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Abstract

In this report we describe our work on flattening irregular nested parallelism in the
data parallel language Futhark. We present a new flattening rule for flattening match-
expressions as a generalization of flattening if-expressions and implement the flattening
transformation in the Futhark compiler. We benchmark this solution against one using
nested if-expressions and find that the dedicated match-transformation runs modestly
faster than the nested if version.

We also detail function lifting, a technique for flattening function calls, along with an
implementation in the Futhark compiler as a part of a continued effort of achieving full
irregular flattening in the Futhark compiler.
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1. Introduction

Since the dawn of computing, the computing power of processors have increased expo-
nentially. As Moore’s law predicted in the 1960’s [Moo06], the number of transistors
have roughly doubled every other year, but as transistors are reaching their physical
limitations with regard to size, there is strong evidence that Moore’s law (in its current
form) is nearing the end of the line. This, among other factors such as the power- and
memory wall, have lead computer architects to reach for parallel processors as a means
of increasing performance of computer systems [DAS12]. This shift takes several forms:
The number of cores in microprocessors are ever-increasing, SIMD instructions such as
Advanced Vector Extensions (AVX) extend existing instruction sets and General-Purpose
Graphics Processing Units (GPGPUs) with tens of thousands of threads are commercially
available.

To effectively exploit the parallelism of today’s hardware, software needs to be written
with parallelism in mind, but current methods such as OpenCL and CUDA are laborious
and error-prone due to their low-level nature, and in the case of CUDA is non-portable.
High-level programming models for parallel programming are therefore needed for soft-
ware developers to take advantage of massively parallel hardware. One such model is
data-parallelism in which the same operation is applied to different data (e.g. SIMD
instructions). A limitation of many data-parallel programming languages is that they are
not able to express nested data-parallelism [PP93]. In these languages, the programmer
can’t freely express nested parallel operations, and instead have to preform the tedious
task of flattening by hand.

Futhark is a high-level data-parallel array language that targets, among other things,
GPUs [Hen+17]. Futhark already supports regular nested flattening in which the arrays
have uniform shape, as opposed to irregular nested flattening in which the nested arrays
can have varying sizes. In this paper, we implement function lifting and full flattening of
match-expressions in Futhark, as part of achieving full irregular flattening.
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2. Background

2.1. Nested Data-Parallelism
The term “Data Parallelism” was introduced by Daniel Hillis and Guy L. Steele [HS86]
and refers to a programming style in which the same operation is applies to different
data à la SIMD. It was not until Blelloch’s data parallel language NESL [Ble95] that the
notion of nested data parallelism, in which parallel constructs could themselves contain
further parallel constructs, became possible.

In NESL, this nesting took the form of the apply-to-each construct, which somewhat
resembles the list-comprehension syntax of Haskell:{

f(x) : x in [x0, . . . , xn]
}
;

but with the caveat that f applies to each x0, …, xn in parallel. As NESL supports
nested data parallelism, the function f is allowed to also contain parallel constructs e.g.
it might itself contain an apply-to-each. Nested data parallelism is especially useful when
implementing divide-and-conquer algorithms such as quicksort, as it automatically results
in proper load balancing [Ble+93].

Since then, there have been several other data parallel languages. Examples other
than NESL include Proteus [PP93], Data Parallel Haskell [Pey+08] and of course also
Futhark.

A major problem of nested data parallel languages is how to translate an arbitrarily
deep nestings of parallel constructs onto the flat-parallel model of parallel hardware.

2.2. Futhark
Futhark [Hen17] is, as the Futhark website claims,

[…] a statically typed, data-parallel, and purely functional array
language in the ML family, and comes with a heavily optimising ahead-
of-time compiler that presently generates either GPU code via CUDA and
OpenCL, or multi-threaded CPU code. (1)

2.2.1. Syntax
Futharks syntax is similar to Haskell and ML-style languages. The let keyword is used
for binding variables and declaring functions (which can also be declared with the def

1https://futhark-lang.org/, as of May 27, 2023.
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keyword). Anonymous functions (lambdas) are declared like in Haskell, an example is
shown in listing 2.1. Futhark also has limited support for higher-order functions. Unlike
most functional languages, Futhark does not allow recursive functions.

Listing 2.1: Contrived Futhark function for adding together two 64-bit numbers
def f ( x : i 64 ) ( y : i 64 ) : i 64 =

let g = \z −> x + z
in g y

Beside if-expressions, Futhark also has a match-expression with pattern matching
for writing conditional code. The cases of a match-expression must exhaust all of the
possible values, but overlap is allowed i.e. patterns from two branches are allowed to
match the same value. In such a case the first (closest to the top) branch is chosen. The
‘_’ pattern matches any value and discards the value, whereas a variable name pattern
matches any value and binds that value to the name. An example of a match-expression
is shown in listing 2.2.

Listing 2.2: Futhark match expression with four branches.
def f ( x : i 64 ) ( y : i 64 ) : i 64 =

match (x , y ) case (0 , 0) −> −1
case ( a , 0) −> a
case (0 , b) −> b
case _ −> x ∗ y

Futhark has zero-based arrays that are indexed with C-like syntax i.e. arr[i] is the
ith element of array arr. For multi-dimensional arrays, multiple indices can be given
each separated by a comma. Futhark also supports in-place updates with the syntax
arr with [i] = x, which sets the ith element of arr equal to x. An example is shown
in listing 2.3. To make sure that the side-effect of updating arr is not observable, Futhark
leverages a system known as uniqueness types, which are denoted by asterisks.

Listing 2.3: In-place updates in Futhark. Note the asterisk prefix of the type of a and
the return type. Example taken from [DIK23, p. 36].

def modify ( a : ∗ [ ] i 32 ) ( i : i 32 ) ( x : i 32 ) : ∗ [ ] i 32 =
a with [ i ] = a [ i ] + x

2.2.2. Types
Futhark has both the signed and unsigned 8, 16, 32 and 64 bit integers, 16, 32 and 64 bit
floating point numbers as well as booleans as primitive types. The type of a Futhark array
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includes both the element type and a 64-bit integer for its length (for multi-dimensional
arrays, it includes one integer per dimension), meaning that arr : [n]f32 is an array
of n 32-bit floats. If we omit the size in the type of an array, it is an anonymous size but
during compilation it will be inferred.

In the declaration of a function, an asterisk prefixed to the type of a parameter means
that that argument is consumed and it (or any aliases of it) may not be used after calling
the function. A parameter whose argument is not consumed (i.e. no asterisk prefix) is
observed. Wether or not an argument is consumed or observed is called the arguments
diet. If a function return type is prefixed with an asterisk, it means that the result is
alias-free i.e. it produces a new value that can’t alias any of the parameters. Returning
to the example in listing 2.3, we see that a is consumed and that the result is alias-free.
While it might seem like the result aliases a, remember that the argument given as a has
been consumed and can’t be used anymore after modify has been called, meaning that it
is impossible for something to alias the result.

As already shown, Futhark has tuples as a means of constructing compound types. In
addition, there are also sum types and records.

2.2.3. Second-Order Array Combinators
To allow the programmer to easily write parallel code, Futhark comes with a set of
parallel Second-Order Array Combinators (SOACs). A list of relevant SOACs in Futhark
are briefly described in table 2.1. Here we explain each of the SOACs in more detail:

map takes a function f and applies it to each element of an array, in parallel, resulting in
a new array of the results of f .

map f [a1, a2, . . . , an] = [f a1, f a2, . . . , f an]

iota takes a non-negative 64-bit integer n and produces an array of length n with the
first element (if it exists) being 0, the next 1 and so on, until the last element which
is equal to n− 1.

iota n = [0, 1, . . . , n− 1]

replicate takes a non-negative 64-bit integer n and a value x, and returns an array
filled with n copies of x.

replicate n x =

n︷ ︸︸ ︷
[x, . . . , x]

reduce takes an associative binary operator ⊕ and a neutral element to that operator
0⊕ and applies a fold (in parallel) over an array as.

reduce ⊕ 0⊕ [a1, a2, . . . , an] = a1 ⊕ a2 ⊕ . . .⊕ an
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scan is like reduce, it takes an associative binary operator ⊕ and a neutral element 0⊕,
but returns an array of intermediate results from left to right such that the last
result is equal to an equivalent reduce.
The default Futhark scan is inclusive, meaning that the first element of the scan
is equal to the first element of the input array. There is also a version called
the exclusive scan for which the first element of the resulting array is the neutral
element 0⊕ i.e. all of the elements are “shifted” one to the left from an inclusive
scan. Unless otherwise indicated, a scan is assumed to be inclusive.

scaninc ⊕ 0⊕ [a1, a2, . . . , an] = [a1, a1 ⊕ a2, . . . , a1 ⊕ a2 ⊕ . . .⊕ an]

scanexc ⊕ 0⊕ [a1, a2, . . . , an] = [0⊕, 0⊕ ⊕ a1, . . . , 0⊕ ⊕ a1 ⊕ . . .⊕ an−1]

scatter takes three arrays: dest, is and vs and, for each pair (i, v) in the zipped
is and vs, writes v to dest at index i. If an index is out-of-bounds, the write
is ignored. If multiple different values are written at the same index, the result
is undefined. dest is consumed, meaning the first argument passed to a scatter
can’t be used after.
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Function signature Description
map : (f : α → β) → (as : [n]α) → ∗[n]β Applies the function f to each

element of as.
iota : (n : i64) → ∗[n]i64 Create an array counting from

0 up to (but not including) n.
replicate : (n : i64) → (x : τ) → ∗[n]τ Create an array of n copies of

x.
reduce : (⊕ : α → α → α) → (0⊕ : α) A parallel fold.

→ (as : [n]α) → α

scan : (⊕ : α → α → α) → (0⊕ : α) Like reduce but keeps
intermediate results.→ (as : [n]α) → ∗[n]α

scatter : (dest : ∗[k]τ) → (is : [n]i64) Writes the values of vs to
dest at the indices is. This
consumes dest.

→ (vs : [n]τ) → ∗[k]τ

Table 2.1.: A list of SOACs in Futhark along with their descriptions.
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3. Irregular Flattening

3.1. Representing Irregular Arrays
In most programming languages, arrays are represented as a pointer to a contiguous
section of memory. The array might also include an integer either along with the pointer
or before the array elements that denotes the length of the array such that bounds-
checking can be automatically done at runtime. In such a language — with the array
length before the first element — an irregular array (array of arrays, each with potentially
different lengths) might be represented as an array of a pointers to other arrays, as shown
in fig. 3.1.

3

3 321

54

0 1 2

4 3

0 1 23

0 0 1 0 1 2

61

a = { {1, 2, 3}, 

{4, 5}, {6} } 

let a = iota(3) in

let b = replicate(4, a)

fun [int] mkArr(int a)= 

iota(a+1)

let a=iota(3) in

let b=map(mkArr,a) in..
a

2

a 3

b

a

b

1 2 3
Figure 3.1.: Irregular array represented as pointers to arrays. From [Oan18b, slide 25].

This representation of using pointers is not suitable for parallelizing operations over
irregular arrays as GPUs typically require flat arrays. We instead represent irregular
arrays with two arrays: A data array and a segment array (also: shape array or length
array) which respectively describe the content and shape of the irregular array. The
data array is a flat array of all of the elements of the irregular array i.e. it is just the
concatenation of the sub-arrays of the irregular array. The segment array contains the
lengths of each sub-array of the irregular array [Ble90, p. 6]. Henceforth, the sub-arrays
of an irregular array will be called its segments. For example, the array from fig. 3.1
would be represented by the data array Da and segment array Sa:
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Da =
[
1 2 3 4 5 6

]
Sa =

[
3 2 1

]

We can generalize this to nested irregular arrays of any depth by using one segment array
for each nesting level. The first segment array will simply hold the length of the outer
array, the next holds the lengths of the segments at nesting level one and so on. As an
example with an array with nesting depth three:

arr =

[[[
1 2

] [
3
]] [] [[] [

4 5
]] [[

6
]]]

Darr =
[
1 2 3 4 5 6

]
S0arr =

[
4
]

S1arr =
[
2 0 2 1

]
S2arr =

[
2 1 0 2 1

]

A property of the segment arrays is that the sum of Siarr is equal to the length of Si+1
arr ,

and the sum of the final segment array is equal to the length of the data array. When
dealing with two dimensional irregular arrays, we will forgo this notation and simply
use a single segment array Sarr with no superscript, which denotes the lengths of the
segments of arr. Unless otherwise noted, the following part assumes we are only dealing
with two dimensional arrays.

While the data- and segment array are enough to represent any irregular nested array,
there are other auxiliary structures useful for representing irregular nested arrays [Oan22].

Offset array (B) The offset array has the same length as the segment array, and denotes
where the segments start in the flat data.

Flag array (F) The flag array has the same length as the flat data, and has a ‘T’ at index
i if the element at index i starts a new segment, and otherwise has a ‘F’.

Segment- and Inner indices (II1 & II2) Both have the same length as the data array.
II1[i] is the index of the segment that the ith element of the flat data belongs to.
II2[i] is the index within a segment that the ith element of the flat data belongs to.

These can also be generalized to arrays of deeper nesting levels, but we will not show
that here.

We use the array from fig. 3.1 to demonstrate these auxiliary arrays in fig. 3.2
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a =

[[
1 2 3

] [
4 5

] [
6
]]

Da =
[
1 2 3 4 5 6

]
Fa =

[
T F F T F T

]
II1a =

[
0 0 0 1 1 2

]
II2a =

[
0 1 2 0 1 0

]
Sa =

[
3 2 1

]
Ba =

[
0 3 5

]
Figure 3.2.: Example showing the full representation of the array in fig. 3.1.

3.2. Segmented Operations
We’ve described a way of representing nested irregular arrays, but we do not have any
operations to work on these arrays. In this section, we introduce segmented versions of
common Futhark SOACs that, as the name implies, work independently over segments
of arrays. All of the segmented operations that are shown are adapted from [Oan18a].

3.2.1. Segmented Scan
The segmented scan does a scan over each segment of an array. The intuition behind the
segmented scan is that we can take any associative binary operator ⊕, and we augment it
with a flag value to turn it into a new operator associative ⊕′ which we can then use in a
scan to get a segmented scan [Sch80, p. 491]. The definition of the segmented operator is
shown in listing 3.1. The neutral element 0⊕′ of our segmented operator is simply (F, 0⊕).

Listing 3.1: Function for making a binary operator segmented.
def segop ’τ ( op : τ −> τ −> τ )

( f lag_x : bool , x : τ )
( f lag_y : bool , y : τ ) : ( bool , τ ) =

let f l a g = flag_x | | f lag_y
let value = i f f lag_y

then y
else op x y

in ( f l a g , va lue )
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Listing 3.2: Segmented scan in Futhark.
def segscan [ n ] ’τ ( op : τ −> τ −> τ )

( ne : τ )
( f l a g s : [ n ] bool )
( a r r : [ n ] τ ) : [ n ] τ =

let op ’ = segop op −− segmented opera tor
let ne ’ = ( f a l s e , ne ) −− neu t ra l e lement o f seg op
let f v s = z ip f l a g s a r r −− f l a g / va lue pa i r s
let (_, r e s ) = unzip <| scan op ’ ne ’ f v s
in r e s

Now, a segmented scan is simply a regular scan with our segmented operator. A segmented
scan implemented in Futhark is shown in listing 3.2

Note that this segmented scan is inclusive. While we won’t show the implementation,
it’s quite straight forward to make a segmented exclusive scan.

3.2.2. Segmented Reduce
Segmented reduce applies a reduce over each segment of an array. To implement segmented
reduce, we use the fact that the last element of an inclusive scan is equal to the result
of a reduce with the same operator. We therefore do a segmented scan over the data
array with the corresponding flag array. To extract the final element from each segment,
we do an inclusive scan over the segment array, which gives us the index of the start of
each segment, starting from the second, which we’ll then just subtract 1 from to get the
indices of the ends of the segments. An implementation in Futhark is shown in listing 3.3.

Listing 3.3: Segmented reduce in Futhark.
def segreduce [w ] [ n ] ’τ ( op : τ −> τ −> τ )

( ne : τ )
( f l a g s : [ n ] bool )
( s eg s : [w] bool )
( a r r : [ n ] τ ) : [w] τ =

let sc_arr = segscan op ne f l a g s a r r
let indsp1 = scan (+) 0 seg s
in map2 (\ seg ip1 −> i f seg == 0 then ne

else sc_arr [ ip1 −1]
) s eg s inds

14



3.2.3. Segmented Iota
The idea behind segmented iota is that, if we map iota over an array arr, we get a
segmented array for which arr is the segment descriptor. We make the observation
that iota n can be implemented as an exclusive prefix-sum over an array of n 1s. The
segmented operation is then simply using a segmented exclusive scan instead. The
implementation is shown in listing 3.4.

Listing 3.4: Segmented iota in Futhark.
def s e g i o t a [ n ] ( f l a g s : [ n ] bool ) : [ n ] i 64 =

let ones = r e p l i c a t e n 1
in segscan exc (+) 0 f l a g s ones

3.2.4. Constructing the Auxiliary Arrays
Here we briefly show how to construct the auxiliary arrays from the segment array using
the segmented operations we have described. The code is shown in listing 3.5. The
mkFlags function allow for any values for the flags (and lack thereof), whereas mkFlagsTF
constructs a boolean flag array.

3.3. Flattening
Segmented operations give us a way to operate on irregular nested arrays, but they
require the programmer to manually keep track of the irregular representation of the
irregular nested arrays. Here we introduce the flattening transformation denoted F(·),
which takes as input a program of the form “map (λxs . . . -> e) xss . . .” where e is
an expression that may contain further nested parallelism and “xss . . .” are (potentially)
irregular arrays, and transforms it to a semantically equivalent program that only uses
one level of parallelism. It does so by (a) translating e into a series of simple statements,
(b) distributing the map over these statements and flatting them and (c) applying a set
of flattening rules, which we will cover shortly. We also make the assumption that e does
not contain any free variables i.e. all variables in e are bound in the lambda of the map.
To deal with this in practice, we use replication wich we’ll describe later.

When flattening, we are always dealing with one nesting level (i.e. one map) at a time.
This means that, for deeper nested irregular arrays, we can flatten their inner nesting
levels to one irregular level e.g. a map over an array arr[w][n][m] where n and m can
vary over the outer dimension w can be flattened to a two-dimensional array arr[w][n*m]
by collapsing the inner segments. Using the example from section 3.1, we can collapse the
inner dimension of arr which is shown in fig. 3.3. This can be done for any nesting level
by iteratively flattening the inner segments. It is therefore enough to only have a single
segment array for the representation of an irregular array for each step in flattening, even
if the irregular array has more than two dimensions.
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Listing 3.5: Futhark functions for constructing auxiliary arrays.
def mkOffsets [ n ] ( s eg s : [ n ] i 64 ) : [ n ] i 64 =

scanexc (+) 0 s eg s

def mkFlags ’τ [ n ] ( s eg s : [ n ] i 64 )
( ze ro : τ )
( f l a g s : [ n ] τ ) : [ ] τ =

let m = reduce (+) 0 seg s
let o f f s = mkOffsets s eg s
let inds = map2 (\ seg ind −>

i f seg == 0 then −1
else ind

) s eg s o f f s
in s c a t t e r ( r e p l i c a t e m zero ) inds f l a g s

def mkFlagsTF [ n ] ( s eg s : [ n ] i 64 ) : [ ] boo l =
mkFlags s eg s f a l s e ( r e p l i c a t e n true )

def mkSegmentInds [ n ] ( s eg s : [ n ] i 64 ) : [ ] i 64 =
let heads = mkFlags s eg s 0 ( i o t a n)
let f l a g s = mkFlagsTF seg s
in segscan (+) 0 f l a g s heads

def mkInnerInds [ n ] ( s eg s : [ n ] i 64 ) : [ ] i 64 =
let f l a g s = mkFlagsTF seg s
in s e g i o t a f l a g s

arr′ =

[[
1 2 3

] [] [
4 5

] [
6
]]

Darr′ =
[
1 2 3 4 5 6

]
Sarr′ =

[
3 0 2 1

]
Barr′ =

[
0 3 3 5

]
Farr′ =

[
1 0 0 1 0 1

]

Figure 3.3.: Collapsing the inner segments of the three-dimensional array arr from sec-
tion 3.1, along with its new irregular representation.
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We now introduce a few flattening rules for some of the Futhark SOACs, adapted
from [Oan18a; Oan22] (note that those are presented in a bottom-up manner, whereas
we use a top-down manner of flattening). When presenting these flattening rules we
assume that we always have the irregular representation of the input arrays (the arrays
we are mapping over) available. Additionally, if we have the segment array Sxss for an
array xss we also assume we have the full shape representation available i.e. the offset
array Bxss, flag array Fxss segment indices II1xss and inner indices II2xss. We do this for
notational convenience as we’ve already shown how to construct these auxiliary arrays
from the segment array.

If the result from flattening is a regular array, the result of the flattening rule is simply
the regular array. If the result from flattening is instead an irregular array, the result
of the flattening rule is the segment array and the flat data array which describe the
irregular array.

3.3.1. Flattening scan inside map
Flattening a scan preserves the shape of the outer array.

r e s = F (map (\ xs −> scan ⊕ 0⊕ xs ) xss )
⇒
Sres = Sxss
Dres = segscan ⊕ 0⊕ Fxss Dxss

3.3.2. Flattening reduce inside map
Flattening a reduce results in a regular array.

r e s = F (map (\ xs −> reduce ⊕ 0⊕ xs ) xss )
⇒
r e s = segreduce ⊕ 0⊕ Fxss Dxss

3.3.3. Flattening iota inside map
As iota n gives an array of length n, flattening an iota gives an array whose segment
array is the input array.

r e s = F (map (\n −> i o t a n) ns )
⇒
Sres = ns
Dres = s e g i o t a Fres
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3.3.4. Flattening map inside map
A map inside another map preserves the shape of the outer array. We strip away the
outer map and flatten the inner map (as e might contain further nested parallelism). To
make sure the dimensions match, we flatten the outer dimension of xss with the flatten
function from the Futhark prelude. After stripping away the outer map, e might contain
free variables, specifically if e uses variables bound in the outer map lambda. To solve
this we use replication, which will be explained later.

r e s = F (map (\ xs −> map (\x −> e) xs ) xss )
⇒
res ’ = F (map (\x −> e) ( f l a t t e n xss ) )
Sres = Sxss
Dres = Dres′

As an example, we’ll show the flattening transformation where e = reduce (+) 0 x and
xss = [[[3]], [[2, 1], [0]]]. Let xs' = flatten xss = [[3], [2, 1], [0]]:

r e s = F (map (\ xs −> map (\x −> reduce (+) 0 x ) xs ) xss
⇒
res ’ = F (map (\x −> reduce (+) 0 x ) xs ’ )
⇒
res ’ = segreduce (+) 0 Fxs′ Dxs′ −− Fxs′ = [T, T, F, T] , Dxs′ = [3, 2, 1, 0]
Sres = Sxss −− = [1, 2]
Dres = Dres′ −− = [3, 3, 0]

As can be seen from the irregular representation, the result is res = [[3], [3, 0]] which is
what we’d expect from summing the inner segments of xss.

3.3.5. Flattening if-then-else inside map
Flattening if-then-else expressions are tricky, as each thread of the GPU has to preform the
same operation and, by nature, if-then-else expressions preform different operations. We
use a technique called branch-packing [Ble90, p. 154], in which the inputs for the ‘true’ and
‘false’ branches are partitioned such that the two branches can be executed separately and
the results can then be merged. We will first need to introduce two functions: splitInput
and mergeResult, shown in listings 3.6 and 3.7 resp. splitInput is a segmented version
of gather1: It collects the segments at indices is of an irregular array xss. mergeResult
is a segmented version of scatter: It writes back segments of an irregular array xss to
a destination array at indices is.

We can now write the flattening rule for if-then-else-expressions in a map, which is
shown in listing 3.8. We first split the inputs of the ‘true’ and ‘false’ branch, and then

1See https://futhark-lang.org/examples/gather-and-scatter.html for a gather example in
Futhark.
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Listing 3.6: Take the segments of array xss at indices is.
def s p l i t I n p u t ’τ ( i s : [ ] i 64 )

(Sxss : [ ] i 64 )
(Dxss : [ ] τ ) : ( [ ] i64 , [ ] τ ) =

let Sres = map (\ i −> Sxss [ i ] ) i s
let Dres = map2 (\ i i 1 i i 2 −>

let idx = Bxss [ i s [ i i 1 ] ] + i i 2
in Dxss [ idx ]

) II1res II2res
in r e s −− We i m p l i c i t l y cons t ruc t ’ res ’ from ’Sres ’ and ’Dres ’ .

Listing 3.7: Write segments of array xss to dest at indices is.
def mergeResult ’τ ( des t : ∗ [ ] τ )

(Bres : [ ] i 64 )
( i s : [ ] i 64 )
(Sxss : [ ] i 64 )
(Dxss : [ ] τ ) : [ ] τ =

let i dxs = map2 (\ i i 1 i i 2 −> Bres [ i s [ i i 1 ] ] + i i 2 ) II1xss II2xss
in s c a t t e r des t idxs Dxss

flatten the two expressions eT and eF with their corresponding inputs. We then use a
scatter to calculate the shape of the result from the shapes of the results of the two
branches, and finally we merge the results of the two branches together to a single result.

3.3.6. Flattening match-expressions inside map
It is possible to translate any Futhark match-expression into a series of nested if-
then-else-expressions, and we therefore already have a naive way of flattening match-
expressions. It is not very efficient, however, as it requires k − 1 calls to partition for
a match-expression with k cases. We therefore present a generalized version of the if-
then-else flattening transformation that works for match-expressions, which is shown
in listing 3.10. It works similarly to flattening if-then-else-expressions, but instead
of partitioning the input in a ‘true’ and ‘false’ branch, we partition it into k different
branches, flatten each branch, and then merge each of the results of the k branches
together to a final result. partitionK does the heavy lifting, partitioning an array ns
into k different equivalence classes. It returns a flat permutation of ns as well as a
segment array describing the sizes of the partitions. We use those segment sizes and
their corresponding offsets to slice Diss for each of the k branches. The definition of
partitionK is shown in listing 3.9.
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Listing 3.8: Flattening rule for if-then-else-expressions in a map.
r e s = F (map2 (\b xs −> i f b then eT else eF ) bs xss )
⇒
( i s T , i s F ) = p a r t i t i o n (\ i −> bs [ i ] ) ( i o t a ( l ength bs ) )
xssT = s p l i t I n p u t i s T Sxss Dxss
xssF = s p l i t I n p u t i s F Sxss Dxss
r e s T = F (map (\ xs −> eT ) xss T )
r e s F = F (map (\ xs −> eF ) xss F )
Sres = s c a t t e r ( r e p l i c a t e n 0) ( i s T ++ i s F ) (SresT ++ SresF )
blank_res = r e p l i c a t e ( reduce (+) 0 Sres ) 0
p a r t i a l _ r e s = mergeResult blank_res Bres i s T SresT DresT
Dres = mergeResult p a r i t a l _ r e s Bres i s F SresF DresF

Listing 3.9: k-way partition.
def part i t i onK [ n ] ( k : i 64 )

(p : i 64 −> i64 )
( ns : [ n ] i 64 ) : ( [ k ] i64 , [ n ] i 64 ) =

let c l s _ f l a g s = tabulate_2d k n (\ i j −>
i f p ns [ j ] == i

then 1 else 0
)

let l o c _ o f f s = map ( scanExc (+) 0) c l s _ f l a g s
let counts = map ( reduce (+) 0) c l s _ f l a g s
let g lob_o f f s = scanExc (+) 0 counts
let c l s _ o f f s = tabulate_2d k n (\ i j −>

g lob_o f f s [ i ] + l o c _ o f f s [ i , j ]
)

let i s = map (\ i −> c l s _ o f f s [ p ns [ i ] , i ] ) ( i o t a n)
let blank = r e p l i c a t e n 0
let r e s = s c a t t e r blank i s ns
in ( counts , r e s )

20



Listing 3.10: Flattening rule for match-expressions in a map.
r e s = F (map2 (\ c xs −> match c case p1 −> e1

· · ·
case pk −> ek

) cs xss )
⇒
c l s = map (\ c −> match c case p1 −> 0

· · ·
case pk −> k − 1

) cs
(Siss , Diss ) = part i t i onK k (\ i −> c l s [ i ] ) ( i o t a ( l ength c l s ) )
i s 1 = Diss [ Biss [ 0 ] : Biss [ 0 ] + Siss [ 0 ] ]
xs s 1 = s p l i t I n p u t i s 1 Sxss Dxss
r e s 1 = F (map (\ xs −> e1 ) xss 1 )
· · ·
i s k = Diss [ Biss [ k − 1 ] : Biss [ k − 1 ] + Siss [ k − 1 ] ]
x s sk = s p l i t I n p u t i s k Sxss Dxss
r e s k = F (map (\ xs −> ek ) xss k )
Sres = s c a t t e r ( r e p l i c a t e n 0) i s s ( f l a t t e n [ Sres1 , . . . ,Sresk ] )
p a r t i a l _ r e s 0 = r e p l i c a t e ( reduce (+) 0 Sres ) 0
p a r t i a l _ r e s 1 = mergeResult p a r t i a l _ r e s 0 Bres i s 1 Sres1 Dres1
· · ·
p a r t i a l _ r e s k = mergeResult blank_resk−1 Bres i s k Sresk Dresk
Dres = p a r t i a l _ r e s k
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3.4. Function Lifting
While we have shown how to flatten a subset of the operations in Futhark, the ques-
tion still remains how we flatten function calls i.e. what is the rule for flattening
F
(
map (λxs -> f xs) xss

)
? The answer is that we lift the function f into a function

fL such that fL xss is semantically equivalent to map (λxs -> f xs) xss [Pey+08].
For notational convenience we will restrict ourselves to only considering functions of a

single argument (but the argument can be a tuple). We will also ignore some of the finer
points about the Futhark type system in this section, especially w.r.t. size types.

To lift a function f, we add a parameter w which is the size of the outer map, and then
we lift its signature and lift its body:

f (args : α) : β = e

⇓
fL (w : i64) (args : LtJαK) : LtJβK = LJeK

The rules for lifting types is shown in fig. 3.4. The first rules states that lifting a scalar
type becomes a (regular) array with w as its length. The second rule states that lifting
an array type becomes an irregular array, which we represent as a segment array with
the type [w]i64 and a flat data array with the type []τ . The third rule just states that
to lift a tuple you just lift the inner types.

LtJτK = [w]τ Scalars become arrays
LtJ[]τK = ([w]i64, []τ) Arrays become irregular arrays

Lt

q
(τ1, . . . , τk)

y
= (LtJτ1K, . . . ,LtJτkK) Lift inner types of tuple arguments

Figure 3.4.: Rules for lifting function types.

Lifting the body e of a function amounts to performing the flattening-transformation
F
(
map (λ(xs1,…,xsk) -> e) (zip xss1 … xssk)

)
where xss1,…,xssk are the lifted

arguments of f.
As an example, consider lifting the function

mango (n : i32, xs : []i32) : i32 = n + reduce (+) 0 xs

Its n argument would become an array, and its xs argument would become two arguments:
a segment array Sxss and a flat data array Dxss and it would return a regular array of
type [w]i32. The lifting transformation is shown in listing 3.11. In step 1 the inner body
of the map being flattened is distributed. In step 2 the “reduce inside map” flattening
rule is used and in step 3 the result is flattened and as it had no inner parallelism, we
just simplified the result.
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The function mangoL has — excluding w — a regular array argument its first argument,
an irregular array as its second argument and its return type is a regular array. Consider
instead the function:

banjo (n : i64) : []i64 = iota (n*2)

Its lifted counterpart would have — again excluding w — one regular array as its argument,
and it would return an irregular array (in the form of a shape- and flat data array).
We show the lifting of banjo in listing 3.12. In step 1 the inner body of the map being
flattened is distributed. In step 2 the first statement is flattened. As there’s no inner
parallelism, we just simplify it. And in step 3 the “iota inside map” flattening rule is
used to get the result.

We can now finally show the flattening rule for functions inside a map. There are four
different rules, depending on the type of the function:

(R1) If both the argument and result of f are scalars
r e s = F (map (\x −> f x ) xs )
⇒
w = length xs
r e s = fL w xs

(R2) If the argument of f is a scalar and the result is an array
r e s = F (map (\x −> f x ) xs )
⇒
w = length xs
(Sres , Dres ) = fL w xs

(R3) If the argument of f is an array and the result is a scalar
r e s = F (map (\ xs −> f xs ) xss )
⇒
w = length Sxss
r e s = fL w (Sxss , Dxss )

(R4) If both the argument and result of f is an array
r e s = F (map (\ xs −> f xs ) xss )
⇒
w = length Sxss
(Sres , Dres ) = fL w (Sxss , Dxss )

There is one additional caveat when flattening function application: if the argument to
the function f is a constant, we need to replicate it such that it becomes an array of
length w and pass that array as the argument to fL instead.
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Listing 3.11: Lifting a simple function.
mangoL (w : i 64 )

( ns : [w] i 32
, (Sxss : [w] i64 , Dxss : [ ] i 32 ) ) : [w] i 32

= F (map (\( n , xs ) −> n + reduce (+) 0 xs ) ( z ip ns xss ) )
⇒1

= let reds = F (map (\ xs −> reduce (+) 0 xs ) xss )
in F (map (\( n , red ) −> n + red ) ( z ip ns reds ) )

⇒2

= let reds = segreduce (+) 0 Fxss Dxss
in F (map (\( n , red ) −> n + red ) ( z ip ns reds ) )

⇒3

= let reds = segreduce (+) 0 Fxss Dxss
in map2 (+) ns reds

Listing 3.12: Lifting another simple function
banjoL (w : i 64 ) ( ns : [w] i 64 ) : ( [w] i64 , [ ] i 64 )
= F (map \(n −> i o t a (n ∗2) ) ns )
⇒1

= let n2s = F (map (\n −> n ∗ 2) ns )
in F (map (\ n2 −> i o t a n2 ) n2s )

⇒2

= let n2s = map (∗2) ns
in F (map (\ n2 −> i o t a n2 ) n2s )

⇒3

= let n2s = map (∗2) ns
in let Sres = n2s

let Dres = s e g i o t a Fres
in (Sres , Dres )
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Of course actual Futhark functions can have more than one argument, and multiple
results via tuples, which means that you sometimes have to combine these four rules. To
illustrate this, we’ll show the flattening of the expression

map (λxs -> mango (5, xs)) xss

Note that one of the arguments is a constant and will therefore need to be replicated in
order to be passed to the lifted version of mango.

The example is shown in listing 3.13. In step 1 The ‘5’ is replicated into the array
fives and given as argument to the map. In step 2 we use both flattening rule (R1) and
flattening rule (R3), which means we pass the fives array unchanhed and the segment-
and data arrays of xss to mangoL.

Listing 3.13: Flattening example of function inside map
r e s = F (map (\ xs −> mango (5 , xs ) ) xss )
⇒1

r e s = let f i v e s = r e p l i c a t e ( l ength Sxss ) 5
in F (map2 (\ xs f i v e s −> mango ( f i v e , xs ) ) xss f i v e s )

⇒2

w = length Sxss
r e s = let f i v e s = r e p l i c a t e ( l ength Sxss ) 5

in mangoL w ( f i v e s , (Sxss , Dxss ) )
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4. Implementation

While we’ve shown the flattening rules and function lifting transformations as operations
on (a subset of) the Futhark source language, the actual implementation of irregular
flattening is implemented as a compiler pass1 that operates on the Futhark intermediate
representation (IR), and is written in Haskell just as the rest of the Futhark compiler.
A Futhark compiler pass is simply a function from one program to another program,
potentially with a different representation. In the case of the flattening compiler pass,
it transforms a program with the “SOACS” representation, which supports nested
parallelism, to a program with the “GPU” representation, which only supports flat
parallelism.

The Futhark IR is a first-order, monomorphic language which greatly simplify the
implementation of the flattening as we don’t have to deal with lifting higher-order
functions which would quickly leads to problems such as arrays of functions [Pey+08,
p. 396]. The IR only has values of array and primitive types, which means that user-
defined data structures and tuples from the source language are translated into multiple
values, which is why we haven’t mentioned records or sum types in regards to flattening.
Additionally, the Futhark IR is in Administrative Normal Form (ANF) where all sub-
expressions are either constants or variables. As an example showing the Futhark IR,
the source-level statement

let res = (x + y + 1, 2 * x - y)

would be translated to something like the following Futhark IR:

let {a : i 32 } = x + y
let { res_0 : i 32 } = a + 1
let {b : i 32 } = x ∗ 2
let { res_1 : i 32 } = b − y
in {res_0 , res_1}

This means means that the first step of flattening — translating the mapped expression
into simple statements — is already taken care of.

In the implementation we have to be more aware of which arrays are regular and
which are irregular. It is of course possible to represent a regular array with an irregular
representation, but in practice this is inefficient as some of the flattening rules can be
optimized if we know that their inputs are regular. We therefore make the distinction:
An arrays representation is either as a regular array, in which case it is simply represented

1The flattening compiler pass can be found at https://github.com/diku-dk/futhark/blob/
e49203a0b13139bb983f62c39363521c2b65c8e7/src/Futhark/Pass/Flatten.hs
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as-is, or an irregular array, in which case it is represented by its its segments-, flags-,
offset- and data array (in that order). Using four arrays to represent an irregular array
instead of just the data- and segment array adds some overhead but also saves us from
having to re-calculate the offset- and flag arrays.

When introducing the flattening rules and function lifting, we took the liberty of
seamlessly converting between an irregular array and its representation i.e. if an irregular
array xss was in scope, its data array Dxss and shape descriptors Sxss, Bxss, etc. were
also in scope and, conversely, if the data- and segment arrays of xss were in scope, so
was xss. In the actual implementation we have to do the bookkeeping manually, which
is done by associating a result tag with each result from flattening a statement, and
then provide a mapping from variables used in a statements to result tags (called the
distribution inputs, denoted Σ) and a mapping from result tags to array representations
(called the distribution environment, denoted E).

To make this more clear, we return to the example of lifting the mango function, which
was shown in listing 3.11 on page 24. When we start flattening the function body, our
distribution inputs are

Σ = [n 7→ r0, xs 7→ r1, red 7→ r2, mango_res 7→ r3]

and our initial distribution environment is

E0 = [ r0 7→ Regular ns
, r1 7→ Irregular Sxss Fxss Bxss Dxss]

When flattening the first statement we lookup xs in Σ which gives us the tag r1, which
we can then use to get the irregular representation of xss via a lookup in E0 which we
then use in the segreduce. After flattening the statement, we add the result (which is a
regular array) to the distribution environment, which is now

E1 = [ r0 7→ Regular ns
, r1 7→ Irregular Sxss Fxss Bxss Dxss
, r2 7→ Regular reds]

When flattening the second statement we lookup the n and red in Σ which gives the tags
r0 and r2 resp. We lookup these in E1 to get the representation of ns and reds which
we then map the (+) over. After flattening this statement, we add the result (which
again is a regular array) to the distribution environment, which then becomes

E2 = [ r0 7→ Regular ns
, r1 7→ Irregular Sxss Fxss Bxss Dxss
, r2 7→ Regular reds
, r3 7→ Regular res]

When returning from mango we lookup the result mango_res in Σ and use the tag to get
the representation of the result via a lookup to E2 which in this case is res, the result of
the last statement of mango.
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You might be wondering where mango_res and res came from as they’re nowhere to
be found in listing 3.11. This is due to another subtle difference between the Futhark
source language and IR: in the source language, function bodies are just expressions
but in the IR a function body is a series of statements (let bindings) as well as a list of
sub-expressions which are the results of the body. This means that we have to bind the
final statement of the mangoL function to a variable (res in this case) and then return
that variable as the result of the function body.

Consider now a function body in which the result is a constant c:

let {x : i 32 } = . . .
let {y : i 32 } = . . .
. . .
in {c}

If we were to lift this function body, we’d distribute a map over each of the statements
and flatten them:

let { xs : i 32 } = F (map (\v −> . . .) . . .)
let { ys : i 32 } = F (map (\v −> . . .) . . .)
. . .
in {c}

but notice that we are not distributing the map over the result. If the result was not
a constant but instead a variable, we would do a lookup in the distribution inputs and
distribution environment and return the appropriate value(s), but in the case of a constant
we have to manually replicate it such that it fits the dimension w of the outer map:

let { xs : i 32 } = F (map (\v −> . . .) . . .)
let { ys : i 32 } = F (map (\v −> . . .) . . .)
. . .
let { c _ l i f t e d : i 32 } = r e p l i c a t e w c
in { c _ l i f t e d }

This is related to a similar problem that we have ignored until now, which is that of
free variables when flattening of expressions. Here, a free variable is one that is not bound
to the lambda of the map we are currently flattening. If we’re flattening an expression

F
(
map (λx . . . -> e) xs . . .

)
and we encounter a free variable v in e, we move v outside the map, replicate it with the
size w of the map and finally add it as an argument to the map:

let vs = replicate w v in F
(
map (λx v . . . -> e) xs vs . . .

)
If we revise the example in listing 3.13 on page 25, we see that this is exactly the same
we do when are flattening a function call with a constant is its argument.

Another point that we glossed over in the flattening chapter was size types. As we
have already mentioned, the type of an array in Futhark includes its size. This also
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means that, if we want to pass an array to a function, we need to include its size as a
parameter to the function. We have actually already done this in the Function Lifting
section, where we add w — the size of the outer map — as a parameter when lifting a
function. What we are missing is including the length of the data array when passing the
representation of an irregular array. When returning (the representation of) an irregular
array we also need to return the length of the flat data array, and include an existential
size2 in the type of the flat data array.

To summarize, the process of lifting the signature of a function f is:

• Add a parameter w of type i64 which is the size of the outer map.

• For each parameter of f:
– If the parameter is a scalar type τ , make it an array of type [w]τ .
– If the parameter is an array type with elements of type τ , add five parameters

to the lifted function signature: The number of elements, of type i64, and the
segments-, flags-, offsets- and data array. The segments- and offsets arrays
are both of type [w]i64, the flags arrays is of type [num_elems]bool and the
data array is of type [num_elems]τ .

• For each result of f, lift the return type in a similar manner to lifting the parameters.

There is also the matter of the uniqueness of the parameters and return types. When
lifting scalar parameters / return types we mark the lifted array as “Non-Unique” as
it is impossible to consume a scalar parameter, and it is therefore also impossible for
the array to be consumed. When lifting array parameters / return types, we mark the
segment-, flag- and offset arrays as “Non-Unique” as we know we won’t be doing any
in-place modifications on them, and we then assign the uniqueness of the original array
as the uniqueness of the flat data array.

The functions for lifting the parameters and return types of a function are shown
in listings A.1 and A.2.

We will now again return to the example of the mango function on page 22, and show
the proper lifting transformation of its signature. We will not show lifting the body as
it is pretty much the same as in listing 3.11. The first step is translating the Futhark
source-level signature to one that resembles the IR, which means we have to add the
implicit length of the array xs as a parameter:

fun mango (d : i64 , n : i32 , xs : [ d ] i 32 ) : { i 32 }

We now apply the rules for lifting a function signature: First we add the parameter for
the size of the outer map w. Then, we lift the d parameter to an array of length w, and
we do the same for n. As xs is an array, we add the number of elements num_elemsxs,
segment array Sxs, flag array Fxs, offset array Bxs, and flat data array Dxs as parameters.
Finally, as the return type is a scalar, we lift it to an array of length w.

2See https://futhark.readthedocs.io/en/stable/language-reference.html#size-types
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mango_lifted (w : i64 ,
ds : [w] i64 ,
ns : [w] i32 ,
num_elemsxs : i64 ,
Sxs : [w] i64 ,
Fxs : [ num_elemsxs ] bool ,
Bxs : [w] i64 ,
Dxs : [ num_elemsxs ] i 32

) : { [w] i 32 }

As the Futhark IR is a first-order language, we can’t actually use the partitionK
function shown in listing 3.9 as it has a functional parameter p : i64 -> i64. In the
implementation, the partitionK function takes three parameters:

n The length of the cs array.

k The number of partitions to split cs into

cs An array of the equivalence classes.

The call partitionK k (λi -> cls[i]) (iota (length cls)) from listing 3.10 would
then instead simply be partitionK (length cls) k cls in the implementation. All
of the caveats that we have mentioned when lifting function bodies also apply to lifting
the bodies of the branches of a match-expressions e.g. we need to replicate constants if
they’re the results of a branch.
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5. Evaluation

5.1. Tests
In this section we cover the testing we have done to verify our implementation. Futhark
comes with a built-in testing tool which makes it easy to make simple unit tests. Our
tests are split in two categories: Tests of function lifting and tests of flattening match-
expressions. Of course by virtue of using functions, the match-expression tests’ validity
hinges on the correctness of function lifting.

5.1.1. Testing Function Lifting
With function lifting, we test cases such as functions that have both regular and irregular
parameters and return types, functions that are called with free variables or constants as
their arguments or return free variables or constants as their results, to name a few.

The test cases are not “pretty” and usually just do some bogus computation, but
what is important is not the actual contents of the functions, but instead the boundary
between calling / returning from a function. We also have to dance around the Futhark
compiler to avoid it optimizing out the parts we are interested in. Specifically, we add a
#[noinline] attributes to our functions, but even then the Futhark compiler will always
inline the first function we are calling from main.

As an example, the func_mix.fut test program is shown in listing 5.1. When compiled,
foo gets inlined and only bar is lifted.

Listing 5.1: Function with both scalar- and array parameters / return types.
#[ n o i n l i n e ]
let bar ( y : i 64 ) ( xs : [ ] i 64 ) : ( [ ] i64 , i 64 ) =

let z = y ∗ reduce (+) 0 xs
in ( i o t a z , z )

#[ n o i n l i n e ]
let f oo ( a : i 64 ) (b : i 64 ) =

let xs = i o t a a
let ( ys , z ) = bar b xs
in reduce (+) 0 ys − z

def main ( as : [ ] i 64 ) ( bs : [ ] i 64 ) = map2 foo as bs
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We give a short description of the different tests we have made in table 5.1. The test
cases are all given a few inputs that are compared against a known output. The actual
tests can be found at1.

Test filename Description
func_simple.fut Tests lifting a simple function with no inner parallelism

and only scalar parameters and return types.
func_irreg_input.fut Tests lifting a function with an array parameter.
func_irreg_result.fut Tests lifting a function with an array return type.
func_fully_irreg.fut Tests lifting a function with an array parameter and

return type.
func_mix.fut Tests lifting a function with both scalar and array

parameters and return types.
func_mix_nested.fut Like func_mix.fut but chains another function call such

that one lifted function calls another lifted function.
func_const.fut Tests lifting a function that both receives as argument

and returns a constant.
func_free.fut Tests lifting a function that both receives as argument

and returns a free variable.
func_irreg_update.fut Tests lifting a function that consumes its argument.

Table 5.1.: Summary of tests of function lifting

There are 9 test files with a total of 20 unit tests. The tests were run with the OpenCL
and CUDA backend, and in both cases 20/20 test cases passed.

5.1.2. Testing Flattening Match-Expressions
When testing flattening of match-expressions we took a similar approach, testing different
combination of regular and irregular inputs and results. While most of the tests use
if-then-else-expressions, they are just syntactic sugar for a match-expression with two
branches.

We give a short description of the different tests in table 5.2. The actual tests can be
found at2.

There are 5 test files with a total of 21 unit tests. The tests were run with the OpenCL
and CUDA backend, and in both cases 21/21 test cases passed.

1https://github.com/diku-dk/futhark/blob/e49203a0b13139bb983f62c39363521c2b65c8e7/
tests/flattening/function-lifting/

2https://github.com/diku-dk/futhark/blob/e49203a0b13139bb983f62c39363521c2b65c8e7/
tests/flattening/match-case/
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Test filename Description
if.fut Tests flattening of simple if-expression with scalar inputs

and results.
if_irreg_input.fut Tests flattening of if-expression that takes an array as

input to one of its branches.
if_irreg_result.fut Tests flattening of if-expression whose branches’ results

are arrays.
if_fully_irreg.fut Tests flattening of if-expression whose branches’ results

and inputs are a mix of scalars and arrays.
match_fully_irreg.fut Tests flattening of match-expression whose branches’

results and inputs are a mix of scalars and arrays.

Table 5.2.: Summary of tests of match-expressions

5.2. Benchmarks
In chapter 3 we mentioned that it was possible to translate any match-expression into a
series of nested if-then-else-expressions, but we claimed that it was not efficient, and
we therefore introduced a flattening rule for general match-expressions. To verify that
this claim is actually true, and to what extent, we benchmark two semantically equivalent
programs with n branches, one written as a single match-expression and the other as
nested if-then-else-expressions. We do this for n = 2, 4, 8, 16, 32 and 64 branches.

An example for n = 4 branches is shown in listings 5.2 and 5.3 for the nested if and
single match version respectively. The other versions follow the same pattern but with a
different number of branches. To make sure that the branches that match are distributed
equally, we take the modulus n of the input argument z before comparing.

Futhark comes with a utility futhark bench, which we used to run the benchmarks.
The benchmarks were run with the CUDA backend on a NVIDIA A100 GPU.

The benchmark results are shown in fig. 5.1. As can be seen, for all cases except n = 2
branches, the match-version runs faster than the if-version. It is to be expected that the
two versions with n = 2 branches have similar performance as a single if-then-else-
expression is simply translated to a match-expression with two branches.

The speedups of the match-versions over the if-versions is shown in fig. 5.2. It appears
that the speedup increases as the number of branches increase, reaching up to 5x at best,
but as the input gets larger the speedups seem to converge at around 1.7x.
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Listing 5.2: Nested if-expression with four branches.
def f ( z : u8 ) : u8 = let x = z % 4 in

i f x == 0
then 1
else i f x == 1
then 2
else i f x == 2
then 3
else 4

def main [ n ] ( xs : [ n ] u8 ) = map f xs

Listing 5.3: Single match-expression with four branches.
def f ( z : u8 ) : u8 = let x = z % 4 in

match x case 0 −> 1
case 1 −> 2
case 2 −> 3
case _ −> 4

def main [ n ] ( xs : [ n ] u8 ) = map f xs
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6. Conclusion

This project has two goals: To implement flattening of match-expressions and implement
function lifting in the Futhark compiler. We initially give an overview of flattening as a
concept , previous work related to flattening, and show a handful of existing flattening
rules. We then present a new rule for flattening match-expressions as a generalization of
flattening if-then-else-expressions and theorize that it is more efficient than flattening
nested if-then-else-expressions. We also cover function lifting and show how it can be
used to flatten function calls nested inside maps.

We explain how the theoretical model of flattening translates to the actual implementa-
tion that operates on the Futhark internal representation and present an implementation
of both flattening of match-expressions and function lifting.

Our implementation of both flattening of match-expressions and function lifting has
been validated with a set of tests, all of which pass. We also confirm our hypothesis
that flattening match-expressions indeed is faster by benchmarking otherwise equivalent
programs using nested if-expressions and a single match-expression. Our benchmarks
show speedups up to ∼5x, but for larger inputs we only gain a modest speedup of ∼1.7x.
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7. Future Work

The irregular flattening part of the Futhark compiler is very much under construction,
and our implementation of flattening match-expressions and function lifting is only a
small part of it. While the tests we did write all pass, there are surely edge cases that we
have not covered which would likely reveal bugs.

There are other Futhark SOACs and other constructs for which flattening has not
been implemented yet. A natural next step would be to implement flattening of the loop
control structure, which is Futharks alternative to recursive functions. In theory, function
lifting should also allow for the possibility of having recursive functions in Futhark.

Here we present some possible improvements that are more directly related to this
project.

7.1. Improving PartitionK
The implementation of the partitionK function is not very efficient. The cls_flags
array is a k × n array of i64s, where n is the number of elements we are partitioning,
which can consume a lot of memory when flattening a match-expression with many
branches. A potential improvement to the memory use and likely also runtime of the
partitionK function would be to implement it with a sorting function such as radix-sort,
which has been shown to work well on parallel hardware [BS90, p. 3].

7.2. Incremental Flattening
Full flattening can oversaturate the availabel parallelism of the hardware if the operation
which is preformed is so light that the overhead of spawning new threads exceeds the
cost of doing the operations sequentially on fewer threads. Additionally, fully flattening
a program can destroy opportunities for optimizing locality [Oan18a].

Incremental flattening [Hen+19] is a technique in which the optimal amount of flattening
is chosen by compiling different versions of the same code that are at different levels of
flattening, and then statistically choosing the version that best utilizes the parallelism
available at runtime. Futhark already has incremental flattening for regular nested
parallelism, but the current version of irregular flattening in the Futhark compiler
performs full flattening.
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7.3. The Replication Problem
When flattening an expression that contains free variables, those free variables must be
hoisted out of the map and replicated. This is not a problem if the variables are scalars,
but if they are large arrays this can incur a large memory and runtime cost. There have
been numerous efforts to mitigate this [Ble95, p. 57][PPW95]. One way to handle the
replication problem is to instead index indirectly trough the segment indices [Oan22,
slide 59]. Another solution called generalized segment descriptors let the segments of the
irregular representation of an array overlap [Mad12]. Further work is required to explore
how the Futhark compiler could solve the replication problem.
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A. Code Listings

Listing A.1: Function for lifting the return types of a function
l i f tRetType : : SubExp −> [ RetType SOACS] −> [ RetType GPU]
l i f tRetType w = concat . snd . L .mapAccumL l i f t T y p e 0

where
l i f t T y p e i r e t type =

let l i f t e d = case r e t type of
Prim pt −>

pure $ arrayOf ( Prim pt )
( Shape [ Free w] )
Nonunique

Array pt _ u −>
let num_elems = Prim int64

s eg s = arrayOf ( Prim int64 )
( Shape [ Free w] )
Nonunique

f l a g s = arrayOf ( Prim Bool )
( Shape [ Ext i : : Ext SubExp ] )
Nonunique

o f f s e t s = arrayOf ( Prim int64 )
( Shape [ Free w] )
Nonunique

elems = arrayOf ( Prim pt )
( Shape [ Ext i : : Ext SubExp ] )
u

in [ num_elems , segs , f l a g s , o f f s e t s , e lems ]
in ( i + length l i f t e d , l i f t e d )
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Listing A.2: Function for lifting a parameter of a function
l i f tParam : : SubExp

−> FParam SOACS
−> PassM ( [ FParam GPU] , ResRep )

l i f tParam w fparam =
case declTypeOf fparam of

Prim pt −> do
p <−

newParam ( desc <> ” _ l i f t e d ” )
( arrayOf ( Prim pt ) ( Shape [w] ) Nonunique )

pure ( [ p ] , Regular $ paramName p)
Array pt _ u −> do

num_elems <−
newParam ( desc <> ”_num_elems” ) $ Prim int64

segments <−
newParam ( desc <> ”_segments” ) $

arrayOf ( Prim int64 ) ( Shape [w] ) Nonunique
f l a g s <−

newParam ( desc <> ” _f lags ” ) $
arrayOf ( Prim Bool )

( Shape [ Var (paramName num_elems ) ] )
Nonunique

o f f s e t s <−
newParam ( desc <> ” _ o f f s e t s ” ) $

arrayOf ( Prim int64 ) ( Shape [w] ) Nonunique
elems <−

newParam ( desc <> ”_elems” ) $
arrayOf ( Prim pt )

( Shape [ Var (paramName num_elems ) ] )
u

pure
( [ num_elems , segments , f l a g s , o f f s e t s , e lems ] ,

I r r e g u l a r $ I r regu la rRep
{ i r r egu la rSegment s = paramName segments ,

i r r e g u l a r F l a g s = paramName f l a g s ,
i r r e g u l a r O f f s e t s = paramName o f f s e t s ,
i r r egu l a rE l ems = paramName elems

}
)

where
desc = baseSt r ing (paramName fparam )
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