
Two optimizations to GPU code generation in the Futhark

compiler

Christian P̊abøl and Anders Holst

Supervisor: Cosmin E. Oancea

February 14, 2024

1



Contents

1 Introduction 3

2 Background 3
2.1 Terminology and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The reduce and scan operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 Sequential reduce and scan in code . . . . . . . . . . . . . . . . . . . . . 4
2.3 High-level overview of existing Futhark implementations . . . . . . . . . . . . . 4
2.4 Single-pass parallel scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4.1 Tblock-virtualization and single-pass scan in Futhark . . . . . . . . . . 5
2.4.2 Efficient parallel reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Implementation 7
3.1 Tblock-virtualization for the single-pass scan kernel . . . . . . . . . . . . . . . . 7
3.2 Improving sequentialization in reduce . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Firing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 CHUNK selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Validation testing 12
4.1 Validation testing plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Validation testing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Reproduction of validation results . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Benchmarking 15
5.1 Benchmarking plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Benchmarking round 1 results analysis . . . . . . . . . . . . . . . . . . . . . . . 16

5.2.1 A100 round 1 results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.2 RTX4090 round 1 results . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Benchmarking round 2 results analysis . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Reproduction of benchmarking results . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Benchmarking analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5.1 General benchmarking take-aways . . . . . . . . . . . . . . . . . . . . . 41
5.6 Benchmarking conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Conclusion and future work 43
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 References 45

Appendix i
A Benchmarking test programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
B Validation test program entry points and test cases . . . . . . . . . . . . . . . . vi
C Small input set benchmarking plots . . . . . . . . . . . . . . . . . . . . . . . . . vii



1 INTRODUCTION 3

1 Introduction

This report documents our work on two modifications made to GPU code generation in the
Futhark compiler. The first focuses on implementing thread block virtualization in single-pass
segscan kernels and is not a performance optimization per se, although it may enable, while
the second is an optimization to sequentialization in certain segreduce kernels, specifically
reductions with noncommutative, primitive and non-vectorized operators (more on this later).

Futhark1 is a functional array programming language with an optimizing compiler2 target-
ting primarily, but not exclusively, GPU execution. The compiler is in ongoing development
but is showing promising results in various domains. While the compiler generates efficient
and optimized code for SOACs such as scan and reduction, the window of opportunity for
optimization is always open.

In this report, we first give a small bit of relevant theory on parallel scan and reduction
algorithms in section 2, as well as some practical theory behind the optimizations we want
to make. In section 3, we detail important steps taken in implementation of both changes.
Finally, in sections 4 and 5, we present a validation and benchmarking plan, including exper-
imentation with parameterization of the modified reduce kernel; execution of said plan; the
results of testing; and finally, an analysis and conclusion upon the results.

2 Background

2.1 Terminology and abbreviations

We use CUDA terminology in all discussion of GPU hardware and GPU code. We use tblock
as an abbreviation for thread block; TBLOCK SIZE and NUM TBLOCKS to denote the size of
a tblock and the number of tblocks for a given kernel, and NUM THREADS = NUM TBLOCKS ∗
TBLOCK SIZE.

We use “tblock-reduction” to mean a tblock-level parallel reduction over TBLOCK SIZE

elements in shared memory.

2.2 The reduce and scan operations

Let (S, ⊕, e) be a monoid, where S is a set closed under binary associative operator ⊕
with neutral element e ∈ S, and let x ⊆ S be a sequence of elements from S with x =
[x1, x2, . . . , xn]. Then reduce ⊕ e x is the reduction of x to a single element x ∈ S through
pairwise application of ⊕ to neighboring elements from x:

reduce⊕ e x = e⊕ x1 ⊕ x2 ⊕ · · · ⊕ xn. (1)

Note that if ⊕ is additionally commutative, then reduce ⊕ e x′ produces the same result
for any permutation x′ of the sequence x.

scan ⊕ e x is essentially the same computation, but the result is a sequence (or sub-
multiset) y of each partial results s.t. y ⊆ S and |y| = |x|:

scan⊕ e x = [e⊕ x1, e⊕ x1 ⊕ x2, . . . , reduce⊕ e x]. (2)

1futhark-lang.org
2https://github.com/diku-dk/futhark

futhark-lang.org
https://github.com/diku-dk/futhark


2 BACKGROUND 4

1 reduce(op, ne, xs) =

2

3 acc = ne

4 for (i = 0; i < len(xs); i++)

5 acc = op(acc, xs[i])

6 return acc

(a) Reduce.

1 scan(op, ne, xs) =

2 ys = array(len(xs), elemtype(xs))

3 acc = ne

4 for (i = 0; i < len(xs); i++)

5 ys[i] = acc = op(acc, xs[i])

6 return ys

(b) Scan.

Figure 1: Pseudocode for naive and sequential reduce and scan.

As an example, using the set of reals R, addition, and zero as neutral element, then
reduce (+) 0 y, where y is a sequence of R, is the sum of elements in y, whereas scan (+) 0 y
is the sequence of all |y| prefix sums of y (similar to e.g. np.cumsum).

2.2.1 Sequential reduce and scan in code

Figure 1 shows C-like but high-level pseudocode for sequential reduce and scan. In line 5 of
each snippet, the current accumulator variable acc is updated by application of the binary
operator between acc and the next input element. As such there is a clear dependency on
acc between the i’th and (i − 1)’st iteration, hence neither algorithm is inherently parallel.
However, efficient parallel algorithms exist for each.

2.3 High-level overview of existing Futhark implementations

In this section, we present and discuss existing Futhark code generation for parallel scan and
reduction.

2.4 Single-pass parallel scan

The Futhark compiler can generate code for both single- and two-pass scan. The latter is
always used on the OpenCL backend, and on the CUDA and HIP backends when one or more
scan operators is non-primitive. In all other cases, single-pass scan is used. The authors of
the algorithm give a detailed description of the single-pass scan algorithm for GPUs (as well
as some of the optimizations employed in Futhark) in [1], while details of the implementation
into the Futhark compiler can be found in [2] and [3].

In the typical two-pass scan, each tblock computes a partial reduction of its assigned
partition of the input, requiring n global memory reads; next, per-block prefixes are computed
using a single intra-block scan; finally, each tblock scans its own partition, incorporating the
prefix from previous partitions, requiring n global reads and n global writes. In total, 2n and
n global memory reads and writes, respectively.

Meanwhile, the algorithm in question is called single-pass because it requires only a single
pass over the input, performing n reads and n writes from/to global memory at the cost of
some extra bookkeeping and synchronization overhead. In order to avoid the initial pass over
global memory, each thread block incorporates the prefix from previous partitions as the scan
is computed. This implies that the prefixes for partitions 0, . . . , k − 1 must be computed
before tblock k scans the k’th partition.



2 BACKGROUND 5

Each tblock is free to compute and publish its own aggregate prefix in parallel, but must
stall until it obtains the prefix, since its scan result depends on it. In addition, in order to avoid
the situation where the GPU is fully occupied by executing tblocks while a tblock responsible
for a previous prefix has not spawned, we must guarantee that all tblocks i = 0, . . . , k−1 have
at least spawned, but not necessarily finished execution, before tblock k spawns and begins
execution.

This must be specifically handled because CUDA does not guarantee that tblocks are
spawned in order of their tblock index (and neither does e.g. OpenCL), and the solution is to
let tblocks obtain dynamic tblock indices via an atomically accessed scalar counter variable
in global memory. We are somewhat abusing the CUDA/GPU programming model (correct
execution should not depend on the order of spawning of tblocks), but the behavior is well-
defined and deterministic when dynamic indexing is used peroperly, so we accept the abuse.

2.4.1 Tblock-virtualization and single-pass scan in Futhark

Since Futhark compiled binaries allow the user to set kernel parameters such as NUM TBLOCKS

on a per-program basis (rather than per kernel, as is usual in hand-written CUDA code),
code generated for the different kernels must support tblock-virtualization when the number
of physical tblocks spawned for a kernel invocation is smaller than the number of tblocks
required for the given problem size. With tblock-virtualization, we can use a fixed number of
tblocks to emulate the work and execution of arbitrarily many tblocks. Tblock-virtualization is
simple and typically only involves wrapping parts or all of a kernel in a loop over some number
of virtualization loop iterations (which varies per physical tblock if the number of physical
tblocks does not divide the number of required tblocks; as an example, with 2 physical tblocks
and 3 required tblocks, one physical tblock will loop twice while the other will loop only once).

One benefit of using a fixed number of physical tblocks has to do with memory expansion,
which we shall not go into specific detail with in this report, except to say that it is a Futhark
compiler pass which attempts to eliminate per-thread global memory array allocations by
hoisting them outwards to global scope. Each thread can then access their own chunk of the
hoisted array, possibly with some stride to ensure coalesced access. In practice this technique
requires that the number of physical tblocks is bounded, since allocations for all eventual
physical threads must be made ahead of time.

In regards to reduce and scan, memory expansion is e.g. used for operators with array
operands and for primitive but vectorized operators. Currently, two-pass scan is chosen on
the CUDA backend whenever the scan operator has array operands, while single-pass scan
fires for all other scan operators, including vectorized primitive operators. This implies that
memory expansion is required in select cases of single-pass scan.

However, the current Futhark implementation of single-pass scan ignores the NUM TBLOCKS

user-configurable parameter that is otherwise passed around in the IR, and instead spawns
exactly as many physical tblocks as the number of required tblocks by the problem size. Mean-
while, the memory expansion pass takes its information from the user-chosen NUM TBLOCKS.
This means threads from tblocks outside the number of required tblocks access memory from
outside the bounds of the expanded allocation(s). This is a bug which should be solved.



2 BACKGROUND 6

1 noncomm_reduce_GPU_kernel_OLD(op, ne, xs, NUM_TBLOCKS, TBLOCK_SIZE) =

2 /* STAGE ONE */

3 Q = ceil(len(xs) / (NUM_TBLOCKS * TBLOCK_SIZE))

4 for (k = 0; k < Q; k++) {

5 /* 1) collective copy of TBLOCK_SIZE sized slice of xs into shared mem.

6 * 2) tblock-reduction of shared mem and accumulation.

7 */

8 }

9 /* STAGE TWO

10 * ...

11 */

Figure 2: High-level pseudocode for the current Futhark generated GPU code for non-
commutative reductions.

2.4.2 Efficient parallel reduction

Many algorithms for parallel reductions suitable for GPU execution exist. However, we shall
only concern ourselves with the method currently implemented in the Futhark GPU backends,
since we will only be making a modification to this.

The two main obstacles to an efficient implementation are 1) coalesced access to global
memory and 2) efficient sequentialization.

For commutative reductions3, coalesced access is easily obtained since, as mentioned ear-
lier, any order of application of the binary operator yields the same result – hence threads
are free to apply the reduction with a stride in global memory, and thus coalesced access
is trivially obtained. Threads each reduce Q =

⌈
N/NUM THREADS

⌉
elements sequentially in a

virtualization loop of Q iterations, and subsequently write their result to shared memory; each
tblock then performs a tblock-reduction over TBLOCK SIZE elements; finally, a single tblock
reduces the NUM TBLOCKS number of results to a single value.

For non-commutative reductions we must take a little extra care because the operator(s)
must be applied to elements in order. Hence the tblock-reduction that succeeded the virtual-
ization loop is now moved inside the loop, and thus we now have Q parallel reductions rather
than 1, where Q = N/NUM THREADS is again the sequentialization factor.

A tblock-reduction has depth 5+log2(TBLOCK SIZE/32) ≤ 10 (given TBLOCK SIZE ≤ 1024)
per fused operator, and hence is not particularly expensive in itself, however it adds significant
overhead to the virtualization loop as opposed to the commutative kernel, and hence a signif-
icant degradation in performance is to be expected when the operator is non-commutative.

Figure 2 shows pseudocode for this method, and this is what is followed by the code gener-
ated by the current GPU backends of the Futhark compiler for non-commutative reductions.
Note that the kernel is hyperparameterized over NUM TBLOCKS and TBLOCK SIZE only.

3A reduction is, in this context, said to be commutative if the reduction operator is a fusion of one or
more commutative binary operators. As examples, fusing a summation and a product yields a commutative
reduction since both addition and multiplication is commutative, whilst fusing a summation and an MSS yields
a non-commutative reduction because the MSS binary operator is non-commutative.



3 IMPLEMENTATION 7

3 Implementation

3.1 Tblock-virtualization for the single-pass scan kernel

To make the single-pass scan kernel respect the NUM TBLOCKS embedded in the IR, we want
to extend the kernel with tblock-virtualization. For the single-pass kernel, this is as simple as
wrapping the entire kernel body in a virtualization loop of

NUM VIRT ITERS =

⌈
NUM LOGICAL BLOCKS− tBlockIndexphysical

NUM TBLOCKSphysical

⌉
(3)

iterations, where tBlockIndexphysical is the physical index of the given physical tblock,
and NUM LOGICAL BLOCKS is the number of logical blocks in the entire input. A logical block is
defined as exactly the amount of input processed by a single tblock, so NUM LOGICAL BLOCKS

is also the number of physical tblocks we would otherwise use without tblock-virtualization.
This formula is lifted from an existing, different use of tblock-virtualization in the compiler.

Note that NUM VIRT ITERS varies between tblocks. Equation (3) ensures that the difference
in the number of virtualization loop iterations between any two physical tblocks is at most
1. To avoid spawning tblocks with no work to do, the compiler ensures that the number of
physical tblocks spawned is the minimum between the requested and the required number of
tblocks – this assertion is already in place.

Recall that the single-pass scan kernel uses dynamic indexing of tblocks. This means
physical tblocks must fetch a new dynamic tblock index at the head of each virtualization
loop, however because the process of a physical tblock entering a new virtualization loop
iteration and fetching its next dynamic index corresponds directly to a new physical tblock
taking its place and fetching the same dynamic index, this should not raise any concerns w.r.t.
synchronization.

Optimal NUM TBLOCKS

Different values of NUM TBLOCKS is likely to have different effects on performance. Imme-
diately, one might argue that the optimal value is one which maximizes occupancy without
going overboard on the number of physical tblocks that fits on the given device with the given
TBLOCK SIZE.

3.2 Improving sequentialization in reduce

Our improvement to sequentialization is a decrease in the number of tblock-reductions in the
stage one main loop by a factor CHUNK. The loop is essentially stripmined with a factor CHUNK
by scaling Q by an additional factor 1/CHUNK. To account for the stripmining, each thread
must read CHUNK elements in each iteration, up from 1, for a total collective copy of size
TBLOCK SIZE · CHUNK per tblock.

Elements are read into CHUNK-sized per-thread register memory arrays, which are sequen-
tially reduced to a single value going into the tblock-reduction.

With k fused reduce operators, we need to read and reduce elements from k different
inputs. k collective copies from global into k CHUNK-size register arrays via shared memory
are performed in sequence, followed by k sequential reductions of private chunks. As such
the decrease in tblock-reductions and loop iterations comes at a trade-off in extra overhead



3 IMPLEMENTATION 8

from collective copies and per-thread reductions within individual loop iteration, but the
total number of global memory reads across loop iterations remains the same, while the total
number of sequential steps saved in tblock-reductions outweighs the extra steps needed to
read and reduce thread-private chunks for most values of CHUNK.

Figure 3 shows pseudocode for the new reduce stage one loop.

1 noncomm_reduce_GPU_kernel_NEW(op, ne, xs, NUM_TBLOCKS, TBLOCK_SIZE, CHUNK) =

2 /* STAGE ONE */

3 Q = ceil(len(xs) / (NUM_TBLOCKS * TBLOCK_SIZE * CHUNK))

4 for (k = 0; k < Q; k++) {

5 /* 1a) collective copy of TBLOCK_SIZE number of CHUNK sized slices of xs

6 * into per-thread register mem.

7 * 1b) per-thread sequential reductions of private chunks in register mem;

8 * TBLOCK_SIZE number of per-thread results written to shared_mem.

9 * 2) tblock-reduction of shared mem and accumulation.

10 */

11 }

12 /* STAGE TWO

13 * ...

14 */

Figure 3: High-level pseudocode for the desired changes to the reduction stage one loop GPU
code generation.

3.2.1 Firing conditions

Our improvement to sequentialization will fire only for reduce kernels for which the following
conditions hold:

1. the reduction is non-commutative, i.e. at least one fused operator is non-commutative.
This is because our optimization seeks to decrease the number of tblock-reductions in
the stage one virtualization loop, and the commutative reduce kernel already has none.

2. the reduction is a non-segmented or a large-segments segmented reduction, since the
small-segments segmented reduction kernel does not follow the two-stage approach.

3. all fused operators are primitive. An operator is said to be primitive if its parameters
are primitive typed and the operator is not vectorized. This restriction comes from the
fact that static analysis of whether a given operator might fit is not possible in general
for non-primitive-typed parameters, and not feasible in general for vectorized operators
– and very likely most would not fit anyway. Since non-primitive operators will require
the old version of the code generation and because we cannot interleave the two methods
on a per-operator basis, we must require that all operators are simultaneously primitive.

3.2.2 CHUNK selection

The derivations presented and discussed in this section are in part based on similar derivations
made in [3] for the segmented single-pass scan kernel.



3 IMPLEMENTATION 9

As we have seen, the values of TBLOCK SIZEand CHUNK determine the amount of shared
memory used by the kernel, however they also affect the number of thread registers used. Since
hardware specifications are fixed and TBLOCK SIZEis a user-configurable kernel parameter, we
must choose CHUNK last and compute its value depending on the other factors.

Intuitively, the optimal value of CHUNK might be the largest value available for the given
reduction and hardware configuration – in practice this may not necessarily be the case, whicih
we shall examine in section 5. In this subsection, we analyze the resources required by the
kernel, and, conversely, how to bound CHUNK such that the kernel does not request or use too
many resources.

What are “too many resources”? When a kernel requests too much shared memory, it
simply crashes with a CUDA error, which we must avoid. However, when it requests too
many thread registers, the compiler will neither crash nor give a warning, but rather silently
spill registers to thread-private global memory 4, which obviously will be detrimental to
performance [4].

Since the upper bound on shared memory is a hard bound, and because shared memory
is directly controlled by the programmer (in our case, the code generator) it will be very easy
to quantify and account for. On the other hand, the number of thread registers is not only
a soft bound, but also an elusive bound, in the sense that because the register allocator is
autonomous and the programmer is agnostic of placement, it is hard to control and profile.

Shared memory kernel requirements

As is, the reduction kernel uses shared memory for only the tblock-reductions of shared
memory-held values, in which each tblock simultaneously reduces TBLOCK SIZEelements from
each reduction array. Since each reduction parameter p must be held simultaneously, the
maximum number of bytes of shared memory required at any point by the kernel is:

TBLOCK SIZE ·
∑
p∈P

size(p) (4)

where size(p) is the byte element size of the parameter p.
As we introduce the additional chunking factor, the kernel will additionally require shared

memory to perform collective copies from global memory to per-thread register chunks. Each
collective copy will be performed separately and hence the same shared memory can be reused,
meaning the amount of shared memory required by this step is determined by the maximum
parameter element size:

TBLOCK SIZE · CHUNK ·max
p∈P

size(p). (5)

Hence the maximum amount of shared memory required at any point by the new reduction
kernel is the maximum between eq. (4) and eq. (5):

max

(
TBLOCK SIZE ·

∑
p∈P

size(p), TBLOCK SIZE · CHUNK · max
p∈P

size(p)

)
. (6)

4Called “local memory” in CUDA terminology.



3 IMPLEMENTATION 10

For most cases, the maximum is likely to be decided by eq. (5), i.e. the second argument
to the maximum, unless the number of fused operators is particularly high or we happen to
have a NUM TBLOCKS > TBLOCK SIZE · CHUNK, which is unlikely (but possible, since the user
has access to these kernel parameters).

As per the CUDA programming guide [4], all modern CUDA devices5 have at least 48 KiB
of shared memory per tblock, while, for example, the devices we will use in testing have 163
KiB (NVIDIA A100 with CC 8.0) and 99 KiB (NVIDIA RTX 4090 with CC 8.9), respectively.

Computing the bound on CHUNK imposed by the amount of shared memory is straight-
forward. As an example, let’s look at the maximum segment sum problem (MSSP) with
32-bit floats. The parallel MSS reduction operator parameter type is a quadruple of floats,
which would be represented as four separate float parameters in the IR. We wish to launch
our kernel with TBLOCK SIZE = 1024 on a device with 65536 KiB of shared memory. Ignoring
number of registers required, the largest available CHUNK is:

max

(
1024 ·

∑{
4, 4, 4, 4

}
, 1024 · CHUNK · max

{
4, 4, 4, 4

})

= max

(
16384, CHUNK · 4096

)
≤ 65536. (7)

We see that the amount of shared memory required for the tblock-reduction, i.e. the 16384
bytes in eq. (7), is well within the bounds.

Hence the bound imposed on CHUNK by shared memory is decided by:

CHUNK · 4096 ≤ 65536

⇐⇒ CHUNK ≤ 16. (8)

Thread register requirements

A number of factors and unknowns (rather, unpredictables) come into play when deter-
mining the bound on CHUNK imposed by the number of available registers.

For one, whereas shared memory is used only to hold reduction parameters, the kernel
will require register memory for not only per-thread chunk arrays, but also to hold computed
indices, loop bookkeeping, intermediate results, and more – for this reason, if CHUNK was
to be pushed to the maximum value permitted under the assumption that only reduction
parameters would need register allocation, then some spilling would be very likely to happen.

Secondly, it can be difficult to predict the actual number of available registers per thread
or tblock for a given set of kernel parameters. As per the CUDA programming guide [4], there
are multiple simultaneous restrictions on the number of registers registers per thread: One
specification states a hard bound of 255 registers per thread (for all CC’s ≥ 5.0), while another
states a maximum of either 32K or 64K registers per tblock depending on CC, implying a
maximum of 32 or 64 registers per thread for TBLOCK SIZE = 1024, which is a conservative
bound, albeit more reliable given the user-configurable TBLOCK SIZE.

According to [4], the CUDA word size is 4 bytes, and 64-bit values and operations are
emulated using multiple 32-bit registers and operations. Conversely, we must assume that

5Where “modern” means compute capability ≥ 5.0; i.e. Maxwell architecture (circa 2014) and newer.



3 IMPLEMENTATION 11

reduction parameters with an element size smaller than 4 bytes are placed in separate 32-bit
registers, even if the compiler could potentially transform some reduction operators to work
on packed registers. Hence the number of registers needed for a parameter p is:

regs(p) =
⌈
max(size(p), 4)/4

⌉
. (9)

One CHUNK sized register memory array is required for each reduction operator, and hence
the total amount of registers needed to hold one of each parameter p of some reduction is:∑

p∈P
regs(p) =

∑
p∈P

⌈
max(size(p), 4)/4

⌉
. (10)

Again, please note that this ignores the additional number of registers required to hold
other variables that may need to be in scope at the same time as the per-thread chunk arrays.

Returning to the previous MSS example with 32-bit float values and TBLOCK SIZE = 1024,
the number of 4-byte registers needed for one MSS quadruple is 4, meaning CHUNK ≤ 16 for a
CC with 64 registers per thread.

Current Futhark implementation of CHUNK selection

Currently, the same computation is used to choose CHUNK for the reduce and single-pass
scan kernels, and it is based on the work in [3]. It simply chooses the largest possible CHUNK

that satisfies the bound on shared memory as well as an estimate of the number of available
registers per thread. This estimate is based on the number of registers required to hold one
parameter from each fused operator at once but also adds a small overhead of three registers
on top; two to hold index computations and one to hold a loop variable.

Design and implementation of a new method for the choice of CHUNK is outside the scope
of this project, but in section 6.1 we discuss how and why this might be beneficial.



4 VALIDATION TESTING 12

4 Validation testing

In this section, we present our validation testing plan and results for both of the modifications
as described in section 3.

First and foremost, we will use the Futhark CI test suite for validation testing, since we
assume this to be sufficiently exhaustive in terms of testing different operators.

Secondarily, we want to assert that our implementations do not break or produce incorrect
results under varying parameterizations, including different values of TBLOCK SIZE for each
kernel, as well as different values of NUM TBLOCKS for the scan kernel, and different values of
CHUNK for the new reduce kernel.

4.1 Validation testing plan

This section details the different sets of parameters used in the additional testing outside of
the Futhark CI test suite. We wish to limit the number of test cases as much as we can, while
still providing reliable and meaningful results.

Compiler backend and hardware used

We exclusively test code generated by the CUDA backend of the compiler, and validation
tests are run on the A100 only.

Validation of the single-pass scan kernel are performed on commit f7a36ee [5] of the
compiler, i.e. the PR merge commit for our changes to the single-pass scan kernel, while
validation of the changes to the reduce kernel are made on commit 5234eb8 [6], i.e. the PR
merge commit for our changes to the reduce kernel.

Test programs

For the purposes of the additional validation testing, we choose the two programs lssp.fut
and mm-5x5.fut from among our benchmarking test programs for both the scan and reduce
kernels. The first program is interesting because it maps a single global memory input array
to an array of six-tuples in shared memory, whereas the second is interesting because its
reduction operator has 25 global memory input arrays (the largest among our benchmarking
programs). Both of these programs will be further introduced in section 5, but for validation
purposes, we additionally write a segmented version of the program to also validate test the
segmented code generation.

To view the source code for the test programs, see the benchmarking programs in ap-
pendix A and the additional validation testing entry points and validation test cases in ap-
pendix B.

Test input sizes

Each validation test program is tested using the same input sets as will be used in the
A100 benchmarks, i.e. a small and a large input set of 3 and 30 GBs of randomly generated
data.



4 VALIDATION TESTING 13

TBLOCK SIZE values

For both implementations, we want to test various values of TBLOCK SIZE, including values
that are small, large, non-powers of 2, and 1024 (the maximum value for CUDA devices). The
scan kernel requires that TBLOCK SIZE is a multiple of 3n while the reduce kernel does not, so
we shall additionally test the reduce kernel with some odd TBLOCK SIZEs.

Hence the values used for both kernels are of TBLOCK SIZE ∈ {32, 448, 1024}, while the
reduce kernel is additionally tested with TBLOCK SIZE ∈ {31, 761}.

NUM TBLOCKS values (single-pass scan only)

We wish to choose a set values of NUM TBLOCKS s.t. we will have test cases where: one
tblock performs all the work; many tblocks perform a large number of virtualization loop
iterations each, and the number of iterations vary between tblocks, for both a small and large
number of NUM TBLOCKS; the number of requested tblocks is equal to the number of required
tblocks (i.e. each tblock performs exactly 1 virtualization loop iteration).

Recall from section 3.1 that the host code will automatically choose the minimum between
the required and the requested number of tblocks – hence we can force the latter test case by
requesting a sufficiently high NUM TBLOCKS. Note that this also implies that we cannot test
cases where one or more tblocks perform no work.

Hence the values used are NUM TBLOCKS ∈ {1, 31, 1024, 231 − 1}.

CHUNK values (reduce only)

At present, CHUNK is not a configurable or tunable kernel parameter; rather, the compiler
simply chooses the largest possible value. Despite this, we see it fit to assert that the kernel
does not fail for smaller CHUNK values, in case we want to make the parameter tunable in the
future or in the case that benchmarking shows the optimal CHUNK value to not be the largest
in sufficiently many cases.

We already know for certain that a given reduce kernel will break if CHUNK is set too high,
due to requesting too much shared memory. Hence it is expected that some test cases will
fail with a corresponding error message if we attempt to use the same set of CHUNK values for
all test programs and values of TBLOCK SIZE. What is interesting here is whether those cases
which are fit to launch produce correct results – it is then up to the compiler to choose only
between values of CHUNK that fit.

When we eventually get to benchmark testing, we will try all CHUNK values up to and
including 40. However, for the purposes of validation testing, we limit ourselves to the: set of
values CHUNK ∈ {1, 9, 24, 40}, which we argue is representative.

4.2 Validation testing results

All validation tests in the Futhark CI test suite run successfully for both the reduce and scan
pull requests. All of the additional validation test cases run successfully as well.

4.3 Reproduction of validation results

To reproduce benchmarking results, please first find the source code for our benchmarking
test programs in appendix A – the validation entry points and test cases can then be found
in appendix B.



4 VALIDATION TESTING 14

All validation tests of the reduce kernel changes were made on commit 5234eb8 [6] of the
Futhark compiler, while the single pass-scan kernel changes were tested on commit f7a36ee
[5], so these Futhark compiler versions should be installed.

To reproduce the different validation test cases, please refer to the validation plan in
section 4.1.



5 BENCHMARKING 15

5 Benchmarking

In this section, we present and discuss our benchmarking plan for the new reduce kernel, and
later, we present, analyze, and conclude upon the results of benchmarking.

Using a small benchmarking suite of six reduction operators, we wish to examine the
performance of our implementation, as well as to explore optimal CHUNK parameterization.

We first and foremost wish to examine if there are significant speedups to be had over the
old implementation, and for those cases where we see speeddown, if any, we wish to explore
why. Ideally we do not only obtain speedups over the reference implementation, but also come
close to peak bandwidth for the different devices we test.

Secondarily, we want to explore different configurations of CHUNK and TBLOCK SIZE, to
determine optimal parameters but also to explore sensitivity in parameterization of the new
reduce kernel.

Our benchmarking is divided into two rounds: In the first we explore kernel parameteri-
zation, and in the second we compare with the reference implementation.

5.1 Benchmarking plan

Again, we wish to limit the number of test cases as much as possible while still providing
reliable and meaningful measurements for analysis. In this section we present some of the
different factors in the benchmarking suite.

Compiler versions and hardware used

To benchmark our reduce optimization, we use commit 5234eb8 [6] of the compiler, i.e.
the merge commit for the PR containing our changes. For the reference measurements, we
use the immediately preceding commit, 06732a5 [7].

We exclusively test code generated by the CUDA backends of the compiler, and bench-
marking tests are run on both an RTX4090 (CC 8.9; 24 GB device mem) and an A100 (CC
8.0; 40 GB device mem).

Note that measurements are made using futhark-bench and hence exclude certain things
such as device/host memory copies.

Test programs

We examine six different reduction operators. The first three operators are matrix multi-
plication operators over 2× 2, 3× 3, and 5× 5 matrices, respectively, i.e. reductions with 4,
9, and 25 global memory input arrays and progressively larger operators. These are interest-
ing to benchmark because they can be used to examine the effect on performance of higher
requirements for shared memory and register usage.

The next two are maximum segment sum (MSS) and longest satisfying subsequence (LSS)
operators. These each map a single global memory input array to arrays of four- and six-tuples,
respectively, in shared memory, and these are interesting to test because shared memory may
be a potential bottleneck.

The last program is linear function composition, which takes as input two length n arrays
representing n linear functions and computes the composition of these. This program is
interesting because it is the most lightweight binary operator we can think of that is associative
and non-commutative, but also non-trivial.



5 BENCHMARKING 16

Test input sizes

For all combinations of test program and device, we use a large and a small test input,
where the “large” test input is roughly 75% of the given device’s memory and the “small”
test is roughly a tenth of the large set. Hence for the RTX4090, the large and small sets are
∼18 GB and ∼1.8 GB, respectively, while for the A100, the large and small sets are ∼30 GB
and ∼3 GB, respectively.

TBLOCK SIZE values

All test cases are run with varying values of TBLOCK SIZE to explore its effect on perfor-
mance. For the reduce kernel changes, this is especially interesting to explore in relation to
the CHUNK factor, since the two hyperparameters together determine the amount of thread
registers (and shared memory) required, and because some combinations might cause register
spilling.

We wish to test commonly used values, hence we choose all powers of 2 between 32 and
1024, i.e. TBLOCK SIZE ∈ {32, 64, 128, 256, 512, 1024}.

CHUNK values (reduce only)

We want to find the optimal CHUNK parameterizations for various operators and TBLOCK SIZEs.
In particular, we are interested in examining whether there is a predictable pattern in the op-
timal CHUNK values for different TBLOCK SIZEs. Fortunately, the range of possible CHUNK values
is quite limited due to the constraint on shared memory (and, secondarily, thread registers),
and hence we choose simply to test all values in the range CHUNK ∈ {1, . . . , 40}.

Test rounds and performance metrics

Our benchmarking plan is split in two rounds: In the first, we explore the performance
obtained for various parameters, to find optimal parameterization and to expose pitfalls and
patterns; finally, we compare the best measurements for each TBLOCK SIZE with the reference
implementation.

In each round, we measure performance in terms of throughput in GB/sec, i.e. the number
of bytes of global memory input/output processed by the kernel divided by the time taken
to do so. This is an interesting metric as we are not only interested in comparing our im-
plementation with existing code generation, but also to compare with the peak bandwidth of
the given devices. Speedups over the reference implementation will be considered relative to
the percentage of peak bandwidth obtained by both implementations – if, say, we obtain a
3x speedup for a certain test case, but reach only 60% peak bandwidth, then this should be
taken as indication that there is still room for improvement.

5.2 Benchmarking round 1 results analysis

For all test cases in the first round of testing, the measurements made over the small input
sets exhibit largely the same patterns as those of the large input sets. To limit the amount of
figures in the report, we omit plots for the small input set test cases, but these can be found
in appendix C.

In each results plot, the best CHUNK for each TBLOCK SIZE is highlighted with a green box
in the heatmap.



5 BENCHMARKING 17

We first present all results from the A100 benchmarks and then the RTX4090 benchmarks.

5.2.1 A100 round 1 results

A100 round 1 results: mm-2x2.fut

Figure 4: A100, mm-2x2.fut, large dataset (∼30 GB)

The A100 obtains high throughput for all six TBLOCK SIZEs, reaching between 87% and
92.1% of peak bandwidth for TBLOCK SIZE = 1024 and 32, respectively.

The best CHUNK values appear to be in the higher ends of the the available CHUNK ranges
for each TBLOCK SIZE.

There appear to be significant dips in performance for all CHUNKs divisible by 8 – most
notably 16 and 32, but also to some degree 8, 24, and 40. While not nearly as significant,
there also appear to be very slight dips in performance for all other multiples of 4 greater
than or equal to 12. For all other CHUNKs greater than 8, the performance seems to be stable
and reliable.

Note that the kernel failed to launch due to shared memory constraints for TBLOCK SIZE =
512 ∧ CHUNK ≥ 24, and for TBLOCK SIZE = 1024 ∧ CHUNK ≥ 12, however judging from the
measurements alone, it seems that no significant register spilling occurred for any of the
TBLOCK SIZEs.



5 BENCHMARKING 18

A100 round 1 results: mm-3x3.fut

Figure 5: A100, mm-3x3.fut, large dataset (∼30 GB)

Again, A100 measurements are respectable, reaching between 83.9% to 90.3% of peak
bandwidth for TBLOCK SIZE ≤ 512, however only 67.7% for TBLOCK SIZE = 1024.

However, again we see large variance in measurements across CHUNKs for each TBLOCK SIZEs.
To some degree, the pattern of performance dips for multiple-of-8 CHUNKs also appears here,
in particular for CHUNK = 16 with the smallest four TBLOCK SIZEs.

Interestingly, the heatmap now reveals a good and clear sign of register spilling for all
TBLOCK SIZEs, indicated by the sudden drop-off in performance (i.e. the heatmap suddenly
turning blue going from one CHUNK to the next), for e.g. TBLOCK SIZE ≤ 128 ∧ CHUNK ≥ 32.



5 BENCHMARKING 19

A100 round 1 results: mm-5x5.fut

Figure 6: A100, mm-5x5.fut, large dataset (∼30 GB)

Notice that the kernel failed to launch entirely due to shared memory constraints for
TBLOCK SIZE ≥ 512 and all values of CHUNK.

The plot shows poor performance for all parameterizations relative to the previous two
programs, with peak throughputs of 55.8% to 67.9% of peak bandwidth for TBLOCK SIZE = 256
and 32, respectively.

On the other hand, measurements are more consistent here across all TBLOCK SIZEs, until
the relatively early dropoff at CHUNK ≥ 10, which is very likely due to register spilling.



5 BENCHMARKING 20

A100 round 1 results: linear function composition.fut

Figure 7: A100, linear function composition.fut, large dataset (∼30 GB)

Measurements show good performance for TBLOCK SIZE ≤ 64 and most CHUNK values,
except for the first 4 and, again, multiples of 8.

For TBLOCK SIZE = 128, performance quickly drops at CHUNK ≥ 14, which is interesting.
For all larger TBLOCK SIZEs, performance is lackluster for almost all CHUNKs, except for a
curiously high measurement for (TBLOCK SIZE, CHUNK) = (512, 6) as compared to other mea-
surements for this TBLOCK SIZE. However, the small input set results show something similar
(see appendix C).

Usually we would relate the dropoffs to register spilling, however the linear function com-
position operator is the smallest in our test suite, and we did not see the same pattern for
the 2× 2 MM operator (the second smallest), so unfortunately we cannot be sure.



5 BENCHMARKING 21

A100 round 1 results: mssp.fut

Figure 8: A100, mssp.fut, large dataset (∼30 GB)

As we go into the mssp.fut and lssp.fut results analyses, recall that the mss and lss

operators work on 4- and 6-tuples, respectively. This means that as elements are loaded from
the single global memory input array, they are mapped to tuples at the head of the stage
one loop. This essentially means that CHUNK and the sequentialization factor each take a
significant hit even though the input is small (in that there is only one input array of 32-bit
values), and because throughput is measured in terms of the input size in bytes, this puts a
strain on the kernel to compensate.

Still, the measurements for the A100 are disappointingly low, reaching only as high as 42%
for (TBLOCK SIZE, CHUNK) = (256, 22), and lower still for the other TBLOCK SIZEs. As has been
the case for virtually all A100 measurements, there are dips in performance for multiple-of-8
CHUNKs.

Overall, the heatmap indicates that performance is best for smaller TBLOCK SIZEs and
CHUNKs roughly in the range 13 . . . 35 (save for multiples of 8).

We do not think that the low performance can be attributed to register spilling, since
the operator is still rather small (as small as the mm-2x2 operator), so our best guess is that
the performance hit is from the low sequentialization factor relative to the number of input
elements.



5 BENCHMARKING 22

A100 round 1 results: lssp.fut

Figure 9: A100, lssp.fut, large dataset (∼30 GB)

The A100 lssp.fut plot largely resembles that of mssp.fut (??), except measurements
are even lower here, reaching as low as 6.3% of peak bandwidth for TBLOCK SIZE = 1024 and
peaking at 27.1% for TBLOCK SIZE = 64. In addition, for all but TBLOCK SIZE = 32s, there
seems to be a significant gap between the best and second best CHUNKs.

Even though speed is low across the board, multiple-of-8 CHUNKs show even poorer measure-
ments, with speeds below 100 GB/sec for all but one measurement ((TBLOCK SIZE, CHUNK) =
(256, 8)), and for the smallest three TBLOCK SIZEs, we see a total drop-off in performance for
the largest CHUNKs, with speeds dropping as low as ∼15 GB/sec.



5 BENCHMARKING 23

5.2.2 RTX4090 round 1 results

RTX4090 round 1 results: mm-2x2.fut

Figure 10: RTX4090, mm-2x2.fut, large dataset (∼18 GB)

Immediately there is significantly less spread in the RTX4090 measurements than in those
of the A100, with much less variance in the heatmap, indicating better consistency across
CHUNKs and a more reliable kernel. Second, the highest measured throughput per TBLOCK SIZE

all fall between 92.9% to 93.3% for TBLOCK SIZE = 1024 and 512, respectively. Finally, the
RTX4090 does not seem to exhibit the dips in performance for multiple-of-8 CHUNKs.

Again the kernel fails due to shared memory constraints for TBLOCK SIZE = 512∧CHUNK ≥
24, and for TBLOCK SIZE = 1024 ∧ CHUNK ≥ 12, but there seems to have been no noticable
register spilling for any of the TBLOCK SIZEs.



5 BENCHMARKING 24

RTX4090 round 1 results: mm-3x3.fut

Figure 11: RTX4090, mm-3x3.fut, large dataset (∼18 GB)

The RTX4090 measurements show good speeds between 92.7% to 93.1% of peak bandwidth
for TBLOCK SIZE ≤ 512, but only 67.5% for TBLOCK SIZE = 1024. This is interesting because
it largely matches the A100 results.

The heatmap indicates that the RTX4090 measurements are again significantly more con-
sistent and reliable across CHUNKs than the A100 measurements, except for TBLOCK SIZE =
1024, which for some reason performs poorly for all CHUNKs.

This time, however, we begin to see register spilling for TBLOCK SIZE ≤ 256 as CHUNK

grows large, indicated by the heatmap slowly turning orange and yellow. For the largest two
TBLOCK SIZEs, this is more sudden and noticable.



5 BENCHMARKING 25

RTX4090 round 1 results: mm-5x5.fut

Figure 12: RTX4090, mm-5x5.fut, large dataset (∼18 GB)

Again, the kernel failed due to shared memory constraints for TBLOCK SIZE ≥ 512 and all
values of CHUNK.

Performance is significantly better on the RTX4090, with speeds between 89.8% and 91.6%
for TBLOCK SIZE = 256 and 128, respectively. This time, the raw throughput measurements
even come close to those of the A100, which is respectable.

Interestingly, the drop-off in performance (likely due to register spilling) comes at the
exact same point, i.e. CHUNK = 10, for each TBLOCK SIZE – however, the performance seems
quite consistent across CHUNKs until this cutoff point.



5 BENCHMARKING 26

RTX4090 round 1 results: linear function composition.fut

Figure 13: RTX4090, linear function composition.fut, large dataset (∼18 GB)

The RTX4090 is very consistent on the linear function composition reduction with best
CHUNKs across TBLOCK SIZEs reaching speeds between 92.8% and 93.1% of peak bandwidth.

In fact, this plot resembles almost exactly the RTX4090 results for mm-2x2.fut (see fig. 10)
– this was expected, since the operators are similar in size, but this makes the A100 results
(fig. 7) all the more curious.



5 BENCHMARKING 27

RTX4090 round 1 results: mssp.fut

Figure 14: RTX4090, mssp.fut, large dataset (∼18 GB)

Once again, the RTX4090 performs exceptionally well relative to the A100. While the least
consistent of the RTX4090 plots thus far, it obtains remarkable results for TBLOCK SIZE ≤ 256,
with speeds up to 92.9% of peak bandwidth. These are also the TBLOCK SIZEs for which
the kernel is most consistent in parameterization, except for the drop-off in performance for
TBLOCK SIZE = 256 ∧ CHUNK ≥ 27, perhaps due to register spilling.

Interestingly, this is the first RTX4090 result for which we see the multiple-of-8 CHUNK

pattern as has been evident in virtually all A100 measurements thus far.



5 BENCHMARKING 28

RTX4090 round 1 results: lssp.fut

Figure 15: RTX4090, lssp.fut, large dataset (∼18 GB)

The RTX4090 lssp.fut plot shows the most unreliable results across the RTX4090 results.
Despite reaching excellent speeds of up to ∼ 91.5% for the smallest three TBLOCK SIZEs,
the heatmap reveals that the kernel is highly unstable in CHUNK parameterization for all
TBLOCK SIZEs – with the good CHUNK values being few and far between – and that the kernel
reaches at best acceptable speeds for the three largest TBLOCK SIZEs.

As with the RTX4090 mssp.fut measurements (fig. 14), we see performance degradation
for CHUNK multiples of 8 and, to a lesser degree, multiples of 4.



5 BENCHMARKING 29

5.3 Benchmarking round 2 results analysis

In the second round of benchmarking, we compare the best results from round 1 for each
TBLOCK SIZE against measurements made using the reference implementation. Here we show
measurements for both the small and large input sets, since it is more convenient this time
given the smaller number of measurements to discuss.

For each measurement for the new implementation, the speedup and the associated CHUNK

value is listed in parentheses.
We first present all results from the A100 benchmarks and then the RTX4090 benchmarks.

A100 round 2 results: mm-2x2.fut

Figure 16: A100, mm-2x2.fut, comparison with reference.

We see excellent speedups over the reference implementation for all TBLOCK SIZEs, however
since throughput was relatively low for the reference implementation, the speedup factors are
in themselves not necessarily impressive.

While the new implementation obtains better speeds for lower TBLOCK SIZEs, the speedups
appear to grow with TBLOCK SIZE.



5 BENCHMARKING 30

A100 round 2 results: mm-3x3.fut

Figure 17: A100, mm-3x3.fut, comparison with reference.

This plot shows largely the same patterns in speedup as for the A100 mm-2x2.fut compar-
ison plot (fig. 16), but with slightly lower throughputs measured on the new implementation.



5 BENCHMARKING 31

A100 round 2 results: mm-5x5.fut

Figure 18: A100, mm-5x5.fut, comparison with reference.

We see significant speedups over the reference implementation, however the reference
implementation did not perform particularly well w.r.t. peak bandwidth, hence there was
much room for improvement. Still, the new implementation did not come close to peak
bandwidth, so on the other hand, there is room for even bigger speedups.

Note that both implementations failed to launch the kernel for TBLOCK SIZE ≥ 512.



5 BENCHMARKING 32

A100 round 2 results: linear function composition.fut

Figure 19: A100, linear function composition.fut, comparison with reference.

These results resemble the A100 mm-2x2.fut measurements. The reference implemen-
tation did not perform particularly well, but speedups are still interesting since we obtain
throughput in the upper ranges for most TBLOCK SIZEs (with a curious dip for TBLOCK SIZE =
256 on the large set).



5 BENCHMARKING 33

A100 round 2 results: mssp.fut

Figure 20: A100, mssp.fut, comparison with reference.

Interestingly, the mssp.fut tests are where we see some of the largest speedups on the
A100, despite the relatively poor throughput obtained for all TBLOCK SIZEs. This, of course,
should be attributed to the low performance of the reference more so than the new imple-
mentation.



5 BENCHMARKING 34

A100 round 2 results: lssp.fut

Figure 21: A100, lssp.fut, comparison with reference.

We see the same pattern as for the A100 mssp.fut comparison plot (fig. 20): Very big
speedups due to remarkably low throughput from the reference implementation.



5 BENCHMARKING 35

RTX4090 round 2 results: mm-2x2.fut

Figure 22: RTX4090, mm-2x2.fut, comparison with reference.

Evidently the reference implementation already performs remarkably well on the RTX4090,
coming close to peak for most TBLOCK SIZEs on the large input set.

Hence there was not much room for improvement to begin with, but the reference imple-
mentation even outperforms the new implementation by a slight margin for some TBLOCK SIZEs
on the large input set.

However, for some reason, the reference implementation did not do well for TBLOCK SIZE =
1024, hence we see non-trivial speedup here.



5 BENCHMARKING 36

RTX4090 round 2 results: mm-3x3.fut

Figure 23: RTX4090, mm-3x3.fut, comparison with reference.

We see largely the same plot as with fig. 22: the reference implementation does relatively
well for most TBLOCK SIZEs, even coming close to peak and beating the new implementation
for some values. Overall, however, the new implementation does significantly better with more
consistent results across TBLOCK SIZEs, save for TBLOCK SIZE = 1024, where, interestingly, the
optimal CHUNK was 1 (for which the generated kernel is essentially equivalent to that of the
reference implementation, except with extra overhead in loop bookkeeping; hence the ∼ 8%
speeddown).



5 BENCHMARKING 37

RTX4090 round 2 results: mm-5x5.fut

Figure 24: RTX4090, mm-5x5.fut, comparison with reference.

Save for the smallest TBLOCK SIZE on the small input set, the two implementations are
either equal in performance, or the reference implementation has a slight edge.

Note that, as with the A100, both implementations failed to launch the kernel for TBLOCK SIZE ≥
512.



5 BENCHMARKING 38

RTX4090 round 2 results: linear function composition.fut

Figure 25: RTX4090, linear function composition.fut, comparison with reference.

For most TBLOCK SIZEs, the two implementations perform about equally well, indicat-
ing again that the reference implementation was near optimal in certain cases for at least
some GPUs. However, the new implementation is more consistent in measurements across
TBLOCK SIZEs, obtaining significant speedups for the larger TBLOCK SIZEs on both input sets.



5 BENCHMARKING 39

RTX4090 round 2 results: mssp.fut

Figure 26: RTX4090, mssp.fut, comparison with reference.

Interestingly, this is the first plot of RTX4090 measurements in which we see very big
speedups over the reference implementation. Evidently the reference implementation did not
handle the mss operator very well, reaching only 39.7% of peak bandwidth, hence the big
speedups.

As with most of the A100 measurements, throughput of the new implementation drops
with TBLOCK SIZE, while speedups grow.



5 BENCHMARKING 40

RTX4090 round 2 results: lssp.fut

Figure 27: RTX4090, lssp.fut, comparison with reference.

As expected, we see largely the same pattern as for the RTX4090 mssp.fut comparison
plot (fig. 26) – very big speedups due to the reference implementation not handling the
lss operator well. In comparing with the RTX4090 mssp.fut tests, it seems that the new
implementation drops in performance quicker as TBLOCK SIZE grows than it did for mssp.fut,
hence the speedups tend to fall as TBLOCK SIZE grows, whereas for mssp.fut, the speedups
grew with TBLOCK SIZE.

5.4 Reproduction of benchmarking results

To reproduce benchmarking results, please first find the source code for our test programs
and benchmarking test cases in appendix A.

As mentioned, all benchmarks of the new reduce kernel optimizations are run using commit
5234eb8 [6] of the Futhark compiler, so this must be installed. To force different CHUNK values,
the code to automatically choose CHUNKmust be disabled in the CodeGen.ImpGen.GPU.SegRed
module before compiling the compiler.

All benchmarks of the reference reduce kernel implementation can be reproduced using
commit 06732a5 of the compiler [7].

To reproduce the different test cases, please refer to the benchmark plan in section 5.1.



5 BENCHMARKING 41

5.5 Benchmarking analysis

5.5.1 General benchmarking take-aways

Overall stability in CHUNK parameterization

In the following, we do not consider the stability or consistency of kernels for those values
of CHUNK for which register spilling is perceived to occur.

For all the RTX4090 benchmarks except for mssp.fut and lssp.fut, the kernels seemed
quite consistent in CHUNK parameterization, and hence most choices for CHUNK would result
in good and near-optimal performance. This is less so the case for mssp.fut and lssp.fut,
where CHUNK must be chosen a little more carefully to obtain good performance – for example,
very low values as well as multiples of 8 (and, to some degree, 4) should be avoided.

For the A100 measurements, virtually all kernels appeared to be sensitive to multiples of
8 (and 4) and low CHUNKs. Outside of these values, there seemed to be some stability for all
but mssp.fut and lssp.fut.

One pattern that does seem to show is that the lower the TBLOCK SIZE is, the more stable
the kernels are in CHUNK parameterization. This shows for results from both devices.

In conclusion, there unfortunately does not seem to be a general pattern in the consistency
(or lack thereof) of performance across different parameterizations, except that the lower the
TBLOCK SIZE, the higher the chance of good performance, so long as the chosen CHUNK value is
not very small, a multiple of 8 (or 4), or too high w.r.t. shared memory and register constraints
(but the latter is easy to avoid given conservative bounds computed by the compiler).

Optimal CHUNK values

Unfortunately, there also does not seem to be a discernable pattern in optimal CHUNK value
that we can generalize to use across different devices, programs, and values of TBLOCK SIZE.
For some device/program combinations, the best value seem to be in the upper ends of the
CHUNK spectrum (ignoring CHUNKs for which register spilling occurred, obviously), while for
others – in particular mssp.fut and lssp.fut for both devices – the optimal and near-optimal
CHUNK values appear almost random and far between.

Best TBLOCK SIZEs

For almost all device/program, the new kernel seemed to prefer the smaller TBLOCK SIZEs.
In some cases, a low TBLOCK SIZE simply meant more headroom before register spilling and
failure due to shared memory constraints, while for others the smaller TBLOCK SIZEs simply
gave better performance.

The smaller TBLOCK SIZE gets, the higher we can push the sequentialization factor before
e.g. register spilling starts (up to the hard limit of 255 registers per thread, as per [4]), so in
this respect it is sensible. A lower TBLOCK SIZE also means more shared memory per thread,
but, as mentioned multiple times throughout this report, the shared memory constraint is
rarely going to be the earliest limiting factor in the new reduce kernel.

In comparison with the reference implementation

For all A100 measurements, we saw significant improvement upon the reference imple-
mentation, with speedups generally in the range of x2-4 across the different programs and



5 BENCHMARKING 42

parameterizations. However, some of these speedups should be taken with a grain of salt: For
one, as discussed throughout section 5.3, the reference implementation did not perform partic-
ularly well for any of the six test programs on the A100. Second, all of the comparisons were
made using the optimal CHUNK values, and while a good CHUNK was easy to obtain for most
programs, the speedups over the reference implementation cannot be trivially guaranteed.

For the RTX4090, we did not see significant speedups for four out of six programs, namely
mm-2x2.fut, mm-3x3.fut, mm-5x5.fut, and linear function composition.fut. As men-
tioned, this is largely because the reference implementation already did quite well for these
programs on the RTX4090. However, it should be noted that the two most significant speed-
downs were x0.92 and x0.93 (for the two input sets to mm-3x3.fut with TBLOCK SIZE = 1024),
that all other speeddowns were in the range of x0.97-0.99, and that the kernel was quite stable
in CHUNK for all of these programs.

For the remaining two programs (mssp.fut and lssp.fut), we saw significant speedups,
but as with most of the A100 measurements, speedups here were easy because the reference
implementation did rather poorly. For mssp.fut the kernel was quite stable in parameteriza-
tion, hence these speedups are reliable, however the case was less so for lssp.fut.

5.6 Benchmarking conclusion

The new kernel can unfortunately not be said to always be stable or reliable in parameteriza-
tion without careful selection of CHUNK and TBLOCK SIZE; as a general rule, low TBLOCK SIZE

values should be used whenever possible, but there are still programs and cases where perfor-
mance varies greatly in CHUNK for even low TBLOCK SIZE.

In summary across all devices and programs, it seems the new implementation did quite
well as compared to the reference implementation as well as relative to peak memory band-
width for the two devices. For those cases where the new implementation was equal to or
even outperformed by the reference implementation on the RTX4090, the two implementa-
tions each measured relatively close to peak bandwidth, and because the new implementation
was stable in parameterization for virtually all of these cases, we argue there are large benefits
to be had from the new implementation in almost all cases, and that the performance loss
seen in a select few cases is small and rare enough that it is outweighed by the benefits.



6 CONCLUSION AND FUTURE WORK 43

6 Conclusion and future work

We successfully implemented tblock-virtualization in the single-pass scan kernel as well as the
optimization to non-commutative and primitive reductions as described in section 3. Both
implementations were successfully validate tested. Benchmark testing of the new reduce
kernel showed good and promising results for almost all test cases, however we also found the
new kernel to not be completely stable in parameterization across different devices and test
programs.

6.1 Future work

In this section, we explore and discuss possible future work. Some ideas here may not warrant
the time and effort to implement, while others may may not at all be feasible for implementa-
tion into the Futhark compiler, but are still interesting to consider from a learning standpoint.

The future work discussed pertain to (code generation of) the new reduce kernel code
generation unless otherwise noted.

More deliberate CHUNK selection

As mentioned in section 3.2.2, the compiler code used to choose CHUNK may benefit from
revision. The overhead it adds is optimistic: For one, pointers should be assumed to be 64
bit, meaning an address takes two registers just to hold, so extra overhead should be added to
account for the actual computations, which are not trivial, especially in the segmented case.
Also, as the author of [3] states, the chosen amount of overhead assumes no extra registers
are needed to apply the binary operator, although the compiler in most cases should be able
to figure out how to reuse registers.

In a different sense, the computation is pessimistic: It is based on a constant TBLOCK SIZE =
1024, such that the same CHUNK value is always used for a given reduction regardless of
TBLOCK SIZE. This means bounds on shared memory and registers are never broken, how-
ever it also sacrifices sequentialization, and potentially performance, if for a given reduc-
tion the optimal parameterization is one which uses a CHUNK larger than is possible for
TBLOCK SIZE = 1024. Ideally the CHUNK value should be based on varying TBLOCK SIZE,
which should be possible since the kernel is compiled between the time of kernel parameter
configuration and kernel launch.

In addition to fine-tuning the overhead and basing CHUNK on varying TBLOCK SIZE, we
might still benefit from more deliberate CHUNK selection since, as we saw in section 5, the
optimal CHUNK value is typically not the largest possible choice, and we also saw (sometimes
significant) dips in performance when CHUNK was a multiple of 8. Hence to obtain optimal
kernel parameterization universally, we might have to take deliberate action to e.g. avoid
shared memory bank conflicts and to optimize for occupancy.

Further exploration of register spilling

In some relation to more deliberate CHUNK selection, it may be a good idea to explore
methods to more reliably estimate the number of available thread registers for a given kernel
parameterization, and more consistently avoid spilling of important registers (where a regis-
ter is “important” if it is used in the virtualization loop whether or not it holds reduction
operand(s)). As discussed in section 3, the amount of available shared memory puts a hard



6 CONCLUSION AND FUTURE WORK 44

cap on CHUNK, while the actual chosen value is almost always bounded by the (possibly pes-
simistic) estimate on the number of available registers, since the bound imposed by this is
almost always smaller than the bound imposed by shared memory.

On the other hand, it is plausible that some register spilling is perfectly okay and may
even be preferable in some cases, if e.g. the increase in sequentialization makes up for spilling
certain non-essential variables. Using low-level kernel profiling tools one can gain insight into
exactly which variables are spilled when increasing CHUNK, and which variables are spilled
when performance degrades.

Optimize shared memory usage

As is, the reduce kernel reads elements from global to register memory; applies the map
function (if any) in register memory; “effectualizes” collective copies by writing to shared
memory and back to register memory; and finally, performs per-thread reductions of private
chunks. This means that the collective copies and per-thread reductions are made on elements
of the map-out type, meaning the computation of the sequentialization factor is based on
the size of the map-out type. This is generally OK, however, as we saw in section 5, our
implementation performed the worst (in terms of memory throughput) for those reductions
which map input array elements to elements of a larger type going into the reduction, i.e. the
lssp and mssp programs. If then, on the other hand, the map application is postponed until it
is needed (i.e. until the point of applying the binary operator) whenever the map-out element
type is larger than the map-in, then we may save significant register space and decrease the
number of shared memory accesses, in other words increase the sequentialization factor, by
not manifesting the larger map-out results in shared memory and per-thread chunk arrays.

We tested this using a hand-written CUDA prototype and saw the mssp reduction obtain
performance similar to the other operators, but unfortunately did not document this.

As is, this is not feasible in Futhark, since in the Futhark IR the map function is repre-
sented as a kernel body (which can later be fused with e.g. the reduce kernel) which may
contain arbitrary code and which does not have a concrete notion of input/parameter arrays
or output/result arrays, as is more so the case for the IR representation of reduce; in fact,
from a semantic viewpoint, it is not the map-out arrays which are copied to shared memory,
but rather the reduce-in arrays.

Optimizations in the small-segments kernel

Our optimization to the reduce kernel touches only the non-segmented and large-segments
segmented reduction kernels. This is because our optimizations touches only the stage one
virtualization loop, and the small-segmented segmented kernel uses an entirely different al-
gorithm from the two-stage algorithm. Hence it may be both interesting and beneficial to
examine whether there is room for similar or other optimizations in the small-segments seg-
mented case.

Benchmark test more different devices and test programs

As we saw in sections 5.2 and 5.3, performance of the new reduce kernel varied greatly
between different combinations of the two devices (A100 and RTX4090) and test programs
used. It may be beneficial to benchmark using more different devices and test programs to
more accurately profile the performance and intricacies of the kernel.



7 REFERENCES 45

Benchmarking of the single-pass scan kernel

During benchmarking we decided to forego testing the single-pass scan kernel for lack of
time, and because the reduce kernel changes were deemed more important and interesting
to properly benchmark and analyze. Even though our changes to the single-pass scan kernel
were small and performance should not be significantly affected in most cases, the addition
of tblock-virtualization can potentially have a big impact on performance if NUM TBLOCKS is
chosen poorly for a given scan program, and hence it is a good idea to profile the performance of
the kernel under tblock-virtualization, as well as its sensitivity to NUM TBLOCKS (and, perhaps
to a lesser degree, TBLOCK SIZE) parameterization.

7 References

[1] Duane Merrill and Michael Garland, March 2016. URL https://research.

nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/

nvr-2016-002.pdf.

[2] Andreas Nicolaisen and Marco Aslak Persson, November 2020. URL https://

futhark-lang.org/student-projects/marco-andreas-scan.pdf.

[3] Morten Clausen, May 2021. URL https://futhark-lang.org/student-projects/

morten-msc-thesis.pdf.

[4] NVIDIA Corporation, 12.3 edition. URL https://docs.nvidia.com/cuda/pdf/CUDA_C_

Programming_Guide.pdf.

[5] The Futhark Hackers. Futhark GitHub repository (new single-pass scan implementation).
https://github.com/diku-dk/futhark/tree/f7a36ee, 2023.

[6] The Futhark Hackers. Futhark GitHub repository (new reduce implementation). https:
//github.com/diku-dk/futhark/tree/5234eb8, 2023.

[7] The Futhark Hackers. Futhark GitHub repository (reference reduce implementation).
https://github.com/diku-dk/futhark/tree/06732a5, 2023.

https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://futhark-lang.org/student-projects/marco-andreas-scan.pdf
https://futhark-lang.org/student-projects/marco-andreas-scan.pdf
https://futhark-lang.org/student-projects/morten-msc-thesis.pdf
https://futhark-lang.org/student-projects/morten-msc-thesis.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://github.com/diku-dk/futhark/tree/f7a36ee
https://github.com/diku-dk/futhark/tree/5234eb8
https://github.com/diku-dk/futhark/tree/5234eb8
https://github.com/diku-dk/futhark/tree/06732a5


7 REFERENCES i

Appendix

A Benchmarking test programs

1 type f32_2x2 = ((f32, f32), (f32, f32))

2 def mm_2x2 (x: f32_2x2) (y: f32_2x2) =

3 ( (x.0.0 * y.0.0 + x.0.1 * y.1.0,

4 x.0.0 * y.0.1 + x.0.1 * y.1.1),

5 (x.1.0 * y.0.0 + x.1.1 * y.1.0,

6 x.1.0 * y.0.1 + x.1.1 * y.1.1))

7

8 def identity_2x2 = ((1f32, 0f32), (0f32, 1f32))

9

10 def from_arrs_2x2 [n] (xs: [n][4]f32): [n]f32_2x2 =

11 map (\x -> ((x[0], x[1]),

12 (x[2], x[3]))

13 ) xs

14 -- ==

15 -- entry: A100

16 -- random input { [187500000][4]f32 }

17 -- random input { [1875000000][4]f32 }

18 entry A100 [n] (xs: [n][4]f32): f32_2x2 =

19 from_arrs_2x2 xs |> reduce mm_2x2 identity_2x2

20 -- ==

21 -- entry: rtx_4090

22 -- random input { [112500000][4]f32 }

23 -- random input { [1125000000][4]f32 }

24 entry rtx_4090 [n] (xs: [n][4]f32): f32_2x2 =

25 from_arrs_2x2 xs |> reduce mm_2x2 identity_2x2

Figure 28: mm-2x2.fut



7 REFERENCES ii

1 type f32_3x3 = ((f32, f32, f32),

2 (f32, f32, f32),

3 (f32, f32, f32))

4

5 def mm_3x3 (x: f32_3x3) (y: f32_3x3): f32_3x3 =

6 ( (x.0.0 * y.0.0 + x.0.1 * y.1.0 + x.0.2 * y.2.0,

7 x.0.0 * y.0.1 + x.0.1 * y.1.1 + x.0.2 * y.2.1,

8 x.0.0 * y.0.2 + x.0.1 * y.1.2 + x.0.2 * y.2.2),

9 (x.1.0 * y.0.0 + x.1.1 * y.1.0 + x.1.2 * y.2.0,

10 x.1.0 * y.0.1 + x.1.1 * y.1.1 + x.1.2 * y.2.1,

11 x.1.0 * y.0.2 + x.1.1 * y.1.2 + x.1.2 * y.2.2),

12 (x.2.0 * y.0.0 + x.2.1 * y.1.0 + x.2.2 * y.2.0,

13 x.2.0 * y.0.1 + x.2.1 * y.1.1 + x.2.2 * y.2.1,

14 x.2.0 * y.0.2 + x.2.1 * y.1.2 + x.2.2 * y.2.2))

15

16 def identity_3x3: f32_3x3 = ((1f32, 0f32, 0f32),

17 (0f32, 1f32, 0f32),

18 (0f32, 0f32, 1f32))

19

20 def from_arrs_3x3 [n] (xs: [n][9]f32): [n]f32_3x3 =

21 map (\x -> ((x[0], x[1], x[2]),

22 (x[3], x[4], x[5]),

23 (x[6], x[7], x[8]))

24 ) xs

25 -- ==

26 -- entry: A100

27 -- random input { [83333333][9]f32 }

28 -- random input { [833333333][9]f32 }

29 entry A100 [n] (inp: [n][9]f32) =

30 from_arrs_3x3 inp |> reduce mm_3x3 identity_3x3

31 -- ==

32 -- entry: rtx_4090

33 -- random input { [50000000][9]f32 }

34 -- random input { [500000000][9]f32 }

35 entry rtx_4090 [n] (inp: [n][9]f32) =

36 from_arrs_3x3 inp |> reduce mm_3x3 identity_3x3

Figure 29: mm-3x3.fut



7 REFERENCES iii

1 type f32_5x5 = ((f32, f32, f32, f32, f32),

2 (f32, f32, f32, f32, f32),

3 (f32, f32, f32, f32, f32),

4 (f32, f32, f32, f32, f32),

5 (f32, f32, f32, f32, f32))

6 def mm_5x5 (a: f32_5x5) (b: f32_5x5): f32_5x5 =

7 ( (a.0.0 * b.0.0 + a.0.1 * b.1.0 + a.0.2 * b.2.0 + a.0.3 * b.3.0 + a.0.4 * b.4.0,

8 a.0.0 * b.0.1 + a.0.1 * b.1.1 + a.0.2 * b.2.1 + a.0.3 * b.3.1 + a.0.4 * b.4.1,

9 a.0.0 * b.0.2 + a.0.1 * b.1.2 + a.0.2 * b.2.2 + a.0.3 * b.3.2 + a.0.4 * b.4.2,

10 a.0.0 * b.0.3 + a.0.1 * b.1.3 + a.0.2 * b.2.3 + a.0.3 * b.3.3 + a.0.4 * b.4.3,

11 a.0.0 * b.0.4 + a.0.1 * b.1.4 + a.0.2 * b.2.4 + a.0.3 * b.3.4 + a.0.4 * b.4.4),

12 (a.1.0 * b.0.0 + a.1.1 * b.1.0 + a.1.2 * b.2.0 + a.1.3 * b.3.0 + a.1.4 * b.4.0,

13 a.1.0 * b.0.1 + a.1.1 * b.1.1 + a.1.2 * b.2.1 + a.1.3 * b.3.1 + a.1.4 * b.4.1,

14 a.1.0 * b.0.2 + a.1.1 * b.1.2 + a.1.2 * b.2.2 + a.1.3 * b.3.2 + a.1.4 * b.4.2,

15 a.1.0 * b.0.3 + a.1.1 * b.1.3 + a.1.2 * b.2.3 + a.1.3 * b.3.3 + a.1.4 * b.4.3,

16 a.1.0 * b.0.4 + a.1.1 * b.1.4 + a.1.2 * b.2.4 + a.1.3 * b.3.4 + a.1.4 * b.4.4),

17 (a.2.0 * b.0.0 + a.2.1 * b.1.0 + a.2.2 * b.2.0 + a.2.3 * b.3.0 + a.2.4 * b.4.0,

18 a.2.0 * b.0.1 + a.2.1 * b.1.1 + a.2.2 * b.2.1 + a.2.3 * b.3.1 + a.2.4 * b.4.1,

19 a.2.0 * b.0.2 + a.2.1 * b.1.2 + a.2.2 * b.2.2 + a.2.3 * b.3.2 + a.2.4 * b.4.2,

20 a.2.0 * b.0.3 + a.2.1 * b.1.3 + a.2.2 * b.2.3 + a.2.3 * b.3.3 + a.2.4 * b.4.3,

21 a.2.0 * b.0.4 + a.2.1 * b.1.4 + a.2.2 * b.2.4 + a.2.3 * b.3.4 + a.2.4 * b.4.4),

22 (a.3.0 * b.0.0 + a.3.1 * b.1.0 + a.3.2 * b.2.0 + a.3.3 * b.3.0 + a.3.4 * b.4.0,

23 a.3.0 * b.0.1 + a.3.1 * b.1.1 + a.3.2 * b.2.1 + a.3.3 * b.3.1 + a.3.4 * b.4.1,

24 a.3.0 * b.0.2 + a.3.1 * b.1.2 + a.3.2 * b.2.2 + a.3.3 * b.3.2 + a.3.4 * b.4.2,

25 a.3.0 * b.0.3 + a.3.1 * b.1.3 + a.3.2 * b.2.3 + a.3.3 * b.3.3 + a.3.4 * b.4.3,

26 a.3.0 * b.0.4 + a.3.1 * b.1.4 + a.3.2 * b.2.4 + a.3.3 * b.3.4 + a.3.4 * b.4.4),

27 (a.4.0 * b.0.0 + a.4.1 * b.1.0 + a.4.2 * b.2.0 + a.4.3 * b.3.0 + a.4.4 * b.4.0,

28 a.4.0 * b.0.1 + a.4.1 * b.1.1 + a.4.2 * b.2.1 + a.4.3 * b.3.1 + a.4.4 * b.4.1,

29 a.4.0 * b.0.2 + a.4.1 * b.1.2 + a.4.2 * b.2.2 + a.4.3 * b.3.2 + a.4.4 * b.4.2,

30 a.4.0 * b.0.3 + a.4.1 * b.1.3 + a.4.2 * b.2.3 + a.4.3 * b.3.3 + a.4.4 * b.4.3,

31 a.4.0 * b.0.4 + a.4.1 * b.1.4 + a.4.2 * b.2.4 + a.4.3 * b.3.4 + a.4.4 * b.4.4))

32 let identity_5x5: f32_5x5 =

33 ((1f32, 0f32, 0f32, 0f32, 0f32),

34 (0f32, 1f32, 0f32, 0f32, 0f32),

35 (0f32, 0f32, 1f32, 0f32, 0f32),

36 (0f32, 0f32, 0f32, 1f32, 0f32),

37 (0f32, 0f32, 0f32, 0f32, 1f32)

38 )

39 def from_arrs_5x5 [n] (xs: [n][25]f32): [n]f32_5x5 =

40 map (\x -> ((x[ 0], x[ 1], x[ 2], x[ 3], x[ 4]),

41 (x[ 5], x[ 6], x[ 7], x[ 8], x[ 9]),

42 (x[10], x[11], x[12], x[13], x[14]),

43 (x[15], x[16], x[17], x[18], x[19]),

44 (x[20], x[21], x[22], x[23], x[24])

45 )) xs

46

47 -- ==

48 -- entry: A100

49 -- random input { [30000000][25]f32 }

50 -- random input { [300000000][25]f32 }

51 entry A100 [n] (inp: [n][25]f32) =

52 from_arrs_5x5 inp |> reduce mm_5x5 identity_5x5

53 -- ==

54 -- entry: rtx_4090

55 -- random input { [18000000][25]f32 }

56 -- random input { [180000000][25]f32 }

57 entry rtx_4090 [n] (inp: [n][25]f32) =

58 from_arrs_5x5 inp |> reduce mm_5x5 identity_5x5

Figure 30: mm-5x5.fut



7 REFERENCES iv

1 def linear_function_composition ((a1, b1): (f32, f32))

2 ((a2, b2): (f32, f32))

3 : (f32, f32) =

4 (a1 * a2, a1 * b2 + b1)

5 def ne = (1f32, 0f32)

6

7 -- ==

8 -- entry: rtx_4090

9 -- random input { [225000000]f32 [225000000]f32 }

10 -- random input { [2250000000]f32 [2250000000]f32 }

11 entry rtx_4090 [n] (as: [n]f32) (bs: [n]f32): (f32, f32) =

12 zip as bs |> reduce linear_function_composition ne

13 -- ==

14 -- entry: A100

15 -- random input { [375000000]f32 [375000000]f32 }

16 -- random input { [3750000000]f32 [3750000000]f32 }

17 entry A100 [n] (as: [n]f32) (bs: [n]f32): (f32, f32) =

18 zip as bs |> reduce linear_function_composition ne

Figure 31: linear function composition.fut

1 def mss (xs: []i32): i32 =

2 let mapOp x = (i32.max x 0, i32.max x 0, i32.max x 0, x)

3 let redOp (mssx, misx, mcsx, tsx) (mssy, misy, mcsy, tsy) =

4 ( i32.max mssx (i32.max mssy (mcsx + misy)),

5 i32.max misx (tsx+misy),

6 i32.max mcsy (mcsx+tsy),

7 tsx + tsy)

8 let ne = (0, 0, 0, 0)

9 in map mapOp xs |> reduce redOp ne |> (.0)

10

11 -- ==

12 -- entry: A100

13 -- random input { [750000000]i32 }

14 -- random input { [7500000000]i32 }

15 entry A100 (xs: []i32): i32 =

16 mss xs

17 -- ==

18 -- entry: rtx_4090

19 -- random input { [250000000]i32 }

20 -- random input { [2500000000]i32 }

21 entry rtx_4090 (xs: []i32): i32 =

22 mss xs

Figure 32: mssp.fut



7 REFERENCES v

1 def lss [n] 't (pred1: t -> bool) (pred2: t -> t -> bool) (xs: [n]t): i64 =

2 let mapOp x =

3 let xmatch = i64.bool (pred1 x)

4 in (xmatch, xmatch, xmatch, 1i64, x, x)

5

6 let redOp (lssx, lisx, lcsx, tlx, firstx, lastx)

7 (lssy, lisy, lcsy, tly, firsty, lasty) =

8 let connect = pred2 lastx firsty || tlx == 0 || tly == 0

9

10 let newlss = i64.max (i64.bool connect * (lcsx + lisy)) (i64.max lssx lssy)

11 let newlis = lisx + (i64.bool (lisx == tlx && connect) * lisy)

12 let newlcs = lcsy + (i64.bool (lcsy == tly && connect) * lcsx)

13

14 let first = if tlx == 0 then firsty else firstx

15 let last = if tly == 0 then lastx else lasty

16 in (newlss, newlis, newlcs, tlx+tly, first, last)

17

18 let ne = (0, 0, 0, 0, xs[0], xs[0])

19

20 in map mapOp xs |> reduce redOp ne |> (.0)

21

22 -- ==

23 -- entry: rtx_4090

24 -- random input { [450000000]i32 }

25 -- random input { [4500000000]i32 }

26 entry rtx_4090 (xs: []i32): i64 =

27 lss (const true) (<=) xs

28 -- ==

29 -- entry: A100

30 -- random input { [750000000]i32 }

31 -- random input { [7500000000]i32 }

32 entry A100 (xs: []i32): i64 =

33 lss (const true) (<=) xs

Figure 33: lssp.fut



7 REFERENCES vi

B Validation test program entry points and test cases

1 -- ==

2 -- entry: lss_validation lss_scan_validation

3 -- random input { [750000000]i32 } auto output

4 entry lss_validation (xs: []i32): i64 =

5 lss (const true) (<=) xs

6 entry lss_scan_validation (xs: []i32): []i64 =

7 lss (const true) (<=) xs

8 -- ==

9 -- entry: lss_seg_validation lss_segscan_validation

10 -- random input { [10][75000000]i32 } auto output

11 -- random input { [100][7500000]i32 } auto output

12 -- random input { [1000][750000]i32 } auto output

13 -- random input { [10000][75000]i32 } auto output

14 -- random input { [100000][7500]i32 } auto output

15 entry lss_seg_validation (xss: [][]i32): []i64 =

16 map (lss (const true) (<=)) xss

17 entry lss_segscan_validation (xss: [][]i32): [][]i64 =

18 map (lss_scan (const true) (<=)) xss

Figure 34: lssp.fut, additional validation entry points and test cases

1 def to_flat_arr (x: f32_5x5): [25]f32 =

2 [x.0.0, x.0.1, x.0.2, x.0.3, x.0.4,

3 x.1.0, x.1.1, x.1.2, x.1.3, x.1.4,

4 x.2.0, x.2.1, x.2.2, x.2.3, x.2.4,

5 x.3.0, x.3.1, x.3.2, x.3.3, x.3.4,

6 x.4.0, x.4.1, x.4.2, x.4.3, x.4.4]

7 -- ==

8 -- entry: mm_5x5_validation mm_5x5_scan_validation

9 -- random input { [30000000][25]f32 } auto output

10 entry mm_5x5_validation [n] (inp: [n][25]f32) =

11 from_arrs_5x5 inp |> reduce mm_5x5 identity_5x5 |> to_flat_arr

12 entry mm_5x5_scan_validation [n] (inp: [n][25]f32) =

13 from_arrs_5x5 inp |> scan mm_5x5 identity_5x5 |> to_flat_arr

14 -- ==

15 -- entry: mm_5x5_seg_validation mm_5x5_segscan_validation

16 -- random input { [10][3000000][25]f32 } auto output

17 -- random input { [100][300000][25]f32 } auto output

18 -- random input { [1000][30000][25]f32 } auto output

19 -- random input { [10000][3000][25]f32 } auto output

20 -- random input { [100000][300][25]f32 } auto output

21 entry mm_5x5_seg_validation [] (inp: [][][25]f32) =

22 map (from_arrs_5x5 >-> reduce mm_5x5 identity_5x5) inp |> map to_flat_arr

23 entry mm_5x5_segscan_validation [] (inp: [][][25]f32) =

24 map (from_arrs_5x5 >-> scan mm_5x5 identity_5x5) inp |> map to_flat_arr

Figure 35: mm-5x5.fut, additional validation entry points and test cases



7 REFERENCES vii

C Small input set benchmarking plots

Figure 36: A100, mm-2x2.fut, small dataset (∼3.0 GB)



7 REFERENCES viii

Figure 37: RTX4090, mm-2x2.fut, small dataset (∼1.8 GB)



7 REFERENCES ix

Figure 38: A100, mm-3x3.fut, small dataset (∼3.0 GB)



7 REFERENCES x

Figure 39: RTX4090, mm-3x3.fut, small dataset (∼1.8 GB)

Figure 40: A100, mm-5x5.fut, small dataset (∼3.0 GB)



7 REFERENCES xi

Figure 41: RTX4090, mm-5x5.fut, small dataset (∼1.8 GB)

Figure 42: A100, linear function composition.fut, small dataset (∼3.0 GB)



7 REFERENCES xii

Figure 43: RTX4090, linear function composition.fut, small dataset (∼1.8 GB)



7 REFERENCES xiii

Figure 44: A100, mssp.fut, small dataset (∼3.0 GB)



7 REFERENCES xiv

Figure 45: RTX4090, mssp.fut, small dataset (∼1.8 GB)



7 REFERENCES xv

Figure 46: A100, lssp.fut, small dataset (∼3.0 GB)



7 REFERENCES xvi

Figure 47: RTX4090, lssp.fut, small dataset (∼1.8 GB)


	Introduction
	Background
	Terminology and abbreviations
	The reduce and scan operations
	Sequential reduce and scan in code

	High-level overview of existing Futhark implementations
	Single-pass parallel scan
	Tblock-virtualization and single-pass scan in Futhark
	Efficient parallel reduction


	Implementation
	Tblock-virtualization for the single-pass scan kernel
	Improving sequentialization in reduce
	Firing conditions
	CHUNK selection


	Validation testing
	Validation testing plan
	Validation testing results
	Reproduction of validation results

	Benchmarking
	Benchmarking plan
	Benchmarking round 1 results analysis
	A100 round 1 results
	RTX4090 round 1 results

	Benchmarking round 2 results analysis
	Reproduction of benchmarking results
	Benchmarking analysis
	General benchmarking take-aways

	Benchmarking conclusion

	Conclusion and future work
	Future work

	References
	Appendix
	Benchmarking test programs
	Validation test program entry points and test cases
	Small input set benchmarking plots


