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Abstract

The tensor contraction, a higher-dimensional analogue to the matrix multi-
plication, is a widely used basic building block that is not only suitable for
efficient GPU execution due to its highly parallel nature, but also ripe for lo-
cality of reference optimizations due to a high degree of data reuse. Futhark,
a highly optimizing compiler targeting GPU hardware, generates efficient 2D
block/register tiled code for GEMM-like programs, but does not apply the
transformation to arbitrary contractions. With an offset in tensor contraction
and GPU code transformation theory, we detail how we successfully imple-
mented block/register tiling of arbitrary tensor contractions into the Futhark
compiler, using generic LMAD copies to stage input data and a number of
other minor optimizations, and describe some of the problems overcome in
doing so as well as the roadblocks and limitations which unfortunately re-
main. Using a small benchmarking plan we examine the practical benefits of
the transformation, using a hand-written prototype kernel and a GPU code
generator for high-performance tensor contractions as points of reference –
the implementation performs well, reaching between 68% and 98% of the ref-
erence programs, but the opportunities for optimization are many. Finally,
we present some ideas for future work in both improving and generalizing
the implementation.
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1 INTRODUCTION AND MOTIVATION

1 Introduction and motivation

The tensor contraction is a basic building block of many software applications in various do-
mains of the computational sciences, including, but not limited to, quantum chemistry mod-
eling, fluid dynamic simulation, stress simulation in bridge engineering, probability, and, in
particular, tensor networks in e.g. machine learning. The large computational complexity of
most tensor contractions is a motivation in itself to develop efficient practical applications.

Futhark[1][2] is an optimizing compiler primarily targeting GPU hardware. As it would
happen, Futhark is also the name of a much related, high-level array programming language
based on a programming model emphasizing data parallelism – but for the entirety of this
thesis report we shall concern ourselves primarily with the former. While still in active and
ongoing development, the Futhark compiler already employs a variety of sophisticated (GPU)
code transformations, and together with the programming language, it is already showing
promising and interesting results, albeit mostly in academic applications. But there are still
manywindows of opportunity for optimization in the compiler. One suchwindow is in the loop
tiling pass of the compiler, and has to do with block/register tiling of exactly tensor contraction
expressions. Cue thesis.

At present the compiler will identify matrix multiplication-like expressions in the source
language and produce effficient GPU code using a memory optimization called block/register
tiling[3]. Matrix multiplication can be viewed as a specialization of the tensor contraction,
and they present similar opportunities for data reuse optimization. In this thesis project, we
explore how the block/register tiling transformation can be generalized to arbitrary tensor
contractions in the Futhark compiler and to what gain. We additionally explore a small number
of optimizations and benchmark profile our implementation.

The intellectual contribution is by no means novel, but rather a collection of important ob-
servations about the prospects of successfully implementing and generalizing the optimization
in the context of Futhark specifically, as well as documentation of some of the technical hurdles
discovered (and, in some cases, overcome) in development. The practical contribution (i.e. the
code product) should be considered a basis for further development, or, at the least, a proof of
concept.
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2 RELATED WORK

2 Related work

Many different techniques for computing tensor contactions exist, and we shall not discuss all
of them here, nor go into very fine detail. In some broad terms, the techniques can be grouped
in two categories: Those which use explicit transposition of input/output to ensure efficient
memory access, and those which perform direct contraction without transposition and obtain
efficient access through other means [4][5].

An example of the former is TTGT (Transpose-Transpose-GEMM-Transpose), which trans-
poses each of the operand tensors (hence the initial two T’s) to suitable permutations in which
GEMM can be applied with efficient 1-stride to the innermost modes (i.e. the innermost dimen-
sions of the tensors in memory); then GEMM is applied, and the result is transposed again to
the desired output permutation. The technique can be efficient if an optimized BLAS imple-
mentation of GEMM is used, but all three transpositions are pure overhead and require extra
memory[6][4].

An example of the latter is GETT (GEMM-like Tensor-Tensor multiplication) [4], which
uses the cache hierarchy and a number of additional index sets based on the operand modali-
ties to implicitly transpose inputs as they are loaded, whereafter a loop-wrapped macro-kernel
performs in-cache GEMM of submatrices. In other words, this technique resembles high-
performance GEMMs, but where the extra dimensionality is handled via careful packing. GETT
is mainly targeted at CPU.

COGENT (COde GENerator for Tensors) [5][6], the initial inspiration for this project, be-
longs to the latter category of direct contraction, and resembles to some degree GETT. CO-
GENT is characterized by its approach to parameterized code generation: the mapping of soft-
ware parallelism to hardware parallelism is based on static analysis of a representative problem
instance, and hence postpones code generation until the problem instance is known. This dif-
fers from most other implementation (including ours, as we shall see), where typically all code
versions are generated before-hand based on features of the source program alone, and later
picked between only once the actual problem instance is known. Hence the benefit of CO-
GENT is that it can generate kernels more tightly specialized to individual contractions, but
generalization is not as simple as tweaking a set of parameters. In addition, the GPU is now
the target, hence different techniques are used: Analysis of reuse directions in the iteration
space of the three tensors (two operands, one result) are used to map parallellism in the given
contraction to GPU parallellism in a fashion that best utilizes the GPU memory hierarchy.
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3 BACKGROUND

3 Background

In this section, we introduce the theoretical background for the implementation, before diving
into technical implementation details in section 4.

First, some basic theory on tensor contractions, GPU hardware and GPU programming,
and the block/register tiling optimizatoin. Next, we introduce some of the concepts we will be
working with in implementation, as well as those parts and intricacies of the Futhark compiler
most pertinent to the implementation.

3.1 Terminology

We use CUDA terminology[7] in all discussions of GPU hardware and GPU code (with some
addenda; see below), which we will assume the reader is familiar with. We then introduce the
following additional terminology and abbreviations:

Tblock (CUDA) thread block (to disambiguate it from e.g. the “block” in block tiling).

Shmem (CUDA) shared memory.

Private memory (CUDA) register memory and local memory. See section 3.3.3.

FVI fastest varying index (wrt. n-dimensional arrays and loop nests).

FVTI fastest varying thread index (wrt. n-dimensional tblocks and thread indices).

Redomap map/reduce composition.

(GE)MM (generalized) matrix multiplication.

TC tensor contraction.

Xijk an upper-case and bold calligraphic symbol denotes a tensor; the subscript is its indices.

⟨. . . ⟩ angular brackets denote an ordered sequence (analogous to a list in code).

This terminology will be used throughout the entire report, not just this section.

3.2 Tensor theory: notation and contraction

We adopt and adapt notation and definitions used in [5] and [6].
The n’th order tensor X ∈ Rd1×···×dn can be seen as a higher-dimensional generalization

of the matrix, and is characterized by its order and its n modes di for i = 1 . . . n, where the
size of each di is called the extent of that mode, and where each is associated with a uniquely
identifying name; hence the tensor order is its number of modes/indices. As an example, a 4th
order tensor is akin to a 4-dimensional matrix of matrices, and may be denoted by:

Xijkl, (1)
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3.2 Tensor theory: notation and contraction 3 BACKGROUND

where the indices ijkl represent the 4 modes of the tensor – in a piece of code, we might
represent Xijkl with a 4-dimensional array.

Please note that there is no immediate relation between the name and the extent of a mode;
the names are primarily for identification (in terms of permutation), and two modes of equal
extent will still have different identifying names.

3.2.1 Tensor contraction

One very common operation on tensors is the tensor contraction (TC), which wemay intuitively
understand as a higher-dimensional analog to the matrix product. product. Let XI and YJ be
tensors of some sequences of modes I and J , and define

K = I ∩ J ⊇ ∅
L = I ∪ J \K, (2)

s.t. K are the contracted modes, i.e. the set of modes common to XI and YJ , and L the free
modes, i.e. the union of modes unique to each operand tensor1.

Then the contraction is a tensor of modes L and it is given by:

ZL =
∑
K

XIYJ . (3)

In other words,ZL is the summation over repeated modes of the contraction operands, and
its order is equal to the number of free modes in the contraction. As mentioned earlier, we may
freely arrange the order of elements of L, and for two tensors to be eligible for contraction
along a common mode, the extent of that mode must also be common among the operand
tensors.

Since TC is summation over repeated modes, we typically use Einsum(-like) notation to
express TCs. As an example, the matrix product C = AB can be expressed as a special case
of TC using two second order tensorsA and B as such:

Cij = AikBkj . (4)

3.2.1.1 Asymptotic complexity of TC
The TC is an asymptotically expensive operation. Whereas MM of square matrices grows

“simply” withO(n3), the contraction of hypercubic tensors2 ofK contracted modes andL free
modes has complexity O(n|K|+|L|). As an example from [5], for the six-dimensional contrac-
tion of two order 4 tensors in CCSD(T), we have |K| = 1 and |L| = 6 and hence a complexity

1Note that whereas I and J are sequences to emphasize order, L is viewed as a set to emphasize the
fact that we may freely arrange the layout of the contraction and until we do it is not ordered, while K

is viewed as a set simply because all modes in K are logically contracted “simultaneously” (the notion
of any temporal ordering of contractions does not really make sense in a purely mathematical context).

2Tensors with di = dj for all i, j.
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3 BACKGROUND 3.3 GPU memory hierarchy

of O(n7) – granted, relatively small n ≤ 28 were used in all experimental results presented in
[5]. Granted – as also noted in [5] – asymptotic cost models can be ambiguous in regards to
TCs due to high modality and low extent in most practical applications.

3.2.2 Tensor Terminology for Dummies Computer Scientists

As we quickly approach the implementation section, we will soon come to think of tensors
as multi-dimensional arrays in memory, and hence we shall for the remainder of this
report adopt a lingo more familiar to computer scientists for discussing tensors. Instead of
mode/modes and extent, we use simply index/indices and size, and instead of tensor order, we
shall refer to the dimensionality or rank of a tensor, even if the latter is already an established
term in both tensor theory and linear algebra. Similarly, as we will eventually generalize code
generation to arbitrary operators, we sometimes use reduction in place of summation.

3.3 GPU memory hierarchy

The GPUmemory hierarchy is conceptually similar to that of the CPU, however with some key
differences that the GPU programmer should be aware of in order to obtain good performance.
In this brief and abstracted introduction to the GPU memory hierarchy, we use the CUDA
memory model as a basis. Hence this introduction to the GPU memory hierarchy is based on
the official CUDA programming guide[7].

The three important layers of the GPU memory hierarchy are global memory, shared mem-
ory, and (thread-)private memory.

3.3.1 Global memory and coalescing

Global memory is by far the largest and slowest layer, and holds memory shared among execut-
ing tblocks, as well as input data to kernel functions. Global memory has its own intermediate
cache hierarchy which we shall not concern ourselves with. When accessing global memory,
we are, however, interested in global memory coalescing, which, for our purposes, is analogous
to cache locality on the CPU.

When threads in a warp access global memory, the GPU will attempt to combine those
accesses into as few coalesced accesses as possible. A single global memory transactions issued
by a warp involves 32, 64, or 128 contiguous (and, importantly, aligned) bytes, and if all threads
in the warp access addresses within that range then the transaction is perfectly coalesced.

For our purposes, we will strive to have consecutive threads in a warp access consecutive
accesses in global memory. Hence, to access global memory most efficiently in e.g. a loop, the
per-iteration intra-thread stride should be unitary, while the per-thread intra-iteration stride
may e.g. equal the size of the tblock.

As an example, the below copy of a 1D slice of size TBLOCK_SIZE * T size slice from and
to arrays glb_mem and shmem is uncoalesced:
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3.3 GPU memory hierarchy 3 BACKGROUND

forall (tid = 0; tid < TBLOCK_SIZE; i++) // for each thread in the tblock

for (i = 0; i < T; i++)
shmem[tid * T + i] = glb_mem[offset + tid * T + i];

because neighbouring threads access memory T addresses apart in each loop iteration,
while the below change obtains coalesced access:

forall (tid = 0; tid < TBLOCK_SIZE; i++) // for each thread in the tblock

for (i = 0; i < T; i++)
shmem[i * TBLOCK_SIZE + tid] = glb_mem[offset + i * TBLOCK_SIZE + tid];

since the per-iteration inter-thread stride is 1. Note that in the above two examples, the
same slice of memory is copied and with the same layout in shmem, only each cooperating
thread has been responsible for different elements.

3.3.2 Shared memory and bank conflicts

Shared memory is a layer of tblock-wide memory which can be used to share data among
threads within a single tblock in e.g. cooperative copies and computations. The default size of
shared memory is 48 KiB3, and hence it should be considered a limited and precious resource.
On the other hand, shmem accesses are orders of magnitude faster than global memory ac-
cesses.

Physically the memory is divided into 32 banks called shared memory banks, each holding
multiple 32-bit words. Successive addresses map to successive banks (with wrap-around), and
in a single transaction, a single 32-bit word of each of the 32 banks may be simultaneously
read or written by the 32 threads in a warp. Since only a single word from each bank may
be accessed in one transaction, multiple accesses to different addresses mapped to the same
bank must be serialized, and this is called a bank conflict. Hence to use shared memory most
efficiently, we must deliberately assert that threads in each warp do not cause bank conflicts.
When we use (logically) multi-dimensional shared memory arrays, this can often be achieved
by padding the size of the inner dimension, essentially skewing the inter-thread access pattern.
This, of course, comes at the expense of overhead in shared memory usage, but the trade-off is
typically worth the extra space, so long as it does not bar the kernel from launching for a given
shared memory configuration which would otherwise be valid without padding.

Note that we may see bank conflicts even when the inner dimension (more precisely, the
access stride between adjacent threads) is larger than 32. As an example, if adjacent threads
access shared memory with a stride of, say,m = 36, then we get bank conflicts, as can be seen
by examining the banks accessed by threads in a warp:〈

(tid ∗ 36) mod 32 : tid ∈ ⟨0, 1, . . . ⟩
〉
=

〈
0, 4, 8, 12, 16, 20, 24, 28︸ ︷︷ ︸

8−cycle

, 0, 4, 8, . . .
〉
, (5)

3Newer devices have more, but accessing >48 KiB requires dynamic allocation and a manual per-
kernel opt-in[7]; Futhark-compiled binaries does this when necessary.
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3 BACKGROUND 3.3 GPU memory hierarchy

where ⟨. . . ⟩ denotes an ordered sequence. Hence the banks accessed are on an 8-cycle for
increasing tid whenm = 36, and we get 32/8 = 4-way bank conflicts for threads in the warp.

In any case, we can always avoid bank conflicts by choosing m to be odd. To see why,
note that the only distinct prime factor of 32 is 2. This tells us that 32 must be coprime with
any number not divisible by 2, which is the definition of an odd number. Since m + 1 is odd
wheneverm is even, we need only ever to pad with a single element to avoid conflicts.

3.3.2.1 Space overhead in multi-dimensional padding
We have seen that to avoid bank conflicts, we may pad the size of inner dimensions to an

odd number. Note then that a product is odd iff all of its factors are odd. This implies that
when we have multiple dimensions which need padding, we may in the worst case have to pad
all of them (if they are all even to begin with, that is). This can quickly lead to space blowup if
the number of padding dimensions is large.

To quantify this overhead, consider a sequence of shmem dimension sizes ⟨S1, . . . , Sn⟩,
where we assume Si ≥ 1 for all dimensions i, since otherwise the array is empty. Let j be
the dimension indexed by the FVTI, and assume that the inner dimensions ⟨j + 1, . . . , n⟩ do
need padding, i.e. that the product

∏n
i=j+1 Si is even. We wish to derive a lower bound on the

overhead incurred from padding (in the case where at least some padding is necessary, that is),
so we assume that exactly one dimension k > j needs padding.

The size of the array after padding can then be expressed as a product where the one term
Sk is padded by substituting (Sk + 1):[

k−1∏
i=1

Si

]
·
(
Sk + 1

)︸ ︷︷ ︸
pad dim k

·

[
n∏

i=k+1

Si

]
=

[
n∏

i=1

Si

]
· 1

Sk
·
(
Sk + 1

)

=

[
n∏

i=1

Si

]
+

[
n∏

i=1

Si

]
· 1

Sk

=

[
n∏

i=1

Si

]
+

[
k−1∏
i=1

Si

]
·

[
n∏

i=k+1

Si

]
︸ ︷︷ ︸

overhead

. (6)

Evidently the overhead incurred from padding can be large for large-rank arrays. In sec-
tion 4.4.1, we discuss (and present our implementation of) a simple optimization to shmem
overhead which can be made when the shmem tile is represented as a flat array.

3.3.3 Register memory, register spilling, and private memory

The smallest and fastest layer in the memory hierarchy are the thread registers, however, this is
also the least predictable type ofmemory, sincewhen the register allocator runs out of registers,
it is free to (and will without warning) spill variables to so-called local memory, which is slow
and off-chip memory comparable in speed to global memory. It can often be difficult to predict
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3.4 Block/register tiling transformation 3 BACKGROUND

placement and to prevent register spilling, since the number of registers per thread is not fixed
per se, but rather is just one variable in an equation including e.g. tblock size and the number of
executing warps per multiprocessor, and the register allocator may lower the cap on registers
if beneficial for occupancy. As programmers, the best we can do is to make conscious and
deliberate choices in the code, especially when declaring thread-private arrays (e.g. register
tiles), but it is also possible to aid the compiler by setting a per-kernel register cap or launch
bounds (but not both). The Futhark compiler uses the latter, which better allows for user-
controlled tiling parameters.

Hence we use the term private memory to mean memory which can be – and which we
would therefore ideally see – allocated to register memory, but for which we are technically
not in control of placement.

3.3.4 Collective copying

As explained, in order to obtain efficient access to global memory, adjacent threads in a warp
should ideally access adjacent memory locations. However, some GPU algorithms might re-
quire individual threads to process consecutive elements from global memory. Rather than
accessing global memory inefficiently, threads in a tblock can perform a collective copy using
shared memory as a staging buffer, after which threads may retrieve from shared memory the
required elements using a strided access pattern, which shared memory does not penalize [7].

3.4 Block/register tiling transformation

One of the GPU code transformation techniques we will be employing is called block/register
tiling. In this section we give a step-by-step walkthrough of the transformation of a regular
MM program, since the transformation is difficult to exemplify in pseudocode for arbitrary
TCs, but the technique generalizes to higher dimensions. The theory behind is based primarily
on [8], with some GPU hardware specifics derived from [9], and some parts of the step-by-step
walkthrough lifted from the author’s own work in [3].

The walkthrough is rather lengthy and may be read cursorily.

3.4.1 Loop stripmining and normalization

Loop stripmining is a loop transformation which splits a size N iteration space of some loop
(parallel or otherwise) into Q chunks of size N/Q, using an inner loop of size Q to “fill in the
gaps”, as in example 1. Q is called a stripmining factor, but we shall for the remainder of the
report call it a tile parameter, andQ is typically used to denote a tile parameter for a sequential
dimension, whereas a parallel dimension tile parameter is denoted by T .

IfQ dividesN , then the transformation is always safe to performwithout additional bound-
ary guards. We then prefer to normalize all resulting loops. A normalized loop is one which
starts at index 0 and goes with a 1-stride up to some immutable upper bound invariant to the
loop variable. Normalized loops can promote loop unrolling, but in terms of the block/register
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3 BACKGROUND 3.4 Block/register tiling transformation

for (i = 0; i < N; i++)
f(i);

⇒
for (ii = 0; ii < N; ii += Q)

for (i = ii; i < min(N, ii + Q); i++)
f(i);

Example 1: Stripmining of a simple for loop by some factor Q.

for (ii = 0; ii < ceil(N / Q); ii++)
for (i = 0; i < Q; i++)
if (ii * Q + i < N)

f(ii * Q + i);

Example 2: Normalization of the loops in the loop nest in the RHS of example 1.

tiling transformation, normalization is necessary to obtain a clear mapping of software paral-
lelism to hardware parallelism. Example 2 shows the normalization of stripmined loops.

3.4.2 Block tiling and block/register tiling

Block tiling is the method of stripmining multiple consecutive innermost loops in a perfect
loop nest and interchanging inwards the resulting stride-1 loops. The transformation is safe
whenever it would be safe to interchange the loops pre-stripmining. Example 3 shows a sim-
ple MM program, while example 4 shows what the program looks like after the block tiling
transformation.

In some cases, block tiling can be used to optimize spatial locality, i.e. if under the origi-
nal traversal of the iteration space the program exhibits bad access patterns (e.g. uncoalesced
access). This can be identified with access pattern analysis. In loop nests with significant data
reuse, block tiling can improve spatial locality: If multiple iterations access the same memory,
then we can rearrange the iteration space and improve temporal locality by moving (the exe-
cution of) those iterations closer together in time. Data reuse can be identified by inspection
of variance in the loop nest (if an array is invariant to a dimension, then there is reuse).

In terms of TC, block tiling is primarily an optimization to temporal locality due to the high
degree of data reuse in most TCs, but it will also improve spatial locality in many cases, since
it enables efficient (and coalesced) reads of tiles from global memory in all cases (given proper
tiling parameters).

To further improve temporal locality in code with heavy data reuse, we can employ the
register layer of the memory hierarchy and perform register tiling on top of block tiling. The
idea is to further stripmine some (perhaps already stripmined) outer parallel dimension, and
then to interchange inwards and sequentialize the resulting loop, such that its iteration space
can be mapped to a single thread. We call the tiling parameter a register tile parameter, and
denote it R to distinguish it from T tiles, whose resulting loops remain parallel, and from
Q tiles, which tile inherently sequential dimensions, e.g. reduction dimension(s) in a TC or
MM. Example 5 shows the program after this final stripmining and interchange, but before
sequentializing the R-tiled loops and hence before the actual register tiling.

A number of steps remain before the code can bemapped to the GPU. At this point, we need
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3.4 Block/register tiling transformation 3 BACKGROUND

1 forall (a = 0; a < Na; a++)
2 forall (b = 0; b < Nb; b++)
3 // redomap

4 acc = 0;

5 for (q = 0; q < Nq; q++)
6 acc += X[a, q] * Y[q, b];

7 Z[a, b] = acc;

Example 3: Simple program implementingZab = Xaq ∗Yqb, i.e. MM. The outer two forall-loops are
parallel, while the innermost is not due to a RAW hazard on Z[a, b].

1 forall (aa = 0; aa < Na; aa += Ta)

2 forall (bb = 0; bb < Nb; bb += Tb)

3

4 forall (a = aa; a < min(Na, aa + Ta); a++)
5 forall (b = bb; b < min(Nb, bb + Tb); b++)
6

7 // redomap

8 acc = 0;

9 for (qq = 0; qq < Nq; qq += Qq)

10 for (q = qq; q < min(Nq, qq + Qq); q++)
11 acc += X[a, q] * Y[q, b];

12 Z[a, b] = acc;

Example 4: Block tiling of the program in example 3. Parallel loops each tiled with a T tile, and
sequential loop tiled with aQ tile; parallel stride-1 loops interchanged inwards. No loop normalization.

to distribute all but the outermost two loops over the redomap, i.e. the initialization of acc, the
accumulation step, and the update of Z. Example 6 shows this transformation, and concludes
block/register tiling. The transformation promotes both spatial locality and sequentialization,
since each thread now performs an amount of extra sequential work equal to the register tile
size, which can also be beneficial in case of oversaturation.

3.4.3 Mapping block/register tiling to hardware

The pseudocode shown in example 6 is still missing some transformation before it can be im-
plemented in GPU code. First, we would normalize and unroll the innermost stride-1 loops s.t.
each thread can store a size Ra × Rb register tile in private memory, and to remove some of
the overhead in the loops.

Then, in order to enforce efficient reuse, instead of reading directly from X and Y in the
redomap accumuation step, we instead insert copies of tiles from arrays in global memory to
shared memory at the start of the qq loop, whence we can read in the accumulation step and
save a large factor of global memory reads. These copies can be implemented in general as
described in section 3.5.1.
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3 BACKGROUND 3.4 Block/register tiling transformation

1 forall (aaa = 0; aaa < Na; aaa += Ta * Ra)

2 forall (bbb = 0; bbb < Nb; bbb += Tb * Tb)

3

4 forall (aa = aaa; aa < min(Na, aaa + Ta * Ra); aa += Ra)

5 forall (bb = bbb; bb < min(Nb, bbb + Tb * Rb); bb += Rb)

6

7 forall (a = aa; a < min(Na, aa + Ra); a++);
8 forall (b = bb; b < min(Nb, bb + Rb); b++);
9 // redomap

10 acc = 0;

11 for (qq = 0; qq < Nq; qq += Qq)

12 for (q = qq; q < min(Nq, qq + Qq); q++)
13 acc += X[a, q] * Y[q, b];

14 Z[a, b] = acc;

Example 5: Further stripmining of the parallel loops in in example 4. Here, the innermost aa and bb
loops are additionally tiled with an R tile. The resulting stride-1 loops are interchanged inwards (note:
not innermost) but remain parallel for the moment.

Finally, we map the parallel forall loops to GPU hardware as per the comments in exam-
ple 6 – in general, the outermost parallel loops tiled with both a T and anR tile will be mapped
to the GPU grid, while the innermost parallel loops tiled singly with a T tile are mapped to the
tblock, and for a contraction of k free indices, we have a k-dimensional grid and tblock.

The flat grid and tblock sizes can be described by:

gridSize =
∏
i∈D

Ti,

numTblocks =
∏
i∈D

⌈
Ni

TiRi

⌉
, (7)

where D is the sequence of outer (i.e. non-reduction) dimensions in the TC, and this tells us
that for high-rank TCs, some (or most) tile parameters will necessarily be set to 1 (or close)
due to hardware constraints on tblock size, shared memory per tblock, and other resources
available. For some segspace dimension i, setting Ri = 1 < Ti then corresponds to fully
parallelizing dimension i on the tblock, while setting Ti = 1 < Ri corresponds to mapping i

on the grid with a factor Ri of sequentialization, while setting Ti = Ri = 1 corresponds to
fully mapping dimension i onto the grid.

3.4.4 Choice of tiling parameters

When choosing tiling parameters, it is often beneficial to choose as large values as will fit in
the working set(s) (e.g. shared memory or the amount of thread registers), in order to pro-
mote reuse as much as possible. However, for the GPU in particular, this is not always the
case. Because tile sizes are usually dependent on the size of the tblock, shared memory, and
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1 forall (aaa = 0; aaa < Na; aaa += Ta * Ra) // outer grid

2 forall (bbb = 0; bbb < Nb; bbb += Tb * Tb) // inner grid

3

4 acc[Ta][Tb][Ra][Rb]; // array expansion of acc

5 forall (aa = aaa; aa < min(Na, aaa + Ta * Ra); aa += Ra) // outer tblock

6 forall (bb = bbb; bb < min(Nb, bbb + Tb * Rb); bb += Rb) // inner tblock

7 for (a = aa; a < min(Na, aa + Ra); a++) // unroll

8 for (b = bb; b < min(Nb, bb + Rb); b++) // unroll

9 // initialize accumulator

10 acc[aa-aaa, bb-bbb, a-aa, b-bb] = 0;

11

12 forall (aa = aaa; aa < min(Na, aaa + Ta * Ra); aa += Ra) // outer tblock

13 forall (bb = bbb; bb < min(Nb, bbb + Tb * Rb); bb += Rb) // inner tblock

14 // redomap accumulation

15 for (qq = 0; qq < Nq; qq += Qq)

16 for (q = qq; q < min(Nq, qq + Qq); q++) // unroll

17 for (a = aa; a < min(Na, aa + Ra); a++) // unroll

18 for (b = bb; b < min(Nb, bb + Rb); b++) // unroll

19 acc[aa-aaa, bb-bbb, a-aa, b-bb] += X[a, q] * Y[q, b];

20

21 forall (aa = aaa; aa < min(Na, aaa + Ta * Ra); aa += Ra) // outer tblock

22 forall (bb = bbb; bb < min(Nb, bbb + Tb * Rb); bb += Rb) // inner tblock

23 for (a = aa; a < min(Na, aa + Ra); a++) // unroll

24 for (b = bb; b < min(Nb, bb + Rb); b++) // unroll

25 // redomap result write-back

26 Z[a, b] = acc[aa-aaa, bb-bbb, a-aa, b-bb];

Example 6: Final block/register tiled MM program, obtained from example 5 via distribution of parallel
loops of indices aa, bb, a, b over the inner redomap, including array expansion of acc, followed by
sequentialization of the a and b loops. Comments show a possible mapping of software parallelism to
GPU hardware parallelism, and which sequential loops may be unrolled.

the number of registers used per thread, the choice of tile parameters must conform with the
hardware bounds on all three of these simultaneously. Further, even if all three bounds are re-
spected, there can often be a significant benefit to occupancy in decreasing (or, for that matter,
increasing) some tile parameters. This is one of many factors which makes static selection of
tile parameters difficult.

3.5 LMADs for describing tiles and copies

We want some generic and simple way to express and work with slices of memory for when
we will eventually be copying arbitrary-rank tiles from global to shared memory. The LMAD
(linearmemory access descriptor) is an interesting concept with many uses, one of which we
can use to generically describe and copy tiles. This condensed and somewhat simplified sum-
mary of LMADs is based primarily on [10], but the original paper [11] gives a good introduction
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3 BACKGROUND 3.5 LMADs for describing tiles and copies

to the uses of LMADs in the Futhark compiler.
The LMAD for an n-dimensional slice of some n-dimensional array (i.e. each dimension is

indexed fully) is defined by a flat offset (in number of elements) into that array at which the
slice starts, and, for each of the n dimensions, the size of the slice along that dimension and the
stride between elements in that dimension (i.e. the distance, measured in number of elements
in the flat representation, between two elements adjacent in that dimension):

L =
(
τ,

〈
σ1, . . . , σn

〉
, ⟨δ1, . . . , δn⟩

)
, (8)

where τ is the flat offset, and σi and δi are the size and stride for the i’th dimension. Note that
τ , σi, and δi are all positive integers. Each LMAD L describes a set of points in 1D space, which
we may express mathematically by the formula:

points
(
L
)
=

{
τ + i1δ1 + · · ·+ inδn

∣∣∣ 0 ≤ i1 < σ1, . . . , 0 ≤ in < σn

}
, (9)

However, we shall eventually think of LMADs as index functions (see section 3.5.1). Re-
turning to eq. (8), we may describe the read of a tile of size Ta×Tb×Tc from some larger array
X of size Na ×Nb ×Nc (with Ti ≤ Ni for each i) starting at offset π, with the LMAD:

LX =
(
π,

〈
Ta, Tb, Tc

〉
, ⟨Nb ·Nc, Nc, 1⟩

)
. (10)

Conversely, if, say, the destination of that copy is an arrayXshr (in e.g. shared memory) of size
Ta × Tb × Tc – i.e. exactly equal to the tile size – then we may describe the write destination
slice of memory with:

LXshr =
(
0,

〈
Ta, Tb, Tc

〉
, ⟨Tb · Tc, Tc, 1⟩

)
. (11)

Since the memory slices we will be describing with LMADs and subsequently copying are
all hypercubic tiles, traditional triplet-notation would be sufficient, however since Futhark IR
uses LMADs for all index functions, so shall we in reasoning about copies in our program.

3.5.1 Generic LMAD copying

As stated, we wish to use LMADs to easily and generically generate code for copying slices
from global to shared memory. The interesting thing with LMADs is that each LMAD also
defines a corresponding index function for accessing the associated array. For example, the
index function corresponding to the LMAD in eq. (10) is a 3-ary function given by:

LX (a, b, c) = π + a ·Nb ·Nc + b ·Nc + c · 1
= π + (a ·Nb + b) ·Nc + c. (12)

We may find it useful to define a unary index function L′
X which can be used to easily and

uniquely map values from a 1D index space – say, a flat thread index, tid – to flat indices into
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1 function lmad_copy_tile(src_arr, dst_arr, src_lmad, dst_lmad) {

2 dims = dst_lmad.dims;

3 tile_size = product(dims);

4

5 for (i = tid; i < tile_size; i += TBLOCK_SIZE) {

6 inds = unflatten(i, dims);

7

8 src_ind_flat = src_lmad.offset;

9 dst_ind_flat = dst_lmad.offset;

10 for (k = 0; k < len(dims); k++) {

11 src_ind_flat += inds[k] * src_lmad.strides[k];

12 dst_ind_flat += inds[k] * dst_lmad.strides[k];

13 }

14 dst_arr[dst_ind_flat] = src_arr[src_ind_flat];

15 }

16 }

Listing 1: Pseudocode for parallel LMAD copy of arbitrary-rank tiles. We assume that dimensions of
the two LMADs are of equal rank and size. Global memory boundary guards omitted for brevity.

X . To do so, we first unflatten tid wrt. the LMAD dimensions by:

tida = tid/(Tb · Tc)

tidb = (tid mod (Tb · Tc))/Tc

tidc = (tid mod (Tb · Tc)) mod Tc, (13)

and then, define L′ by:

L′
X (tid) = π + (tida ·Nb + tidb) ·Nc + tidc, (14)

with dom(L′
X ) = {0, 1, . . . , TaTbTc − 1}. This is useful, because (spoiler alert) it means that

we can use a k-dimensional thread block to easily and generically read d-dimensional tiles of
global memory, for arbitrary k and d, by flattening the thread block index and applying L′.
Neat!

3.5.1.1 Efficient parallel implementation of LMAD copying
Listing 1 shows pseudocode for an implementation of a parallel and generic LMAD copy of

tiles for intra-tblock execution. The outer loop is called a virtualization loop, and handles both
the case where the tblock is larger than the tile, as well as the converse. Note that if all LMAD
dimensions are compile-time constant, thenwe obtain an efficient implementation by unrolling
the product, the unflattening of indices, and the inner loop (lines 3, 6, and 10-13, respectively).
If one or both arrays are statically sized, e.g. a shmem array, then strides can also be constant
folded, and further, if the destination LMAD dims and tblock size are statically known, then
the outer loop can be normalized and unrolled.
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1 def aqc_qb_cba [a][b][c][q] (X: [a][q][c]f32) (Y: [b][q]f32) : [c][b][a]f32 =
2 let xsss: [c][a][q]f32 = transpose (map transpose X)

3 let yss = Y

4 in
5 map (\xss ->
6 map (\ys ->
7 map (\xs ->
8 map2 (*) xs ys |> f32.sum -- sequential redomap.

9 ) xss

10 ) yss

11 ) xsss

Listing 2: Futhark code for the TC Zcba = XaqcYqb. The outer map nest (lines 5-7) constitutes the
kernel segspace (assuming the inner map2 is fused with the reduction and thus not part of the segspace).
The redomap in line 8 is sequential. Note the explicit rearrangement of first operand tensor (line 2) in
order to place the reduction dimension innermost, and to allow conforming with the desired segspace
dimensions.

3.6 Futhark compiler background

In this section, we give brief and very high-level descriptions of those modules and features of
the Futhark compiler which directly pertain to our implementation, as well as some interesting
subtleties, the knowledge of which may come in handy in implementation.

The implementation will take place entirely in the loop tiling pass of the optimization stage
of the compiler.

3.6.1 Segspaces and array layout rearrangement

Listing 2 shows a Futhark implementation of the TC Zcba = XadcYdb. The three outer
maps in lines 4-6 constitute what we call the kernel segspace, and their ordering is impor-
tant, because they determine the layout of the result. In this case, the desired output layout is
[c][b][a], and so the maps are nested in precisely that order. If e.g. we were to interchange
the outer two maps in the source code, then the segspace dimensions, and hence the result
(size) type, would become instead [b][c][a]. Additionally, since the inner redomap requires
1D slices, the reduction dimension must be innermost on either operand array.

To facilitate this ordering in the map nest, it can sometimes be necessary to rearrange the
layout of one or more input arrays. For example, in listing 2, we have to rearrange xsss', since
the desired result layout requires that its [c] dimension comes before its [a] dimension, and
because the reduction dimension [q] must be interchanged inwards4. Alternatively, we can
get the slices we need using explicit indexing in maps over iota arrays, but this is generally

4Such a rearrangement of k dimensions is always possible using O(k2) transpositions. A transposition
at level i corresponds to a swap of indices i and (i + 1), so we can obtain the sequence of swaps which
produce a rearrangement by e.g. bubble sorting its inverse permutation. For an example, see tc_gen.py

at github.com/sortraev/msc_thesis_public.
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considered an anti-pattern in Futhark since it inhibits certain optimizations, and is in most
cases avoidable.

A composition of (possibly nested) transpositions can be represented as a single rearrange
in the Futhark IR5. When an array is rearranged, its LMAD is transformed accordingly, and
the new layout may or may not be manifested in memory, depending on the results of other
compiler passes/stages (but, as we shall discuss in implementation, section 4, the strategy we
implement assumes that it is not).

3.6.2 The loop tiling pass

As previously mentioned the compiler already performs block/register tiling of (GE)MM-like
expressions in the source code – the implementation module is called BlkRegTiling, and we
shall henceforth use this name in reference to the current implementation. For more in-depth
descriptions of the original design of and strategies used in BlkRegTiling, see [3].

The module is part of the loop tiling pass, and this is also where the new implementation
will take place. The loop tiling pass is one of the first passes in the GPU-specific optimization
pipeline, and follows a number of standard pipeline passes (simplification, CSE, dead code re-
moval, SOAC fusion, etc.), kernel extraction, and the optimiseGenRed pass, which transforms
a generalized reduction into (amongst other things) a map nest with a tileable redomap inside.

At this point, the available information includes a KernelBody, whose kernel statements
includes the redomap6, which in turn holds load statements for the input array slices, as well
as map and reduction lambdas for the redomap. The KernelBody is itself carried in a SegMap,
which also holds information about the execution segspace and the kernel result. From each
load statement in the redomap, we may – directly or indirectly – access information about
the base array whence the redomap operand slice comes, including its dimensions, LMAD
information (if any; this information exists only if the array layout has been rearranged), and
the segspace dimensions on which the array is variant.

3.6.3 Futhark multi-versioning

Note: Since we will only be generating a single kernel, the ins and outs of Futhark multi-versioning
are not particularly important for the implementation, but since the original inspiration for this
project was to explore the possibilities of implementing the COGENT strategy (as presented in [6]),
which can be viewed as a sort of multi-versioning strategy (see section 3.7), it is important to at
least have a sense of how Futhark does multi-versioning. This section may be read cursorily.

For a given Futhark source program, the Futhark compiler will often generate multiple dif-
ferent (GPU) code versions. The compiled binary will then at runtime choose the code version

5A source language counterpart would be very convenient in this caes, but such a function would
require rank polymorphism, which is not currently supported.

6More specifically, it holds a so-called screma (scan/reduce/map combination) which, if the scan
part is null, corresponds to a redomap.
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best suited for the given problem instance. Between 2-6 different code versions are typically
generated for most programs.

Many such code versions are generated by incremental flattening [12], a rather sophisti-
cated, interesting, and novel compiler transformation developed specifically for Futhark. In
broad and oversimplifying terms it means that for a given source program, the compiler will
generate multiple code versions based on the (regular) nested parallelism in the source pro-
gram and its possible mappings to hardware parallelism. As an example, the kernel produced
by BlkRegTiling is called an intra-tblock (segmap) kernel because it operates at the intra-
tblock level (as will the new kernel we eventually generate; see section 4), and this particular
kernel is chosen whenever there is sufficient outer parallelism in the input data (in this case,
the “outer parallelism” is the two parallel dimensions on top of the redomap, corresponding to
the dimensions of the result product).

The important takeaway from this is that even though different code versions are made to
better suit different (representative) problem instances, their generation is based on levels of
parallelism in the source program, and not on any particular (representative) problem instance.
This is, of course, because the kernel is generated at Futhark source compile time, while the
problem instance is not known until host code runtime (more specifically, between the time of
kernel generation and kernel compilation).

3.6.4 The BlkRegTiling module

One of the IR code versions for a regular GEMM or GEMM-like source expression is one in
which the outer two parallel dimensions are mapped to hardware parallelism and the inner
redomap is kept sequential and mapped to threads. This IR code version can then be 2D
block/register tiled according as described in section 3.4, and this is precisely what the cur-
rent BlkRegTiling module performs.

More specifically, BlkRegTiling will perform 2D block/register tiling of GEMM-like IR
expressions loosely fitting the pattern of this pseudocode:

map (\xs ->
map (\ys ->

let redomap_res = redomap xs ys

-- code2 is a sequence of expressions variant on

-- redomap_res, but on which redomap_res is invariant.

let code2 = ...

...

in code2

) yss

) xss

where xss and yss are both 2D arrays; redomap is some map/reduce composition; and code2

is some sequence of expressions variant on the redomap result, but on which the redomap is
not variant. Note that code2may contain expressions which precede the redomap syntactically
(i.e. in source code), but not logically (i.e. in terms of variance).
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We concretize the pattern in a set of firing conditions for the expression:

1. the expression has a redomap (quasi-)perfectly nested inside two outer parallel dimen-
sions on which the result is variant, possibly surrounded by code2, i.e. expressions vari-
ant on the redomap result(s) but on which the redomap is invariant;

2. the redomap takes exactly two 1D array slices as input, each of which is variant to exactly
one of the two outer parallel dimensions on which the result is variant; and

3. for each of the two parallel dimensions on which the result is variant, there is exactly
one redomap input array variant to this dimension.

Condition 2 implies that each redomap array is a slice of some larger base array (the di-
mension on which it is variant is the dimension which indexes this array), while conditions
2 and 3 in conjunction ensure an opportunity for data reuse optimization. A small handful of
additional conditions apply, such as restrictions on data types, but these are not particularly
relevant to our implementation.

The BlkRegTiling module then produces GPU code with structure similar to that of the
pseudocode in example 6, with the addenda in section 3.4.3.

3.6.4.1 Relevant features of and optimizations in BlkRegTiling

The existing BlkRegTiling produces efficient code for MM expressions, so we would do
good to examine the techniques used here. The module makes a number of smaller optimiza-
tions, including splitting the main reduction loop into a prologue and an epilogue in order to
remove a number of boundary checks in the prologue, and padding shmem to prevent bank
conflicts. This padding is implemented largely as described in section 3.3.2, and the implemen-
tation code is simple since it deals only with 2D arrays. Padding is always used, meaning bank
conflicts may accidentally be introduced if tile parameters were already chosen s.t. the inner
dimension size was odd (which is very unlikely but valid nonetheless).

But perhaps the most interesting feature about BlkRegTiling – at least as far as our im-
plementation goes – is its method for copying tiles from global to shared memory. Whereas in
our implementation the kernel will be reading arbitrary-rank tiles using generic LMAD copies
as discussed in section 3.5.1, BlkRegTiling can use a more efficient implementation: Because
the tblock and both of the tiles are always 2D, it can map the read of each 2D tile directly
onto the 2D tblock without logically reshaping the tblock dimensions, which, as we shall see
in benchmarking (section 6.3), saves significant overhead.

3.7 COGENT strategy wrt. Futhark

This section based entirely on [6] and [5].
Given a TC expression and a representative problem instance, COGENT generates efficient

GPU kernel code for the TC tailored specifically to the given and similar problem instances.
It does so by a static estimation of the optimal mapping of software parallelism to hardware
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parallelism, based on a model-driven pruning of the configuration space of different such map-
pings, and a cost model for the data movement needed for a given mapping[6]. Furthermore,
it performs fusion of TCs where applicable, but this is not relevant to our project since we will
not be looking into fusion.

While COGENT does generate multiple kernels, these kernels follow the same general
structure and differ only in their handling of partial tiles. These variants handle: No partial
tiles, partial tiles in the reduction dimension, partial tiles in one or more outer dimensions, and
partial tiles in the reduction and one or more outer dimensions.

However, whereas Futhark generates all code versions based on the source program and
offers additional specialization via tuning parameters (e.g. tile parameters) at runtime, CO-
GENT requires knowledge of the problem instance in order to run the pruning model. This is
well-suited for e.g. long running programs with a fixed problem instance, such as in a tensor
network, but for programs with varying inputs, COGENT would effectively function as an in-
terpreter generating kernels on the fly, and this may or may not impose a significant overhead
(although we cannot say to what extent a singly generated COGENT kernel could generalize
to other representative problem instances).

In any case, we quite early in the project decided not to go ahead with exploring how
to implement the COGENT method in Futhark, since generating new kernels at (host code)
runtime would essentially require embedding (a port of) COGENT inside Futhark binaries,
which is not in line with the Futhark model, where all code is generated at compile time and
parameterized at (host code) runtime.

On the other hand, there might very well still be benefit to be had in exploring how similar
methods could be implemented inside the Futhark compiler, which might then be used to gen-
erate a smaller handful of COGENT-like TC kernels at compile time, or perhaps there might be
inspiration to be had in regards to implementing (model-driven) autotuning of tile parameters
in Futhark – but this will remain future work.
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4 Implementation

In this section, I present my plan for implementation, including a detailed description of the
chosen strategy for code transformation/generation and some of the lower-level choices made,
and discuss some of the challenges and hurdles I met (and, in most cases, overcame) during
implementation.

Listing 3 shows a Futhark implementation of (a generalization of) the TC:

Zbickja = Xjqai ∗Ybcqk, (15)

which will be used as a running example throughout the implementation sections.
For the purposes of design and experimentation, as well as a point of reference to eventu-

ally compare the generated code with, we begin the implementation process with a prototype
kernel in CUDA/C++. The prototype also implements the TC in eq. (15) and resembles largely
the pseudocode in listing 5 (presented shortly), but implements also some of the optimizations
and tweaks we eventually implement in the compiler (except for the optimization discussed in
section 4.5). Conversely, the prototype uses no optimizations that the Futhark compiler could
not employ. However, the actual prototype code presents no insight on its own, and besides
this it is much too long to include in this report, and so we instead refer to our appendices at
github.com/sortraev/msc_thesis_public.

4.1 Limitations

Before delving into implementation details, we first account for the following limitations in
our implementation:

Limitation 1 like BlkRegTiling, we assume exactly two redomap input arrays in the TC expression.

Limitation 2 we assume TCs with only a single redomap dimension (in other words, only one con-
tracted index), for the simple fact that support for this is outside the scope of this project.

Limitation 3 similar to BlkRegTiling, we do not support 1D redomap arrays, hence e.g. matrix/vector
products and tensor/vector contractions are not supported.

Limitation 4 our implementation assumes size type parameters on operand tensors in a TC expression
are unique, even if two dimensions are equal

Limitation 5 due to time constraints, we do not implement support for code2, i.e. any additional
scalar statements in the segspace on which the redomap is independent, nor support
for additional outer parallel dimensions on which all or none of the redomap arrays are
variant.

Limitation 6 due to a bug out of scope of our project, we are forced to assume that redomap arrays
are rearranged using only compositions of transpositions, s.t. the layout rearrangment
can be expressed with a single rearrange in the IR (see section 4.7.2.2).
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1 def jqai_bcqk_bickja 't_x 't_y 't_z [b][i][c][k][j][a][q]

2 (redomap: [q]t_x -> [q]t_y -> t_z)

3 (X: [j][q][a][i]t_x)

4 (Y: [b][c][q][k]t_y)

5 : [b][i][c][k][j][a]t_z =
6 let xssss: [i][j][a][q]t_x =
7 X

8 |> map transpose

9 |> map (map transpose)

10 |> map transpose

11 |> transpose

12 let yssss: [b][c][k][q]t_y = map (map transpose) Y

13 in
14 map (\ysss ->
15 map (\xsss ->
16 map (\yss ->
17 map (\ys ->
18 map (\xss ->
19 map (\xs ->
20 redomap xs ys

21 ) xss

22 ) xsss

23 ) yss

24 ) ysss

25 ) xssss

26 ) yssss

Listing 3: Futhark implementation of the TC in eq. (15), except here the contraction is generalized
to arbitrary redomaps. We can specialize this function to perform regular 32-bit float TC by setting
redomap = \xs ys -> map2 (*) xs ys |> f32.sum. Note in particular the explicit rearrangements of in-
put arrays to conform with the desired result dimensions (lines 6-12) – these rearrangements exist pri-
marily as logical rearrangements in the IR, and are only manifested in the generated GPU code should
the compiler deem them beneficial. For more on this, see section 4.7.2.1.

Note that we cannot guarantee that this list of limitations is exhaustive. All of these limita-
tions could in principle be lifted – see section 6.3.

4.2 General code generation strategy

As explained in section 3.7, the strategy employed by COGENT is not suitable for implemen-
tation in Futhark, since we wish to generate a single kernel per TC expression, which can then
be parameterized to suit different problem instances. Instead, in order to generate a generic
kernel, the strategy we settle on is to generalize the method used in BlkRegTiling to arbitrary
dimensions.

Listing 5 shows pseudocode for the kernel we wish to implement, albeit with some abstrac-
tions which we shall disambiguate as we describe their implementation in section 4.7, but we
first give a broad overview in this section.
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TCs will be fully block/register tiled, meaning all dimensions in the segspace will be tiled
with a T and an R tile, while the (singular, as per the restrictions; see section 4.1) redomap
dimension is tiled once with a Q tile. As explained in section 3.4.3, a contraction of n free
indices implies an n-D thread block and an n-D grid of tblocks (similarly, it implies an n-D
segspace in the IR), but most of these dimensions will likely be unit (or very small) when n is
large due to hardware constraints on tiling parameters.

Whereas e.g. COGENT uses a model to determine an efficient mapping of software paral-
lelism to hardware parallelism, our model is significantly simpler: The n-dimensional segspace
in the TC expression is mapped directly to the n-dimensional tblock, s.t. the i’th innermost
dimension of the segspace is indexed by the i’th innermost thread index. This for example
ensures coalesced writes to the result tensor, but the main motivator is simplicity.

4.2.1 Shmem tiles and copying from global to shmem

The prototype will use LMAD copies to move tiles from global to shared memory, as outlined
in section 3.5.1, since this enables easy and generic code generation for efficiently copying
arbitrary dimension tiles. This method also ensures coalesced reads from global memory, so
long as tile sizes are chosen appropriately. Hence implementation of the lmad_copy_tile

function used in lines 20-21 of listing 5 can be based on listing 1.
For the LMADs describing a tile from a given input array, the size of each LMAD dimension

will match the tile parameters tiling that dimension, i.e. TiRi for some parallel dimension i,
orQq for the sequential dimension q, and the layout of LMAD dimensions will reflect those of
the base array. The strides for each LMAD are determined similarly, but depend, of course, on
the underlying array.

As an example, for the first operand array in the TC in listing 3, X , the two LMADs de-
scribing reads/writes of tiles are:

LX =
(
π,

〈
TjRj , Qq, TaRa, TiRi

〉
, ⟨NqNaNi, NaNi, Ni, 1⟩

)
,

LXshr =
(
0,

〈
TjRj , Qq, TaRa, TiRi

〉
, ⟨QqTaRaTiRi, TaRaTiRi, TiRi, 1⟩

)
. (16)

where π is the flat offset into X of the start of the particular tile.

4.2.2 Register tile, accumulation, and write-back

Initialization of register tiles, the redomap accumulation step, and the final write-back of regis-
ter tiles will be implemented quite straight-forwardly from the pseudocode given in example 6,
except, of course, now generalized to arbitrary-rank register tiles.

Listing 4 shows pseudocode for the abstract redomap_accumulate function, specifically for
the TC in eq. (15) – code generation for init_reg_tile and write_reg_tile, the initialization
and final write-back of register tiles, is similar.
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1 function redomap_accumulate(thd_reg_tile, s_A, s_B, Q, R_tiles) {

2 (Rb, Ri, Rc, Rk, Rj, Ra) = R_tiles

3 // outer loop based on the Q tile.

4 for (q = 0; q < Q; q++)
5 // inner loop nest based on R tiles, which come from the segspace.

6 for (b = 0; b < Rb; b++)
7 for (i = 0; i < Ri; i++)
8 for (c = 0; c < Rc; c++)
9 for (k = 0; k < Rk; k++)

10 for (j = 0; j < Rj; j++)
11 for (a = 0; a < Ra; a++)
12 thd_reg_tile[b][i][c][k][j][a] +=
13 s_A[idx_s_A(j, q, a, i)] * s_B[idx_s_B(b, c, q, k)];

14 }

Listing 4: Pseudocode for the redomap accumulation step, as would be generated specifically for the
example TC in listing 3 (Zbickja = Xjqai ∗Ybcqk). Performs a contraction of two tiles in shmem and
accumulates to the thread-private register tile accumulator. For a Q-tile and a sequence of R-tiles (one
for each dimension in the segspace), we generate a loop nest with an outer loop iterating theQ tile, and
an inner loop nest iterating the R tiles. idx_s_A and idx_s_B are abstract index functions.

4.3 Copying tiles from global to shared memory

The copying of tiles from global to shared memory is, in broad terms, implemented straight-
forwardly from the description given in section 3.5.1, and we implement almost one-to-one
the pseudocode in listing 1 – but with global memory boundary guards this time, obviously,
whereas shmem boundaries are handled by the virtualization loop. The implementation code is
quite tedious, but in the large scheme of things it is a trivial implementation of aforementioned
strategies, hence we do not go into too much detail with it.

This leaves two performance problems to solve: Effective and efficient handling of partial
tiles, and avoiding bank conflicts on shmem accesses.

4.3.1 Handling partial tiles

In section 3.4 we assumed that all tile sizes evenly divided their respective input dimensions.
When we lift this assumption, we sometimes have so-called partial tiles. We can have partial
tiles in both the parallel and the redomap dimension, and each of these must be handled ex-
plicitly. In particular, we must attend to two issues: Avoiding out-of-bounds global memory
accesses, and how to go about shared memory and the register tile accumulation when outside
these bounds, since the register tile accumulation can be corrupted if we attempt to reduce
garbage values from share memory.

Handling out-of-bounds accesses to global memory is trivial, since it requires only to insert
a boundary guard on global memory accesses (both in the redomap step and the final write-
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1 kernel tensor_contraction(g_A, g_B, g_C, T_tiles, R_tiles, Q) {

2 // declare shmem (which depends on tile dims) and LMAD's describing tiles.

3 s_A, s_B = declare_shmem(T_tiles, R_tiles, Q);

4 lmad_s_A = LMAD(0, s_A.dims, strides(s_A.dims));

5 lmad_s_B = LMAD(0, s_B.dims, strides(s_B.dims));

6

7 // NE-initialize register tile of dimensions R_tiles.

8 thd_reg_tile = init_reg_tile(R_tiles);

9

10 num_full_sequential_tiles = ceil(common_dim / Q);

11 for (k = 0; k < num_full_sequential_tiles; k++) {

12 // compute this tblock's offset into g_A and g_B.

13 g_A_offs, g_B_offs = tblock_offsets(g_A, g_B);

14

15 // compute LMADs for the global memory arrays.

16 lmad_g_A = LMAD(g_A_offset, s_A.dims, strides(g_A.dims));

17 lmad_g_B = LMAD(g_B_offset, s_B.dims, strides(g_B.dims));

18

19 // copy tiles from global to shared memory.

20 lmad_copy_tile(g_A, s_A, lmad_g_A, lmad_s_A);

21 lmad_copy_tile(g_B, s_B, lmad_g_B, lmad_s_B);

22 // sync tblock.

23

24 // accumulate partial contraction to thread's register tile.

25 redomap_accumulate(thd_reg_tile, s_A, s_B, Q, R_tiles);

26 // sync tblock.

27 }

28 // write this thread's register tile to output tensor.

29 write_reg_tile(g_C, thd_reg_tile, R_tiles);

30 }

Listing 5: High-level pseudocode for the GPU kernel we wish to generate, with abstract funtcions
substituted for those parts of the code which must be parameterized over the TC segspace. The
lmad_copy_tile function (lines 20-21) may be implemented as in listing 1. The kernel is executed
by

∏
⌈Ni/TiRi⌉ tblocks, each of

∏
Ti threads.
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back).
Handling shared memory turned out to be more subtle. For regular TCs, with multiplica-

tion and addition for map function and reduction operator, respectively, we need no explicit
handling of partial tiles, because we can simply fill shared memory with zeros in indices out-
side global memory bounds – later, in the redomap step, these padding zeros are effectively
ignored, since x ∗ 0 = 0 ∗ x = 0 for all x, and since 0 is the neutral element for addition, the
result affects not the reduction. In general, we can safely ignore partial tiles whenever there
exist values a and b s.t. f(a, y) = f(x, b) = ne for any x and y, where ne is the reduction
neutral element.

But such values can be difficult and expensive to determine statically, assuming they exist
for the given operators. For example, the fact that map function bodies can contain arbitrary
code does not make this analysis easier, so we quickly decided that it was not feasible for the
scope of the project.

4.3.1.1 Prologue/epilogue treatment of partial tiles

The simplest solution to handling shmem in case of out-of-bounds is to wrap the redomap
phase in boundary guards reflecting those on global memory, s.t. garbage values are explicitly
ignored. Since partial tiles in the parallel dimensions are ignored during the write-back due
to global memory boundary guards, we need only handle boundary guards on the reduction
dimension.

However, these checks naturally affect performance. As a mitigation, we can unroll the last
iteration of the outer reduction loop (which iterates the reduction dimension) and remove the
boundary check for all but this unrolled iteration. The code almost doubles in size, but code
size is rarely a concern.

For TCs with large reduction dimensions, the cost of the epilogue may be amortized by the
higher number of prologue iterations, whereas this may not necessarily be the case for smaller
TCs. As an example, consider a TQ withQq = 16, where q is the reduction dimension. IfNq =

1000, then we would have ⌊1000/16⌋ = 62 prologue iterations and a single epilogue iteration,
whereas ifNq = 31, then we we would have exactly one of each. Hence the prologue/epilogue
treatment might be detrimental to performance for certain TCs and problem instances if the
epilogue happens to be redundant.

In any case, we decide on this solution, since it is preferable to computing the entire contrac-
tion using epilogue iterations, and leave it to future work to implement the analysis discussed
in section 4.3.1. In the meantime, we offer a source-level attribute #[no_epilogue] which can
be used to manually and explicitly disable the epilogue for when it is known to be redundant
– however, this is prone to user-error so it is primarily for benchmark comparison.

4.4 Avoiding shared memory bank conflicts

We wish to avoid shmem bank conflicts by padding shmem tiles as best as possible. Similar to
BlkRegTiling, we wish to pad inner dimensions of the shmem tile for the input array indexed
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by the FVTI, but we now want to pad arbitrary-rank shmem arrays, and ideally only when it
is necessary.

4.4.1 Improved padding of multi-dimensional shmem arrays

In section 3.3.2.1, we discussed the possible overhead in shmem padding and showed that it can
be large for large-rank tiles. Fortunately it is not difficult to avoid a large part of this overhead:
The idea is to flatten themulti-dimensional shmem array and pad the inner dimensions together.
As an example, instead of padding the array Sa × Sb × Sc to Sa × (Sb + 1) × (Sc + 1), we
flatten the dimensions and pad to Sa · (Sb · Sc + 1).

To see why this improves shmem usage over the method discussed in section 3.3.2.1, con-
sider again a sequence of shmem dimension sizes ⟨S1, . . . , Sn⟩, with Si ≥ 1 for all i. Let j be
the dimension indexed by the FVTI, and assume that the inner dimensions ⟨j+1, . . . , n⟩ need
padding. We pad by splitting the product in two and padding the product of inner dimensions
as such: [

j∏
i=1

Si

]
·

 n∏
i=j+1

Si

+ 1


︸ ︷︷ ︸

pad dims j+1...n

=

[
n∏

i=1

Si

]
+

[
j∏

i=1

Si

]
︸ ︷︷ ︸
overhead

. (17)

Recall eq. (6), the lower bound on shmem overhead incurred by the naive padding method:

Eq. (6):

[
n∏

i=1

Si

]
+

[
k−1∏
i=1

Si

]
·

[
n∏

i=k+1

Si

]
,

where k > j is the padded dimension. From j ≤ k − 1 we have
∏j

i=1 Si ≤
∏k−1

i=1 Si, and
by the assumption of positive sizes Si, we have also

∏n
i=k+1 Si ≥ 1, which gives:

[
n∏

i=1

Si

]
+

[
j∏

i=1

Si

]
︸ ︷︷ ︸

Eq. (17)

≤

[
n∏

i=1

Si

]
+

[
k−1∏
i=1

Si

]
·

[
n∏

i=k+1

Si

]
︸ ︷︷ ︸

Eq. (6)

. (18)

Hence we can save on shmem usage, but at the obvious consequence that for arrays with
more than one padded dimension, the padded array can no longer be represented in its original
rank, since arrays must be regular. While this adds no overhead in index computation in the
generated code (since the array representation would be flattened by later compiler stages
anyway), it does complicate our implementation code since shmem arrays must now be treated
as flat arrays throughout the module, but the priority is the quality of generated code so we of
course implement this method.
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4.4.2 Padding implementation

First, padding should only be applied when necessary and beneficial, since if it is not then we
may introduce conflicts by padding. Hence the padding term used for some flat size s is:

padTerm(s) =

{
1 if s mod 2 = 0

0 otherwise
= 1− (s mod 2). (19)

For shmem arrays whose dimensions depend on tiling parameters, s is not known until
host code runtime, and hence the decision of whether to pad is made in host code.

As we pad a shmem array, we must of course update its associated LMAD strides to reflect
the new physical layout. Let S = ⟨S1, . . . , Sn⟩ be the LMAD dimensions for the array for
which we wish to compute padded strides, and denote by j the index at which we wish to pad
the inner dimensions. Let also (++) denote concatenation of sequences – then we compute
padded strides according to the function:

stridesPad (S, j) = outerStridesPad (S, j) ++ innerStrides (S, j) , (20)

where:

innerSizePad(S, j) =

 n∏
i=j+1

Si

+ padTerm

 n∏
i=j+1

Si

 (21)

outerStridesPad(S, j) =

〈[
j∏

i=k

Si

]
· innerSizePad

∣∣∣ k ∈ ⟨2, . . . , j + 1⟩

〉
(22)

innerStrides(S, j) =

〈[
n∏
i=l

Si

] ∣∣∣ l ∈ ⟨j + 1, . . . , n+ 1⟩

〉
(23)

The basic idea is this: first, we split shmem dimensions at j; then, using eq. (21), compute
the flat size of the inner dimensions with padding; using eq. (22), compute strides for the outer
dimensions, taking into account the flat size of the padded inner dimensions; using eq. (23),
compute inner strides, i.e. those unaffected by padding; finally, concatenate outer and inner
strides (eq. (20)).

Listing 6 shows the compiler implementation of shmem padding, including both the deci-
sion of which arrays should be padded, and the computing of padded strides. Note that even if
no padding is needed, this process does not incur any overhead since all of these computations
are constant folded by the kernel compiler when the tile dimensions are constant at kernel
compilation.

4.5 Special case optimization for regular MM

Early testing indicated some possible overhead in using LMAD copies in regular MM programs
as compared to the method used in BlkRegTiling (as described in section 3.6.4.1). We suspect
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1 let variant_dim_inds = map (`L.elemIndex` segspace_dims) arr_dims

2 let innerProducts = scanr (*) 1 . tail

3 ~(shmem_size_flat, shmem_strides) <-
4 -- Determine candidacy for padding.

5 case Just inner_dim_ind `L.elemIndex` init variant_dim_inds of
6 Just i -> do
7 -- Split tiles on the index at which inner tiles need padding.

8 let (outer_dims, inner_dims) = splitAt (i + 1) tile_dims

9 -- Pad if the inner dims is of even size.

10 let pad_term = 1 - (product inner_dims `rem` 2)

11 let inner_size_flat = product inner_dims + pad_term

12

13 -- The outer strides take into account the inner size, but drop the

14 -- innermost 1-stride, since this belongs to the inner strides.

15 let outer_strides = init $ innerProducts $ outer_dims ++ [inner_size_flat]

16 let inner_strides = innerProducts inner_dims

17 let size_flat = product outer_dims * inner_size_flat

18 pure (size_flat, outer_strides ++ inner_strides)

19 _ -> pure (product tile_dims, innerProducts tile_dims)

Listing 6: Compiler implementation of shmempadding (simplified). Line 5 determineswhether an array
is candidate for padding by checking whether any of its non-innermost dimensions is variant on the
innermost segspace dimension (in other words, indexed by the FVTI). Lines 8-17 splits tile dimensions
into those which need padding, and outer dimensions, and computes flat size and LMAD strides for
the array accordingly. Note that candidacy for padding is determined at compile time, while the actual
padding, if necessary, is applied at (host code) runtime. Also, note that the actual implementation code
is a little more tedious, since we prefer to bind values to expressions s.t. they are more easily identified
in the generated code.

it might be interesting, and perhaps beneficial, to make a special case optimization for the case
where the TC is a regular MM, although we use the word “optimization” tentatively since we
have yet to benchmark the solution. In this case we replace the flat LMAD copy loop with a
2-nested loop mapping each 2D tile onto the 2D tblock, hence mimicing BlkRegTiling. This
might save the overhead of logically reshaping the tblock going into the LMAD copy.

The optimization fires whenever both operand tensors are 2D (by the assumption of a single
reduction dimension, this would also imply the result is 2D). We are unsure of whether this
method can generalize to higher dimensions, so we do not pursue this.
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4.6 Firing conditions for the transformation

We wish to formulate a set of conditions on which to pattern match IR expressions to test
eligibility for the transformation. Since TC is a generalization of MM, so will these conditions
generalize the firing conditions in the BlkRegTilingmodule as described in section 3.6.4. Due
to the arbitrary dimensionality of the segmap in a TC expression, it is difficult to illustrate the
firing conditions in a pseudocode example, although such an example would be analogous to
the example in section 3.6.4.

In any case, firing conditions for an IR expression to be eligible for the transformation are:

1. the expression has a redomap (quasi-)perfectly nested inside n ≥ 2 parallel dimensions
on which the result is variant, possibly surrounded in the map nest by code2, i.e. expres-
sions variant on the redomap result(s) but on which the redomap is invariant;

2. the redomap takes exactly two 1D array slices as input, each of which is variant to at
most (n− 1) of the n parallel dimensions; and

3. for each of the n parallel dimensions on which the result is variant, there is exactly one
redomap input array variant to this dimension.

Condition 2 asserts that no array is variant to all parallel dimensions, since then there is
no data reuse on this array, while condition 3 asserts that the given parallel dimension is part
of the contraction, since remaining outer parallel dimensions should not be tiled but rather
interchanged outwards and mapped entirely onto the (CUDA) grid. Condition 3 also implies
that each redomap input array is variant to at least 1 parallel dimension.

Note that condition 1 rejects vector/matrix products7 since here we would have n = 1,
while condition 2 more generally rejects vector/tensor contractions (including vector/matrix
products), since here the vector and tensor would be variant to 0 and n outer dimensions,
respectively. These assumptions can be lifted, but this is outside the scope of this project.

Theremay ormay not be other faults or excessive restrictions in this set of firing conditions,
and so we leave it to future work (section 6.3) to revisit and concretize them.

4.7 Hurdles in implementation

When taken in isolation, most steps taken in implementation up until this point have been
quite straight-forward. What has made implementation difficult (and, at times, tedious) have
been to fit the pieces together, and, more importantly, to fit our transformations and analyses
into the given intermediate representation, where, as it turns out, some necessary information
were hard to come by without some rather nasty hacks.

In this section, we go into more depth with some of the intricacies in implementing the
transformation into the Futhark compiler specifically.

7It also rejects the vector/vector product, but here we have no data reuse so this case is not relevant.
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4.7.1 Obtaining input array information

In order to facilitate code transformation/generation, we first need a number of different pieces
of information on each input array to the redomap. ?? shows the Haskell data type used to
gather and manage all such information for a given redomap array, and these include:

1. baseArr, baseArrDims, and arrLoadStm: a reference to the base array in global memory
whence to read input data; the dimensions of said array, used to generate boundary
guards on global memory accesses; and a load statement to execute reads from the array;

2. lmadPerm: if the original array layout has been rearranged, whether it be in the source
code of a previous compiler stage, thenwe need somehow to reverse-engineer the layout,
which we can do using the LMAD permutation. This is necessary in order to correctly
map the layout of this array onto the multi-dimensional thread block during the copy
stage (more on this in section 4.7.2);

3. varDimInds: information on the array’s variance to the different segspace dimensions,
which is necessary in order to extract information pertinent to the given array from
among the information associated with the segspace (see ??), such as when generating
loop nests where this array is dependent only on a subset of loop variables, and to identify
shmem arrays candidate for padding – see section 4.7.3;

4. tileDims, shmemSizeFlat, and shmemStrides: the logical dimensions of the tile for this
array, as well as the flat physical size including padding of the shmem array holding it,
and the LMAD strides used for indexing it (see section 4.4.1);

5. shmemElemType: the element type of the array, used for the initial declaration of its
shmem tile, and for filling shmem with blanks when out-of-bounds on global memory;

Most of this information can be derived trivially from other information, while some of it
must be extracted from the environment and from input IR expressions.

4.7.2 Extracting array layout information

When we eventually begin to read tiles from global to shared memory using LMAD copies, we
will require that the innermost dimension of the global memory tile be mapped to the FVTI of
the executing tblock in order to obtain coalesced access – see section 4.3. In order to achieve
this, we need to know the layout of the array in global memory, which must be accessed only
indirectly via the load statement for each redomap array carried into themodule in the redomap
construct since it is not carried explicitly. From this we can then query the type environment
to obtain its layout.

However, as it turns out this information includes any rearrangements made to the array
layout (either in the source code or earlier compiler stages) and does not necessarily reflect the
actual layout in memory. We then had to find a way to reverse-engineer the array layout.
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4.7.2.1 Reverse-engineering layout permutations
Before entering the TCTiling module, the loop tiling pass estimates index function trans-

formations for each array name in the to-be-optimized statements by scanning the statements
for any reshaping and rearranging operations and gathers the estimates in an environment
that is then passed on to the TCTilingmodule. We call this information an estimate, since true
LMAD information is not attached until the GPUMem representation, and because it unfortu-
nately is not always reliable, as we shall see in section 4.7.2.2.

But let us assume for a moment that it is. Given the rearranged array dimensions and the
strides in the LMAD information, we can reverse-engineer the original layout as such: For
each permutation of the array layout dimensions, compute its corresponding strides; exactly
one set of computed strides is guaranteed to equal the known strides, and the permutation
which produces this set of strides is then the original layout. The reverse-engineered array
layout can then be used to correctly map global memory reads to the tblock indices.

The actual compiler implementation of this matching of permutations to known strides is a
little tedious. By associativity and commutativity of multiplication, we of course know that e.g.
a · (b · c) = c · (b ·a) for all numbers a, b, c, however, in the IR a stride would be represented by
a PrimExp expression8, and these properties do not hold for multiplication of PrimExps, hence
we have e.g. Mul(Pa, Mul(Pb, Pc)) ̸= Mul(Mul(Pc, Pb), Pa) for PrimExps Pa, Pb, Pc.

Our solution to this problem is to “flatten” PrimExps when they happen to represent prod-
uct expressions, i.e. when all factors are either a binary multiplication expression or a non-
recursive PrimExp constructor, and then to sort the factors in the product. This e.g. means

flatten
(
Mul

(
Pa, Mul(Pb, Pc)

))
= flatten

(
Mul

(
Mul(Pc, Pb), Pa

))
= product

(
{Pa, Pb, Pc}

)
. (24)

Note that leaf and constant PrimExps, as well as any recursive PrimExps that is not binary
multiplication, are stored as opaque expressions in the product and not flattened. This unfortu-
nately has the obvious pitfall that we cannot guarantee to match strides which are not simple
products. It is unclear whether this case is even possible; nevertheless, as is it is a potential
weakness.

Ideally we would have either: A safe and reliable way to extract layout information for
redomap input arrays, e.g. by having it carried in either the redomap construct or the redomap
arrays; or a generic way to generate (e.g. tblock-wide) segmaps without specifying exactly
which dimensions of the segmap is mapped to which dimensions on the executing tblock –
this would allow us to express an arbitrary n-dimensional tile copy without worrying about
how the copy is mapped to the tblock.

8A PrimExp can be a leaf expression, a constant value, a binary operator recursively applied to two
PrimExps, and a number of other things.
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1 entry_jqai_bcqk_bickja (X : [J][Q][A][I]f32, ...) = {

2 let {X_out : [I][J][A][Q]f32} = rearrange((3, 2, 0, 1), X)
3 ...
4 }

5

6 LMAD estimation:
7 [LMADDim {ldShape = I, ldStride = 1 },

8 LMADDim {ldShape = J, ldStride = Q * A * I},
9 LMADDim {ldShape = A, ldStride = I },

10 LMADDim {ldShape = Q, ldStride = A * I }]

(a) Using
[
map T ◦map (map T ) ◦ T ◦map T ◦map (map T )

]
X , as in listing 3.

1 entry_jqai_bcqk_bickja (X : [J][Q][A][I]f32, ...) = {

2 let {X_reshape0 : [J * Q][A][I]f32} = reshape([J * Q][A][I], X)
3 let {X_rearrange : [I][A][J * Q]f32} = rearrange((2, 1, 0), X_reshape0)
4 let {X_out : [I][A][J][Q]f32} = reshape([I][A][J][Q], X_rearrange)
5 ...
6 }

7

8 LMAD estimation:
9 [LMADDim {ldShape = I, ldStride = J * A * Q},

10 LMADDim {ldShape = J, ldStride = A * Q },

11 LMADDim {ldShape = A, ldStride = Q },

12 LMADDim {ldShape = Q, ldStride = 1 }]

(b) Using
[
map (map unflatten) ◦ T ◦map T ◦ T ◦ flatten

]
X .

Listing 9: Futhark IR code at the point immediately preceding loop tiling, for the two different methods
of rearranging X in listing 3, and the LMAD estimations generated for each by the loop tiling pass
before commencing TC tiling, where T = transpose. Note that the strides computed in (b) correspond
to the layout of the array as if the source-level rearrangement was actually manifested, whereas the
LMAD in (a) is as we expect.
IR output generated using futhark dev, and LMADs using debug prints.
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1 findLMADPerm :: Env -> VName -> Maybe [Int]
2 findLMADPerm (_, ixfn_env) arr = do
3 -- Lookup LMAD for array.

4 lmad <- LMAD.dims <$> M.lookup arr ixfn_env

5 let shape = map (untyped . LMAD.ldShape) lmad

6 strides0 = map (toFlatPrimExp . untyped . LMAD.ldStride) lmad

7 -- Test each permutation against known strides; pick first succeeding.

8 msum $ map (isPermutationOf strides0 . getStrides) $ permutations shape

9 where
10 getStrides = map toFlatPrimExp . scanr binopMul . tail

11 ...

Listing 7: Compiler implementation of the reverse-engineering of LMAD permutations. Function
getStrides (line 10) generates stride expressions as the cumulative products of inner dimensions
of a given shape, appending an innermost stride of 1 before flattening the resulting strides using
toFlatPrimExp as shown in listing 7.

4.7.2.2 Assumption on rearrangements in the IR

As mentioned the LMAD information computed at the start of the loop tiling pass is not
always reliable for rearranged arrays. As far as we can tell this estimated LMAD information
can happen to be incorrect when the layout transformation cannot be expressed as a single
rearrangement in the IR, but as a sequence of rearrangements and reshaping. We decide that a
solution to this problem is outside the scope of our project, and hence decide instead to only
test programs where redomap arrays are rearranged using only compositions of transpositions
and make a note of it for future work.

Listing 9 shows examples of the estimated LMADs resulting from two different methods of
rearranging the first operand array in listing 3.

4.7.3 Use of variance indices

Throughout code generation, we will at various points need to generate expressions parame-
terized over the segspace dimensions. Because the two redomap arrays are variant to disjoint
subsequences of segspace dimensions and neither of them is variant to all of them, we at vari-
ous points need to be able to partition the information derived from the segspace between the
two arrays.

Denote again by DS the dimensions of some segspace S. We return to the running exam-
ple of listing 3, where in this case we have DS = ⟨b, i, c, k, j, a⟩. Consider then listing 4, the
redomap accumulation step for this particular TC, where here the inner six loops are derived
from S. Each redomap array is variant to 3 dimensions in S, and hence to only 3 of the R loop
variables in scope in the loop nest (in addition to q from the outermost loop over the Q tile,
but this is independent from S). We now need somehow to partition the set of loop variables.
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1 data FlatPrimExp = Product [FlatPrimExp] | OpaquePrimExp (PrimExp VName)
2 deriving (Eq, Ord)
3 toFlatPrimExp :: PrimExp VName -> FlatPrimExp
4 toFlatPrimExp = Product . sort . extractFactors . flattenMulOps

5 where
6 flattenMulOps (BinOpExp Mul {} e1 e2) = Product $ map toFlatPrimExp [e1, e2]

7 flattenMulOps e = OpaquePrimExp e

8 extractFactors (Product es) = concatMap extractFactors es

9 extractFactors e = [e]

Listing 8: Compiler implementation of “flattening” of PrimExp product expressions. flattenMulOps
(lines 6-7) largely implements flattening as described in section 4.7.2.1 (exemplified in eq. (24)), while
extractFactors (lines 8-9) join factors across products s.t. they can be sorted (using Eq PrimExp)
going into an equality check.

In the context of the compiler, we can extract variance information from the environment, and
this would tell us that the redomap arrays are variant onto dimensions ⟨i, j, a⟩ and ⟨b, c, k⟩,
respectively. For each array, we can cross-reference this information with the set of loop vari-
ables if we also have a mapping of segspace dimensions to loop varibles. However, explicitly
creating such a mapping can be tedious if it has to be done every time.

Instead, we found it convenient to encode the variance information for a given redomap
array in terms of the (zero-based) index of each segspace dimension on which this array is
variant. We will for the remainder of this report refer to this information as variance indices,
and for the two redomap arrays in the running example, the variance indices are ⟨4, 5, 1⟩ and
⟨0, 2, 3⟩, respectively, since the mapping ofDS to indices is ⟨b : 0, i : 1, c : 2, k : 3, j : 4, a : 5⟩.

In general, to compute variance indices for an arrayX with dimensionsDX into a segspace
S with dimensions DS, we may use the formula:

varIndsS (X ) = (++)
d∈DX

elemIndicesDS
(d), (25)

where (++) is again sequence concatenation, and elemIndicesDS
(d) is the sequence of indices

of all occurences d in DS. Recall from section 3.2 that tensor indices are uniquely labelled –
hence d must occur in DS at most once, and note that this formula produces a sequence of
variance indices ordered wrt. the layout of X .

Then, given an indexed sequence of information I = ⟨I0, I1, . . . ⟩ of any type, where I

is derived from, and hence ordered wrt., some segspace S, we may extract, or gather, those
elements of I associated with an array X by the formula:

gatherS (I, X ) =
〈
Ii
∣∣ i ∈ varIndsS (X )

〉
(26)

In our compiler implementation, variance indices are computed once in the initial deriva-
tion of array information, and information derived from it is implicitly indexed.
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5 Testing

In this section, we first present, discuss, and justify our benchmarking plan for the new TCTiling

module, and later, present, analyze, and conclude upon the results of benchmarking. To repro-
duce benchmarking results, please see github.com/sortraev/msc_thesis_public.

5.1 Validation testing

Since the code is still in development, and because much work yet remains in addressing lim-
itations in the implementation (as documented in section 4.1), we do not go very much into
validation testing at this point, except to write a small suite of programs with isolated TCs
that can be used to verify changes and to convince ourselves of the validity of benchmarking
results. The validation suite consists of the 3 TCs later used in benchmarking: (including the
three TCs used in benchmarking; see section 5.3.2), each of which is run against a handful of
representative test inputs (including partial tiles in all dimensions, unit dimensions, and other
important cases) for different tile parameterizations (both “nice” and uncommon tile sizes).

All validation tests pass for the compiler versions and GPU used in benchmarking (see
section 5.3.1). To view and reproduce tests, please see github.com/sortraev/msc_thesis_public.

5.2 Benchmarking goals

The primary goal with benchmarking is to explore whether the chosen strategy has merit,
and, of course, whether it is beneficial to move further with it in Futhark or whether other
strategies should be explored instead. To do so, we benchmark against a point of reference
with COGENT. Even if the main contribution of COGENT is fusion of TCs[5], their code gen-
erator also produces efficient code for isolated TCs[6], and besides this, COGENT was the
initial inspiration for this project, so it is an interesting reference point. We additionally test
our Futhark generated code against the prototype kernel in order to explore whether there is
room for improvement. Finally, since our implementation attempts to generalize the existing
BlkRegTiling module for 2D tiling, we of course wish to compare our implementation with
the reference implementation for simple MM programs.

We also wish to benchmark performance effects of some (but not all) of the optimizations
made: Specifically,the effects of manually handling partial tiles in an epilogue, as described in
section 4.3.1, since if it turns out that the epilogue dominates for TCs with small reduction di-
mensions, then this is goodmotivation for putting work into eliminating the prologue/epilogue
treatment where doing so is valid; and the special case MM optimization as described in sec-
tion 4.5, since if results show that the LMAD copy adds excessive overhead in this case then
we may want to look into more special case optimizations.

The tile configuration space is very large formost TCs, and finding optimal parameters for a
specific kernel is infeasible. Hence, wrt. tile parameterization, the goal of our benchmarking is
not to quantify the optimal performance of our kernel, but rather to formulate a set of heuristics
and make a best effort approximation on which to gauge potential performance of the kernel.
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5.3 Benchmarking plan

We wish to limit the number of test cases as much as possible while still providing realiable
and meaningful measurements for analysis. In this section we present some of the different
factors in the benchmarking suite.

5.3.1 Code and compiler versions used

We test three different version of the Futhark-generated kernel: TCTiling_EPILOGUE, a base-
line kernel which handles partial tiles in an epilogue; TCTiling_NO_EPILOGUE, which implicitly
ignores partial tiles and foregoes the epilogue; and TCTiling_MM-opt, which uses an epilogue
but which implements the special case MM optimization as mentioned in section 4.5. The first
two are compiled by commit 6cc23cd2d 9 of the compiler, while the latter is compiled using
commit 9894ecee1 10.

We test two different versions of the prototype, here called prototype_EPILOGUE and
prototype_NO_EPILOGUE, similar to the first two TCTiling kernel versions. These can be
found at github.com/sortraev/msc_thesis_public. We do not test the MM specific optimization in
the prototype.

For COGENT tests, we generate one new kernel per contraction using the COGENT code
generator, as presented in [6], available at github.com/kimjsung/CGO2019-AE.

All benchmarking tests are run on an nVIDIA A100 GPU with 40GB of RAM and CC 8.0.

5.3.2 Test contractions

We test 6 different TC programs, where 4 are MM programs and 2 are larger-rank TCs. To
benchmark larger contractions, we look to [5] for inspiration in regards to test contractions.
Here, COGENT is tested against two sets of TCs, sd1 and sd2. For all TCs in sd1, q is inner-
most on the first operand and outermost on the second operand, while for all TCs in sd2, q
is innermost on both operands. For this reason we choose to test only one TC from each set,
even if the individual TCs in each set may have other distinguishing features.

We pick one TC from each set at random11:

sd1_7 : Zabcijk = Xicaq ∗Yqbjk, (27)

sd2_3 : Zabcijk = Xkiaq ∗Ybcjq. (28)

9github.com/diku-dk/futhark/tree/6cc23cd2d
10github.com/diku-dk/futhark/tree/9894ecee1
11Note that the authors of COGENT [5] label tensor indices innermost first and uses different names

for contraction indices between different TCs, whereas we label indices outermost first and consistently
use q for the contraction index – hence the TC expressions may appear different where they are not.
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For the MM tests, we use all four permutations of operand tensors in the regular MM:

MM0 : Zab = Xaq ∗Ybq, (29)

MM1 : Zab = Xaq ∗Yqb, (30)

MM2 : Zab = Xqa ∗Ybq, (31)

MM3 : Zab = Xqa ∗Yqb. (32)

5.3.3 Test input datasets

We test the sd1_7 and sd2_3 programs against each of the below datasets:

Dataset 1 (Na, Nb, Nc, Ni, Nj , Nk, Nq) = (32, 32, 32, 32, 32, 32, 32): This represents a balanced
workload, with two hypercubic operand tensors and “nice” dimension sizes, i.e. all di-
mensions are divided evenly by tile sizes (except for R = 5). Used to test performance
when there are no partial tiles

Dataset 2 (Na, Nb, Nc, Ni, Nj , Nk, Nq) = (32, 32, 32, 32, 32, 32, 31): Similar workload to dataset
1, but with partial tiles in the reduction dimension. Used to test effects on performance
of the epilogue treatment

Dataset 3 (Na, Nb, Nc, Ni, Nj , Nk, Nq) = (31, 31, 31, 31, 31, 31, 31): Similar workload to datasets
1, but with partial tiles in all dimensions. Used to compare TCTiling with a COGENT
kernel that has all boundary checks enabled

Dataset 4 (Na, Nb, Nc, Ni, Nj , Nk, Nq) = (16, 16, 16, 16, 16, 16, 2048): Same workload as dataset
1, but with a disproportionately large reduction dimension

Note that the number 31 in datasets 2 and 3 was chosen for the simple fact that it is the
closest prime to 32, which guarantees partial tiles in all dimensions i for which TiRi > 1 at a
similar workload.

AllMM tests are run with the same dataset of square matrices of dimensions 4096× 4096.

5.3.4 Performance metric

Performance is measured in arithmetic throughput in TFLOPs/s (tera-FLOPs per second). This
is a fitting metric in this case since the number of FLOPs is constant for any problem instance,
whereas e.g. memory throughput is an ambiguousmetric, since the amount of data reuse varies
for different configurations.

5.3.5 Tile parameter search

As stated a number of times at this point, the tile parameter space is large for large-rank TCs,
and since Futhark as of yet does not support autotuning of tile parameters, we must manually
choose parameters used in benchmarking. Hence we simply brute-force search for good tile
parameters for use in testing.
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For the MM program, we set a single, simple heuristic: T and Q tiles come from the set
{8, 16, 32}, and R tiles from the set {1, 2, 4, 5, 8}, for a total of 33 · 52 = 675 configurations.
We do not justify it besides to say that these are values which have worked well with the
existing 2D tiling implementation. All of these combinations are valid, although some may be
inefficient due to e.g. register spilling (for example, for (Ta, Tb, Ra, Rb) = (32, 32, 8, 8), we
necessarily go over the soft limit of 65536 registers per tblock[7]).

For the remaining two test programs, sd1_7 and sd2_3, we have significantlymore parame-
ters, and we in fact must also extend the T andQ parameter space to T,Q ∈ {1, 2, 4, 8, 16, 32}
and additionally Q ∈ {64, 128} for dataset 4, since the higher number of parameters requires
higher modularity. The R set remains the same. We then apply the following set of “common
sense and best bets” heuristics (some of which are derived from hardware restrictions):

1. since we test only input datasets with balanced input tensors, we want to balance shmem
s.t. no shmem array is alloted more than 75% of the total shmem usage (before padding).

2. total shmem usage including padding does not exceed 163 KiB per tblock (the maximum
amount of dynamic shmem for the A100 we use in testing[7]).

3. both arrays must have at least one non-unitary R tile;.

4. the tblock size must be a power of 2 between 32 and 1024.

5. the configuration achieves an occupancy of at least 80%, as per the CUDA occupancy
calculator12, factoring in a conservative overhead of 8 registers besides the register tile.

Some of the heuristics may be implied by the occupancy heuristic, but we keep them in
nonetheless. Using these heuristics we prune to some number of configurations, whence we
randomly sample 2000 configurations for each of our Futhark generated and prototype kernels,
and in turn select the best performing configuration(s). Finally, based on the initial findings,
we exclude certain parameter/value pairs and re-run search with a more fine-tuned sample of
configurations for each kernel – as an example, we found that Rk > 1 virtually never gave
good results for any of the kernels, so this was excluded.

The search is run for each kernel/problem instance combination, and the best performing
is used in the final results. The 25 best performing configurations for each kernel/problem
instance can be found at github.com/sortraev/msc_thesis_public.

5.3.6 COGENT kernel generation

We generate one fresh COGENT kernel using the COGENT code generator13 for each of the 8
combinations of test program and dataset. However, some of the generated kernels are iden-
tical, and hence the number of distinct COGENT kernels used is only 4: One kernel for each
test program to be used for datasets 1-3, and one kernel for each test program for dataset 4.

12docs.nvidia.com/nsight-compute/NsightCompute/index.html#occupancy-calculator
13github.com/kimjsung/CGO2019-AE
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5.4 Benchmarking limitations

Our benchmarking plan is very limited in scope. First and foremost, benchmarking is naturally
limited by the limitations in our implementation, as presented in section 4.1. However, themain
limiting factor in benchmarking is time (in particular the parameter search takes a long time),
and hence our benchmarking plan is additionally limited by:

1. we test only input datasets with equal-size operand tensors

2. all datasets tested are of similar workload

3. we test only contractions with equal-rank operand tensors

4. we do not profile the effects of shmem padding

5. we do not test optimal tiling parameters, since finding such parameters is infeasible for
virtually any kernel (rather we test the best parameters under a set of heuristics, as de-
scribed in section 5.3.5)

6. we do not profile “average case” performance of our kernels, i.e. the performance we
might expect from generalizing a single set of parameters to different problem instances,
or the performance an end-user might expect from choosing tiling parameters at random

We leave this list of limitations as future work, but do not guarantee that it is exhaustive.

5.5 Benchmarking results

5.5.1 Parameter search results

Weperform the parameter search as described in section 5.3.5. The results of the search is a long
list of configuration/measurement pairs for each kernel/problem instance pair, from which we
choose configurations used in benchmarking. The top 10 best performing configurations for
each kernel/problem instance pair can be found at github.com/sortraev/msc_thesis_public.

5.5.2 sd benchmark results

For the TCTiling kernels, speedups are reported as “ (speedup vs. prototype)
(speedup vs COGENT )

”, while for the proto-
type kernels speedups are simply wrt. COGENT.
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Figure 2: sd tests, dataset 1 (no partial tiles).

5.5.2.1 Dataset 1: No partial tiles
Figure 2 shows the results of sd tests on dataset 1. All kernels generally handle sd1_7 better

than sd2_3.
The prototype kernels each perform quite well as compared to the COGENT kernel for

both datasets, with speedups between 0.92x-1.1x. TCTiling kernels fall a behind COGENTwith
speedups of roughly 0.73x and 0.8x for sd1_7 and sd2_3, respectively, and about as far behind
prototype kernels, indicating that there may be some performance to be gained in TCTiling.

TCTIling_NO_EPILOGUE performs better than TCTiling_EPILOGUE for both contractions,
even though there are no partial tiles in these datasets (meaning the epilogue is never run).
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Figure 3: sd tests, dataset 2 (partial tiles in the reduction dimension).

5.5.2.2 Dataset 2: Partial tiles in the reduction dimension
Figure 3 shows the results of sd tests on dataset 2. All kernels perform a little worse than

for dataset 1, and the relative performance between kernels is largely the same.
The gap between TCTiling_EPILOGUE and TCTiling_NO_EPILOGUE for sd1_7 is surpris-

ingly small, considering we now have partial tiles and hence the epilogue is run. However,
looking at the tile parameters used in these tests, we see that Qq = 4 for this test, and hence
the prologue is run ⌊31/4⌋ = 7 times against the 1 epilogue, so this could be indication that
the cost of the epilogue can be amortized when theQ tile is chosen appropriately. On the other
hand, the gap between the two kernels for the sd2_3 dataset is now larger than for dataset 1,
which might indicate the contrary.
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Figure 4: sd tests, dataset 3 (partial tiles in all dimensions).

5.5.2.3 Dataset 3: Partial tiles in all dimensions
Figure 4 shows the results of sd dataset 3 tests. Interestingly, but not surprising, all kernels

perform significantly worse than for dataset 2, with a wider margin than between datasets 1
and 2.

Again, we see largely the same relative performance between our compiler implementation
and the reference kernels, with the two TCTiling kernels again reaching in the range of 0.73x
and 0.8x vs. COGENT. This is noteworthy, because for this dataset wewould have expected our
kernel to lessen the gap to COGENT, since here COGENT launches a kernel more comparable
to ours (due to extra inserted boundary checks).
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Figure 5: sd tests, dataset 4 (no partial tiles; large reduction dimension).

5.5.2.4 Dataset 4: Large reduction dimension
Finally, fig. 5 shows the results of sd dataset 4 tests, and this plot paints a different picture

from the previous three tests.
The TCTiling kernels now perform within a very small margin to COGENT, which may

indicate a number of things. For one, considering TCTiling performs significantly better on
this dataset than any of the previous, it may indicate that TCTiling favors higher thread-
sequentialism.

On the other hand, COGENT performs a little worse here than for dataset 1, which has the
same workload and also no partial tiles. This may be a consequence of the fact that COGENT
choosesQ tiles (in their paper called TBk) from the set {4, 8, 16}[6], which is not particularly
modular. However, considering that Qq = 16 was used by TCTiling for sd1_7, this may not
be the issue in this case (for reference, Qq = 128 was used for sd2_3).

The particularly high performance of the prototype kernels – as compared to COGENT and
its own performance for the previous three datasets – is further indication that our strategy
favors large reduction dimensions (i.e. high degrees of thread-sequential work), which makes
sense considering saturation.
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Figure 6: MM tests. Speedups relative to BlkRegTiling.

5.5.3 MM benchmark results

Figure 6 shows the results of of the benchmark comparison of our implementation against
the existing BlkRegTiling module for the single dataset of 4096 × 4096 matrices. Note that
TCTiling_NO_EPILOGUE is not tested since BlkRegTiling uses an epilogue.

Evidently TCTiling_EPILOGUE, which uses a flat LMAD copy, suffers significant speed-
downs as compared to BlkRegTiling for all four MM variants, but especially forMM0 which
sees a speedup of 0.76x.

Meanwhile, TCTiling_MM-opt, which forgoes the LMAD copy, improves significantly on
the previous result, albeit not quite meeting BlkRegTiling despite the fact that the generated
code is very similar between the two kernels. In any case, this is quite clear of an indication
that the LMAD copy has some unnecessary overhead in at least one very common case, but it
also warrants looking into other differences between the two implementations.
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6 Evaluation

6.1 Implementation evaluation

We successfully implemented block/register tiling of arbitrary tensor contraction expressions
and generalized upon the existing BlkRegTiling module, albeit with some limitations on the
source-level expression, as detailed in section 4.1.

The generated code matches exactly the expectation, as per the handwritten CUDA pro-
totype, and we successfully implemented the optimizations we set out to, including shmem
padding and the prologue/epilogue treatment.

Aside from aforementioned limitations, we believe the overall quality of the code product
is fairly high and facilitates further development. The code is also well-documented with com-
ments. However, as presented in the implementation sections, there were numerous problems
which we had to overcome during development, sometimes with tedious work-arounds. These
unfortunately have made for a less than perfectly reliable module – for example, the transfor-
mation can fail (or, at least, fail to produce efficient code) if either redomap array has had its
layout information transformed with more than a simple IR rearrange (i.e. permutation).

6.2 Benchmarking results evaluation

As presented in section 6.3 our benchmarking suite has a lot of glaring limitations. This is of
course unfortunate, because meaningful conclusions require broad and generalizable results.
In particular, it is unfortunate that we did not test more different input datasets with irregular
dimensions.

In any case, the benchmarking we do have does leave us with a couple of interesting find-
ings: It seems there is some benefit to omitting the epilogue where doing so is valid, even if
the benefit can be quite small for some cases; the margin between our implementation and the
prototype indicates that there is significant room for micro-optimization, since the prototype
uses no strategies or optimizations which could not be implemented in the Futhark compiler;
the MM tests showed us that it might eventually be possible to replace the BlkRegTiling

module with no loss of performance even in this special case, however some work remains in
(micro-)optimizing the implementation; and finally, the sd dataset 4 andMM test results indi-
cated that there may be performance gains to be had in additional sequentialization when the
reduction dimension is small, e.g. by having threads process multiple smaller tiles and iterating
the reduction dimension multiple times.

In general, we believe our benchmarking has shown a definite potential for the imple-
mented strategy, even if some tweaks and changes are necessary in order to bring the Futhark-
generated code up to speed with the prototype, and even if additional testing is necessary
before we can rule out other strategies.
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6.3 Future work

The body of future work can be divided into three categories: general bug fixing and further
generalization of the implementation; performance optimizations; and entirely new function-
ality, and while ideally they should be adressed in this order, we present them here in only
roughly that order. Note that some of our proposals for future work are more justified than
others.

Generalize the implementation
As mentioned in section 4.1, we decided to down-prioritize support for non-empty code2

(i.e. any code statements/expression in the segmap variant on the redomap, but on which the
redomap is not variant) and additional parallel dimensions on top of the segmap on which
none or all of the redomap arrays are variant due to a lack of time and because we decided
these features were not necessary in order to examine feasibility of the strategy. However, we
believe these features can be quickly implemented and may take inspiration from the existing
implementation in BlkRegTiling.

Concretize firing conditions for the transformation
The current pattern matching rules for determining whether an expression fits the require-

ments for TC tiling are derived largely from the existing pattern matching rules for 2D tiling,
but modified to fit the definition a TC (wrt. free and contracted indices), as described in sec-
tion 4.6. For one, these conditions for one reject vector/tensor contractions (including vec-
tor/matrix products), and we cannot guarantee that there are not other excessive restrictions
– or, conversely, that the conditions are too permissive – hence we suggest to look into a more
rigorous derivation of the firing conditions.

Better access to crucial information in the IR
In section 4.7 we presented and discussed a number of tedious problems unearthed during

implementation into the compiler, some of which required quite brittle hacks to get around,
perhaps most notably the problem of reverse-engineering LMAD information in the GPU IR,
where it is not usually available. To better and more reliably facilitate the transformation, some
work should be put into reconsidering how certain pieces of information are conveyed in the
IR, such as information on redomap arrays.

In might even be beneficial to look into migrating the module to a later compiler stage,
e.g. to the GPUMem IR where true LMAD information is available, although we cannot say for
sure whether this is even feasible since we really are only familiar with the GPU IR.

More exhaustive benchmark testing of the implementation
Our benchmarking was very limited in scope, even if we did find enough evidence that we

felt safe to claim that the strategy has potential (see ). In the future, however, it might be both
helpful and meaningful to develop a more deliberate and exhaustive benchmarking suite. In
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we gave a list of limitations on benchmarking which should ideally be addressed, but it would
also be beneficial to look into benchmark comparison with other TC libraries besides COGENT.

Explore different methods for copying from global memory
The copy of tiles from global to shared memory was implemented as a flat LMAD copy, in

order to make it generic in rank of the read array and the executing tblock (sections 3.5.1 and
4.3), whereas the existing BlkRegTiling module uses a method specifically tailored to the 2D
case (section 3.6.4.1). While early exploration showed that the LMAD copy was better suited
for expressing arbitrary-rank copies, we eventually decided to implement the BlkRegTiling
method as a special case optimization, as described in section 4.5, and benchmarking showed
this to be very beneficial.

Hence it would be interesting to further andmore rigorously examinewhether this strategy,
or one similar to it, can be generalized or applied to more special cases.

As an addendum to this, it might be wise to see if any other micro-optimizations are made
in BlkRegTiling that wemight have missed, since, again, the specialization makes no assump-
tions that should not also be valid by the generalization.

COGENT-like handling of partial tiles
Recall from section 3.7 that COGENT generates kernels only once the problem instance is

known (hence it is not directly applicable to Futhark). This enables the code generator to always
choose tile parameters s.t. they divide the input dimensions, provided that the dimensions
have divisors which make for suitable tile parameters. In any case, this makes for an excellent
common case optimization, since it allows them to generate kernels specifically tailored to
the four general cases of partial tiles: No partial tiles; partial tiles in the reduction dimension;
partial tiles in one or more outer dimension; and partial tiles in both the reduction and one or
more outer dimension. A suitable kernel is then chosen at runtime.

Futhark could also be made to generate four such kernels for each TC, and then choose a
suitable kernel at runtime. It might not be beneficial in cases where the problem is not known,
since then tile parameters cannot be specifically tailored to the problem instance, and hence
the boundary guard-free kernels will rarely be chosen, but it still interesting to look into.

Automatic or default tile parameterization
By default, Futhark executables set T (parallel) and R (register) tiles to 16 and 4, respec-

tively, if the user does not manually provide parameters or a tuning file. While 16 and 4 happen
to be good (and sometimes optimal) values for 2D block/register tiling14, they are problematic
for 3 dimensions and up for a number of reasons.

First, recall from section 3.4.3 that the flat tblock size is always the product of T tiles. If
the tiling dimensionality is 3 or greater, then the default T = 16 will prevent the kernel from

14Ie. block/register tiled kernels with a 2D result, such as regular MM programs; here, (T,R) = (16, 4)

would imply a thread block of T 2 = 256 threads and a register tile of flat size 16.
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6.3 Future work 6 EVALUATION

launching due to requesting too large of a tblock, given a maximum tblock size of 1024. As is,
the Futhark generated host code does not detect this, so the program fails with a CUDA runtime
error, where ideally it should detect this and attempt one of the other kernels. However, when
the dimensionality is high enough, default tile sizes will result in requesting too much shared
memory, and in this case the kernel will not even be picked in the first place.

Second, say T tiles are chosen s.t. the tblock size is valid. If R tiles are chosen poorly
then we instead run the risk of requesting too much shared memory or too many registers
per thread. Requesting too much shared memory will not result in error, since host code will
pick up on this and choose another kernel, but it can be a problem for performance if the next
picked kernel is unsuited to the problem instance, and a sudden degradation in performance
from a small change inR tile parameterizationmight not be obvious to the user. Requesting too
many registers can result in a CUDA runtime launch error or, perhaps worse, register spilling
to CUDA local memory, which can tremendously degrade performance.

To avoid these problems, we propose two mitigations: Based on a given problem instance
and set of tile parameters, it should always be possible to automatically determine appropriate
(albeit not optimal) default values for the tiling parameters using heuristics. It can be hard to
choose good values before knowing the problem instance (as an example, recall from section 3.7
that COGENT[6] obtains good tile parameterization by choosing values for preset represen-
tative problem instances), but it should always be possible to choose a set of parameters that
allow the kernel run, avoids excessive register spilling, balances sharedmemory usage between
the two shared memory arrays, and obtains coalesced writes to the output tensor.

In summary, bad parameterization can lead to both CUDA runtime errors, host code fore-
going the kernel in favor of other kernels possibly less suited for the problem instance (thereby
nullifying the optimization), and the kernel launching with degenerate performance. This may
be motivation enough in itself, but finally, there is also a benefit to hiding low level semantics
from the programmer. Users should not be expected to be familiar with the low-level GPU al-
gorithm(s) onto which their source code is mapped, and manually tweaking tuning parameters
requires a significant understanding of the low-level GPU code.

Remove redundant LMAD copies following kernels
The following was not mentioned in the report, since it is not directly relevant to our project, but

it is future work nonetheless: At present the compiler will sometimes insert redundant GPU-to-
GPU LMAD copies following our kernel for certain TCs. According to Troels Henriksen (head
maintainer of the Futhark code base), these copies are likely inserted as a conservative measure
to assert row-major layout of the result tensor. We have not been able to discern a meaningful
pattern as to what triggers these redundant copies, however it seems to occur mostly for larger-
rank TCs, such as the sd1_7 and sd2_3 programs used in testing.

As is these copies are unfortunately quite visible in the overall performance of our imple-
mentation (for those programs for which they are inserted), so some time would be spent well
looking into their source and why they are inserted.
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7 CONCLUSION

7 Conclusion

This thesis has shown how an optimizing GPU compiler might identify and exploit opportuni-
ties for data reuse in tensor contraction expressions and generate efficient block/register tiled
code for GPU execution, albeit with a number of restrictions to the contraction expression and
the subsequent code statements.

More specifically, the main contribution of this thesis is TCTiling, a new, work-in-progress
tensor contraction tiling module to the optimization stage of the Futhark compiler, which suc-
cessfully compiles tensor contraction and contraction-like expressions to efficient GPU code,
with optimizations made to the handling of partial tiles via a prologue/epilogue treatment, and
to reducing shared memory bank conflicts via padding.

Perhaps most importantly, the thesis has uncovered, presented, and discussed a number of
challenges in doing so specifically in the context of the Futhark compiler, as well as solutions
to some of these hindrances. However, as discussed as part of future work, some unfortunately
remain, such as the problem of instability across tiling parameters, and the hassles of accessing
certain crucial information in the IR.

Despite validation testing succeeding, benchmark testing showing promising results, and
the generated code matching that of the prototype CUDA kernel, there is still room for im-
provement and optimization, with our generated kernel reaching roughly 72-75% and 75-80%
the performance of our handwritten prototype kernels and COGENT-generated kernels[5][6],
respectively, for near-hypercubic problem instances, and 68% and 98% the performance of our
prototype kernels and COGENT-generated kernels, respectively, for a problem instance with
more sequential work.

The implementation sought to replace and generalize upon BlkRegTiling – the existing
2D block/register tiling module specifically targeting GEMM-like programs – and came re-
spectably close, reaching between 90% to 98% the performance of BlkRegTiling for four dif-
ferent matrix multiplication programs.

Still, a lot of work remains in both profiling and generalizing the implementation, exploring
entirely new avenues of optimization, and in refactoring the code to fit more comfortably inside
the given IR and compiler stage, but this thesis has shown that there is good and definite
potential in doing so.
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Appendix

All appendices – including prototype kernels, COGENT kernels, the results of parameter
searches, and validation tests – can be found at github.com/sortraev/msc_thesis_public. For
reasons of formalia, we include a full code dump of our implementation here.

A Implementation code

Below code dump contains the entirety of our implementation code for the new TCTiling module,
as it appears in the commit 9894ecee1.

1 {-# LANGUAGE TypeFamilies #-}
2

3 module Futhark.Optimise.TCTiling (doTCTiling) where
4

5 import Control.Monad
6 import Data.Char
7 import Data.List qualified as L
8 import Data.Map.Strict qualified as M
9 import Futhark.Analysis.PrimExp

10 import Futhark.IR.GPU
11 import Futhark.IR.Mem.LMAD qualified as LMAD
12 import Futhark.Optimise.BlkRegTiling (matchCodeStreamCode, processIndirections)
13 import Futhark.Optimise.TileLoops.Shared
14 import Futhark.Tools
15 import Futhark.Transform.Rename
16

17 forM2 :: Monad m => [a] -> [b] -> (a -> b -> m c) -> m [c]
18 forM2 xs ys f = zipWithM f xs ys
19

20 forM3 :: Monad m => [a] -> [b] -> [c] -> (a -> b -> c -> m d) -> m [d]
21 forM3 xs ys zs f = forM (zip3 xs ys zs) (\(a, b, c) -> f a b c)
22

23 se0, se1, se2 :: SubExp
24 se0 = intConst Int64 0
25 se1 = intConst Int64 1
26 se2 = intConst Int64 2
27

28 seglvl_thd :: SegLevel
29 seglvl_thd = SegThreadInBlock $ SegNoVirtFull $ SegSeqDims []
30

31 reductionLoopBody ::
32 TCEnv ->
33 VName ->
34 VName ->
35 [VName] ->
36 Bool ->
37 Builder GPU [VName]
38 reductionLoopBody tc_env qq0 reg_tiles_in shr_arrs_in is_prologue = do
39 qq <- letExp "qq" =<< toExp (le64 qq0 * pe64 tile_Q)
40

41 redomap_inputs_shr <- forM2 shr_arrs_in arr_infos $ copyGlb2Shr qq
42 reg_tiles_out <- accumulateRegTile qq redomap_inputs_shr
43 pure $ reg_tiles_out : redomap_inputs_shr
44 where
45 arr_infos = arrsInfo tc_env

i



46 kernel_params = kernelParams tc_env
47 tile_Q = tileQ kernel_params
48 tiles_T = tilesT kernel_params
49 tiles_R = tilesR kernel_params
50 tblock_dims = tblockDims kernel_params
51 common_dim = commonDim kernel_params
52 tblock_size_flat = tblockSizeFlat kernel_params
53

54 is_MM = all ((== 2) . length . tileDims) arr_infos && length tblock_dims == 2
55

56 copyGlb2Shr :: VName -> VName -> ArrInfo -> Builder GPU VName
57 copyGlb2Shr qq shr_arr arr_info = do
58 -- Setup parameters for the WithAcc.
59 cert_p <- newParam "cert_p" $ Prim Unit
60 t <- stripArray (shapeRank smem_shape) <$> lookupType shr_arr
61 acc_p <-
62 newParam (baseString shr_arr) $
63 Acc (paramName cert_p) smem_shape [t] NoUniqueness
64

65 lam <- mkLambda [cert_p, acc_p] $
66 case is_MM of
67 True -> do
68 -- In the special MM case, we generate a loop nest similar to the
69 -- one in BlkRegTiling, i.e. a 2-loop nest of dimensions:
70 --
71 -- ceil(s0 / Ta), ceil(s1 / Tb)
72 --
73 -- where [s0][s1] is the size of the shmem slice and (Ta, Tb) are
74 -- the tblock dimensions. As an example, for the regular MM, i.e.
75 -- Z_ab = X_aq * Y_qb, the first operand shmem array has dimensions
76 -- [Ta * Ra][Tq], and hence the loop nest has dimensions:
77 --
78 -- Ra, ceil(Tq / Tb).
79 loop_bounds <-
80 zipWithM
81 ( \tile_dim tblock_dim ->
82 letSubExp "loop_bound" =<< ceilDiv tile_dim tblock_dim
83 )
84 tile_dims
85 (tblockDims kernel_params)
86

87 fmap varsRes $
88 segMapND "foo" seglvl_thd ResultNoSimplify tblock_dims $ \ltids ->
89 fmap (varsRes . (: [])) $
90 forLoopNest_ loop_bounds (paramName acc_p) $ \loop_inds acc_merge -> do
91 inds' <-
92 forM3
93 loop_inds
94 tblock_dims
95 ltids
96 ( \loop_ind dim ltid ->
97 letExp "ind" =<< toExp (le64 loop_ind * pe64 dim + le64 ltid)
98 )
99 copyLoopBody acc_merge undefined inds'

100 _ -> do
101 -- In the general case, we use a flat LMAD copy.
102 --
103 -- The strategy is to flatten the tblock and then unflatten it to fit the
104 -- dimensions of the array in shared memory, using a virtualization loop
105 -- in case the tile is larger than the tblock, and a boundary guard for
106 -- the converse. This is easily achieved using SegVirt, but whereas
107 -- SegVirt wraps the entire loop body in an `if (i < tile_size_flat)`
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108 -- guard, we want that guard only on the write to shared memory. Hence
109 -- we must manually build the virtualization loop, which unfortunately
110 -- bloats the code a bit here.
111 tile_size_flat <- letSubExp "tile_size_flat" <=< toExp $ product tile_dims'
112 iters <- letSubExp "virt_iters" =<< ceilDiv tile_size_flat tblock_size_flat
113 fmap varsRes $
114 segMap1D "foo" seglvl_thd ResultNoSimplify tile_size_flat $ \ltid ->
115 fmap (varsRes . (: [])) $
116 forLoop_ iters (paramName acc_p) $ \i0 acc_merge -> do
117 i <- letExp "flat_virttid" =<< toExp (le64 i0 * pe64 tblock_size_flat + le64 ltid)
118 unflat_inds <-
119 forM (unflattenIndex tile_dims' $ le64 i) $
120 letExp "unflat_ind" <=< toExp
121 copyLoopBody acc_merge i unflat_inds
122

123 letExp (baseString shr_arr) $
124 WithAcc [(smem_shape, [shr_arr], Nothing)] lam
125

126 where
127 smem_strides = smemStrides arr_info
128 smem_shape = Shape [smemSizeFlat arr_info]
129 tile_dims = tileDims arr_info
130 tile_dims' = map pe64 tile_dims
131 tblock_offsets = arrGather_ arr_info (tblockOffsets tc_env) (Var qq)
132 base_arr_dims = baseArrDims arr_info
133 base_arr = baseArr arr_info
134

135 copyLoopBody :: VName -> VName -> [VName] -> Builder GPU VName
136 copyLoopBody acc i inds = do
137

138 -- The shared mem indices are simply the unflattened indices, while
139 -- the global mem indices need to have tblock offsets added onto them.
140 glb_inds <-
141 forM2 tblock_offsets inds $ \tb_offset ind ->
142 letExp "glb_ind" =<< toExp (pe64 tb_offset + le64 ind)
143

144 -- Perform a boundary check and read from the global mem array!
145 in_bounds <-
146 letExp "in_bounds"
147 =<< toExp
148 ( foldr (.&&.) true $
149 zipWith
150 (\ind dim -> le64 ind .<. pe64 dim)
151 glb_inds
152 base_arr_dims
153 )
154

155 -- We initially permuted base array dimensions to match the actual
156 -- layout in memory, such that we were able to map it to the thread
157 -- block. However, we must make to sure re-permute it before executing
158 -- the read, since the `index` function assumes the indices are given
159 -- in order of the *rearranged* array. Insane, I know.
160 let glb_inds_perm = arrPerm arr_info glb_inds
161 glb_elem <-
162 letExp (baseString base_arr)
163 =<< eIf
164 (toExp in_bounds)
165 ( index "glb_elem" base_arr glb_inds_perm
166 >>= resultBodyM . (: []) . Var
167 )
168 -- Here, we simply insert a zero (or zero-like value) into
169 -- smem whenever we are outside bounds. However, this only
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170 -- succeeds in certain cases, unless we explicitly handle
171 -- residual tiles in an epilogue (which we do).
172 -- See note [SmemZeroPaddingOnGlobalMemOOB].
173 (eBody [eBlank $ Prim $ smemElemType arr_info])
174

175

176 -- Flat smem index (including padding, if any).
177 shr_ind_flat <-
178 letTupExp' "shr_ind_flat" <=< toExp . sum $
179 zipWith (\ind s -> le64 ind * pe64 s) inds smem_strides
180

181 -- Finally, update shared mem array accumulator.
182 letExp "acc_out"
183 =<< eIf
184 (toExp =<< smem_bounds_check)
185 ( resultBodyM . map Var <=< letTupExp "acc_updated" . BasicOp $
186 UpdateAcc
187 Unsafe
188 acc
189 shr_ind_flat
190 [Var glb_elem]
191 )
192 (resultBodyM [Var acc])
193

194 where
195 smem_bounds_check
196 | is_MM = smemBoundsCheck inds tile_dims
197 | otherwise = do
198 tile_size_flat <- letSubExp "tile_size_flat" <=< toExp $ product tile_dims'
199 smemBoundsCheck [i] [tile_size_flat]
200 smemBoundsCheck inds' dims =
201 fmap (foldr (.&&.) true) $
202 forM3
203 tblock_dims
204 dims
205 inds'
206 ( \tblock_dim tile_dim ind -> do
207 tile_fits_tblock <-
208 fmap ((.==. 0) . le64) . letExp "tile_fits_tblock" . BasicOp $
209 BinOp (SRem Int64 Unsafe) tile_dim tblock_dim
210 pure $ tile_fits_tblock .||. le64 ind .<. pe64 tile_dim
211 )
212

213

214 accumulateRegTile :: VName -> [VName] -> Builder GPU VName
215 accumulateRegTile qq redomap_inputs_shr =
216 segMapND_ "reg_tiles_out" seglvl_thd ResultPrivate tiles_T $ \ltids -> do
217 reg_tile_in <- index "reg_tile_in" reg_tiles_in ltids
218 fmap ((: []) . varRes) $
219 forLoop_ tile_Q reg_tile_in $ \q reg_tile_in' ->
220 letExp "reg_tile_acc"
221 =<< eIf
222 ( toExp $
223 -- if we are in the prologue, accumulate unconditionally!
224 fromBool is_prologue
225 .||. le64 qq + le64 q .<. pe64 common_dim
226 )
227 ( resultBody . (: []) . Var
228 <$> accumulateRegTileInnerLoopNest ltids q reg_tile_in'
229 )
230 (resultBodyM [Var reg_tile_in'])
231 where
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232 accumulateRegTileInnerLoopNest :: [VName] -> VName -> VName -> Builder GPU VName
233 accumulateRegTileInnerLoopNest ltids q reg_tile_in =
234 forLoopNest_ tiles_R reg_tile_in $ \loop_inds reg_tile_merge -> do
235 -- Compute lists of indices for each redomap operand. For each
236 -- dimension, we need an index of the form `ltid * reg_tile +
237 -- loop_ind`, so for the reduction dimension, use a dummy ltid and
238 -- reg_tile.
239 dummy_ltid <- letExp "dummy_ltid_q" =<< toExp se0
240 let dummy_regtile = se1
241 shr_inds_flat <- forM arr_infos $ \arr -> do
242 let ltids' = arrGather_ arr ltids dummy_ltid
243 let tiles_R' = arrGather_ arr tiles_R dummy_regtile
244 let loop_inds' = arrGather_ arr loop_inds q
245 inds <-
246 forM3 ltids' tiles_R' loop_inds' $ \ltid tile loop_ind ->
247 letSubExp "shr_ind" =<< toExp (le64 ltid * pe64 tile + le64 loop_ind)
248 letTupExp "shr_ind_flat" <=< toExp . sum $
249 zipWith
250 (\ind s -> le64 ind * le64 s)
251 inds
252 (smemStrides arr)
253

254 -- Compute map and reduction results and update the register tile.
255 map_f <- renameLambda $ mapLam tc_env
256 red_op <- renameLambda $ redLam tc_env
257

258 map_operands <- forM2 redomap_inputs_shr shr_inds_flat $ \arr inds ->
259 eSubExp . Var <$> index (baseString arr ++ "_elem") arr inds
260 map_res <- eLambda map_f map_operands
261

262 acc <- eSubExp . Var <$> index "acc" reg_tile_merge loop_inds
263 red_res <- eLambda red_op $ acc : map (eSubExp . resSubExp) map_res
264

265 update "res" reg_tile_merge loop_inds $ resSubExp $ head red_res
266

267 doTCTiling :: Env -> Stm GPU -> TileM (Maybe (Stms GPU, Stm GPU))
268 doTCTiling env (Let pat aux (Op (SegOp (SegMap SegThread {} seg_space ts old_kbody))))
269 | KernelBody () kstms [Returns ResultMaySimplify certs (Var _res_name)] <- old_kbody,
270 -- we don't want to tile the kernel if it is going to have expensive
271 -- boundary checks.
272 -- TODO: why, though? what else do we do in this case?
273 certs == mempty,
274 -- the kernel should have exactly one primtyped result.
275 [res_t] <- ts,
276 primType res_t,
277 all_gtids_dims <- unSegSpace seg_space,
278 -- TODO: for now, I test only source programs with no outer parallel
279 -- dimensions, ie. all dims in the segspace pertain to the
280 -- contraction.
281 -- find out how to reliably extract the inner dims of the segspace.
282 -- perhaps inner dims are all those onto which the kernel result is
283 -- variant and at least (or exactly) one redomap array is variant?
284 (rem_outer_gtids_dims, inner_gtids_dims) <- ([], all_gtids_dims), -- TODO: placeholder.
285 (gtids, inner_dims) <- unzip inner_gtids_dims,
286 -- check that the kernel fits the pattern:
287 -- some code1; one Screma SOAC; some code2,
288 -- where code2 may contain additional Scremas but code1 may not.
289 -- TODO: do we assume only one Screma in kstms? does it even matter?
290 Just (code1, screma_stmt@(Let pat_redomap _ (Op _)), code2') <-
291 matchCodeStreamCode kstms,
292 -- checks that the Screma SOAC is actually a redomap and normalizes it
293 Just (common_dim, redomap_arrs, (_is_comm, red_lam, red_nes, map_lam)) <-
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294 isTileableRedomap screma_stmt,
295 -- TODO: Cosmin's implementation mentioned rearranging the below couple of
296 -- conditions. better look into this.
297 -- check that exactly two 1D arrays are streamed through redomap,
298 -- and the result of redomap is one scalar
299 length redomap_arrs == 2,
300 [red_ne] <- red_nes,
301 [red_t, _] <- map paramDec $ lambdaParams red_lam,
302 primType red_t,
303 map_ts@[_, _] <- map paramDec $ lambdaParams map_lam,
304 all primType map_ts,
305 initial_variance <- M.map mempty $ scopeOfSegSpace seg_space,
306 variance <- varianceInStms initial_variance kstms,
307 -- assert that all redomap arrays are variant to some, but not all innermost
308 -- dimensions of the kernel.
309 -- TODO: find out whether/where/how to use the returned information.
310 Just _var_inds_per_arr <- variantDimsPerArr variance redomap_arrs gtids,
311 -- TODO: all of the below guards are lifted from Cosmin's code.
312 -- find out which of them are relevant here, and whether they need to
313 -- be changed/generalized.
314 -- as far as I can tell, it all pertains to the handling of `code2`,
315 -- so I'll let it sit for now.
316 -- get the variables on which the first result of redomap depends on
317 (redomap_orig_res : _) <- patNames pat_redomap,
318 Just red_res_variance <- M.lookup redomap_orig_res variance, -- variance of the reduce result
319 -- we furthermore check that code1 is only formed by
320 -- 1. statements that slice some globally-declared arrays
321 -- to produce the input for the redomap, and
322 -- 2. potentially some statements on which the redomap
323 -- is independent; these are recorded in `code2''`
324 Just (code2'', table_load_stms) <-
325 processIndirections code1 redomap_arrs red_res_variance,
326 -- extract the stms loading slices from redomap arrays and check that there
327 -- is one such stm for each redomap array.
328 Just load_stms <- mapM (`M.lookup` table_load_stms) redomap_arrs = do
329 let _code2 = code2' <> code2''
330 let map_prim_ts = map elemType map_ts
331

332 -- TODO: for now, we manually disable the prologue/epilogue treatment when
333 -- suitable. However, ideally this would be done automatically, or not at
334 -- all, if there turns out to be a better method, or if the epilogue is
335 -- not sufficiently detrimental to performance that it is necessary.
336 let use_epilogue = not $ AttrName "no_epilogue" `inAttrs` stmAuxAttrs aux
337

338 (new_kernel, host_stms) <- runBuilder $ do
339 kernel_params@( TCKernelParams
340 _gtids
341 _inner_dims
342 _common_dim
343 _inner_dim_names
344 tiles_T
345 tiles_R
346 _tiles_TR
347 tile_Q
348 grid_dims
349 grid_size_flat
350 _tblock_dims
351 tblock_size_flat
352 tbids
353 tbid_flat
354 ) <-
355 makeTCKernelParams gtids inner_dims common_dim
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356

357 (ret_seggroup, stms_seggroup) <- runBuilder $ do
358 tc_env <- makeTCEnv env kernel_params load_stms map_lam red_lam map_prim_ts
359

360 -- Zero-initialize register tile.
361 reg_tiles_init <- segMapND_ "reg_tiles" seglvl_thd ResultPrivate tiles_T $ \_ -> do
362 reg_tile_init <- scratch "reg_tile_init" (elemType res_t) tiles_R
363 css <- forLoopNest_ tiles_R reg_tile_init $ \loop_inds merge ->
364 update "reg_tile" merge loop_inds red_ne
365 pure [varRes css]
366

367 -- Declare shared memory arrays.
368 shr_arrs_init <-
369 forM (arrsInfo tc_env) $ \arr ->
370 scratch
371 ("shr_" ++ baseString (baseArr arr))
372 (smemElemType arr)
373 [smemSizeFlat arr]
374

375 ~(reg_tiles_res : _) <-
376 case use_epilogue of
377 True -> do
378 myDebugM "Compiling TC expression WITH epilogue"
379 num_full_Q_tiles <-
380 letExp "num_full_Q_tiles" . BasicOp $
381 BinOp (SQuot Int64 Unsafe) common_dim tile_Q
382 residual_input <-
383 letExp "residual_input" . BasicOp $
384 BinOp (SRem Int64 Unsafe) common_dim tile_Q
385

386 ~prologue_res@(reg_tiles' : shr_arrs') <-
387 forLoop (Var num_full_Q_tiles) (reg_tiles_init : shr_arrs_init) $
388 \qq0 (reg_tiles_merge : shr_arrs_merge) ->
389 reductionLoopBody tc_env qq0 reg_tiles_merge shr_arrs_merge True
390

391 letTupExp "reduction_res"
392 =<< eIf
393 (toExp $ le64 residual_input .==. 0)
394 (resultBodyM $ map Var prologue_res)
395 ( resultBody . map Var
396 <$> reductionLoopBody tc_env num_full_Q_tiles reg_tiles' shr_arrs' False
397 )
398 _ -> do
399 myDebugM "Compiling TC expression WITHOUT epilogue"
400 num_q_tiles <- letSubExp "num_Q_tiles" =<< ceilDiv common_dim tile_Q
401 forLoop num_q_tiles (reg_tiles_init : shr_arrs_init) $
402 \qq0 (reg_tiles_merge : shr_arrs_merge) ->
403 reductionLoopBody tc_env qq0 reg_tiles_merge shr_arrs_merge True
404

405 let regtile_ret_dims =
406 map ((,se1,se1) . snd) rem_outer_gtids_dims
407 ++ zip3 inner_dims tiles_T tiles_R
408 pure [RegTileReturns mempty regtile_ret_dims reg_tiles_res]
409 -- END KERNEL BUILDER
410

411 let grid = KernelGrid (Count grid_size_flat) (Count tblock_size_flat)
412 level' = SegBlock SegNoVirt (Just grid)
413 space' = SegSpace tbid_flat (rem_outer_gtids_dims ++ zip tbids grid_dims)
414 kbody' = KernelBody () stms_seggroup ret_seggroup
415 pure $ Let pat aux $ Op $ SegOp $ SegMap level' space' ts kbody'
416 -- END HOST BUILDER
417
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418 pure $ Just (host_stms, new_kernel)
419 doTCTiling _seg_space _kstms = pure Nothing
420

421 -- | Given a variance table, a list of array names, and a list of inner dims
422 -- (actually, the list of gtids for said inner dims); asserts that each array is
423 -- variant to at least 1 and not all inner dims, and that at least one array is
424 -- variant to each inner dim. If these assertions hold; returns list of indices
425 -- of variant dims for each array.
426 -- TODO: Dimensions on which all redomap arrays are variant should be
427 -- interchanged outwards.
428 variantDimsPerArr ::
429 VarianceTable ->
430 [VName] ->
431 [VName] ->
432 Maybe [[Int]]
433 variantDimsPerArr variance arrs gtids = do
434 let var_inds_per_arr = map variantInnerDimsForArr arrs
435 let var_gtids_per_arr = map (gather gtids) var_inds_per_arr
436

437 -- Interchange those dimensions of the segspace on which all redomap arrays
438 -- are variant outwards.
439 let (outer_dims, tc_dims) =
440 L.partition
441 -- Check that given dim is in var_dims of all arrays.
442 (\dim -> all (elem dim) var_gtids_per_arr)
443 gtids
444 let segspace_dims' = outer_dims ++ tc_dims
445 let segspace_perm = gtids `isPermutationOf` segspace_dims'
446

447 -- assert that all arrays are variant to some, but not all dims.
448 -- TODO: is below check sufficient to check this assertion?
449 -- perhaps this assertion should be (or already is) made elsewhere.
450 guard $ all ((`elem` [1 .. n_dims - 1]) . length) var_inds_per_arr
451

452 -- for each dim, assert that at least one array is variant to this dim.
453 -- TODO: is there a better, more correct, or safer way to assert this?
454 -- Actually, I think this can safely be assumed to already hold, due to these
455 -- parallel dimensions already having been interchanged outwards in an earlier
456 -- compiler stage, but I might be wrong on this.
457 guard $ all (`elem` concat var_gtids_per_arr) gtids
458

459 -- assert no overlap in variance between arrays.
460 -- TODO: is this check necessary or even desired? for exactly 2 redomap
461 -- arrays, overlap in variance means all redomap arrays are variant to the
462 -- given parallel dimension, and thus it would have been interchanged outwards
463 -- (given the above TODO is implemented).
464 -- guard $ allUnique $ concat var_inds_per_arr
465

466 pure var_inds_per_arr
467 where
468 n_dims = length gtids
469 variantInnerDimsForArr arr =
470 let arr_variance = M.findWithDefault mempty arr variance
471 in L.findIndices (`nameIn` arr_variance) gtids
472 -- allUnique (x : xs) = x `notElem` xs && allUnique xs
473 -- allUnique _ = True
474

475 -- | All the various kernel parameters and related information we need to
476 -- declare and/or compute in host code.
477 data TCKernelParams = TCKernelParams
478 { -- Gtids and sizes of those dimensions of the inner segspace which we are tiling.
479 innerGtids :: [VName],
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480 innerDims :: [SubExp],
481 commonDim :: SubExp,
482 -- Not strictly necessary, but nice to have for consistent names throughout
483 -- the generated code.
484 innerDimNames :: [String],
485 -- T, R, and TR tiles for each inner dimension.
486 tilesT :: [SubExp],
487 tilesR :: [SubExp],
488 tilesTR :: [SubExp],
489 -- Tile size for the sequential (reduction) dimension.
490 tileQ :: SubExp,
491 -- Grid and tblock parameters.
492 gridDims :: [SubExp],
493 gridSizeFlat :: SubExp,
494 tblockDims :: [SubExp],
495 tblockSizeFlat :: SubExp,
496 -- VNames for the tblock id's.
497 tbidVns :: [VName],
498 tbidFlatVn :: VName
499 }
500 deriving (Show)
501

502 -- | All of the information needed for code generation in kernel scope. Also
503 -- carries the kernel parameters declared in host scope.
504 data TCEnv = TCEnv
505 { kernelParams :: TCKernelParams,
506 -- Block offset for each dimension in the result.
507 tblockOffsets :: [SubExp],
508 -- Lambdas for the map function and reduction operators for the contraction.
509 mapLam :: Lambda GPU,
510 redLam :: Lambda GPU,
511 -- For each reduction array, the information needed to handle this
512 -- particular array during code generation.
513 arrsInfo :: [ArrInfo]
514 }
515 deriving (Show)
516

517 -- | All the information needed to handle a given operand array.
518 -- TODO: give a proper name to this one.
519 data ArrInfo = ArrInfo
520 { baseArr :: VName,
521 baseArrDims :: [SubExp],
522 arrLoadStm :: Stm GPU,
523 lmadPerm :: [Int],
524 varDimInds :: [Maybe Int],
525 tileDims :: [SubExp],
526 smemSizeFlat :: SubExp,
527 smemStrides :: [SubExp],
528 smemElemType :: PrimType
529 }
530 deriving (Show)
531

532 gather :: [a] -> [Int] -> [a]
533 gather xs = map (xs !!) . filter (`elem` indices xs)
534

535 gather_ :: [a] -> a -> [Maybe Int] -> [a]
536 gather_ xs x = map (maybe x (xs !!) . checkIdx)
537 where
538 checkIdx i
539 | Just j <- i, j `elem` indices xs = i
540 | otherwise = Nothing
541
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542 arrGather_ :: ArrInfo -> [a] -> a -> [a]
543 arrGather_ info src x = gather_ src x $ varDimInds info
544

545 arrPerm :: ArrInfo -> [a] -> [a]
546 arrPerm info xs = gather xs $ lmadPerm info
547

548 makeTCKernelParams ::
549 [VName] ->
550 [SubExp] ->
551 SubExp ->
552 Builder GPU TCKernelParams
553 makeTCKernelParams gtids inner_dims_se common_dim_se = do
554 -- various names.
555 tile_common_dim_vn <- newVName $ "T_" ++ common_dim_name
556 tile_T_vns <- mapM (newVName . ("T_" ++)) inner_dim_names
557 tile_R_vns <- mapM (newVName . ("R_" ++)) inner_dim_names
558 tbids <- mapM (newVName . ("tbid_" ++)) inner_dim_names
559 tbid_flat <- newVName "tbid_flat"
560

561 -- tile sizes.
562 tile_Q <- letTileSE SizeTile tile_common_dim_vn
563 tiles_T <- mapM (letTileSE SizeTile) tile_T_vns
564 tiles_R <- mapM (letTileSE SizeRegTile) tile_R_vns
565 tiles_TR <-
566 zipWithM (\t r -> toExp $ pe64 t * pe64 r) tiles_T tiles_R
567 >>= zipWithM letSubExp (map ("TR_" ++) inner_dim_names)
568

569 -- grid and tblock stuff.
570 grid_dims <-
571 zipWithM ceilDiv inner_dims_se tiles_TR
572 >>= zipWithM letSubExp (map ("grid_dim_" ++) inner_dim_names)
573 grid_size_flat <-
574 letSubExp "grid_size_flat"
575 =<< toExp (product $ map pe64 grid_dims)
576

577 let tblock_dims = tiles_T
578 tblock_size_flat <-
579 letSubExp "tblock_size_flat"
580 =<< toExp (product $ map pe64 tiles_T)
581

582 pure $
583 TCKernelParams
584 gtids
585 inner_dims_se
586 common_dim_se
587 inner_dim_names
588 tiles_T
589 tiles_R
590 tiles_TR
591 tile_Q
592 grid_dims
593 grid_size_flat
594 tblock_dims
595 tblock_size_flat
596 tbids
597 tbid_flat
598 where
599 inner_dim_names
600 | Just name_strs <- mapM getNameStrFor inner_dims_se = name_strs
601 | otherwise = map show $ indices inner_dims_se
602 common_dim_name = maybe "Q" id $ getNameStrFor common_dim_se
603
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604 getNameStrFor (Var v) = Just $ filter isAscii $ baseString v
605 getNameStrFor _ = Nothing
606

607 letTileSE tile_type v =
608 letSubExp (baseString v) $ Op $ SizeOp $ GetSize (baseName v) tile_type
609

610

611 data FlatPrimExp = Product [FlatPrimExp] | OpaquePrimExp (PrimExp VName)
612 deriving (Eq, Ord)
613

614 -- TODO: should rewrite this to not use L.permutations, since it is O(n!) for
615 -- arrays of `n` dims. For n <= 6 dims this is fine-ish, but for ~7 and up it
616 -- quickly becomes a problem. Can also find the correct permutation using
617 -- iterative search in quadratic-ish time.
618 findLMADPerm :: Env -> VName -> Builder GPU [Int]
619 findLMADPerm (_, ixfn_env) arr = do
620 case maybe_lmad_perm of
621 Just res -> pure res
622 _ -> indices . arrayDims <$> lookupType arr
623 where
624 maybe_lmad_perm = do
625 lmad <- LMAD.dims <$> M.lookup arr ixfn_env
626 let shape = map (untyped . LMAD.ldShape) lmad
627 strides0 = map (toFlatPrimExp . untyped . LMAD.ldStride) lmad
628 -- Test each permutation against the known strides; pick first succeeding.
629 msum $ map (isPermutationOf strides0 . strides) $ L.permutations shape
630

631 strides = map toFlatPrimExp . (++ [val1]) . scanr1 binopMul . tail
632 binopMul = BinOpExp $ Mul Int64 OverflowUndef
633 val1 = ValueExp $ IntValue $ Int64Value 1
634

635 -- Flattens a nested PrimExp (if that PrimExp happens to represent a simple
636 -- product) to a [FlatPrimExp], which can then be sorted to check for
637 -- equality. Used to more reliably check equality between LMAD strides.
638 -- See note [FlattenPrimExps].
639 toFlatPrimExp :: PrimExp VName -> FlatPrimExp
640 toFlatPrimExp = Product . L.sort . flattenProducts . flattenMulOps
641 where
642 flattenMulOps (BinOpExp Mul {} e1 e2) = Product $ map toFlatPrimExp [e1, e2]
643 flattenMulOps e = OpaquePrimExp e
644

645 flattenProducts (Product es) = concatMap flattenProducts es
646 flattenProducts e = [e]
647

648 makeTCEnv ::
649 Env ->
650 TCKernelParams ->
651 [Stm GPU] ->
652 Lambda GPU ->
653 Lambda GPU ->
654 [PrimType] ->
655 Builder GPU TCEnv
656 makeTCEnv env kernel_params load_stms map_lam red_lam _map_ts = do
657

658 tblock_offsets <-
659 forM3 inner_dim_names tbids tiles_TR $
660 \dim_name tbid tile_TR ->
661 letSubExp ("tb_offset_" ++ dim_name)
662 =<< toExp (le64 tbid * pe64 tile_TR)
663

664 fmap (TCEnv kernel_params tblock_offsets map_lam red_lam)
665 $ forM
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666 load_stms
667 $ \load_stm -> do
668 -- TODO: should probably gather all of the comments made here in a note.
669

670 -- We need to extract the dimensions of each input array, and
671 -- unfortunately the Redomap passed into this module only indirectly
672 -- carries this information, as part of the kernel stms loading each
673 -- redomap input slice. It'd be more convenient if the Redomap carried not
674 -- only the VNames of its operands slices, but also the base arrays (if
675 -- any) whence each slice comes, or at least the layout thereof.
676 --
677 -- In any case, knowledge of the actual layout of a given input array is
678 -- necessary in order to correctly map the global-to-smem tile copy to
679 -- the tblock dimensions (to obtain coalesced access on both smem
680 -- inputs), as well as to generate the boundary guard on the read, and to
681 -- match tile sizes to each input array, since these are not simply
682 -- (M: (Ty, Ry)), (N: (Tx, Rx)), and (U: Tk) as in the 2D case.
683 --
684 -- Additionally, as it turned out, it was simply more convenient to load
685 -- directly from these base arrays, rather than binding computed indices
686 -- to gtids and inserting load statements.
687 let base_arr = getArrayFromLoadStm load_stm
688 arr_t <- lookupType base_arr
689 let dims' = arrayDims arr_t
690 let smem_elem_type = elemType arr_t
691

692 -- In fact, we need not only the layout for each array, but also the index
693 -- in the segspace of each dimension, s.t. later we may extract tblock
694 -- offsets, loop variables, and other information associated with this
695 -- given smem array. Below mess accomplishes this:
696 --
697 -- First, for each dimension in the array, determine the index into
698 -- inner_dims of this dimension. Note that the indices computed here are
699 -- the same as those returned by `variantDimsPerArr` for the given array,
700 -- but in different order -- those computed by `variantDimsPerArr` are
701 -- ordered by their occurence in the map nest (outermost first), while
702 -- these are ordered by the array layout (outermost first).
703 --
704 -- Then, later in code generation, when we compute e.g. a set of tblock
705 -- offsets or a set of loop indices based on the segspace, we can, for
706 -- each input array, extract the tblock offsets and loop indices
707 -- corresponding to this particular array.
708 --
709 -- Unfortunately, it is not quite as simple as that. If the array layout
710 -- has been rearranged at some point before reaching this module, then we
711 -- must reverse-engineer the original array layout from associated LMAD
712 -- information. However, since LMADs do not carry permutation information,
713 -- we must reverse-engineer it by trying all possible permutations of the
714 -- known dimensions for the array (see function `findLMADPerm`). Again,
715 -- none of this would be necessary if information on the base array was
716 -- available somehow.
717 -- If an array has not been rearranged, the identity permutation is
718 -- recorded.
719 lmad_perm <- findLMADPerm env base_arr
720 let inv_lmad_perm = map snd $ L.sort $ zip lmad_perm [0 ..]
721

722 let base_arr_dims = gather dims' inv_lmad_perm
723 -- TODO: handle the case where multiple dimensions have the same name.
724 let var_inds = map (`L.elemIndex` inner_dims) base_arr_dims
725

726 -- Then, for each dimension of each array, extract the TR tile and
727 -- tblock offset corresponding to this dimension. For the tile
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728 -- dims, we insert tile_Q in the index of the array dim not
729 -- represented in inner_dims.
730 let tile_dims = gather_ tiles_TR tile_Q var_inds
731 let tile_dims_pe = map pe64 tile_dims
732

733 -- Determine whether this array is a candidate for padding. If so, we need
734 -- to take this into account in its flat size and the computed strides.
735 let innerProducts = scanr (*) 1 . tail
736 ~(smem_size_flat', smem_strides') <-
737

738 -- An array is candidate for padding if one of its dimensions is indexed
739 -- by the inner thread index UNLESS that dimension happens to also be
740 -- innermost on the shared array.
741 case Just inner_dim_ind `L.elemIndex` init var_inds of
742 Just i -> do
743 -- Split on the index at which the inner tiles need padding.
744 let (outer_smem_dims, inner_smem_dims) = splitAt (i + 1) tile_dims_pe
745

746 -- We only need padding when the inner size is a multiple of 2, so
747 -- the padding term is `1 - (size_pre_pad % 2)`.
748 -- TODO: I bind these two because I can't seem to get `rem` to work
749 -- with TPrimExps. is there a better way?
750 size_pre_pad <- letSubExp "size_pre_pad" =<< toExp (product inner_smem_dims)
751 tmp <- letSubExp "tmp" $ BasicOp $ BinOp (SRem Int64 Unsafe) size_pre_pad se2
752 pad_term <- letSubExp "pad_term" =<< toExp (1 - pe64 tmp)
753

754 let inner_size_flat = pe64 size_pre_pad + pe64 pad_term
755

756 outer_strides = init $ innerProducts $ outer_smem_dims ++ [inner_size_flat]
757 inner_strides = innerProducts inner_smem_dims
758

759 size_flat = product outer_smem_dims * inner_size_flat
760 pure (size_flat, outer_strides ++ inner_strides)
761

762 _ -> pure (product tile_dims_pe, innerProducts tile_dims_pe)
763

764 smem_size_flat <- letSubExp "smem_size_flat" =<< toExp smem_size_flat'
765 smem_strides <- mapM (letSubExp "smem_stride" <=< toExp) smem_strides'
766

767 pure $
768 ArrInfo
769 base_arr
770 base_arr_dims
771 load_stm
772 lmad_perm
773 var_inds
774 tile_dims
775 smem_size_flat
776 smem_strides
777 smem_elem_type
778

779 where
780 getArrayFromLoadStm :: Stm GPU -> VName
781 getArrayFromLoadStm (Let _ _ (BasicOp (Index arr _))) = arr
782 getArrayFromLoadStm stm =
783 error $
784 "getArrayFromLoadStm error: expected a BasicOp Index stm, got: "
785 ++ prettyString stm
786

787 tbids = tbidVns kernel_params
788 tiles_TR = tilesTR kernel_params
789 tile_Q = tileQ kernel_params
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790 inner_dim_names = innerDimNames kernel_params
791 inner_dims = innerDims kernel_params
792 inner_dim_ind = length inner_dims - 1
793

794

795 -- Note [SmemZeroPaddingOnGlobalMemOOB]
796 -- When copying from global to shared memory, we need to handle out-of-bounds
797 -- reads from global memory. For the time being, we write a padding value to
798 -- shared memory. This padding value is a zero (or zero-like) value from the
799 -- corresponding element type.
800 --
801 -- However, this "solution" succeeds only when the following condition holds:
802 --
803 -- `f zero_0 _ = f _ zero_1 = red_ne`
804 --
805 -- where `f` is the map function; `zero_0` and `zero_1` are the zero-like values
806 -- for the two given smem array element types; and `red_ne` is the reduce
807 -- neutral element.
808 --
809 -- This is seldom the case in general, however it happens to hold for regular
810 -- tensor contraction and MM, hence it is used for testing for the time being.
811 --
812 -- The simple solution (and the one implemented) is the prologue/epilogue
813 -- treatment, in which the last iteration of the main reduction loop is unrolled
814 -- and a boundary guard corresponding to the one we had on global memory is
815 -- inserted into the register tile accumulation step s.t. we never process
816 -- garbage values in the reduction (or, at least, they do not affect those
817 -- entries of the register tile which are eventually written to global mem).
818 -- However, this will inevitably affect performance, and the difference is more
819 -- noticeable the less full tiles we have in the common dimension.
820 --
821 -- As an example, for regular MM of 2000x2000 matrices with a reduction dim tile
822 -- of Tk = 32, we will have floor(2000 / 32) = 62 full tiles and 1 partial tile,
823 -- so here the epilogue is largely amortized by the size of the prologue. But
824 -- for tensor contractions of higher-rank tensors, each dimension typically is
825 -- not very large. If we have, say, 30x30x30x30 tensors and a reduction dim tile
826 -- of Tk = 16, then we will have 1 full tile and 1 partial tile, and now the
827 -- epilogue dominates.
828 --
829 --
830 -- Another solution is to statically examine whether `zero_0` and `zero_1` exist
831 -- s.t. the above condition holds, but this analysis can be difficult or
832 -- impossible, and the values may not even exist.
833 --
834 -- Alternatively (on Cosmin's suggestion), the user can manually pass a padding
835 -- value as an attribute in the Futhark source code. Personally, I think this is
836 -- very hacky, obscure to most users, error-prone, and an anti-pattern. Also,
837 -- attributes only support passing integral values, not float values.
838

839 -- There is a big TODO in figuring out the best solution to this problem which
840 -- will also generalize best to arbitrary contractions.
841

842 -- Note [FlattenPrimExps]
843 -- In reverse-engineering LMAD permutations, we need to check equality between
844 -- LMAD strides. To do so, we in turn need to check equality between product
845 -- expressions. From commutativity and distributivity of multiplication, we of
846 -- course expect the two strides lists:
847 --
848 -- `[(a * b) * c, b * c, c, 1]`
849 --
850 -- and
851 --
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852 -- `[(c * b) * a, c * b, c, 1]`
853 --
854 -- to be equal, since we have (a * b) * c = (c * b) * a, and so on.
855 --
856 -- However, the `Eq` instance for `PrimExp`s is not quite so sophisticated, so
857 -- we need a way to "normalize" product `PrimExp`s. To accomplish this, we
858 -- "flatten" nested `Mul` expressions and sort them (using the `Ord` instance
859 -- for `PrimExp`).
860 --
861 -- Example: Before flattening, the three `PrimExp` expressions:
862 --
863 -- exp1 = `BinOpExp Mul (BinOpExp Mul a b) c`
864 -- exp2 = `BinOpExp Mul (BinOpExp Mul c b) a`
865 -- exp3 = `BinOpExp Mul a (BinOpExp Mul b c)`
866 --
867 -- where a, b, c are `PrimExp`, would not test equal. However, all three
868 -- expressions flatten to:
869 --
870 -- `Product [OpaquePrimExp a, OpaquePrimExp b, OpaquePrimExp c]`
871 --
872 -- and hence we have `(exp1 == exp2) && (exp2 == exp3)`. Yay!
873 --
874 --
875 -- Note that if any of the expressions `a, b, c` are nested non-`Mul` `PrimExp`s
876 -- where ordering matters, then the flattening and sorting is not reliable.
877 -- As an example, the two expressions:
878 --
879 -- exp4 = `BinOpExp Mul (BinOpExp Add a (BinOpExp Mul b c)) d`
880 -- exp5 = `BinOpExp Mul (BinOpExp Add (BinOpExp Mul b c) a) d`
881 --
882 -- would "flatten" to
883 --
884 -- `Product [OpaquePrimExp (BinOpExp Add a (BinOpExp Mul b c)), OpaquePrimExp d]`
885 -- and
886 -- `Product [OpaquePrimExp (BinOpExp Add (BinOpExp Mul b c) a), OpaquePrimExp d]`
887 --
888 -- respectively, which would not test equal, meaning that in terms of testing
889 -- equality, this flattening is only reliable for simple product `PrimExp`s.
890 --
891 -- Hence it should be considered a proof of concept, and there is a big TODO in
892 -- making this reliable.
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