌉
segmap(group, n, m'):

let tile = xss[gid, 0:m:1]

let ys =

segmap(thread):

let idx = tid·q
let chunk = tile[idx:q:1]

let tmp = m - idx

let size = min(q, tmp)

let redi = size - 1

let res = scanomap ⊕ f 0⊕ chunk

in res[redi]

in segred(thread) ⊕ 0⊕:

let x = ys[tid]

in x

Listing 28: Reduce transformation implementation.

Since the scanomap is produced at the level where each thread is operating sequentially inside of registers,
there is not much downside to this in terms of execution time as opposed to producing a redomap besides
having to do the additional arithmetic instructions. However, the scan does require additional registers
which could potentially cause some slow-down on large workloads.

Scan

Similar to map, the implementation for scan closely follows the intermediate-level transformation rule.
The segscan is essentially split up into three steps. First, a reduction from which code can be reused
from the reduce implementation. This also means that similar to reduce, the scan implementation
generates a scanomap instead of a redomap in this step. A segscan is then generated to perform a
blockwide scan over the reduction results which can then finally be used in a sequential scan through a
scanomap to generate the final scan results.

Scatter

The implementation of scatter follows the transformation rule closely. However, extra care has to be
taken when the size m is not a multiple of sequentialization factor q. If this is the case, the chunks of the
last thread, i.e. the indices and values it has to write, will be padded with undefined values. This means that
if a thread detects that the current loop counter is larger than the number of actual elements in its chunk, it
should not perform the write. As such if this is detected it will simply write the value at the index it did the
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previous iteration. This is not a problem, since if multiple threads were to write to the same position in the
output array, it is undefined which one will end up there.

Another thing worth mentioning is how a scatter operation is detected. There is no segmented scatter
operation, but rather just a map not directly returning any values but performing an update. This means that
each time a segmap is encountered, we first have to inspect the return statements of the operation to see if
it is a segmap or if it is a scatter in disguise. From testing different combinations of maps and scatters,
we were not able to get the compiler to fuse any such segmap with the different return functions. This
means our implementation assumes the return statements will always be one kind or the other.

7.3 Conditional Optimization

The optimization is only going to target the intra-group kernels of the program. As such the first step of the
implementation should be to identify which of the generated code versions is the intra-group one and apply
the transformation there. However, to focus on the task at hand we have implemented a new attribute called
seq_factor(x). Attributes allow the programmer to annotate their programs in order to instruct the
compiler to perform specific tasks. In the seq_factor(x) attribute, x can be any positive integer and de-
termines the sequentialization factor to use during the code transformation. This attribute should be applied
to a map in the source language along with the attribute incremential_falttening(only_intra)
to enable only the generation of intra-group kernels. See listing 29 for an example. This attribute has to
be present for our optimization to be performed. This means if applied to something that will not be an
intra-group kernel it is considered a user error. This should of course be changed if the optimization is
to be merged into the main Futhark compiler, but allowed for easy experimentation during development.
Besides this attribute, a series of other properties has to be fulfilled which can be divided into compile-time
properties and run-time properties.

1 #[incremental_flattening(only_intra)]

2 #[seq_factor(4)]

3 map (\ xs ->

4 let ys = scan (+) 0 xs

5 in reduce (+) 0 ys

6 ) xss

Listing 29: Program which will only generate an intra-group code version and to which our implementation
will be applied with a sequentialization factor of 4.

7.3.1 Compile time

Besides requiring the seq_factor attribute to be set, there is also a restriction on the shape of the in-
put.

The shape of the input has to be two-dimensional. Assume we had an array awith dimensions [n][m][k]
and that the sequentialization factor is 4. The outer dimension of size n would be mapped to blocks in the
hardware, and the remaining two to the threads. It is however not entirely clear what should happen with the
remaining two dimensions when applying the transformation. Should it sequentialize over the dimension
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of m meaning each thread would now process 4 arrays each of size k or should you maybe flatten out the
inner dimension to be [nk]? For the former, if k is big, this is probably not what we want as then each
thread would have to sequentially process 4 · k elements each. For the latter, the issues are most clear with
an example.

Assume the shape of a is [n][5][3], a sequentialization factor of 4, and that we want to reduce across
the third dimension. If a is flattened to have the shape [n][5*3], then the program still spawns n blocks,
each with ⌈15/4⌉ = 4 threads. Each of these threads will process 4 sequential elements, but the inner
dimension was only 3. As such, all threads will not have access to the 3 elements they need to perform their
reduction. This is illustrated in figure 6, where the brackets denote the elements distributed to each thread.
Consecutive elements of the same color should be reduced, but as is clear from the figure, not all threads
have access to the elements needed to perform the reduction.

t0 t1 t3 t4
Figure 6: Figure illustrating the issues with flattening the inner two dimensions of a three dimensional array.

If the seq_factor attribute is set, but the input shape is not two-dimensional, the compiler will not give
an error but resort to compiling without the efficient sequentialization optimization.

7.3.2 Run time

Even if the optimization is successfully applied to some program, it might not be more efficient than the
original one. As such, in the spirit of the incremental flattening framework already present in the compiler,
it will create two code versions and discriminate between them at run time. The transformation is illustrated
in listing 30 below. That is, after the transformation has been applied a conditional statement is inserted to
discriminate between the two versions at run time. In the condition T ≤ m’, T denotes some fixed thresh-
old of threads that need to be used in the optimized program before it chooses this. Otherwise, it will just
execute the original program. Were T to be set to e.g. 64, the optimized version would only run when using
64 or more threads.
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segmap(group, n, m):

<body>

≡
let m' = ⌈m/q⌉
if T ≤ m' then

let x = segmap(group, n, m'):

<optimized body>

in x

else

let x = segmap(group, n, m):

<body>

in x

Listing 30: Transformation showing how the two generated code versions are inserted.

8 Experimental Results

This section will examine the performance results of applying the efficient sequentialization optimization
presented to a series of programs exhibiting intra-group parallelism.

8.1 Method

A comprehensive suite of small Futhark programs using the four parallel operators, map, reduce, scan,
and scatter, has been developed with a twofold purpose, both serving as correctness tests and for bench-
marking the performance of the transformations. A small subset of these were then selected to demonstrate
the effects of the transformation for each operator. The initial benchmark results for a larger portion of the
benchmark suite, once the transformation for each operator was implemented, can be seen in appendix F. Fi-
nally, to show the effects of the transformation on ’real’ programs, benchmarks are presented of big-integer
addition and intra-block radix sort.

The tests can be reproduced by using Futhark’s built-in testing and benchmarking functionality [5]. First,
clone and build the repository containing the modified compiler, then clone the repository containing the
test suite, see section 1.2. Using cabal [8] a given benchmark can then be run from within the compiler
project folder with the command:

cabal run futhark -- bench --backend=cuda ../path/to/benchmark.fut

As the optimization only targets intra-group kernels, the results will be compared to the run time of the
equivalent intra-group kernel without efficient sequentialization applied. To ensure that only the intra-
group versions are run, all tests are annotated appropriately with the incremental_flattening and
seq_factor attributes. Finally, the goal of this section is to present the overall results in terms of applying
efficient sequentialization, but not fine-tuning the performance of each specific program. A sequentializa-
tion factor of 4 has been chosen for all benchmarks. This value was chosen empirically, as it generally
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showed consistent improvements, balancing the trade-offs of increasing the amount of sequential work.
Finally, all values used are 32-bit.

For the experiments, given the execution time of a program without the optimization applied, 𝑒𝑡, and the ex-
ecution time of the same program with the optimization applied, 𝑒𝑡′, the speedup was calculated as:

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑒𝑡

𝑒𝑡′

and the bandwidth was calculated as:

𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝐺𝐵/𝑠) =
(𝑏𝑟 + 𝑏𝑤)/𝑒𝑡𝜇

1000

where 𝑏𝑟 is the number of bytes read from global memory by the program, 𝑏𝑤 is the number of bytes written
to global memory, and 𝑒𝑡𝜇 is the execution time in microseconds.

All tests are run on an NVIDIA A100 [15] with 80GB VRAM offering up to 2 TB/s of bandwidth.

8.2 SOACs

This section will examine the performance gains of applying the transformations to each of the four SOACs
with minimal other factors influencing the results. Like the small programs presented in section 3.1, each
test consists of a single outer map with the specific SOAC as the inner function, meaning the only code
that is executed is the tiling code and the actual SOAC computation. As the transformation is applied on a
per-SOAC basis, this will give the most clear indication of the performance gains of each of them.

Two different test setups have been created. For the first one, we keep a constant inner dimension of
1024, meaning the intra-group code version will run with 1024 threads in the original program and 256
in the optimized one. The purpose of this test is to see the impact of having more blocks doing the same
amount of work. The second test keeps the workload constant but distributes it differently across blocks and
block sizes. With this test, it should be possible to see if having more blocks with fewer threads or fewer
blocks with more threads is most desirable. As an added benefit, for the version without sequentialization,
the inner dimension is at most 1024 elements due to the CUDA cap of 1024 threads per block, but for the
sequentialized version, larger sizes can be explored as each thread now processes multiple elements.

The results of both test setups can be seen below in table 4 and 5.
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Number of blocks 100k 200k 300k 400k 500k

map
org (GB/s) 1260.53 1268.15 1268.78 1267.41 1267.68
seq (GB/s) 1359.4 1368.37 1374.45 1377.69 1378.16
speedup 1.0784 1.0790 1.0832 1.0870 1.0871

reduce
org (GB/s) 366.98 369.41 370.45 370.62 371.00
seq (GB/s) 977.43 942.67 925.6 920.62 914.08
speedup 2.6634 2.5518 2.4986 2.4839 2.4638

scan
org (GB/s) 421.67 420.16 420.08 420.35 420.33
seq (GB/s) 825.99 808.12 802.79 798.91 799.40
speedup 1.9588 1.9233 1.9110 1.9005 1.9018

Table 4: The effective bandwidth in GB/s and speedup for all the SOACs with 1024 threads pr. block. The
org row is the bandwidth before optimization and the seq row after. All tests are with 32-bit values.

Sizes
[1048576]
[128]u32

[524288]
[256]u32

[262144]
[512]u32

[131072]
[1024]u32

[65536]
[2046]u32

[32768]
[4096]u32

org (GB/s) 1311.27 1327.95 1318.81 1268.12 - -
seq (GB/s) 1254.16 1358.17 1361.12 1357.26 1349.49 1320.84map
speedup 0.9564 1.0227 1.0320 1.0702 - -
org (GB/s) 552.34 523.84 450.46 368.78 - -
seq (GB/s) 684.95 1026.37 1008.49 954.75 880.67 753.93reduce
speedup 1.2400 1.9593 2.2387 2.5889 - -
org (GB/s) 420.54 422.06 422.14 422.15 - -
seq (GB/s) 820.32 840.86 855.08 814.75 728.21 597.40scan
speedup 1.9506 1.9922 2.0255 1.9300 - -

Table 5: The effective bandwidth and speedup of each SOAC when the workload remains constant but is
distributed differently across different amounts of blocks. A ’-’ means no result. All tests use 32-bit values.

Both tables show that the performance of map is only slightly improved from the original program, with
only the test having an inner dimension of 128 showing some loss in performance. At this inner dimension
size, the group size of the generated kernels will have only 32 threads, which might be to blame for the
slight performance hit. However, table 5 shows that even when going above the normal cap of 1024 on
the inner dimension, it still keeps a high effective bandwidth, indicating that map is well suited for having
these larger workloads. At a size of 4096, resulting in a group size of 1024 threads, it still outperforms the
original version at only 1024 elements pr. block. The slight performance hit going from 1024 to 4096 is
also to be expected as there is more work for each block to do. The map tests also tell us that the tiling
code does not seem to slow down the program in any considerable way. It still reads the same amount but
stages it in shared memory before starting the actual computation.

reduce benefits from considerable speedup following the optimization. Keeping a constant inner dimen-
sion of 1024 and only increasing the number of blocks, the speedup of the optimized version sits solidly
around a factor of 2.5. reduce was expected to be the operator to gain the most from the transformation,
since, besides benefitting from the general properties of sequentialization, the size of the reduction tree to
be done in shared memory is also shrunk from log 𝑛 to log(𝑛/𝑞), where 𝑞 is the sequentialization factor, as
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outlined in section 7.2.3. There is however a steady decline in the effective bandwidth when increasing the
amount of blocks which is not the case for the original program. One factor here might be the occupancy of
the GPU in the transformed program. After transformation, all blocks require more resources in the form
of registers and shared memory, meaning that a single SM might not be able to support the same amount
of blocks as it could for the original program. Further, some resources might go to waste if the required
resources for all the blocks an SM can support do not take up all available resources. As such, having
more blocks will decrease the effective bandwidth if fewer blocks are running in parallel but still have more
blocks to process. Furthermore, the second test shows that the effective bandwidth of reduce peaks when
the inner dimension is 256 but the size at which it is the fastest compared to the original version is 1024. We
also see the bandwidth when going beyond the original cap of 1024 where it is still quite good compared to
the original program within the cap.

scan also gets a considerable speedup after the optimization, sitting at a factor of ≈ 1.9 − 2 for all tests,
comparable to what was found in the initial experiments with CUDA scan in section 4.1. scan was also
expected to benefit from the optimizations for the same reasons as for reduce albeit not as much as it
has to perform more intermediate steps. This can be seen, as the same trends appear for scan as they did
for reduce but with a slightly lower bandwidth overall. From the first test, we see that we again have a
decline in bandwidth, and also slightly in speedup, when increasing the amount of blocks to be processed.
Again, this is believed to be an occupancy issue, but for scan this might be an even greater issue as it uses
both more shared memory and more registers. Also, scan just has more intermediate steps than reduce,
which will also factor into the lower performance gains. From the second test, it seems there is a steep
performance drop when going beyond the original cap of 1024. That said, at those sizes, the bandwidth is
still an improvement from the ones of the original program within the cap.

8.3 Scatter

The same two test setups were used for scatter as for the other SOACs with a few minor modifications.
First, in the first test set-up, the number of blocks has been decreased to not exceed the amount of available
memory on the system, since the scatter kernel consumes considerably more than the others as it reads
in 2-3 matrices of size [n][m], since a single scatter operation needs an array to update, an array of
which indices to update, and an array with the values to be written. These will be staged in shared memory
whereas the other SOACs simply read in a single matrix of size [n][m] on which they should operate.
For this same reason, tests were not run on matrices with an inner size larger than 2048. Secondly, for each
setup, two different test programs were used for scatter with the only difference being how the indices
to update are calculated. One version reads in a randomly generated matrix of indices of size [n][m].
The other version uses an iota operator to generate indices from 0, . . . ,𝑀 − 1 such that each element of
each block is updated. Ultimately, both versions update the same number of indices with one version using
completely random indices and the other consecutive in-bounds indices.

The results for the scatter benchmarks can be seen below in tables 6 and 7.
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Number of blocks 50k 100k 150k 200k 250k
org(GB/s) 1666.46 1662.51 1670.88 1670.87 1672.25
seq(GB/s) 1062.77 1071.47 1072.38 1069.39 1073.10scatter

random speedup 0.6377 0.6444 0.6418 0.6400 0.6417
org(GB/s) 1187.97 1200.16 1208.19 1213.12 1214.17
seq(GB/s) 1339.32 1353.96 1359.57 1357.55 1361.41scatter

iota speedup 1.1274 1.1279 1.1252 1.1190 1.1212

Table 6: The effective bandwidth in GB/s and speedup for scatter with 1024 threads pr. block. The org
row is the bandwidth before optimization and the seq row after. Random is with updates to random indices,
iota updates all indices from 0, . . . ,𝑀 − 1 where 𝑀 is the inner size of the matrix. All tests are with 32-bit
values, 64-bit indices.

Sizes
[1048576]
[128]u32

[524288]
[256]u32

[262144]
[512]u32

[131072]
[1024]u32

[65536]
[2046]u32

org (GB/s) 1601.55 1680.91 1677.28 1670.64 -
seq (GB/s) 1285.23 1063.17 1070.63 1071.78 1094.43scatter

random speedup 0.7668 0.6324 0.6383 0.6415 -
org (GB/s) 1294.57 1289.86 1273.00 1197.95 -
seq (GB/s) 1293.59 1361.43 1362.03 1358.43 1342.62scatter

iota speedup 0.9992 1.0554 1.0699 1.1339 -

Table 7: The effective bandwidth and speedup of scatter when the workload remains constant but is
distributed differently across different amounts of blocks. ’-’ is no result. Random is with updates to
random indices, iota updates all indices from 0, . . . ,𝑀 − 1 where 𝑀 is the inner size of the matrix. All
tests use 32-bit values, 64-bit indices.

For scatter there is a large difference between the version using random indices and the iota version
using consecutive indices. The iota version generally shows good results with a slight speedup and performs
best with a block size of 1024 where the speedup is ≈ 13%. This is close to the results achieved with
map which is to be expected as map and scatter are similar in the sense that the transformation does
not add any intermediate steps, but simply incorporates a loop into each thread to have them process several
elements consecutively.

Interestingly, for the tests using random indices, the optimized version is significantly slower than the
original one. This slowdown is not because the optimized version is particularly slow but because the
original one has an incredibly high effective bandwidth. Exactly why this is the case for the original
program is not entirely clear. One reason could be that the original program starts by reading in the indices
and if it can determine that all or some of these are out of bounds, then it does not need to load and write
the values, meaning less access to global memory. The optimized version will however always read a tile
of all three input arrays, meaning more access to global memory than the original. For this reason, the iota
tests are probably more indicative of the actual performance gains as you would assume that most, if not
all, of the indices are valid.
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8.4 Big Number Addition

Big number addition is a practical example of a program where the transformation is expected to have a
significant impact. The implementation consists only of an outer map, with a nested map, scan and map,
matching perfectly the two-level parallelism of the hardware. For this program, we have a single test where
the workload is kept constant and distributed across a different number of blocks and group sizes like for
the SOAC tests. The results can be seen in table 8. Note that only the transformed program is run with an
inner size of 2048, as this would be too great for the original version. The reason for not having tests with
sizes greater than 2048, is because the transformed program begins to encounter shared memory shortage.
It is also worth noting that this program takes two two-dimensional arrays as input, so the size of the array
for each of the test cases is read twice, but only written once. This also means that the transformed program
will tile both input arrays, further increasing the impact on the amount of shared memory used.

Sizes [1048576][128]u32 [524288][256]u32 [262144][512]u32 [131072][1024]u32 [65536][2048]u32
org (GB/s) 458.80 457.96 452.62 422.18 -
seq (GB/s) 805.90 824.04 841.60 782.81 677.00
speedup 1.7565 1.7993 1.8593 1.8541 -

Table 8: The results of our transformation on the big number addition program when distributing the work-
load differently across a number of blocks and block sizes.

The results show a good speedup ranging from 75% to 85% based on the size of the inner dimension. The
speedup peaks with an inner size of 512 which is in line with results observed from the tests of scan in
table 5 which is the dominating SOAC used in the computation. As we also saw, the inner maps do not
affect the overall speedup a great deal. Finally, we have the test where the inner dimension is above the
previous cap of 1024 where we see a fairly large drop off in the effective bandwidth. Again, this is in line
with the results observed for scan but might be further amplified by the use of additional registers needed
by the maps.

8.5 Intra-block Radix Sort

Finally, benchmarks were run on an intra-block version of radix sort, implemented using partition2

[16]. It was decided to run on an intra-block version as opposed to doing a full grid-wide sort as in the
CUDA version 4.2, to focus on demonstrating the results of the optimization. partition2 takes a predi-
cate and an array and returns an array of the same size where all the elements that succeed in the predicate
come first, followed by all that fail. Using a bit split as in the CUDA version of radix sort, this can be used
for general sorting. This way of implementing radix sort is a prime candidate for efficient sequentialization,
as partition2 can be implemented through the use of map , scan , and scatter . The results can
be seen below in table 9.

Before discussing the results of the test there is one thing to note. Futharks own testing framework can
compute the amount of bytes read and written to global memory from a specific kernel. However, we found
that it thought 50% more bytes was transferred than was the case, meaning it thought that some data had to
either be read twice or written twice. Examining the generated CUDA code, showed that only two accesses
to global memory are present. One at the beginning to load the tile to shared memory and one at the end
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Sizes [1048576][128]u32 [524288][256]u32 [262144][512]u32 [131072][1024]u32
org (GB/s) 70.09 69.09 64.68 54.22
seq (GB/s) 94.68 107.05 112.91 112.29
speedup 1.3352 1.5493 1.7619 2.0693

Table 9: The results of our transformation on the intra-group radix program when distributing the workload
differently across a number of blocks and clock sizes.

to write, the now sorted tile, back to global memory. Further, it only listed the amount of bytes transferred
for a single invocation of the kernel, but here the kernel is wrapped in a loop with 8 iterations so we have
scaled the results accordingly.

The results show that the program has the largest speedup when the inner dimension size is 1024. With the
optimization applied this results in a kernel with a block size of 256 threads, and it is also at this inner size
the original program performs well, with only a size of 128 performing slightly better, but this might just be
noise. So with optimization or not, the program seems to favor a block size of around 256 threads.
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9 Discussion

9.1 Results

Overall the results demonstrate how programs that exhibit intra-group parallelism can benefit considerably
from the efficient sequentialization optimization. scan and reduce are two of the most commonly used
parallel operators in this style of data-parallel programming and both benefit from considerable speed-up.
Furthermore, while not as prominently, both map and scatter using consecutive indices, also benefit
from a speed-up. Secondly, the optimization allows for even larger inner sizes as each thread can now
process multiple elements leading to a smaller number of total blocks needed for the kernel. Larger inner
sizes like 2048 and 4096 are not possible without sequentialization as the CUDA programming model
caps the maximum number of threads per block at 1024. Having a larger range of inner sizes available
to the programmer allows a larger degree of freedom in tailoring the kernel parameters specifically to the
given program.

However, the benchmarks have also shown a couple of downsides to the implementation. First, applying
sequentialization results in kernels that use considerably more shared memory. In itself, this is not an issue,
but it is one thing to be wary of when running programs with large input sizes as it can cap the inner
sizes as seen in the results. Furthermore, applying the optimization to programs dominated by the use of
scatter to write to non-consecutive indices should be done with caution and accompanied by tests that
investigate the execution time before and after applying the optimization, as random indices have been
shown to potentially cause some slow-down.

Normally a Futhark program will contain multiple different code versions utilizing different amounts of the
nested parallelism available. In this project, we have forced it to only produce the one that results in an
intra-group kernel, as this was the target for our transformation. This allowed for easy testing of different
inputs on the original and optimized versions. However, Futhark might normally have decided for some
input that one of the other produced code version were a better fit, but since it only now had the intra-group
one that was chosen instead. Therefore, while our results show overall good results compared to the intra-
group kernel, it might not be faster than the one Futhark would normally have chosen. Further, the addition
of our optimization should likely have an effect on the threshold used when Futhark discriminates which
version to choose. Right now the threshold is based on if the data fits within an intra-group kernel, but as
seen we can now go up to higher inner sizes than before, but this is not reflected in the threshold.

We suspected that some of the performance losses when increasing the inner size were due to occupancy
issues. There is however no explicit way of knowing exactly how much shared memory or how many
registers the kernels we generate are going to use. For this, we imagine you would have to implement
the optimization at the GPUmem representation rather than just GPU and keep track of how much-shared
memory is allocated and how many registers are used. This however introduces the question of what should
happen if we at some point reach the maximum amount of resources used. Should any further encountered
arrays just not be tiled or the chunks not be loaded to registers? The best solution would probably be some
form of analysis to see which arrays have the most reads and writes and move those to shared memory,
while once that are rarely used could be kept in global memory. This is however far outside the scope of
this project.
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9.2 Future Work

While our results show that the project has been an overall success, there are still areas where additional
performance might be possible. Additionally, there are still some cases that the current implementation is
unable to handle. As such suggestions for future work are;

Tiling: The code generated for tiling some piece of an array is the same no matter the base primitive type
of the array. This means that whether they are 1-byte or 8-byte elements they are all read one by one.
For small-size elements, it would however be possible to read multiple values at once. If the smallest
size the hardware can read is 4 bytes and the primitive type of the array is 1 byte in size, then all 4
elements could be transferred in one go by a single thread. This would have the additional benefit of
reducing the amount of bank conflicts.

SegHist: The compiler contains an additional SegOp called SegHist which is not currently handled
by our implementation. It was not needed to examine this operator in detail to see that it was not
needed to implement the transformations for the SOACs, but it should still be handled in some way
to make the implementation complete.

Multiple dimensions: The current implementation falls back to the original program if an array of more
than two dimensions is encountered. The reason for this is, that it is not clear at which dimension
efficient sequentialization should take place and as discussed simply flattening the inner dimensions
does not seem to be the solution. A more thorough analysis of what should happen in such a case is
needed after which the implementation could be extended to handle it.

Registers: There might be more opportunity to keep values in registers rather than staging them in shared
memory between operations. When applying the transformation on e.g. a segscan multiple new
segmented operators are created, between which data could potentially be kept in registers. Even
between multiple already existing segmented operators at the thread level, it might be possible to see
if the data needs to be staged or if the same threads will work with the results they produced for the
previous operator.

Better analysis: When the transformation is successfully applied it produces code that discriminates be-
tween the sequentialized version and the original version. The way this is currently done is by having
a fixed threshold 𝑇 and comparing that to the number of threads the optimized version would use.
If the number of threads is greater than or equal to 𝑇 , then our version is run otherwise the original
one is run. Not much time was spent examining what this threshold should be as both code versions
should be put in line with the rest of the code versions generated by incremental flattening.

Representation: Implementing the transformation at the GPU representation level inside the compiler
means we do not have any explicit memory control. As such it is very difficult to estimate the amount
of shared memory or registers that the program is going to use when compiled. One could consider
moving the optimization to the GPUmem representation to have better control over this, which might
allow for even more optimization as then it would be possible to explicitly reuse shared memory
buffers, reducing the resource usage of each block.
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Investigating performance of scatter : More experiments should be conducted to clarify when ap-
plying the optimization to a scatter operation results in speedup and when and why it sometimes
results in slow-down.

10 Conclusion

This thesis has shown how efficient sequentialization can be implemented as a code transformation tech-
nique by implementing it as an optimization targeting intra-group kernels in the Futhark programming
language. Specifically, transformations for the SOACs map, reduce, scan and scatter have been
shown, achieving significant speedups while allowing the intra-group code versions of Futhark programs to
work on larger sizes than they were able to before and at higher bandwidths. The compiler has further been
extended to allow for a seq_factor attribute in the source language, allowing the end user to control the
amount of sequentialization to be performed and enabling the optimization in the first place.

We described how the transformations rest on the mathematical foundation of list homomorphisms, which
in itself enables the program to take better advantage of the hardware by using shared memory and reducing
the number of intermediate buffers needed. However, this also causes the transformed programs to consume
considerably more shared memory which is a limited resource and should be taken into account at large
input sizes.

Finally, suggestions for future work have been laid out to fully integrate the optimization into the main
Futhark compiler, such as modifying the thresholds for determining which code version should be run in
order to reflect the new capabilities of the intra-group kernels.
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A Transformation Rules

This appendix describes the notation originally used for the transformation rules. They are more closely
based on the concepts from [11], which describes the incremental flattening algorithm used in Futhark to
generate multiple code versions utilizing different amounts of parallelism. This notation was however found
to be far more complex than needed for the transformation rules of the report, so we opted for the more
simplified notation that closely resembles the actual intermediate representation of the compiler. These
rules are simply here since they were already developed.

A.1 Notation

In the following sections we will use an extended version of two languages described in [11] as a means to
create and discuss the transformation rules for the different operators. These two languages are particularly
suitable as the first one, called the source language is morally a subset of Futhark, and the second, called the
target language, is morally equivalent to the intermediate representation that the Futhark compiler works
with internally [11].

In the languages 𝑥, 𝑦, and 𝑧 are used to range over a denumerable infinite set of variables, 𝑑 over integers, 𝑝
over variables or integers, 𝑏 over bools, and 𝑞 to denote a sequence of objects of some kind. The context in
which 𝑞 is used denotes whether the separating character is a comma or simply a white space [11].

We will extend the languages with two new operators and a new expression. The first operator is scatter ,
with the same type and semantics as in section 3.1.2. The second is the split𝑝 operator with type as shown
below. The intuition is that it splits some array into 𝑝 chunks of equal size. The extended syntax is shown
in figure 7.

split𝑝 : [𝑛]𝛼 → [𝑛/𝑝][𝑝]𝛼

𝑏𝑜𝑝 ::= + | - | / | > | · · ·
𝑜𝑝 ::= transpose | rearrange (𝑑, . . . , 𝑑) | replicate | split𝑝 | scatter
𝑠𝑜𝑎𝑐 ::= map | scan | reduce | redomap | scanomap
𝑒 ::= 𝑥 | 𝑑 | 𝑏 | (𝑒, . . . , 𝑒) | 𝑒[𝑒] | 𝑒 𝑏𝑜𝑝 𝑒 | 𝑜𝑝 𝑒 · · · 𝑒

| loop 𝑥1 · · ·𝑥𝑛 = 𝑒 for 𝑦 < 𝑒 do 𝑒
| let 𝑥1 · · ·𝑥𝑛 = 𝑒 | if 𝑒 then 𝑒 else 𝑒
| 𝑠𝑜𝑎𝑐 𝑓 𝑒 · · · 𝑒 | 𝑥 with [𝑦1 · · · 𝑦𝑛] = 𝑧1 · · · 𝑧𝑛

𝑓 ::= 𝜆𝑥1 · · ·𝑥𝑛 → 𝑒 | 𝑠𝑜𝑎𝑐 𝑓 𝑒 · · · 𝑒 | 𝑒 𝑏𝑜𝑝 | 𝑏𝑜𝑝 𝑒

Figure 7: Extended syntax of the source language [11]

We also have redomap and scanomap as the composition of map /reduce and map /scan respectively.
These are defined as follows. Note how redomap is the same composition used in the optimized map re-
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duce lemma.

scanomap ⊙ 𝑓 𝑑 𝑥𝑠 ≡ scan ⊙ 𝑑 (map 𝑓 𝑥𝑠)

redomap ⊙ 𝑓 𝑑 𝑥𝑠 ≡ reduce ⊙ 𝑑 (map 𝑓 𝑥𝑠)

Like in [11] the target language has the same syntax as the source language with added segmented opera-
tors of segmap segred and segscan and the modified semantics where the normal SOACs, map ,
scan and reduce are now sequential. However, We extend the notation for segmented SOACs such that
we also denote the number of workers as a subscript to the operator. That is in segmap𝑙

𝑛 Σ 𝑒, 𝑛 denotes
the number of workers for that segmented operation. In OpenCL terms with 𝑙 = 1, 𝑛 would denote the
group size and if 𝑙 = 0, 𝑛 would denote the number of threads. The extended syntax for the target language
is reproduced in figure 8

𝑒 ::= · · ·
| segmap𝑙

𝑛 Σ 𝑒 | segred𝑙
𝑛 Σ 𝑓 𝑑 𝑒 | segscan𝑙

𝑛 Σ 𝑓 𝑑 𝑒
Σ ::= ∙ | Σ, ⟨𝑥 ∈ 𝑦⟩

Figure 8: Extended syntax for the target language [11]

Here Σ is the mapnest context of which the domain, 𝐷𝑜𝑚(Σ) where Σ = Σ′, ⟨𝑥 ∈ 𝑦⟩ is defined inductively
as the set {𝑥} ∪𝐷𝑜𝑚(Σ′), where 𝐷𝑜𝑚(∙) = ∅ as the base case [11].

The parallel segmented operators corresponds to a perfect parallel nest in which the innermost parallel
construct is a map , scanomap or redomap for a segmap , segscan and segred respectively [11].
That is. if we have Σ = ⟨𝑥𝑝 ∈ 𝑦𝑝⟩, · · · , ⟨𝑥1 ∈ 𝑦1⟩ for some 𝑝 ≥ 1 then we have

segmap𝑙
𝑛 Σ 𝑒 ≡ map (𝜆𝑥𝑝 → map (𝜆𝑥𝑝−1 → · · ·map (𝜆𝑥1 → 𝑒)𝑦1)𝑦𝑝−1 · · · ) 𝑦𝑝

segred𝑙
𝑛 Σ ⊙ 𝑑 𝑒 ≡ map (𝜆𝑥𝑝 → map (𝜆𝑥𝑝−1 → · · ·redomap ⊙ (𝜆𝑥1 → 𝑒)𝑑 𝑦1)𝑦𝑝−1 · · · ) 𝑦𝑝

segscan𝑙
𝑛 Σ ⊙ 𝑑 𝑒 ≡ map (𝜆𝑥𝑝 → map (𝜆𝑥𝑝−1 → · · ·scanomap ⊙ (𝜆𝑥1 → 𝑒)𝑑 𝑦1)𝑦𝑝−1 · · · ) 𝑦𝑝

A.2 Rules

This section will introduce the transformation rules for the three SOACs. They will be presented in both the
source and target language described. Having the rules in the source language gives the best intuition on
what the transformation is supposed to do, but the rules in the target language are more detailed and closer to
the intermediate representation in the actual Futhark compiler and can thus help guide the implementation.
Explaining the rules in these higher-level languages also means we can focus on the semantics and do not
need to concern ourselves with where arrays are allocated on the GPU. Following each rule we will also
argue that the semantics of the programs stay the same and that the work and depth complexity are not
affected.
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A.2.1 Map

map (𝜆𝑥𝑠 → map 𝑓 𝑥𝑠) 𝑥𝑠𝑠

≡
map (𝜆𝑥𝑠 →

map (𝜆𝑥 →
map 𝑓 𝑥

)(split𝑚/𝑞 𝑥𝑠)

) 𝑥𝑠𝑠

Listing 31: High level map transformation rule.

segmap1
𝑛 ⟨𝑥𝑠 ∈ 𝑥𝑠𝑠⟩ (

segmap0
𝑚 ⟨𝑥 ∈ 𝑥𝑠⟩ 𝑒

)

≡
segmap1

𝑛 ⟨𝑥𝑠 ∈ 𝑥𝑠𝑠⟩ (

let 𝑚′ = ⌈𝑚/𝑞⌉
in segmap0

𝑚′ ⟨𝑥 ∈ split𝑚′ 𝑥𝑠⟩ (

map (𝜆𝑦 → 𝑒) x

)

)

Listing 32: Low level map transformation rule.

The high-level and low-level transformation rules for map can be seen in listing 8 and 9 respectively, where
xss has two dimensions. Looking at the high-level rule does not convey much new information except that
xs is further split up into chunks which are then mapped over. However, in the low-level rule, we see that
the two outer maps are segmented maps at two different levels of hardware parallelism with the innermost
being a sequential map, now working on the chunk of xs. Further the outermost segmap has had its
number of workers reduced by the sequentialization factor 𝜖.

A.2.2 Reduce

map (𝜆𝑥𝑠 → reduce ⊕ 0⊕ 𝑥𝑠) 𝑥𝑠𝑠

≡
map (𝜆𝑥𝑠 →

let 𝑦𝑠 = map (𝜆𝑥 →
reduce ⊕ 0⊕ 𝑥

) (split𝑚/𝑞 𝑥𝑠)

in reduce ⊕ 0⊕ 𝑦𝑠

) 𝑥𝑠𝑠

Listing 33: High level reduce transformation rule.

segmap1
𝑛 ⟨𝑥𝑠 ∈ 𝑥𝑠𝑠⟩ (

segred0
𝑚 ⟨𝑥 ∈ 𝑥𝑠⟩ ⊕ 𝑑 𝑒

)

≡
segmap1

𝑛 ⟨𝑥𝑠 ∈ 𝑥𝑠𝑠⟩ (

let 𝑚′ = ⌈𝑚/𝑞⌉
let 𝑦𝑠 =

segmap0
𝑚′ ⟨𝑥 ∈ split𝑚′ 𝑥𝑠⟩ (

redomap ⊕ (𝜆𝑦 → 𝑒) 𝑑 𝑥

)

in segred0
𝑚′ ⟨𝑦 ∈ 𝑦𝑠⟩ ⊕ 𝑑 𝑦

)

Listing 34: Low level reduce transformation rule.

The two transformation rules for reduce can be seen in figure 33 and 34. In the high-level rule we manifest
a new map on top of the reduction, which now reduces over a chunk of the original 𝑥𝑠 array. That gives a
reduction result for each chunk, which is then reduced over with the same operator and neutral element to
get the final result.

The second rule for the target language is a bit more involved. The same intuition exists in that the original
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𝑥 is split up into chunks which are then reduced over, sequentially, in the redomap and the result of this
is then reduced over in parallel in the final segred. However, to see why the original expression 𝑒 ends
up in the redomap and the expression in the final segred is simply 𝑦 we will use the rewrite rules for
segred along with the optimized map-reduce lemma.

segred ⟨𝑥 ∈ 𝑥𝑠⟩ ⊕ 𝑑 𝑒 ≡ redomap ⊕ (𝜆𝑥 → 𝑒) 𝑑 𝑥𝑠

≡ (reduce ⊕ 𝑑) ∘ (map (𝜆𝑥 → 𝑒)) 𝑥𝑠

≡ (reduce ⊕ 𝑑) ∘ (map (redomap ⊕ (𝜆𝑥 → 𝑒) 𝑑)) ∘ split𝑚/𝑞 𝑥𝑠

≡ segred ⟨𝑥 ∈ split𝑚/𝑞𝑥𝑠 > ⊕ 𝑑 (redomap ⊕ (𝜆𝑥 → 𝑒) 𝑑)

which is the first part of the transformed program.

Secondly we have that;

reduce ⊕ 𝑑 𝑦𝑠 ≡ redomap ⊕ (𝜆𝑦 → 𝑦) 𝑑 𝑦𝑠

≡ segred ⟨𝑦 ∈ 𝑦𝑠⟩ ⊕ 𝑑 𝑦

which is the second part of the transformed program

A.2.3 Scan

map (𝜆𝑥𝑠 → scan ⊕ 0⊕ 𝑥𝑠) 𝑥𝑠𝑠

≡
map (𝜆𝑥𝑠 →

let 𝑦𝑠 = map (𝜆𝑥 →
reduce ⊕ 0⊕ 𝑥

) (split𝜀 𝑥𝑠)

let 𝑧𝑠 = scan ⊕ 0⊕ 𝑦𝑠

in map (𝜆𝑥 𝑧 →
scan ⊕ 𝑧 𝑥

) (split𝜀 𝑥𝑠) 𝑧𝑠

) 𝑥𝑠𝑠

Listing 35: High level scan transformation rule.

segmap1
𝑛 ⟨𝑥𝑠 ∈ 𝑥𝑠𝑠⟩ (

segscan0
𝑚 ⟨𝑥 ∈ 𝑥𝑠⟩ ⊕ 𝑑 𝑒

)

≡
segmap1

𝑛 ⟨𝑥𝑠 ∈ 𝑥𝑠𝑠⟩ (

let 𝑚′ = ⌈𝑚/𝑞⌉
let 𝑦𝑠 =

segmap0
𝑚′ ⟨𝑥 ∈ split𝑞 𝑥𝑠⟩ (

redomap ⊕ (𝜆𝑦 → 𝑒) 𝑑 𝑥

)

let 𝑧𝑠 =

segscan𝑖𝑛𝑐𝑙
0
𝑚′ ⟨𝑦 ∈ 𝑦𝑠⟩ ⊕ 𝑑 𝑦

in segmap0
𝑚′ ⟨𝑧 ∈ 𝑧𝑠⟩⟨𝑥 ∈ split𝑞 𝑥𝑠⟩(

scanomap ⊕ (𝜆𝑦 → 𝑒) 𝑑 𝑥

)

)

Listing 36: Low level scan transformation rule.

The transformation rules can be seen in figure 35 and 36. To successfully split the scan up between multiple
chunks, each chunk needs to know the final sum of the previous chunks. The, pr. chunk sums are first
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computed with the reduce, which is then scanned across, to get the sum of previous chunks concerning all
the chunks. Then these, cross-chunk scan results, can then be used to perform the final scan.

A.2.4 Scatter

map (𝜆 𝑑𝑠 𝑖𝑠 𝑣𝑠 →
scatter 𝑑𝑠 𝑖𝑠 𝑣𝑠

) 𝑑𝑠𝑠 𝑖𝑠𝑠 𝑣𝑠𝑠

≡
map (𝜆 𝑑𝑠 𝑖𝑠 𝑣𝑠 →

loop 𝑑𝑠′ = 𝑑𝑠

for j < 𝑞 do

map (𝜆 𝑖 𝑣 →
scatter 𝑑𝑠 𝑖 𝑣

) (split𝑚/𝑞 is) (split𝑚/𝑞 vs)

) 𝑑𝑠𝑠 𝑖𝑠𝑠 𝑣𝑠𝑠

Listing 37: High level scatter transformation rule.

segmap1
𝑛 ⟨𝑑𝑠 ∈ 𝑑𝑠𝑠⟩⟨𝑖𝑠 ∈ 𝑖𝑠𝑠⟩⟨𝑣𝑠 ∈ 𝑣𝑠𝑠⟩ (

segmap0
𝑚 ⟨𝑖 ∈ 𝑖𝑠⟩⟨𝑣 ∈ 𝑣𝑠⟩ (

ds with [i] = v

)

)

≡
segmap1

𝑛 ⟨𝑑𝑠 ∈ 𝑑𝑠𝑠⟩⟨𝑖𝑠 ∈ 𝑖𝑠𝑠⟩⟨𝑣𝑠 ∈ 𝑣𝑠𝑠⟩ (

let 𝑚′ = ⌈𝑚/𝑞⌉
loop 𝑑𝑠′ = 𝑑𝑠

for j < 𝑞 do

segmap0
𝑚′ ⟨𝑖 ∈ split𝑚′𝑖𝑠⟩

⟨𝑣 ∈ split𝑚′𝑣𝑠⟩ (

𝑑𝑠′ with [𝑖] = 𝑣

)

)

Listing 38: Low level scatter transformation rule.

Neither notation lends itself particularly well to describe the transformation for scatter. The general idea
is that scatter distributes the indices from 𝑖𝑠 and values from 𝑣𝑠 into chunks for each thread to process.
The reason the destination 𝑑𝑠 is not chunked is that a thread might need to scatter elements to indices that
would be out of the bounds of the said chunk. All threads have access to all of 𝑑𝑠. There is no actual
segmented scatter operator in the intermediate representation. Instead, a scatter is represented with a
segmap which does not return anything but rather performs an in-place update of some array.
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B IntraSeq Module

1 {-# OPTIONS_GHC -Wno-unrecognised-pragmas #-}

2 {-# HLINT ignore "Use zipWith" #-}

3 {-# HLINT ignore "Use uncurry" #-}

4 {-# OPTIONS_GHC -Wno-name-shadowing #-}

5 {-# HLINT ignore "Use lambda-case" #-}

6 {-# HLINT ignore "Replace case with maybe" #-}

7 {-# LANGUAGE TypeFamilies #-}

8 {-# OPTIONS_GHC -Wno-orphans #-}

9 module Futhark.Optimise.IntraSeq (intraSeq) where

10
11 import Language.Futhark.Core

12 import Futhark.Pass

13 import Futhark.IR.GPU

14 import Futhark.Builder.Class

15 import Futhark.Construct

16 import Futhark.Transform.Rename

17
18 import Control.Monad.Reader

19 import Control.Monad.State

20
21 import Data.Map as M

22 import Data.IntMap.Strict as IM

23 import Data.List as L

24 import Data.Set as S

25
26 import Debug.Pretty.Simple

27 import Debug.Trace

28 import Data.Sequence

29 import Control.Monad.Trans.Except

30 import Control.Monad.Except

31 import Futhark.Transform.Substitute

32 import Futhark.IR.GPU.Simplify (simplifyGPU)

33
34 type SeqM a = ReaderT (Scope GPU) (State VNameSource) a

35
36 -- | A builder with additional fail functionality

37 type SeqBuilder a = ExceptT () (Builder GPU) a

38
39 runSeqBuilder ::

40 (MonadFreshNames m, HasScope GPU m, SameScope GPU GPU) =>
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41 SeqBuilder a ->

42 m (Maybe (Stms GPU))

43 runSeqBuilder (ExceptT b) = do

44 (tmp, stms) <- runBuilder b

45 case tmp of

46 Left _ -> pure Nothing

47 Right _-> pure . Just $ stms

48
49
50 collectSeqBuilder ::

51 SeqBuilder a ->

52 SeqBuilder (a, Stms GPU)

53 collectSeqBuilder (ExceptT b) = do

54 (tmp, stms) <- lift $ do collectStms b

55 case tmp of

56 Left _ -> throwError ()

57 Right x -> pure (x, stms)

58
59 collectSeqBuilder' ::

60 SeqBuilder a ->

61 SeqBuilder (Stms GPU)

62 collectSeqBuilder' (ExceptT b) = do

63 (tmp, stms) <- lift $ do collectStms b

64 case tmp of

65 Left _ -> throwError ()

66 Right _ -> pure stms

67
68
69
70
71 runSeqMExtendedScope :: SeqM a -> Scope GPU -> Builder GPU a

72 runSeqMExtendedScope m sc = do

73 scp <- askScope

74 let sc' = sc <> scp

75 let tmp = runReaderT m sc'

76 st <- get

77 let tmp' = runState tmp st

78 pure $ fst tmp'

79
80
81 -- | A structure for convenient passing of different information needed

at
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82 -- various stages during the pass.

83 data Env = Env {

84 grpId :: SubExp, -- The group id

85 grpSize :: SubExp, -- The group size after seq

86 grpsizeOld :: SubExp, -- The group size before seq

87 threadId :: Maybe VName, -- the thread id if available

88 nameMap :: M.Map VName VName, -- Mapping from arrays to tiles

89 seqFactor :: SubExp

90 }

91 deriving(Show)

92
93 setMapping :: Env -> M.Map VName VName -> Env

94 setMapping (Env gid gSize gSizeOld tid _ factor) mapping =

95 Env gid gSize gSizeOld tid mapping factor

96
97 updateMapping :: Env -> M.Map VName VName -> Env

98 updateMapping env mapping =

99 let mapping' = mapping `M.union` nameMap env

100 in setMapping env mapping'

101
102 memberMapping :: Env -> VName -> Bool

103 memberMapping env name = M.member name (nameMap env)

104
105 lookupMapping :: Env -> VName -> Maybe VName

106 lookupMapping env name

107 | M.member name (nameMap env) = do

108 case M.lookup name (nameMap env) of

109 Just n ->

110 case lookupMapping env n of

111 Nothing -> Just n

112 n' -> n'

113 Nothing -> Nothing

114 lookupMapping _ _ = Nothing

115
116 updateEnvTid :: Env -> VName -> Env

117 updateEnvTid (Env gid sz szo _ tm sq) tid = Env gid sz szo (Just tid)

tm sq

118
119 getThreadId :: Env -> VName

120 getThreadId env =

121 case threadId env of

122 (Just tid ) -> tid
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123 _ -> error "No tid to get"

124
125 findSeqAttr :: Attrs -> Maybe Attr

126 findSeqAttr (Attrs attrs) =

127 let attrs' = S.toList attrs

128 in case L.findIndex isSeqFactor attrs' of

129 Just i -> Just $ attrs' !! i

130 Nothing -> Nothing

131 where

132 isSeqFactor :: Attr -> Bool

133 isSeqFactor (AttrComp "seq_factor" [AttrInt _]) = True

134 isSeqFactor _ = False

135
136 getSeqFactor :: Attrs -> SubExp

137 getSeqFactor attrs =

138 case findSeqAttr attrs of

139 Just i' ->

140 let (AttrComp _ [AttrInt x]) = i'

141 in intConst Int64 x

142 Nothing -> intConst Int64 4

143
144 shouldSequentialize :: Attrs -> Bool

145 shouldSequentialize attrs =

146 case findSeqAttr attrs of

147 Just _ -> True

148 Nothing -> False

149
150
151 intraSeq :: Pass GPU GPU

152 intraSeq =

153 Pass "name" "description" $

154 intraproceduralTransformation onStms

155 >=> simplifyGPU

156 where

157 onStms scope stms =

158 modifyNameSource $

159 runState $

160 runReaderT (seqStms stms) scope

161
162 -- SeqStms is only to be used for top level statements. To

sequentialize

163 -- statements within a body use seqStms'
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164 seqStms ::

165 Stms GPU ->

166 SeqM (Stms GPU)

167 seqStms stms = do

168 tmp <- runSeqBuilder $ forM (stmsToList stms) seqStm

169 case tmp of

170 Nothing -> pure stms

171 Just stms' -> pure stms'

172
173 -- | Matches against singular statements at the group level. That is

statements

174 -- that are either SegOps at group level or intermediate statements

between

175 -- such statements

176 seqStm ::

177 Stm GPU ->

178 SeqBuilder ()

179 seqStm stm@(Let pat aux (Op (SegOp (

180 SegMap (SegGroup virt (Just grid)) space ts

181 (KernelBody _ stms kres)))))

182 | L.length (unSegSpace space) /= 1 = lift $ do addStm stm

183 | not $ shouldSequentialize (stmAuxAttrs aux) = lift $ do addStm stm

184 | otherwise = do

185
186 let seqFactor = getSeqFactor $ stmAuxAttrs aux

187 let grpId = fst $ head $ unSegSpace space

188 let sizeOld = unCount $ gridGroupSize grid

189 sizeNew <- lift $ do letSubExp "group_size" =<< eBinOp (SDivUp

Int64 Unsafe)

190 (eSubExp sizeOld)

191 (eSubExp seqFactor)

192
193 let env = Env (Var grpId) sizeNew sizeOld Nothing mempty seqFactor

194
195 -- As we need to catch 'internal' errors we use runSeqBuilder here

196 res <- runSeqBuilder $ do

197
198
199 exp' <- buildSegMap' $ do

200 env' <- mkTiles env

201
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202 let grid' = Just $ KernelGrid (gridNumGroups grid) (Count

sizeNew)

203 let lvl' = SegGroup virt grid'

204
205 _ <- seqStms' env' stms

206
207 kres' <- lift $ do flattenResults pat kres

208 pure (kres', lvl', space, ts)

209
210 lift $ do addStm $ Let pat aux exp'

211
212 -- Based on error or not we now return the correct program

213 case res of

214 Nothing -> lift $ do addStm stm

215 -- Just stms' -> lift $ do addStms stms'

216 Just stms'

217 | not $ isOneStm (stmsToList stms') -> lift $ do addStm stm

218 | otherwise -> do

219 let [stm'] = stmsToList stms'

220
221 -- Create the braches with each code version

222 body1 <- lift $ do mkMatchBody stm'

223 body2 <- lift $ do mkMatchBody stm

224
225 -- Create the conditional statements

226 cond <- lift $ do eCmpOp (CmpSle Int64) (eSubExp $ intConst

Int64 32) (eSubExp $ grpSize env)

227
228 matchExp <- lift $ do eIf' (pure cond) (pure body1) (pure

body2) MatchEquiv

229
230 lift $ do addStm (Let pat aux matchExp)

231
232 where

233 isOneStm :: [Stm GPU] -> Bool

234 isOneStm [_] = True

235 isOneStm _ = False

236
237 mkMatchBody :: Stm GPU -> Builder GPU (Body GPU)

238 mkMatchBody stm = do

239 let (Let pat' aux' exp') = stm

240 newPat <- renamePat pat'
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241 newExp <- renameExp exp'

242 let newStm = Let newPat aux' newExp

243 let (Let pat' _ _) = newStm

244 let pNames = L.map patElemName $ patElems pat'

245 let res = L.map (SubExpRes mempty . Var) pNames

246 pure $ Body mempty (stmsFromList [newStm]) res

247
248
249
250
251 seqStm (Let pat aux (Match scrutinee cases def dec)) = do

252 cases' <- forM cases seqCase

253 let (Body ddec dstms dres) = def

254 dstms' <- collectSeqBuilder' $ forM (stmsToList dstms) seqStm

255 (dres', stms') <- collectSeqBuilder $ localScope (scopeOf dstms') $

fixReturnTypes pat dres

256 let def' = Body ddec (dstms' <> stms') dres'

257 lift $ do addStm $ Let pat aux (Match scrutinee cases' def' dec)

258 where

259 seqCase :: Case (Body GPU) -> SeqBuilder (Case (Body GPU))

260 seqCase (Case cpat body) = do

261 let (Body bdec bstms bres) = body

262 bstms' <- collectSeqBuilder' $

263 forM (stmsToList bstms) seqStm

264 (bres', stms') <- collectSeqBuilder $ localScope (scopeOf bstms')

$ fixReturnTypes pat bres

265 let body' = Body bdec (bstms' <> stms') bres'

266 pure $ Case cpat body'

267
268 seqStm (Let pat aux (Loop header form body)) = do

269 let fparams = L.map fst header

270 let (Body bdec bstms bres) = body

271 bstms' <- collectSeqBuilder' $

272 localScope (scopeOfFParams fparams) $

273 forM_ (stmsToList bstms) seqStm

274 (bres', stms') <- collectSeqBuilder $

275 localScope (scopeOf bstms') $

276 fixReturnTypes pat bres

277 let body' = Body bdec (bstms' <> stms') bres'

278 lift $ do addStm $ Let pat aux (Loop header form body')

279
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280 -- Catch all pattern. This will mainly just tell us if we encounter

some

281 -- statement in a test program so that we know that we will have to

handle it

282 seqStm stm = lift $ do addStm stm

283
284
285 -- | Much like seqStms but now carries an Env

286 seqStms' ::

287 Env ->

288 Stms GPU ->

289 SeqBuilder ()

290 seqStms' env stms = do forM_ (stmsToList stms) (seqStm' env)

291
292
293
294 -- |Expects to only match on statements at thread level. That is SegOps

at

295 -- thread level or statements between such SegOps

296 seqStm' ::

297 Env ->

298 Stm GPU ->

299 SeqBuilder ()

300 seqStm' env (Let pat aux

301 (Op (SegOp (SegRed lvl@(SegThread {}) space binops ts kbody

))))

302 | L.length (unSegSpace space) /= 1 = throwError ()

303 | differentSize space env = throwError ()

304 | otherwise = do

305 let tid = fst $ head $ unSegSpace space

306 let env' = updateEnvTid env tid

307
308 -- thread local reduction

309 reds <- lift $ do mkIntmRed env' kbody ts binops

310 kbody' <- lift $ do mkResultKBody env' kbody reds

311
312 -- Update existing SegRed

313 -- we need numResConsumed because reduction result types are

unchanged

314 let numResConsumed = numArgsConsumedBySegop binops

315 let space' = SegSpace (segFlat space) [(tid, grpSize env')]

316
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317 tps <- mapM lookupType reds

318 let ts' = L.map (stripArray 1) tps

319 pat' <- updateSegOpPatTypes numResConsumed pat tps

320 lift $ do addStm $ Let pat' aux (Op (SegOp (SegRed lvl space'

binops ts' kbody')))

321
322 seqStm' env stm@(Let pat _ (Op (SegOp

323 (SegMap lvl@(SegThread {}) space ts kbody))))

324 | L.length (unSegSpace space) /= 1 = throwError ()

325 | differentSize space env = throwError ()

326 | isScatter kbody = seqScatter env stm

327 | otherwise = do

328 let tid = fst $ head $ unSegSpace space

329 exp <- buildSegMap' $ do

330 phys <- newVName "phys_tid"

331 let env' = updateEnvTid env tid

332 usedArrays <- lift $ do getUsedArraysIn env kbody

333 iot <- lift $ do buildSeqFactorIota env

334 lambSOAC <- lift $ do buildSOACLambda env' usedArrays iot kbody

ts

335 let screma = mapSOAC lambSOAC

336 chunks <- lift $ do mapM (getChunk env') usedArrays

337 res <- lift $ do letTupExp' "res" $ Op $ OtherOp $

338 Screma (seqFactor env) (chunks ++ [iot])

screma

339 let space' = SegSpace phys [(tid, grpSize env)]

340 let types' = scremaType (seqFactor env) screma

341 let kres = L.map (Returns ResultMaySimplify mempty) res

342 pure (kres, lvl, space', types')

343
344 let names = patNames pat

345 lift $ do letBindNames names exp

346
347 seqStm' env (Let pat aux

348 (Op (SegOp (SegScan (SegThread {}) space binops ts kbody)))

)

349 | L.length (unSegSpace space) /= 1 = throwError ()

350 | differentSize space env = throwError ()

351 | otherwise = do

352 usedArrays <- lift $ do getUsedArraysIn env kbody

353
354 -- do local reduction
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355 let tid = fst $ head $ unSegSpace space

356 let env' = updateEnvTid env tid

357 reds <- lift $ do mkIntmRed env' kbody ts binops

358 let numResConsumed = numArgsConsumedBySegop binops

359 let (scanReds, fusedReds) = L.splitAt numResConsumed reds

360
361 -- scan over reduction results

362 imScan <- lift . buildSegScan "scan_agg" $ do

363 tid' <- newVName "tid"

364 let env'' = updateEnvTid env tid'

365 phys <- newVName "phys_tid"

366 binops' <- renameSegBinOp binops

367
368 let lvl' = SegThread SegNoVirt Nothing

369 let space' = SegSpace phys [(tid', grpSize env'')]

370 results <- mapM (buildKernelResult env'') scanReds

371 let ts' = L.take numResConsumed ts

372 pure (results, lvl', space', binops', ts')

373
374 scans' <- lift . buildSegMapTup_ "scan_res" $ do

375 tid' <- newVName "tid"

376 phys <- newVName "phys_tid"

377
378 let neutrals = L.map segBinOpNeutral binops

379 scanLambdas <- mapM (renameLambda . segBinOpLambda) binops

380
381 let scanNames = L.map getVName imScan

382
383 idx <- letSubExp "idx" =<< eBinOp (Sub Int64 OverflowUndef)

384 (eSubExp $ Var tid')

385 (eSubExp $ intConst Int64 1)

386 nes <- forM neutrals (\n -> letTupExp' "ne" =<< eIf (eCmpOp (

CmpEq $ IntType Int64)

387 (eSubExp $ Var tid')

388 (eSubExp $ intConst Int64 0)

389 )

390 (eBody $ L.map toExp n)

391 (eBody $ L.map (\s -> eIndex s [

eSubExp idx]) scanNames))

392
393 let tidMap = M.singleton tid tid'

394 let kbody' = substituteNames tidMap kbody
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395 iot <- buildSeqFactorIota env

396 let env'' = updateEnvTid env tid'

397 lambSOAC <- buildSOACLambda env'' usedArrays iot kbody' ts

398 let scans = L.map (\(l, n) -> Scan l n) $ L.zip scanLambdas nes

399 let scanSoac = scanomapSOAC scans lambSOAC

400 es <- mapM (getChunk env'') usedArrays

401 res <- letTupExp' "res" $ Op $ OtherOp $ Screma (seqFactor env)

(es ++ [iot]) scanSoac

402 let usedRes = L.map (Returns ResultMaySimplify mempty) $ L.take

numResConsumed res

403 fused <- mapM (buildKernelResult env'') fusedReds

404
405 let lvl' = SegThread SegNoVirt Nothing

406 let space' = SegSpace phys [(tid', grpSize env)]

407 let types' = scremaType (seqFactor env) scanSoac

408 pure (usedRes ++ fused, lvl', space', types')

409
410 tps <- mapM lookupType scans'

411 let shapes = L.map arrayShape tps

412 let shapes' = L.map (\s -> setOuterDims s 2 (Shape [grpsizeOld

env])) shapes

413 let tps' = L.map (\(t, s) -> setArrayShape t s) (L.zip tps shapes

')

414 -- let tps' = mapM setArrayShape tps (Shape [grpsizeOld env])

415 pat' <- updateSegOpPatTypes 0 pat tps'

416 lift $

417 do forM_ (L.zip (patElems pat') scans') (\(p, s) -> do

418 let shape = arrayShape $ patElemType p

419 let exp' = BasicOp $ Reshape ReshapeArbitrary shape s

420 addStm $ Let (Pat [p]) aux exp')

421
422 seqStm' env (Let pat aux (Match scrutinee cases def dec)) = do

423 cases' <- forM cases seqCase

424 let (Body ddec dstms dres) = def

425 dstms' <- collectSeqBuilder' $ forM (stmsToList dstms) (seqStm' env)

426 (dres', stms') <- collectSeqBuilder $ localScope (scopeOf dstms') $

fixReturnTypes pat dres

427 let def' = Body ddec (dstms' <> stms') dres'

428 lift $ do addStm $ Let pat aux (Match scrutinee cases' def' dec)

429 where

430 seqCase :: Case (Body GPU) -> SeqBuilder (Case (Body GPU))

431 seqCase (Case cpat body) = do
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432 let (Body bdec bstms bres) = body

433 bstms' <- collectSeqBuilder' $

434 forM (stmsToList bstms) (seqStm' env)

435 (bres', stms') <- collectSeqBuilder $ localScope (scopeOf bstms')

$ fixReturnTypes pat bres

436 let body' = Body bdec (bstms' <> stms') bres'

437 pure $ Case cpat body'

438
439
440 seqStm' env (Let pat aux (Loop header form body)) = do

441 let fparams = L.map fst header

442 let (Body bdec bstms bres) = body

443 bstms' <- collectSeqBuilder' $

444 localScope (scopeOfFParams fparams) $

445 forM_ (stmsToList bstms) (seqStm' env)

446 (bres', stms') <- collectSeqBuilder $

447 localScope (scopeOf bstms') $

448 fixReturnTypes pat bres

449 let body' = Body bdec (bstms' <> stms') bres'

450 lift $ do addStm $ Let pat aux (Loop header form body')

451
452
453
454 -- Catch all

455 seqStm' _ stm = lift $ do addStm stm

456
457 -- Update types of pat to match the return types of an intermediate

SegOp

458 -- first keep patterns will not be changed

459 updateSegOpPatTypes :: Int -> Pat Type -> [Type] -> SeqBuilder(Pat Type

)

460 updateSegOpPatTypes keep pat tps = do

461 let (patKeep, patUpdate) = L.splitAt keep $ patElems pat

462 pure $ Pat $ patKeep ++

463 L.map (\(p, t) -> setPatElemDec p t) (L.zip patUpdate (L.drop

keep tps))

464
465
466
467 seqScatter :: Env -> Stm GPU -> SeqBuilder ()

468 seqScatter env (Let pat aux (Op (SegOp

469 (SegMap (SegThread {}) space ts kbody))))
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470 | L.length (unSegSpace space) /= 1 = throwError ()

471 | otherwise = do

472
473 -- Create the Loop expression

474 let (dests, upds) = L.unzip $ L.map (\(WriteReturns _ dest upds )

-> (dest, upds)) (kernelBodyResult kbody)

475 loopInit <-

476 forM dests $ \d -> do

477 tp <- lookupType d

478 let decl = toDecl tp Unique

479 p <- newParam "loop_param" decl

480 pure (p, Var d)

481
482
483 -- Collect a set of all is and vs used in returns (only the Vars)

484 let upds' = L.concatMap (\ (slice, vs) -> do

485 let is = L.map (\ dim ->

486 case dim of

487 DimFix d -> d

488 _ -> error "please no"

489 ) (unSlice slice)

490 vs : is

491 ) $ concat upds

492 let upd'' = L.filter (\u ->

493 case u of

494 Var _ -> True

495 _ -> False

496 ) upds'

497 let updNames = S.fromList $ L.map (\(Var n) -> n) upd''

498 -- Intersect it with all pattern names from the kbody

499 let names = S.fromList $ L.concatMap (\ (Let pat _ _) ->

500 patNames pat

501 ) $ kernelBodyStms kbody

502 -- The names that should have "producing statements"

503 let pStms = S.toList $ S.difference updNames names

504
505 let paramMap = M.fromList $ L.map invert loopInit

506
507 i <- newVName "loop_i"

508 let loopForm = ForLoop i Int64 (seqFactor env)

509
510 body <- lift . buildBody_ $ do
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511
512 mapRes <- buildSegMapTup "map_res" $ do

513 let tid = fst $ head $ unSegSpace space

514 phys <- newVName "phys_tid"

515
516 -- size <- mkChunkSize tid env

517 offset <- letSubExp "offset" $ BasicOp $

518 BinOp (Mul Int64 OverflowUndef) (Var tid) (

seqFactor env)

519 tmp <- letSubExp "tmp" $ BasicOp $

520 BinOp (Sub Int64 OverflowUndef) (grpsizeOld env

) offset

521 size <- letSubExp "size" $ BasicOp $

522 BinOp (SMin Int64) tmp (seqFactor env)

523 size' <- letSubExp "size'" =<< eBinOp (Sub Int64

OverflowUndef)

524 (eSubExp size)

525 (eSubExp $ intConst

Int64 1)

526 i' <- letSubExp "loop_i'" $ BasicOp $

527 BinOp (SMin Int64) size' (Var i)

528 idx <- letSubExp "idx" =<< eBinOp (Add Int64 OverflowUndef)

529 (eSubExp i')

530 (eSubExp offset)

531
532 -- Modify original statements

533 forM_ (kernelBodyStms kbody) $ \ stm -> do

534 case stm of

535 (Let pat' aux' (BasicOp (Index arr _))) -> do

536 let arr' = M.findWithDefault arr arr (nameMap env

)

537 tp' <- lookupType arr'

538 let slice' = case arrayRank tp' of

539 1 -> Slice [DimFix idx]

540 2 -> Slice [DimFix $ Var tid,

DimFix i']

541 _ -> error "Scatter more than two

dimensions"

542 addStm $ Let pat' aux' (BasicOp (Index arr' slice

'))

543 stm -> addStm stm

544
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545 -- Potentially create more statements and create a mapping

from the

546 -- original name to the new subExp

547 mapping <- forM pStms $ \ nm -> do

548 offset <- letSubExp "iota_offset" =<< eBinOp (Mul Int64

OverflowUndef)

549 (eSubExp $

Var tid)

550 (eSubExp $

seqFactor env)

551 val <- letSubExp "iota_val" =<< eBinOp (Add Int64

OverflowUndef)

552 (eSubExp

offset)

553 (eSubExp i')

554 pure (Var nm, val)

555 let valMap = M.fromList mapping

556
557
558 -- Update the original WriteReturns to target the loop

params instead

559 res' <- forM (kernelBodyResult kbody) $ \ res -> do

560 case res of

561 (WriteReturns _ dest upd) -> do

562 let (Just destParam) = M.lookup (Var dest)

paramMap

563 let dest' = paramName destParam

564 let upd' = L.map (mapUpdates valMap) upd

565 pure $ WriteReturns mempty dest' upd'

566 _ -> error "Expected WriteReturns in scatter"

567
568 -- Return the results of the update statements form the

segmap

569 let lvl' = SegThread SegNoVirt Nothing

570 let space' = SegSpace phys [(tid, grpSize env)]

571 -- let res' = L.map (Returns ResultMaySimplify mempty)

updates

572 pure (res', lvl', space', ts)

573
574
575 -- Return the results from the segmap from the loop

576 let res = L.map (SubExpRes mempty) mapRes
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577 pure res

578
579 -- Construct the final loop

580 let loopExp = Loop loopInit loopForm body

581
582 lift $ do addStm $ Let pat aux loopExp

583
584 where

585 invert (a,b) = (b,a)

586
587 mapUpdates :: M.Map SubExp SubExp -> (Slice SubExp, SubExp) -> (

Slice SubExp, SubExp)

588 mapUpdates mapping (Slice dims, vs) = do

589 let vs' = M.findWithDefault vs vs mapping

590 let dims' = L.map (\d ->

591 case d of

592 DimFix d' -> DimFix $ M.findWithDefault d' d' mapping

593 d' -> d' -- should never happen

594 ) dims

595 (Slice dims', vs')

596
597
598 seqScatter _ stm = error $

599 "SeqScatter error. Should be a map at thread level

but got"

600 ++ show stm

601
602 buildSeqFactorIota :: Env -> Builder GPU VName

603 buildSeqFactorIota env = do

604 letExp "seq_index_iota" $ BasicOp $

605 Iota (seqFactor env) (intConst Int64 0) (intConst Int64 1) Int64

606
607
608 -- | Fixes the type of results and returns new results

609 fixReturnTypes :: Pat (LetDec GPU) -> Result -> SeqBuilder Result

610 fixReturnTypes pat result = do

611 let pelems = patElems pat

612 let pairs = L.zip pelems result

613 mapM fix pairs

614 where

615 fix :: (PatElem Type, SubExpRes) -> SeqBuilder SubExpRes

616 fix (pelem, subres) = do
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617 let pdec = patElemDec pelem

618 sdec <- subExpResType subres

619
620 -- If the types differ create some statements to fix it

621 if sdec == pdec then

622 pure subres

623 else

624 case subExpResVName subres of

625 Nothing -> pure subres -- constant just return original

626 Just name -> lift $ do

627 let newShape = arrayShape pdec

628 resSubExp <- letSubExp "res_falt" $ BasicOp $

629 Reshape ReshapeArbitrary newShape name

630 pure $ subExpRes resSubExp

631
632 buildSOACLambda :: Env -> [VName] -> VName -> KernelBody GPU -> [Type]

-> Builder GPU (Lambda GPU)

633 buildSOACLambda env usedArrs indexName kbody retTs = do

634 let tid = getThreadId env

635 ts <- mapM lookupType usedArrs

636 let ts' = L.map (Prim . elemType) ts

637 params <- mapM (newParam "par" ) ts'

638 itp <- lookupType indexName

639 indexParam <- newParam "par_index" $ Prim $ elemType itp

640 offset <- letSubExp "offset" =<< eBinOp (Mul Int64 OverflowUndef)

641 (eSubExp $ seqFactor env)

642 (eSubExp $ Var tid)

643 (gTid, stms') <- collectStms $ letExp "gtid" =<< eBinOp (Add Int64

OverflowUndef)

644 (eSubExp

offset)

645 (eSubExp $

Var $ paramName indexParam)

646 let mapping = M.fromList $ L.zip (usedArrs ++ [tid]) $ L.map

paramName params ++ [gTid]

647 let env' = updateMapping env mapping

648
649 kbody' <- runSeqMExtendedScope (seqKernelBody' env' kbody) (

scopeOfLParams params)

650 let body = kbodyToBodyWithStms kbody' stms'

651 renameLambda $

652 Lambda
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653 { lambdaParams = params ++ [indexParam],

654 lambdaBody = body,

655 lambdaReturnType = retTs

656 }

657
658 getVName :: SubExp -> VName

659 getVName (Var name) = name

660 getVName e = error $ "SubExp is not of type Var in getVName:\n" ++ show

e

661
662 getTidIndexExp :: Env -> VName -> Builder GPU (Exp GPU)

663 getTidIndexExp env name = do

664 tp <- lookupType name

665 let outerDim = [DimFix $ Var $ getThreadId env]

666 let index =

667 case arrayRank tp of

668 0 -> SubExp $ Var name

669 1 -> Index name $ Slice outerDim

670 _ -> do

671 let dims = L.tail $ arrayDims tp

672 let innerDims = L.map (\d -> DimSlice (intConst Int64 0) d

(intConst Int64 1)) dims

673 let allDims = outerDim ++ innerDims

674 Index name $ Slice allDims

675 pure $ BasicOp index

676
677 -- build a kernelresult from a single vName

678 buildKernelResult :: Env -> VName -> Builder GPU KernelResult

679 buildKernelResult env name = do

680 i <- getTidIndexExp env name

681 res <- letSubExp "res" i

682 pure $ Returns ResultMaySimplify mempty res

683
684 -- Creates a new kernelbody with the provided names as its results

685 mkResultKBody :: Env -> KernelBody GPU -> [VName] -> Builder GPU (

KernelBody GPU)

686 mkResultKBody env (KernelBody dec _ _) names = do

687 (res, stms) <- collectStms $ do mapM (buildKernelResult env) names

688 pure $ KernelBody dec stms res

689
690 -- get the number of results consumed by a segop

691 -- i.e. the number of non-map results fed into the binops of the segop
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692 numArgsConsumedBySegop :: [SegBinOp GPU] -> Int

693 numArgsConsumedBySegop binops =

694 let numResUsed = L.foldl

695 (\acc (SegBinOp _ (Lambda pars _ _) neuts _)

696 -> acc + L.length pars - L.length neuts) 0 binops

697 in numResUsed

698
699 seqKernelBody' ::

700 Env ->

701 KernelBody GPU ->

702 SeqM (KernelBody GPU)

703 seqKernelBody' env (KernelBody dec stms results) = do

704 stms' <- seqStms'' env stms

705 pure $ KernelBody dec stms' results

706
707 seqStms'' ::

708 Env ->

709 Stms GPU ->

710 SeqM (Stms GPU)

711 seqStms'' env stms = do

712 foldM (\ss s -> do

713 ss' <- runBuilder_ $ localScope (scopeOf ss <> scopeOf s) $

seqStm'' env s

714 pure $ ss <> ss'

715 ) mempty (stmsToList stms)

716
717 seqStm'' ::

718 Env ->

719 Stm GPU ->

720 Builder GPU ()

721 seqStm'' env (Let pat aux (BasicOp (Index arr _)))

722 | memberMapping env arr = do

723 let (Just name) = lookupMapping env arr

724 i <- getTidIndexExp env name

725 addStm $ Let pat aux i

726
727 seqStm'' env stm = do

728 let tid = getThreadId env

729 case lookupMapping env tid of

730 Just gtid -> addStm $ substituteNames (M.singleton tid gtid) stm

731 Nothing -> addStm stm

732
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733 -- create the intermediate reduction used in scan and reduce

734 mkIntmRed ::

735 Env ->

736 KernelBody GPU ->

737 [Type] -> -- segmap return types

738 [SegBinOp GPU] ->

739 Builder GPU [VName]

740 mkIntmRed env kbody retTs binops = do

741 let ne = L.map segBinOpNeutral binops

742 lambda <- mapM (renameLambda . segBinOpLambda) binops

743
744 buildSegMapTup_ "red_intermediate" $ do

745 tid <- newVName "tid"

746 let env' = updateEnvTid env tid

747 phys <- newVName "phys_tid"

748 sz <- mkChunkSize tid env

749 usedArrs <- getUsedArraysIn env kbody

750 let tidMap = M.singleton (getThreadId env) tid

751 let kbody' = substituteNames tidMap kbody

752 iot <- buildSeqFactorIota env

753 lambSOAC <- buildSOACLambda env' usedArrs iot kbody' retTs

754 -- TODO analyze if any fused maps then produce reduce?

755 -- we build the reduce as a scan initially

756 let scans = L.map (\(l, n) -> Scan l n) $ L.zip lambda ne

757 let screma = scanomapSOAC scans lambSOAC

758 chunks <- mapM (getChunk env') usedArrs

759
760 res <- letTupExp' "res" $ Op $ OtherOp $

761 Screma (seqFactor env) (chunks ++ [iot]) screma

762 let numRes = numArgsConsumedBySegop binops

763 let (scanRes, mapRes) = L.splitAt numRes res

764
765 -- get the reduction result from the scan

766 redIndex <- letSubExp "red_index" =<< eBinOp (Sub Int64

OverflowUndef)

767 (eSubExp sz)

768 (eSubExp $ intConst

Int64 1)

769 redRes <- forM scanRes (\r -> do

770 let rName = getVName r

771 rType <- lookupType rName

772 let rDims = L.tail $ arrayDims rType
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773 let innerDims = L.map (\d -> DimSlice (intConst Int64 0) d (

intConst Int64 1)) rDims

774 let newDims = DimFix redIndex : innerDims

775 letSubExp "red_res" $ BasicOp $ Index (getVName r) (Slice

newDims)

776 )

777 let res' = redRes ++ mapRes

778 let lvl' = SegThread SegNoVirt Nothing

779 let space' = SegSpace phys [(tid, grpSize env)]

780 let kres = L.map (Returns ResultMaySimplify mempty) res'

781 types' <- mapM subExpType res'

782 pure (kres, lvl', space', types')

783
784 getUsedArraysIn ::

785 Env ->

786 KernelBody GPU ->

787 Builder GPU [VName]

788 getUsedArraysIn env kbody = do

789 scope <- askScope

790 let (arrays, _) = L.unzip $ M.toList $ M.filter isArray scope

791 let free = IM.elems $ namesIntMap $ freeIn kbody

792 let freeArrays = arrays `intersect` free

793 let arrays' =

794 L.map ( \ arr ->

795 if M.member arr (nameMap env) then

796 let (Just tile) = M.lookup arr (nameMap env)

797 in tile

798 else arr

799 ) freeArrays

800 pure arrays'

801
802
803 getChunk ::

804 Env ->

805 VName -> -- Array to get chunk from

806 Builder GPU VName

807 getChunk env arr = do

808 let tid = getThreadId env

809 let sz = seqFactor env

810 tp <- lookupType arr

811 offset <- letSubExp "offset" =<< eBinOp (Mul Int64 OverflowUndef)

812 (eSubExp $ seqFactor env)
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813 (eSubExp $ Var tid)

814 let dims =

815 case arrayRank tp of

816 1 -> [DimSlice offset sz (intConst Int64 1)]

817 2 -> [DimFix $ Var tid, DimSlice (intConst Int64 0) sz (

intConst Int64 1)]

818 _ -> error "unhandled dims in getChunk"

819
820 letExp "chunk" $ BasicOp $ Index arr (Slice dims)

821
822 -- conver the kernelbody to a body prepended with the additional

statements

823 kbodyToBodyWithStms :: KernelBody GPU -> Stms GPU -> Body GPU

824 kbodyToBodyWithStms (KernelBody dec stms res) stms' =

825 let res' = L.map (subExpRes . kernelResultSubExp) res

826 in Body

827 { bodyDec = dec,

828 bodyStms = stms' >< stms,

829 bodyResult = res'

830 }

831
832
833 flattenResults ::

834 Pat (LetDec GPU)->

835 [KernelResult] ->

836 Builder GPU [KernelResult]

837 flattenResults pat kresults = do

838 subExps <- forM (L.zip kresults $ patTypes pat) $ \(res, tp)-> do

839 let resSubExp = kernelResultSubExp res

840 case resSubExp of

841 (Constant _) -> letSubExp "const_res" $ BasicOp $ SubExp

resSubExp

842 (Var name) -> do

843 resType <- lookupType name

844 if arrayRank resType == 0 then

845 letSubExp "scalar_res" $ BasicOp $ SubExp resSubExp

846 else

847 letSubExp "reshaped_res" $ BasicOp $

848 Reshape ReshapeArbitrary (arrayShape $

stripArray 1 tp) name

849
850 let kresults' = L.map (Returns ResultMaySimplify mempty) subExps
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851
852 pure kresults'

853
854 renameSegBinOp :: [SegBinOp GPU] -> Builder GPU [SegBinOp GPU]

855 renameSegBinOp segbinops =

856 forM segbinops $ \(SegBinOp comm lam ne shape) -> do

857 lam' <- renameLambda lam

858 pure $ SegBinOp comm lam' ne shape

859
860 -- Generates statements that compute the pr. thread chunk size. This is

needed

861 -- as the last thread in a block might not have seqFactor amount of

elements

862 -- to read.

863 mkChunkSize ::

864 VName -> -- The thread id

865 Env ->

866 Builder GPU SubExp -- Returns the SubExp in which the size is

867 mkChunkSize tid env = do

868 offset <- letSubExp "offset" $ BasicOp $

869 BinOp (Mul Int64 OverflowUndef) (Var tid) (seqFactor env)

870 tmp <- letSubExp "tmp" $ BasicOp $

871 BinOp (Sub Int64 OverflowUndef) (grpsizeOld env) offset

872 letSubExp "size" $ BasicOp $

873 BinOp (SMin Int64) tmp (seqFactor env)

874
875
876 -- | Creates a tile for each array in scope at the time of caling it.

877 -- That is if called at the correct time it will create a tile for each

878 -- global array

879 mkTiles ::

880 Env ->

881 SeqBuilder Env

882 mkTiles env = do

883 scope <- askScope

884 let arrsInScope = M.toList $ M.filter isArray scope

885
886 tileSize <- lift $ do letSubExp "tile_size" =<< eBinOp (Mul Int64

OverflowUndef)

887 (eSubExp $ seqFactor env

)

888 (eSubExp $ grpSize env)
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889
890 tiles <- forM arrsInScope $ \ (arrName, arrInfo) -> do

891 let tp = elemType $ typeOf arrInfo

892
893 tileScratch <- lift $ do letExp "tile_scratch" $ BasicOp $

894 Scratch tp [tileSize]

895
896 -- Check the type of the array to see if has been transposed

897 arrType <- lookupType arrName

898 let arrShape = arrayShape arrType

899 let dim = DimSlice (intConst Int64 0) (grpsizeOld env) (intConst

Int64 1)

900 slice' <- case arrShape of

901 (Shape [_]) -> pure $ Slice [dim]

902 (Shape [n, _])

903 | grpsizeOld env /= n -> pure $ Slice [DimFix $

grpId env, dim]

904 | otherwise -> pure $ Slice [dim, DimFix $ grpId

env]

905 _ -> throwError ()

906
907
908 tileSlice <- lift $ do letSubExp "tile_slice" $ BasicOp $ Index

arrName slice'

909 tileStaging <- lift $ do letExp "tile_staging" $ BasicOp $

910 Update Unsafe tileScratch

911 (Slice [DimSlice (intConst Int64 0)

912 (grpsizeOld env)

913 (intConst Int64 1)]

914 ) tileSlice

915
916 -- Now read the chunks using a segmap

917 let (VName n _) = arrName

918 tile <- lift $ buildSegMap_ ("tile_" ++ nameToString n) $ do

919 tid <- newVName "tid"

920 phys <- newVName "phys"

921
922 start <- letSubExp "start" =<< eBinOp (Mul Int64 OverflowUndef)

923 (eSubExp $ Var tid)

924 (eSubExp $ seqFactor env)

925
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926 let slice = Slice [DimSlice start (seqFactor env) (intConst Int64

1)]

927 chunk <- letSubExp "chunk" $ BasicOp $ Index tileStaging slice

928
929 let lvl = SegThread SegNoVirt Nothing

930 let space = SegSpace phys [(tid, grpSize env)]

931 let types = [Array tp (Shape [seqFactor env]) NoUniqueness]

932 let res = [Returns ResultPrivate mempty chunk]

933 pure (res, lvl, space, types)

934
935
936 pure (arrName, tile)

937
938 pure $ setMapping env (M.fromList tiles)

939
940
941 isArray :: NameInfo GPU -> Bool

942 isArray info = arrayRank (typeOf info) > 0

943
944 -- Assumes the SegSpace to only have a single dimension

945 differentSize :: SegSpace -> Env -> Bool

946 differentSize space env =

947 let sz = snd $ head $ unSegSpace space

948 in sz /= grpsizeOld env

949
950 -- | Checks if a kernel body ends in only WriteReturns results as then

it

951 -- must be the body of a scatter

952 isScatter :: KernelBody GPU -> Bool

953 isScatter (KernelBody _ _ res) =

954 L.all isWriteReturns res

955 where

956 isWriteReturns (WriteReturns {}) = True

957 isWriteReturns _ = False

958
959 buildSegMap' ::

960 SeqBuilder ([KernelResult], SegLevel, SegSpace, [Type]) ->

961 SeqBuilder (Exp GPU)

962 buildSegMap' (ExceptT m) = do

963 (tmp, stms) <- lift . collectStms $ m

964 case tmp of

965 Left _ -> throwError ()
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966 Right (kres, lvl, space, ts) -> do

967 let kbody = KernelBody () stms kres

968 pure $ Op $ SegOp $ SegMap lvl space ts kbody

969
970 -- Builds a SegMap at thread level containing all bindings created in m

971 -- and returns the subExp which is the variable containing the result

972 buildSegMap ::

973 String ->

974 Builder GPU ([KernelResult], SegLevel, SegSpace, [Type]) ->

975 Builder GPU SubExp

976 buildSegMap name m = do

977 ((res, lvl, space, ts), stms) <- collectStms m

978 let kbody = KernelBody () stms res

979 letSubExp name $ Op $ SegOp $ SegMap lvl space ts kbody

980
981 -- Like buildSegMap but returns the VName instead of the actual

982 -- SubExp. Just for convenience

983 buildSegMap_ ::

984 String ->

985 Builder GPU ([KernelResult], SegLevel, SegSpace, [Type]) ->

986 Builder GPU VName

987 buildSegMap_ name m = do

988 subExps <- buildSegMap name m

989 pure $ varFromExp subExps

990 where

991 varFromExp :: SubExp -> VName

992 varFromExp (Var nm) = nm

993 varFromExp e = error $ "Expected SubExp of type Var, but got:\n" ++

show e

994
995 -- like buildSegMap but builds a tup exp

996 buildSegMapTup ::

997 String ->

998 Builder GPU ([KernelResult], SegLevel, SegSpace, [Type]) ->

999 Builder GPU [SubExp]

1000 buildSegMapTup name m = do

1001 ((res, lvl, space, ts), stms) <- collectStms m

1002 let kbody = KernelBody () stms res

1003 letTupExp' name $ Op $ SegOp $ SegMap lvl space ts kbody

1004
1005 -- Like buildSegMapTup but returns the VName instead of the actual

1006 -- SubExp. Just for convenience

88



1007 buildSegMapTup_ ::

1008 String ->

1009 Builder GPU ([KernelResult], SegLevel, SegSpace, [Type]) ->

1010 Builder GPU [VName]

1011 buildSegMapTup_ name m = do

1012 subExps <- buildSegMapTup name m

1013 pure $ L.map varFromExp subExps

1014 where

1015 varFromExp :: SubExp -> VName

1016 varFromExp (Var nm) = nm

1017 varFromExp e = error $ "Expected SubExp of type Var, but got:\n" ++

show e

1018
1019 -- | The [KernelResult] from the input monad is what is being passed to

the

1020 -- segmented binops

1021 buildSegScan ::

1022 String -> -- SubExp name

1023 Builder GPU ([KernelResult], SegLevel, SegSpace, [SegBinOp GPU], [

Type]) ->

1024 Builder GPU [SubExp]

1025 buildSegScan name m = do

1026 ((results, lvl, space, bops, ts), stms) <- collectStms m

1027 let kbody = KernelBody () stms results

1028 letTupExp' name $ Op $ SegOp $ SegScan lvl space bops ts kbody

C Unit tests

C.1 Original

1 let main [n] [m] (a : [n][m]u32) =

2 #[incremental_flattening(only_intra)]

3 map (\ a_row ->

4 map (\a -> a + 2) a_row

5 ) a

6
7 -- Map-map-simple performance

8 -- ==

9 -- entry: testBlocks

10 -- compiled random input {[100000][1024]u32} auto output

11 -- compiled random input {[200000][1024]u32} auto output

12 -- compiled random input {[300000][1024]u32} auto output
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13 -- compiled random input {[400000][1024]u32} auto output

14 -- compiled random input {[500000][1024]u32} auto output

15 entry testBlocks [n] [m] (a : [n][m]u32) = main a

16
17 -- ==

18 -- entry: testThreads

19 -- compiled random input { [131072][1024]u32 }

20 -- compiled random input { [262144][512]u32 }

21 -- compiled random input { [524288][256]u32 }

22 -- compiled random input { [1048576][128]u32 }

23 entry testThreads [n] [m] (a : [n][m]u32) = main a

1 let main [n] [m] (a : [n][m]u32) =

2 #[incremental_flattening(only_intra)]

3 map (\ a_row ->

4 reduce (+) 0 a_row

5 ) a

6
7 -- Map-reduce-simple performance

8 -- ==

9 -- entry: testBlocks

10 -- compiled random input {[100000][1024]u32} auto output

11 -- compiled random input {[200000][1024]u32} auto output

12 -- compiled random input {[300000][1024]u32} auto output

13 -- compiled random input {[400000][1024]u32} auto output

14 -- compiled random input {[500000][1024]u32} auto output

15 entry testBlocks [n] [m] (a : [n][m]u32) = main a

16
17 -- ==

18 -- entry: testThreads

19 -- compiled random input { [131072][1024]u32 }

20 -- compiled random input { [262144][512]u32 }

21 -- compiled random input { [524288][256]u32 }

22 -- compiled random input { [1048576][128]u32 }

23 entry testThreads [n] [m] (a : [n][m]u32) = main a

1 let main [n] [m] (a : [n][m]u32) =

2 #[incremental_flattening(only_intra)]

3 map (\ a_row ->

4 scan (+) 0 a_row

5 ) a

6
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7 -- Map-scan-simple performance

8 -- ==

9 -- entry: testBlocks

10 -- compiled random input {[100000][1024]u32} auto output

11 -- compiled random input {[200000][1024]u32} auto output

12 -- compiled random input {[300000][1024]u32} auto output

13 -- compiled random input {[400000][1024]u32} auto output

14 -- compiled random input {[500000][1024]u32} auto output

15 entry testBlocks [n] [m] (a : [n][m]u32) = main a

16
17 -- ==

18 -- entry: testThreads

19 -- compiled random input { [131072][1024]u32 }

20 -- compiled random input { [262144][512]u32 }

21 -- compiled random input { [524288][256]u32 }

22 -- compiled random input { [1048576][128]u32 }

23 entry testThreads [n] [m] (a : [n][m]u32) = main a

1 let main [n] [m] (dss: [n][m]u32) (vss: [n][m]u32) =

2 #[incremental_flattening(only_intra)]

3 map2 (\ ds vs ->

4 scatter (copy ds) (iota m) vs

5 ) dss vss

6
7 -- Map-scatter-simple performance

8 -- ==

9 -- entry: testBlocks

10 -- compiled random input {[50000][1024]u32 [50000][1024]u32} auto

output

11 -- compiled random input {[100000][1024]u32 [100000][1024]u32} auto

output

12 -- compiled random input {[150000][1024]u32 [150000][1024]u32} auto

output

13 -- compiled random input {[200000][1024]u32 [200000][1024]u32} auto

output

14 -- compiled random input {[250000][1024]u32 [250000][1024]u32} auto

output

15 entry testBlocks [n] [m] (a : [n][m]u32) (c : [n][m]u32) = main a c

16
17 -- ==

18 -- entry: testThreads

19 -- compiled random input { [131072][1024]u32 [131072][1024]u32 } auto
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output

20 -- compiled random input { [262144][512]u32 [262144][512]u32 } auto

output

21 -- compiled random input { [524288][256]u32 [524288][256]u32 } auto

output

22 -- compiled random input { [1048576][128]u32 [1048576][128]u32 } auto

output

23 entry testThreads [n] [m] (a : [n][m]u32) (c : [n][m]u32) = main a c

1 let main [n] [m] (dss: [n][m]u32) (iss: [n][m]i64) (vss: [n][m]u32) =

2 #[incremental_flattening(only_intra)]

3 map3 (\ ds is vs ->

4 scatter (copy ds) is vs

5 ) dss iss vss

6
7 -- Map-scatter-simple performance

8 -- ==

9 -- entry: testBlocks

10 -- compiled random input {[50000][1024]u32 [50000][1024]i64

[50000][1024]u32} auto output

11 -- compiled random input {[100000][1024]u32 [100000][1024]i64

[100000][1024]u32} auto output

12 -- compiled random input {[150000][1024]u32 [150000][1024]i64

[150000][1024]u32} auto output

13 -- compiled random input {[200000][1024]u32 [200000][1024]i64

[200000][1024]u32} auto output

14 -- compiled random input {[250000][1024]u32 [250000][1024]i64

[250000][1024]u32} auto output

15 entry testBlocks [n] [m] (a : [n][m]u32) (b : [n][m]i64) (c : [n][m]u32

) = main a b c

16
17 -- ==

18 -- entry: testThreads

19 -- compiled random input { [131072][1024]u32 [131072][1024]i64

[131072][1024]u32 }

20 -- compiled random input { [262144][512]u32 [262144][512]i64

[262144][512]u32 }

21 -- compiled random input { [524288][256]u32 [524288][256]i64

[524288][256]u32 }

22 -- compiled random input { [1048576][128]u32 [1048576][128]i64

[1048576][128]u32 }

23 entry testThreads [n] [m] (a : [n][m]u32) (b : [n][m]i64) (c : [n][m]
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u32) = main a b c

C.2 Sequential

1 let main [n] [m] (a : [n][m]u32) =

2 #[incremental_flattening(only_intra)]

3 #[seq_factor(4)]

4 map (\ a_row ->

5 map (\a -> a + 2) a_row

6 ) a

7
8 -- Map-map-simple performance

9 -- ==

10 -- entry: testBlocks

11 -- compiled random input {[100000][1024]u32} auto output

12 -- compiled random input {[200000][1024]u32} auto output

13 -- compiled random input {[300000][1024]u32} auto output

14 -- compiled random input {[400000][1024]u32} auto output

15 -- compiled random input {[500000][1024]u32} auto output

16 entry testBlocks [n] [m] (a : [n][m]u32) = main a

17
18 -- ==

19 -- entry: testThreads

20 -- compiled random input { [32768][4096]u32 }

21 -- compiled random input { [65536][2048]u32 }

22 -- compiled random input { [131072][1024]u32 }

23 -- compiled random input { [262144][512]u32 }

24 -- compiled random input { [524288][256]u32 }

25 -- compiled random input { [1048576][128]u32 }

26 entry testThreads [n] [m] (a : [n][m]u32) = main a

1 let main [n] [m] (a : [n][m]u32) =

2 #[incremental_flattening(only_intra)]

3 #[seq_factor(4)]

4 map (\ a_row ->

5 reduce (+) 0 a_row

6 ) a

7
8 -- Map-reduce-simple performance

9 -- ==

10 -- entry: testBlocks

11 -- compiled random input {[100000][1024]u32} auto output
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12 -- compiled random input {[200000][1024]u32} auto output

13 -- compiled random input {[300000][1024]u32} auto output

14 -- compiled random input {[400000][1024]u32} auto output

15 -- compiled random input {[500000][1024]u32} auto output

16 entry testBlocks [n] [m] (a : [n][m]u32) = main a

17
18 -- ==

19 -- entry: testThreads

20 -- compiled random input { [32768][4096]u32 }

21 -- compiled random input { [65536][2048]u32 }

22 -- compiled random input { [131072][1024]u32 }

23 -- compiled random input { [262144][512]u32 }

24 -- compiled random input { [524288][256]u32 }

25 -- compiled random input { [1048576][128]u32 }

26 entry testThreads [n] [m] (a : [n][m]u32) = main a

1 let main [n] [m] (a : [n][m]u32) =

2 #[incremental_flattening(only_intra)]

3 #[seq_factor(4)]

4 map (\ a_row ->

5 scan (+) 0 a_row

6 ) a

7
8 -- Map-scan-simple performance

9 -- ==

10 -- entry: testBlocks

11 -- compiled random input {[100000][1024]u32} auto output

12 -- compiled random input {[200000][1024]u32} auto output

13 -- compiled random input {[300000][1024]u32} auto output

14 -- compiled random input {[400000][1024]u32} auto output

15 -- compiled random input {[500000][1024]u32} auto output

16 entry testBlocks [n] [m] (a : [n][m]u32) = main a

17
18 -- ==

19 -- entry: testThreads

20 -- compiled random input { [32768][4096]u32 }

21 -- compiled random input { [65536][2048]u32 }

22 -- compiled random input { [131072][1024]u32 }

23 -- compiled random input { [262144][512]u32 }

24 -- compiled random input { [524288][256]u32 }

25 -- compiled random input { [1048576][128]u32 }

26 entry testThreads [n] [m] (a : [n][m]u32) = main a
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1 let main [n] [m] (dss: [n][m]u32) (vss: [n][m]u32) =

2 #[incremental_flattening(only_intra)]

3 #[seq_factor(4)]

4 map2 (\ ds vs ->

5 scatter (copy ds) (iota m) vs

6 ) dss vss

7
8 -- Map-scatter-simple performance

9 -- ==

10 -- entry: testBlocks

11 -- compiled random input {[50000][1024]u32 [50000][1024]u32} auto

output

12 -- compiled random input {[100000][1024]u32 [100000][1024]u32} auto

output

13 -- compiled random input {[150000][1024]u32 [150000][1024]u32} auto

output

14 -- compiled random input {[200000][1024]u32 [200000][1024]u32} auto

output

15 -- compiled random input {[250000][1024]u32 [250000][1024]u32} auto

output

16 entry testBlocks [n] [m] (a : [n][m]u32) (c : [n][m]u32) = main a c

17
18 -- ==

19 -- entry: testThreads

20 -- compiled random input { [65536][2048]u32 [65536][2048]u32 } auto

output

21 -- compiled random input { [131072][1024]u32 [131072][1024]u32 } auto

output

22 -- compiled random input { [262144][512]u32 [262144][512]u32 } auto

output

23 -- compiled random input { [524288][256]u32 [524288][256]u32 } auto

output

24 -- compiled random input { [1048576][128]u32 [1048576][128]u32 } auto

output

25 entry testThreads [n] [m] (a : [n][m]u32) (c : [n][m]u32) = main a c

1 let main [n] [m] (dss: [n][m]u32) (iss: [n][m]i64) (vss: [n][m]u32) =

2 #[incremental_flattening(only_intra)]

3 #[seq_factor(4)]

4 map3 (\ ds is vs ->

5 scatter (copy ds) is vs
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6 ) dss iss vss

7
8 -- Map-scatter-simple performance

9 -- ==

10 -- entry: testBlocks

11 -- compiled random input {[50000][1024]u32 [50000][1024]i64

[50000][1024]u32} auto output

12 -- compiled random input {[100000][1024]u32 [100000][1024]i64

[100000][1024]u32} auto output

13 -- compiled random input {[150000][1024]u32 [150000][1024]i64

[150000][1024]u32} auto output

14 -- compiled random input {[200000][1024]u32 [200000][1024]i64

[200000][1024]u32} auto output

15 -- compiled random input {[250000][1024]u32 [250000][1024]i64

[250000][1024]u32} auto output

16 entry testBlocks [n] [m] (a : [n][m]u32) (b : [n][m]i64) (c : [n][m]u32

) = main a b c

17
18 -- ==

19 -- entry: testThreads

20 -- compiled random input { [65536][2048]u32 [65536][2048]i64

[65536][2048]u32 }

21 -- compiled random input { [131072][1024]u32 [131072][1024]i64

[131072][1024]u32 }

22 -- compiled random input { [262144][512]u32 [262144][512]i64

[262144][512]u32 }

23 -- compiled random input { [524288][256]u32 [524288][256]i64

[524288][256]u32 }

24 -- compiled random input { [1048576][128]u32 [1048576][128]i64

[1048576][128]u32 }

25 entry testThreads [n] [m] (a : [n][m]u32) (b : [n][m]i64) (c : [n][m]

u32) = main a b c

D Big Number Addition

1 -----------------------------------------------------------------------------

2 --- Implementation took heavy inspiration from:

3 --- [1] Amar Topalovic, Walter Restelli-Nielsen, Kristian Olesen:

4 --- ``Multiple-precision Integer Arithmetic'', DPP'22 final project

,
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5 --- https://futhark-lang.org/student-projects/dpp21-mpint.pdf

6 -----------------------------------------------------------------------------

7 let imap2 as bs f = map2 f as bs

8
9 let imap2Seq f as bs =

10 #[incremental_flattening(only_intra)]

11 #[seq_factor(4)]

12 map2 f as bs

13
14 let imap2Org f as bs =

15 #[incremental_flattening(only_intra)]

16 map2 f as bs

17 ------------------------------------------------------------------------

18 ---- prefix sum (scan) operator to propagate the carry

19 -- let add_op (ov1 : bool, mx1: bool) (ov2 : bool, mx2: bool) : (bool,

bool) =

20 -- ( (ov1 && mx2) || ov2, mx1 && mx2 )

21 ------------------------------------------------------------------------

22
23 ---- prefix sum (scan) operator to propagate the curry:

24 ---- format: last digit set => overfolow

25 ---- ante-last digit set => one unit away from overflowing

26 let badd_op (c1 : u8) (c2: u8) : u8 =

27 (c1 & c2 & 2) | (( (c1 & (c2 >> 1)) | c2) & 1)

28
29 let badd [n] (as : [n]u32) (bs : [n]u32) : [n]u32 =

30 let (pres, cs) =

31 imap2 as bs

32 (\ a b -> let s = a + b

33 let b = u8.bool (s < a)

34 let b = b | ((u8.bool (s == u32.highest)) << 1)

35 in (s, b)

36 ) |> unzip

37 let carries = scan badd_op 2u8 cs

38 in

39 imap2 (iota n) pres

40 (\ i r -> r + u32.bool (i > 0 && ( (#[unsafe] carries[i-1]) & 1

u8 == 1u8)) )

41
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42 -- Big-Integer Addition: performance

43 -- ==

44 -- entry: mainSeq

45 -- compiled random input { [131072][1024]u32 [131072][1024]u32 }

46 -- compiled random input { [262144][512]u32 [262144][512]u32 }

47 -- compiled random input { [524288][256]u32 [524288][256]u32 }

48 -- compiled random input { [1048576][128]u32 [1048576][128]u32 }

49
50 -- Big-Integer Addition: performance

51 -- ==

52 -- entry: mainOrg

53 -- compiled random input { [131072][1024]u32 [131072][1024]u32 }

54 -- compiled random input { [262144][512]u32 [262144][512]u32 }

55 -- compiled random input { [524288][256]u32 [524288][256]u32 }

56 -- compiled random input { [1048576][128]u32 [1048576][128]u32 }

57
58 -- computes one batched multiplication: a*b

59 entry mainSeq [m][n] (ass: [m][n]u32) (bss: [m][n]u32) : [m][n]u32 =

60 imap2Seq badd ass bss

61
62 entry mainOrg [m][n] (ass: [m][n]u32) (bss: [m][n]u32) : [m][n]u32 =

63 imap2Org badd ass bss

E Radix Futhark

1 let mapSeq as f =

2 #[incremental_flattening(only_intra)]

3 #[seq_factor(4)]

4 map f as

5
6 let mapOrg as f =

7 #[incremental_flattening(only_intra)]

8 map f as

9
10 let partition2 [n] (p: u32 -> bool) (arr: [n]u32)

11 : (i64, *[n]u32) =

12 let cs = map p arr

13 let tfs = map (\ f->if f then 1i64

14 else 0i64) cs

15 let isT = scan (+) 0 tfs

16 let i = isT[n-1]
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17
18 let ffs = map (\f->if f then 0

19 else 1) cs

20 let isF = map (+i) <| scan (+) 0 ffs

21 let inds = map (\(c,iT,iF) ->

22 if c then iT-1

23 else iF-1

24 ) (zip3 cs isT isF)

25 let res = replicate n 0

26 in (i, scatter res inds arr)

27
28
29 let stepSeq [num_blocks] [num_elems] (digit : u32) (arr : *[num_blocks

][num_elems]u32)

30 : *[num_blocks][num_elems]u32 =

31 let b = 4

32 -- intra block sorting

33 let arr_intra = (mapSeq arr

34 (\row ->

35 let arr = loop row for j < b do

36 let (_, arr) = partition2 (\ele ->

37 if (ele >> (digit*4 + (u32.i64 j))) & 1 == 0 then true

else false

38 ) row

39 in arr

40 in arr

41 ))

42 in arr_intra

43
44 let stepOrg [num_blocks] [num_elems] (digit : u32) (arr : *[num_blocks

][num_elems]u32)

45 : *[num_blocks][num_elems]u32 =

46 let b = 4

47 -- intra block sorting

48 let arr_intra = (mapOrg arr

49 (\row ->

50 let arr = loop row for j < b do

51 let (_, arr) = partition2 (\ele ->

52 if (ele >> (digit*4 + (u32.i64 j))) & 1 == 0 then true

else false

53 ) row

54 in arr
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55 in arr

56 ))

57 in arr_intra

58
59 -- Intra-group radix sort: performance

60 -- ==

61 -- entry: mainSeq

62 -- compiled random input { [65536][2048]u32 } auto output

63 -- compiled random input { [131072][1024]u32 } auto output

64 -- compiled random input { [262144][512]u32 } auto output

65 -- compiled random input { [524288][256]u32 } auto output

66 -- compiled random input { [1048576][128]u32 } auto output

67
68 -- Intra-group radix sort: performance

69 -- ==

70 -- entry: mainOrg

71 -- compiled random input { [131072][1024]u32 }

72 -- compiled random input { [262144][512]u32 }

73 -- compiled random input { [524288][256]u32 }

74 -- compiled random input { [1048576][128]u32 }

75
76 entry mainSeq [num_blocks] [num_elems] (arr : *[num_blocks][num_elems]

u32)

77 : *[num_blocks][num_elems]u32 =

78 let num_digits = 8

79 in loop arr for i < num_digits do

80 stepSeq (u32.i32 i) arr

81
82 entry mainOrg [num_blocks] [num_elems] (arr : *[num_blocks][num_elems]

u32)

83 : *[num_blocks][num_elems]u32 =

84 let num_digits = 8

85 in loop arr for i < num_digits do

86 stepOrg (u32.i32 i) arr

F Initial Benchmark Results

F.1 Without Sequentialization Optimization
R e p o r t i n g a r i t h m e t i c mean r u n t i m e of a t l e a s t 10 r u n s f o r each d a t a s e t ( min 0 . 5 s ) .
More r u n s a u t o m a t i c a l l y pe r fo rmed f o r up t o 300 s t o e n s u r e a c c u r a t e measurement .

. . / CUDA/ bench / c h a i n 1 . f u t : fun1 ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 : 3572𝜇s (95% CI : [ 3 5 7 0 . 8 , 3 5 7 3 . 4 ] )
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[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 : 3574𝜇s (95% CI : [ 3 5 7 3 . 6 , 3 5 7 5 . 7 ] )

. . / CUDA/ bench / c h a i n 2 . f u t : fun1 ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 : 3787𝜇s (95% CI : [ 3 7 8 0 . 2 , 3 7 9 2 . 3 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 : 3892𝜇s (95% CI : [ 3 8 8 2 . 5 , 3 9 0 2 . 0 ] )

. . / CUDA/ bench / map− reduce − f u s e d . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 [ 1 0 2 4 ] i 6 4 : 2370𝜇s (95% CI : [ 2 3 6 8 . 3 , 2 3 7 3 . 2 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 [ 1 0 2 3 ] i 6 4 : 2414𝜇s (95% CI : [ 2 4 1 1 . 1 , 2 4 1 5 . 8 ] )

. . / CUDA/ bench / map− reduce −pre − s i m p l e . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 [ 1 0 2 4 ] i 6 4 : 1477𝜇s (95% CI : [ 1 4 7 6 . 0 , 1 4 7 7 . 9 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 [ 1 0 2 3 ] i 6 4 : 1486𝜇s (95% CI : [ 1 4 8 2 . 4 , 1 4 9 9 . 5 ] )

. . / CUDA/ bench / map− reduce − p r e . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 [ 1 0 2 4 ] i 6 4 : 2116𝜇s (95% CI : [ 2 1 1 5 . 6 , 2 1 1 5 . 8 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 [ 1 0 2 3 ] i 6 4 : 2123𝜇s (95% CI : [ 2 1 2 2 . 7 , 2 1 2 3 . 3 ] )

. . / CUDA/ bench / map− reduce − s i m p l e . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 : 1265𝜇s (95% CI : [ 1 2 6 4 . 2 , 1 2 6 6 . 0 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 : 1279𝜇s (95% CI : [ 1 2 7 8 . 1 , 1 2 7 9 . 9 ] )

. . / CUDA/ bench / map− r e d u c e 2 . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 : 2168𝜇s (95% CI : [ 2 1 6 5 . 2 , 2 1 7 0 . 2 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 : 2208𝜇s (95% CI : [ 2 2 0 5 . 8 , 2 2 0 8 . 9 ] )

. . / CUDA/ bench / map−scan − f u s e d . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 [ 1 0 2 4 ] i 6 4 : 5277𝜇s (95% CI : [ 5 2 7 6 . 1 , 5 2 7 7 . 7 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 [ 1 0 2 3 ] i 6 4 : 5386𝜇s (95% CI : [ 5 3 7 8 . 5 , 5 3 9 2 . 5 ] )

. . / CUDA/ bench / map−scan −pre − s i m p l e . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 [ 1 0 2 4 ] i 6 4 : 2853𝜇s (95% CI : [ 2 8 5 2 . 9 , 2 8 5 3 . 4 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 [ 1 0 2 3 ] i 6 4 : 2884𝜇s (95% CI : [ 2 8 8 3 . 6 , 2 8 8 5 . 9 ] )

. . / CUDA/ bench / map−scan − p r e . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 [ 1 0 2 4 ] i 6 4 : 4934𝜇s (95% CI : [ 4 9 2 8 . 8 , 4 9 3 8 . 3 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 [ 1 0 2 3 ] i 6 4 : 5035𝜇s (95% CI : [ 5 0 2 8 . 8 , 5 0 4 2 . 1 ] )

. . / CUDA/ bench / map−scan − s i m p l e . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 : 2433𝜇s (95% CI : [ 2 4 3 1 . 4 , 2 4 3 3 . 7 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 : 2441𝜇s (95% CI : [ 2 4 3 6 . 4 , 2 4 4 4 . 1 ] )

. . / CUDA/ bench / s c a t t e r − s i m p l e . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 1 6 [ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 [ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 1 6 : 1024𝜇s (95% CI : [ 1 0 2 4 . 1 , 1 0 2 4 . 4 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 1 6 [ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 [ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 1 6 : 1048𝜇s (95% CI : [ 1 0 4 8 . 1 , 1 0 4 9 . 6 ] )
[ 1 0 0 0 0 0 ] [ 9 9 9 ] i 1 6 [ 1 0 0 0 0 0 ] [ 9 9 9 ] i 6 4 [ 1 0 0 0 0 0 ] [ 9 9 9 ] i 1 6 : 1037𝜇s (95% CI : [ 1 0 3 6 . 7 , 1 0 3 6 . 9 ] )

. . / CUDA/ bench / u s e s 1 . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 [ 1 0 2 4 ] i 6 4 : 4435𝜇s (95% CI : [ 4 4 3 4 . 5 , 4 4 3 5 . 0 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 [ 1 0 2 3 ] i 6 4 : 4605𝜇s (95% CI : [ 4 5 9 9 . 7 , 4 6 0 8 . 6 ] )

F.2 With Sequentialization Optimization
R e p o r t i n g a r i t h m e t i c mean r u n t i m e of a t l e a s t 10 r u n s f o r each d a t a s e t ( min 0 . 5 s ) .
More r u n s a u t o m a t i c a l l y pe r fo rmed f o r up t o 300 s t o e n s u r e a c c u r a t e measurement .

. . / CUDA/ bench / c h a i n 1 . f u t : fun1 ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 : 2034𝜇s (95% CI : [ 2 0 2 7 . 6 , 2 0 4 9 . 5 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 : 2026𝜇s (95% CI : [ 2 0 2 5 . 5 , 2 0 2 5 . 8 ] )

. . / CUDA/ bench / c h a i n 2 . f u t : fun1 ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 : 2377𝜇s (95% CI : [ 2 3 7 7 . 2 , 2 3 7 7 . 6 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 : 2422𝜇s (95% CI : [ 2 4 2 1 . 4 , 2 4 2 1 . 9 ] )

. . / CUDA/ bench / map− reduce − f u s e d . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 [ 1 0 2 4 ] i 6 4 : 2112𝜇s (95% CI : [ 2 1 1 1 . 4 , 2 1 1 2 . 0 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 [ 1 0 2 3 ] i 6 4 : 2172𝜇s (95% CI : [ 2 1 6 8 . 7 , 2 1 7 5 . 3 ] )

. . / CUDA/ bench / map− reduce −pre − s i m p l e . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 [ 1 0 2 4 ] i 6 4 : 1171𝜇s (95% CI : [ 1 1 6 8 . 9 , 1 1 8 1 . 5 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 [ 1 0 2 3 ] i 6 4 : 1180𝜇s (95% CI : [ 1 1 7 8 . 9 , 1 1 8 1 . 5 ] )

. . / CUDA/ bench / map− reduce − p r e . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 [ 1 0 2 4 ] i 6 4 : 1573𝜇s (95% CI : [ 1 5 7 2 . 1 , 1 5 7 4 . 1 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 [ 1 0 2 3 ] i 6 4 : 1600𝜇s (95% CI : [ 1 5 9 9 . 1 , 1 6 0 1 . 5 ] )

. . / CUDA/ bench / map− reduce − s i m p l e . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 : 737𝜇s (95% CI : [ 7 3 5 . 2 , 7 3 8 . 3 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 : 755𝜇s (95% CI : [ 7 5 2 . 9 , 7 5 6 . 1 ] )
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. . / CUDA/ bench / map− r e d u c e 2 . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 : 1627𝜇s (95% CI : [ 1 6 2 4 . 9 , 1 6 3 7 . 3 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 : 1672𝜇s (95% CI : [ 1 6 7 1 . 9 , 1 6 7 2 . 8 ] )

. . / CUDA/ bench / map−scan − f u s e d . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 [ 1 0 2 4 ] i 6 4 : 3259𝜇s (95% CI : [ 3 2 5 8 . 9 , 3 2 5 9 . 3 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 [ 1 0 2 3 ] i 6 4 : 3359𝜇s (95% CI : [ 3 3 5 6 . 0 , 3 3 6 7 . 5 ] )

. . / CUDA/ bench / map−scan −pre − s i m p l e . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 [ 1 0 2 4 ] i 6 4 : 1855𝜇s (95% CI : [ 1 8 5 2 . 8 , 1 8 5 6 . 3 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 [ 1 0 2 3 ] i 6 4 : 1911𝜇s (95% CI : [ 1 9 0 7 . 4 , 1 9 1 4 . 6 ] )

. . / CUDA/ bench / map−scan − p r e . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 [ 1 0 2 4 ] i 6 4 : 2717𝜇s (95% CI : [ 2 7 1 3 . 9 , 2 7 1 8 . 8 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 [ 1 0 2 3 ] i 6 4 : 2768𝜇s (95% CI : [ 2 7 6 7 . 4 , 2 7 6 7 . 8 ] )

. . / CUDA/ bench / map−scan − s i m p l e . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 : 1447𝜇s (95% CI : [ 1 4 4 4 . 1 , 1 4 4 9 . 5 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 : 1478𝜇s (95% CI : [ 1 4 7 6 . 5 , 1 4 7 9 . 3 ] )

. . / CUDA/ bench / s c a t t e r − s i m p l e . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 1 6 [ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 [ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 1 6 : 1291𝜇s (95% CI : [ 1 2 8 9 . 4 , 1 2 9 3 . 2 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 1 6 [ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 [ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 1 6 : 1329𝜇s (95% CI : [ 1 3 2 7 . 1 , 1 3 3 0 . 6 ] )
[ 1 0 0 0 0 0 ] [ 9 9 9 ] i 1 6 [ 1 0 0 0 0 0 ] [ 9 9 9 ] i 6 4 [ 1 0 0 0 0 0 ] [ 9 9 9 ] i 1 6 : 1311𝜇s (95% CI : [ 1 3 0 8 . 6 , 1 3 1 2 . 4 ] )

. . / CUDA/ bench / u s e s 1 . f u t ( no t u n i n g f i l e ) :
[ 1 0 0 0 0 0 ] [ 1 0 2 4 ] i 6 4 [ 1 0 2 4 ] i 6 4 : 3258𝜇s (95% CI : [ 3 2 5 3 . 0 , 3 2 6 2 . 8 ] )
[ 1 0 0 0 0 0 ] [ 1 0 2 3 ] i 6 4 [ 1 0 2 3 ] i 6 4 : 3325𝜇s (95% CI : [ 3 3 2 2 . 5 , 3 3 2 7 . 1 ] )
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