
UNIVERSITY OF COPENHAGEN
FACULTY OF SCIENCE

Bachelor’s thesis

(aemylis, Æmilie Cholewa-Madsen, rjk148)
(sortraev, Anders Lietzen Holst, wlc376)

Teaching the Futhark compiler block and
register tiled matrix multiplication

Supervisor: Cosmin E. Oancea
Secondary supervisor: Troels Henriksen

2020-06-08

Abstract
Matrix multiplication is a widely used and inherently parallel opera-

tor. Futhark, a high-level and purely functional programming language,
generates efficient GPU code for matrix multiplication using block tiling.
In this thesis, we explore how performance of matrix multiplication pro-
grams can improve from the block and register tiling code transforma-
tion, with the goal of implementing the optimization into the loop tiling
pass of the Futhark compiler. With an offset in theoretical code transfor-
mation, we show how to apply block and register tiling to a pseudocode
representation of an ordinary, parallel matrix multiplication program in
order to improve its temporal locality of reference. We then show just
how the program benefits in memory performance, and how the same
transformation applies to a range of similarly structured programs. In
a high-level overview, we present the Kernels stage of the Futhark com-
piler and design RegTileReturns; an addition to the compiler neces-
sary in order to fully support the block and register tiling transformation.
We discuss non-trivial parts of the implementation, including optimiza-
tions made to the handling of residual input, as well as our strategies for
validation testing and benchmarking. Test results show promising per-
formance speedups over the existing block-tiling across all tests on an
Nvidia RTX 2080ti, whilst our implementation performs roughly as good
as block-tiling on an older Nvidia GTX 780ti. We successfully implement
block and register tiling of ordinary matrix multiplication in the Futhark
compiler, but do not manage to generalize the transformation to other
types of programs.

2

Resumé
Matrixmultiplikation er en meget brugt og i sagens natur parallel op-

erator. Futhark, et højniveau, rent funktionelt programmeringssprog,
genererer effektiv GPU-kode til matrixmultiplikation ved hjælp af blok-
flisebelægning. I dette projekt undersøger vi, hvordan ydeevnen af ma-
trixmultiplikationsprogrammer kan forbedres vha. blok- og registerflise-
belægningskodetransformation, med det formål, at implementere op-
timeringen i løkkeflisebelægningsgennemløbet i Futhark-oversætteren.
Med afsæt i teoretisk kodetransformation viser vi, hvordan man udfører
blok- og registerflisebelægning på en pseudokoderepræsentation af et
ordinært, parallelt matrixmultiplikationsprogram for at forbedre dets tem-
porale referencelokalitet. Vi viser derefter, hvordan programmets hukom-
melseseffektivitet drager fordel af transformationen, og hvordan den samme
transformation gælder for en række lignende strukturerede program-
mer. På højt niveau præsenterer vi Kernels-stadiet af Futhark-oversætteren
og designer RegTileReturns; en tilføjelse til oversætteren, der er nød-
vendig for fuldt ud at understøtte blok- og registerflisebelægningstrans-
formationen. Vi diskuterer ikke-trivielle dele af implementeringen, inklu-
siv optimeringer af håndteringen af overskydende inddata, samt vores
strategier for valideringsprøver og ydelsesmålinger. Testresultater viser
lovende forbedringer i ydeevne over den eksisterende implementering
af blokflisebelægning på tværs af alle afviklede prøver på et Nvidia RTX
2080ti-kort, mens der ydes omtrent lige så godt som blokflisebelægnin-
gen på et ældre Nvidia GTX 780ti-kort. Vi implementerer succesfuldt
blok- og registerflisebelægning af ordinær matrixmultiplikation i Futhark-
oversætteren, men lykkes ikke med, at generalisere transformationen til
andre typer programmer.

3

1

1Screenshot from © Cartoon Networks Adventure Time, episode S02E03: ”Blood Under The Skin”

0

Contents

0 Introduction 2
0.1 Motivation . 2
0.2 Project Overview . 3

1 On programming for GPU hardware 4
1.1 GPU hardware and execution levels . 5
1.2 The GPU memory hierarchy . 7
1.3 Global memory coalescing on the GPU . 8

2 The block and register tiling transformation and its benefits 10
2.1 Step-by-step block/register tiling transformation . 11
2.2 Mapping transformed program to abstract hardware 21
2.3 How tiling improves temporal locality for MM . 25
2.4 Generalizing block and register tiling . 28

3 Inside the Futhark compiler 31
3.1 A tiny bit of the Futhark Kernels IR . 31
3.2 Sketching block and register tiled matrix multiplication in the IR 37

4 Implementation 40
4.1 Implementation: starting point . 40
4.2 Implementation: handling residual input . 42
4.3 Implementation: collective copy . 45
4.4 Implementation summary . 47
4.5 Implementation limitations . 47

5 Validation testing 49
5.1 Validation: strategy . 49
5.2 Validation: results . 51

6 Benchmark testing 52
6.1 Benchmarking: strategy . 52
6.2 Benchmarking: results . 56
6.3 Benchmarking: limitations and sources of error . 62

7 Conclusions and future work 64
7.1 Future work: alleviating limitations . 65
7.2 Future work: collectiveCopy in the IR . 65
7.3 Future work: future optimization . 65

Appendix 70

1

0 Introduction

0.1 Motivation

Central in many data processing tasks from across the natural sciences - such as linear trans-
formations used in signal/image processing; adjacency matrices used in graph analysis, curve
fitting and classification algorithms seen in statistics, and so on - matrix multiplication (MM) is
arguably the most important, or, at least, the most frequently used matrix operation. If within
a given program a lot of processor time is going to be spent in matrix multiplication routines,
then naturally, there is a benefit to optimizing this part of the code. Better performance can
be achieved by writing programs for parallel hardware such as a GPU, and we know that ma-
trix multiplication can be implemented as a dot product in a map nest, the latter of which is
inherently parallel [1].

However, despite the large degree of inherent parallelism in matrix multiplication, hardware
limitations, such as the slow speed of main memory, impose a bottleneck on performance
gained from simply parallelizing. In general, the performance of GPU programs is in very large
part dictated by memory efficient programming [2] [1]. For most types of problems, spatial lo-
cality is easily obtained through coalesced access; conversely, temporal locality is typically not
as straightforwardly exploited.

Tiling is a code transformation which comprises stripmining, interchanging and distributing
parallel loops, or map nests in the functional setting. The transformations changes the order of
computation, without changing the semantics, in such a way that locality of reference can be
improved. Whether tiling actually improves performance, and by how much, depends on both
the program and the hardware it is executed on.

In matrix multiplication, single elements from input matrices are reused multiple times in
computing the product; this would indicate an opportunity for temporal locality which is not
exploited in the naive implementation, but which could be in a tiled version.

Futhark is a high-level language designed for easy GPU code generation. As of now, the
Futhark compiler recognizes patterns of matrix multiplication in the high-level Futhark code
and generates efficient GPU code using block tiling. A handwritten OpenCL kernel for matrix
multiplication using both block and register tiling has shown significant improvement over a
block tiled kernel generated by the Futhark compiler.

2

0.2 Project Overview

The goals of this project are to analyze the two tiling techniques block tiling and register tiling
and their optimizations to parallel matrix multiplication programs; to examine and expand the
Futhark Kernels IR with support for register tiling in addition to block tiling. This will all enable
prototyping a block and register tiling pass in the Futhark optimization stage.

In section 1, we first give some needed background on an abstract GPU hardware model re-
sembling that of the types of devices we target.

Then, in section 2, we review basic theory on tiling transformations in a step-by-step block
and register tiling transformation of an ordinary matrix multiplication program, before ana-
lyzing how the tiled program might translate to a GPU kernel as well as how it might improve
temporal locality in the program. At the end of this section, we discuss how to generalize the
optimization to a wide range of programs similar to MM.

Section 3 goes in-depth with key features of the Kernels stage of the Futhark compiler, in
which we implement the new tiling pass. Here, we also discuss the design of an addition to the
Kernels IR in the new KernelResult, RegTileReturns. This is used in an abstract sketch of
what a block and register tiled matrix multiplication program looks like in the Kernels IR.

Implementation of the aforementioned prototype is inspired by the block tiling pass already
present in the compiler. In section 4, we describe problems encountered in implementing block
and register tiling and their solutions, as well as the limitations of our implementation.

Finally, in sections 5 and 6, we validate and benchmark our implementation before evaluating
the project.

3

1 On programming for GPU hardware

In this first section, we find it fitting to present the GPU hardware and execution model, and
to talk about the GPU memory hierarchy. Even though Futhark is designed to be hardware
agnostic, it primarily targets CUDA/OpenCL 2, and then so do we; whenever we discuss GPU
hardware and programming for such devices throughout the report, we shall refer to a hardware
model that is abstract but compatible with CUDA/OpenCL hardware models.

With respect to the GPU memory hierarchy, we give only a very abstract overview of the
memory hierarchy, and focus only on the global, local, and private memory layers.

The field of GPU programming has borrowed a lot of names from other fields and overloaded
these with new meanings; in this section, we will disambiguate some of the necessary termi-
nology used in the report.

2https://futhark-lang.org/

4

1.1 GPU hardware and execution levels

Table 1 is a reference sheet for the names we use to refer to the different hardware levels of the
GPU [2].

Level Description

Thread

The smallest unit of execution on the GPU; like a CPU core,
each thread has its own number of registers, but for example

differs in that it shares an I-cache with a warp of nearby
threads. Each thread has a unique ID in its group.

Warp

A warp consists of exactly 32 threads, which share an
I-cache and which thus execute in lockstep. Threads in

a warp can communicate very fast with each other, and make
global memory accesses in unison.

Group

Threads are divided into 1, 2, or 3-dimensional groups of up to
1024 threads; since threads exist in warps of 32, group dimensions

will typically be multiples of 32. Threads in a group share
the same space of local memory.

Grid

The singular 1, 2, or 3-dimensional grid holds all
groups of threads, but only a certain number of groups can be
scheduled at any given time. Threads across all groups in the

grid share the same global memory.

Kernel
A function specifically for execution on the GPU. A

kernel is simultaneously executed by all threads in the
grid, and thus up to one kernel may run at any given time.

Table 1: GPU-lingo reference sheet - hardware levels. [2]

Hardware levels

GPU computations are performed inside so-called kernels. As stated in table 1, a kernel is
executed simultaneously by all scheduled threads on the GPU, and so the notion of hardware
levels might seem ambiguous or redundant, but each hardware level does have distinct struc-
tural characteristics; however, for the purposes of this project, we will primarily need to think
of an execution level as an indication of the hardware-level at which the result of an operation
is manifested - more on this in section 1.2.

5

Execution levels

We might find it convenient to think of a computation as taking place on a certain execution
level; we distinguish between grid-, group-, and thread-levels of execution, and computation
on these three execution levels correspond to inter-group, intra-group, and thread-private op-
erations, respectively.

When programming a parallel application for execution on a GPU, one can think of exe-
cution levels as a conceptualization of levels of parallelism in the application - in other words,
levels of parallelism can be mapped directly to execution levels of execution.

As a basic example, two nested levels of parallelism surrounding a procedure could be mapped
to a 1-dimensional grid of 1-dimensional groups as such:

foreach group in grid
foreach thread in group
do procedure

Similarly, four nested levels of parallelism could be just as easily mapped to a two-dimensional
grid of two-dimensional groups as such:

foreach row_of_groups in grid
foreach group in row_of_groups

foreach row_of_threads in group
foreach thread in row_of_threads
do procedure

We shall see the latter example realized later in the report.

6

1.2 The GPU memory hierarchy

Table 2 is a reference sheet for the names we use to refer to the different levels in the GPU
memory hierarchy.

Level Description

Register
memory

The fastest, smallest type of memory, private to the individual
thread. The number of registers per thread varies according to the

number of scheduled threads and groups. As a general
rule, we assume it to be no more than 64. 3

Private
memory

A somewhat ambiguous term which we use to specify thread-
private memory which can - and which we would ideally like

to see - be stored in register memory. We use this term to
make the distinction that not all thread-private memory is

eligible for register storage (eg. when register spilling occurs 4).

Local
memory

User-managed, on-chip memory shared among threads
in a group. Much larger and slower than register memory,

but much faster and smaller than global memory.
The size of local memory is 48 KiB per group. 5

Global
memory

The main, off-chip DRAM memory of the GPU, shared among all
threads in the grid, and accessible by the host device, eg. a CPU.

The size of global memory varies greatly, but is eg.
3 and 10 GB, respectively, for the GPUs we use.

Table 2: GPU-lingo reference sheet 2 - memory hierarchy

3Each SM has 64K registers (128K for CC (compute capability) 3.7). a maximum of 64K/255 registers can be
used per group/thread for CC 3.2+ devices; else 32K/63 per group/thread [3].

4Registers are spilled to off-chip (ie. near global memory) thread-private memory - in OpenCL terminology,
”private memory” (equivalent to CUDA’s ”local memory”) is used to refer specifically to this off-chip memory.

5CC 7.0+ devices have more, but must dynamically allocate requests of > 48 KiB [3].

7

1.3 Global memory coalescing on the GPU

In some over-simplification, global memory coalescing is the parallel hardware analogue to spa-
tial locality of reference in the CPU setting.

As stated in table 1, threads in a warp make global memory requests in unison. The GPU will
attempt to coalesce reads and writes made by a warp from/to global memory into as few trans-
actions as possible to minimize bandwidth. However, coalescing is only possible when a warp
requests memory locations within a single cache line in global memory; if they do not, then
multiple transactions are necessary [4].

Below illustration 6 shows how three threads t0, t1, and t2 access nine addresses in memory
across three loop iterations marked in red, yellow, and blue, respectively, in uncoalesced and
coalesced fashion:

Figure 1: Coalesced and uncoalesced access

.

6We have in our midst a bachelor of the arts.

8

If we assume a one-dimensional group of size T = 3, then the functions describing the
above access patterns would be:

// uncoalesced access pattern. // coalesced access pattern.
for (i = 0; i < T; i++) for (i = 0; i < T; i++)
foo = mem[thread_index + i*T]; foo = mem[thread_index*T + i];

In the uncoalesced access case, each thread goes in a sequential stride across iterations, but
since other threads simultaneously access memory T addresses away, this effectively becomes
a stride T access pattern - not ideal. In the coalesced access case, individual threads access
memory in a T-stride across iterations, which results in a stride-1 access pattern within a given
iteration.

• Collective copy

As stated, threads in warps should ideally access adjacent locations in global memory - but
what if within a given procedure each thread requires data that is in a sequentially layed out (ie.
in a stride-1 pattern) in global memory?

Recall that threads in a group share the same space of fast local memory. Local memory
does not suffer nearly the same latencies from uncoalesced accesses as global memory does,
so it may be beneficial to perform a coalesced read from global memory into local memory
before doing an uncoalesced read (eg. a permutation of the first read) from local memory into
thread-private memory [2].

This is called collective copying, since threads read elements of global memory which are
actually needed by other threads. More on this in sections 3.2.1 and 4.3.

9

2 The block and register tiling transformation and its benefits

Having given background on GPU hardware, we want to introduce theory on tiling. We wish to
show and explain how to transform a program to make it eligible for tiling, aswell as the tiling
itself, and we shall also explain why the transformation is legal. Then, we want to analyze how
a tiled program can be mapped to hardware and how tiling can improve performance.

Below, in the left-most snippet, is a basic MM (matrix multiplication) program 7 in the
Futhark source language.

map (\A_row ->
map (\B_col ->

map2 (*) A_row B_col
|> reduce (+) 0

) (transpose B)
) A

⇒

map (\A_row ->
map (\B_col ->

loop acc = 0 for k < U do
acc + A_row[k] * B_col[k]

) (transpose B)
) A

⇒

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

acc = 0
for (k = 0; k < U; k++)
acc += A[i, k] * B[k, j];

C[i, j] = acc;

The program consists of a map nest over some U-dimensional row and column vectors of
A and B; inside this map nest is a pair-wise multiplication of each row and column, followed
by a summation of products - in other words, here is a dot product. This is expressed as a
map-reduce-composition, or redomap. In the middle snippet, this redomap is translated to
a regular for loop over the U dimension, and in the right-most snippet, the Futhark program is
translated to C-like pseudocode.

In this section, we consider the transformation of the ordinary MM program as it appears in the
right-most snippet. In the end, we discuss how block and register tiling8 can be beneficial in a
broader sense, as the transformation applies to not only MM, but a range of programs which
follow a similar structure.

We use C-like pseudocode for the remainder of this section. We expect a lot of nested loops,
so for brevity, we use indentation to indicate scope, and whitespace for readability. Changes and
important features are highlighted in gray as above, and annotated with in-code comments.

7The function implicitly takes as input two arrays A and B of dimensions M * U and U * N, respectively, and
stores the result is some array C of dimensions M * N.

8Register tiling is also known as unroll and jam.

10

2.1 Step-by-step block/register tiling transformation

In this section, we present a step-by-step walkthrough of the block and register tiling transfor-
mation of a ”naive” MM program.

• Step 0: Loop dependency analysis

Consider listing 1; pseudocode for ”naive” matrix multiplication, as presented previously.
The two outer i- and j-loops are parallel. This is because acc is private for these two loops, and
because in the (i,j)’th iteration, only C[i, j] is written, so each iteration is independent of
the other, and they can be executed in parallel. On the other hand, the inner loop of index k is
not; here, acc is read from and then written to on every iteration, so there is a write-after-read
dependency aswell as a read-after-write (ie. a true) dependency.

This is also apparent in inspection of the dependency matrix 9 for the program. Dependency
vectors for each statement are shown in comments to the pseudocode. The two outer loops are
parallel since the first two columns in the dependency matrix are all ’=’. The inner loop is not
parallel, since its column in the dependency matrix contains a ’<’ not preceded by another ’<’,
meaning this dependency is not carried by any outer loop[1].

1 for (i = 0; i < M; i++)
2 for (j = 0; j < N; j++)
3 acc = 0; ! [=, =]
4

5 for (k = 0; k < U; k++)
6 acc += A[i, k] * B[k, j]; ! [=, =, <]
7 C[i, j] = acc; ! [=, =]

Listing 1: Dependency analysis of naive matrix multiplication

As per the loop dependency analysis, the two outer loops can safely be parallelized. The
inner loop of index k is kept sequential 10.

9A dependency matrix is one whose columns correspond to loops in a program, and whose row vectors corre-
spond to statements nested in these loops; each element is either a ’=’, corresponding to an intra-iteration depen-
dency, ’>’, or ’<’, corresponding to dependencies on future and past iterations, respectively[1].

10The inner k loop could, in fact, also be parallelized to some degree, by realizing that it is a redomap (it fits
the form acc = acc + exp, where exp does not contain acc)[1], but as we shall see, this transformation and its
implementation into Futhark is the matter of future work and so we do not pursue it in this analysis.

11

1 forall (i = 0; i < M; i++) ! parallelized
2 forall (j = 0; j < N; j++) ! parallelized
3 acc = 0;
4

5 for (k = 0; k < U; k++) ! left sequential
6 acc += A[i, k] * B[k, j];
7 C[i, j] = acc;

Listing 2: Outer loops parallelized

• Step 1: Stripmining

The first step of loop tiling is to stripmine. Stripmining is a loop transformation which splits
the iteration space of a single, normalized loop into chunks, or tiles, of some fixed tile size T.
The loop is transformed into two perfectly nested loops, where the outer loop goes in stride T,
and the inner loop ”fills the gaps” with a stride of 1 [1].

This code tranformation is always safe since it does not change the order (or semantics) of
operations.

A loop can be stripmined twice by first stripmining with some tile size T2, and then strip-
mining the resulting stride-1 loop with some other tile size T. This process can be repeated to
tile a loop an arbitrary number of times. 11

We wish to perform the following stripminings:

• the outermost loop of index i is doubly stripmined with strides of Ty*Ry and Ry in two
new loops of indices iii and ii, respectively. This tiles the M rows of the first operand
matrix A.

• the second-outermost loop of index j is doubly stripmined with strides of Tx*Rx and Rx in
two new loops of indices jjj and jj, respectively. This tiles the N columns of the second
operand matrix B.

• the inner loop of index k is stripmined with a stride of Tk in a new loop of index kk. This
tiles the common dimension U.

11We can, of course, make no assumptions about the iteration space of the loop to be stripmined, so we will
need to check bounds in case the outer tile size does not divide the iteration space it tiles. However, to avoid
checking bounds on inner tilings, we simply let the outer tile sizes be multiples of the inner tile sizes.

12

◦ Tile size parameters

The reader should acquaint themselves with parameters Ty, Tx, Tk, Ry, and Rx.

We shall for the remainder of the report refer to Ty*Ry and Ry as the outer block tile and register
tile sizes, respectively; similarly, we call Tx*Rx and Rx the inner block tile and register tile sizes, re-
spectively, and Tk the ”redomap tiling” size, since this parameter tiles the innermost sequential
dimension pertaining to the redomap.

With respect to block/register tiling, Ty and Tx in themselves are not tiling parameters, but rather
specify group dimensions. However, in block tiling, as we shall also touch upon, these specify the
inner and outer block tile sizes, respectively.

The loops resulting from stripmining the outer loops remain parallel while the inner loop
remains sequential.

1 forall (iii = 0; iii < M; iii += Ty*Ry)
2 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry) ! double stripmine of outer i loop
3 forall (i = ii; i < min(M, ii + Ry); i++)
4

5 forall (jjj = 0; jjj < N; jjj += Tx*Rx)
6 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx) ! double stripmine of middle j loop
7 forall (j = jj; j < min(N, jj + Rx); j++)
8

9 acc = 0;
10 for (kk = 0; kk < U; kk += Tk)
11 for (k = kk; k < min(U, kk + Tk); k++) ! single stripmine of inner redomap loop
12 acc += A[i, k] * B[k, j];
13

14 C[i, j] = acc;

Listing 3: Stripmining of all loops

13

• Step 2: Loop interchange

Next step of block tiling the two outer loops is loop interchange. Loops of stride 1 (ie. those
of index i and j) are interchanged innermost. Loops of indices ii and jj are interchanged
inside those of indices iii and jjj. This code transformation is legal because it is always safe
to interchange a parallel loop inwards in a perfect loop nest. 12

1 forall (iii = 0; iii < M; iii += Ty*Ry) ! outer tilings are moved outermost
2 forall (jjj = 0; jjj < N; jjj += Tx*Rx)
3

4 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry) ! inner tilings are interchanged
5 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx) ! to second-outermost position
6

7 forall (i = ii; i < min(M, ii + Ry); i++) ! stride 1 loops interchanged innermost
8 forall (j = jj; j < min(N, jj + Rx); j++)
9

10 acc = 0;
11 for (kk = 0; kk < U; kk += Tk)
12 for (k = kk; k < min(U, kk + Tk); k++)
13 acc += A[i, k] * B[k, j];
14

15 C[i, j] = acc;

Listing 4: Interchanging parallel loops

12In general, loop interchange is legal if the transformation does not result in an invalid direction matrix, mean-
ing no row has ’>’ as their first non-’=’-symbol. Parallel loops will always remain parallel when interchanged in-
wards. We can see this by looking at their column in the direction matrix. The ’=’-symbols does not change and
any non-’=’-symbol will still be preceded by a dependency carrying ’<’-symbol, since inwards interchanging cor-
responds to interchaging the column to the right [1].

14

• Step 3a: Array expansion of acc before distribution

We want to distibute the perfect loop nest consisting of the loops with indices ii, jj, i, and
j over the statements inside it - the zero initialization of acc; the dot product, and write to C.

Because acc is private for each iteration we need to move declaration of acc outside the
loop nest and expand it into an array. In this way, instructions that used to be executed in the
same iteration can access the same private index into acc across the distributed loops.

The dimensions of the expanded array correspond to the dimensions of the four loops in
the loop nest that is to be dstributed, such that each iteration has a private element in the array.

1 forall (iii = 0; iii < M; iii += Ty*Ry)
2 forall (jjj = 0; jjj < N; jjj += Tx*Rx)
3

4 acc[Ty, Tx, Ry, Rx]; ! 4D array expansion of acc
5

6 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry)
7 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx)
8

9 forall (i = ii; i < min(M, ii + Ry); i++)
10 forall (j = jj; j < min(N, jj + Rx); j++)
11

12 acc[ii-iii, jj-jjj, i-ii, j-jj] = 0;
13 for (kk = 0; kk < U; kk += Tk)
14 for (k = kk; k < min(U, kk + Tk); k++)
15 acc[ii-iii, jj-jjj, i-ii, j-jj] += A[i, k] * B[k, j];
16

17 C[i, j] = [ii-iii, jj-jjj, i-ii, j-jj];

Listing 5: Array expansion of acc

15

• Step 3b: Loop distribution

We can now distribute the loop nest over the three statements inside: zero-initialization of
acc, the inner redomap loop nest, and the write to C. This distribution is legal as long as the
order of statements is preserved, since there are no circular dependencies between statements;
only dependencies on preceding statements [1].

1 forall (iii = 0; iii < M; iii += Ty*Ry)
2 forall (jjj = 0; jjj < N; jjj += Tx*Rx)
3

4 acc[Ty, Tx, Ry, Rx];
5

6 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry) ! ii, jj, i, and j distributed
7 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx) ! over zero init of acc
8 forall (i = ii; i < min(M, ii + Ry); i++)
9 forall (j = jj; j < min(N, jj + Rx); j++)

10 acc[ii-iii, jj-jjj, i-ii, j-jj] = 0;
11

12 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry) ! ii, jj, i, and j distributed
13 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx) ! over the redomap loop nest
14 forall (i = ii; i < min(M, ii + Ry); i++)
15 forall (j = jj; j < min(N, jj + Rx); j++)
16

17 for (kk = 0; kk < U; kk += Tk)
18 for (k = kk; k < min(U, kk + Tk); k++)
19 acc[ii-iii, jj-jjj, i-ii, j-jj] += A[i, k] * B[k, j];
20

21 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry) ! ii, jj, i, and j distributed
22 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx) ! over write to result array
23 forall (i = ii; i < min(M, ii + Ry); i++)
24 forall (j = jj; j < min(N, jj + Rx); j++)
25 C[i, j] = acc[ii-iii, jj-jjj, i-ii, j-jj];

Listing 6: Distributing parallel loops of indices ii, jj, i, j

16

• Step 4: More loop interchange

We now want to interchange the outer parallel ii and jj loops inside the outer sequential
kk loop, and the inner parallel i and j-loops inside the inner sequential k loop.

This is legal with the same argumentation as for the previous loop interchange; that it is
always legal to interchange parallel loops inwards in a perfect loop nest, and here, loops of
indices ii, jj, i, and j are parallel and reside in a perfect loop nest with the loops of indices kk
and k.

1 forall (iii = 0; iii < M; iii += Ty*Ry)
2 forall (jjj = 0; jjj < N; jjj += Tx*Rx)
3

4 acc[Ty, Tx, Ry, Rx];
5 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry)
6 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx)
7 forall (i = ii; i < min(M, ii + Ry); i++)
8 forall (j = jj; j < min(N, jj + Rx); j++)
9 acc[ii-iii, jj-jjj, i-ii, j-jj] = 0;

10

11 for (kk = 0; kk < U; kk += Tk)
12 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry)
13 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx) ! redomap loops and par-
14 for (k = kk; k < min(U, kk + Tk); k++) ! allelism interchanged
15 forall (i = ii; i < min(M, ii + Ry); i++)
16 forall (j = jj; j < min(N, jj + Rx); j++)
17 acc[ii-iii, jj-jjj, i-ii, j-jj] += A[i, k] * B[k, j];
18

19 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry)
20 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx)
21 forall (i = ii; i < min(M, ii + Ry); i++)
22 forall (j = jj; j < min(N, jj + Rx); j++)
23 C[i, j] = acc[ii-iii, jj-jjj, i-ii, j-jj];

Listing 7: Interchanging inner parallelism inside sequential kk and k loops

17

• Step 5a: Sequentialize innermost stride-1 forall loops

Eventually, we are going to want to load slices of A and B into private (register) memory. To
do this, we need to sequentialize one or more of the (now parallel) innermost stride-1 loops.

We choose the innermost loops of indices i and j, which have Ry and Rx iterations, respec-
tively, corresponding to the innermost two dimensions of acc, such that these loops can be
unrolled per thread and the innermost two dimensions of acc be scalarized and stored in reg-
ister memory. In listing 8 below, we sequentialize the innermost loop dimensions of indices i
and j.

1 forall (iii = 0; iii < M; iii += Ty*Ry)
2 forall (jjj = 0; jjj < N; jjj += Tx*Rx)
3

4 acc[Ty, Tx, Ry, Rx];
5 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry)
6 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx)
7 for (i = ii; i < min(M, ii + Ry); i++) ! sequentialized
8 for (j = jj; j < min(N, jj + Rx); j++) ! sequentialized
9 acc[ii-iii, jj-jjj, i-ii, j-jj] = 0;

10

11 for (kk = 0; kk < U; kk += Tk)
12 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry)
13 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx)
14 for (k = kk; k < min(U, kk + Tk); k++)
15 for (i = ii; i < min(M, ii + Ry); i++) ! sequentialized
16 for (j = jj; j < min(N, jj + Rx); j++) ! sequentialized
17 acc[ii-iii, jj-jjj, i-ii, j-jj] += A[i, k] * B[k, j];
18

19 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry)
20 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx)
21 for (i = ii; i < min(M, ii + Ry); i++) ! sequentialized
22 for (j = jj; j < min(N, jj + Rx); j++) ! sequentialized
23 C[i, j] = acc[ii-iii, jj-jjj, i-ii, j-jj];

Listing 8: Sequentializing innermost loops of indices i and j

18

• Step 5b: Unroll sequential stride-1 loops

In order to scalarize acc (so the two inner dimesions can be stored in registers), we need to
unroll the loops of indices i and j 13. Loop unrolling can be performed on any loop which has
compile-time constant bounds, and the first step in unrolling is normalization [1].

◦ Loop normalization and unrolling

A normalized loop is one whose loop variable starts at 0 and goes to some upper bound with a
stride of 1; note that compile-time constant bounds are not required. Loop normalization is the
code transformation of a loop such that it adheres to these criteria, and is performed as such:

for (i = lo; i < hi; i += k) => for (i0 = 0; i0 < ceil((hi-lo)/k); i0++)
loop_body(i); => i = lo + i0*k;

=> loop_body(i);

Immediately inside the loop body and before it it used, the loop variable is ”de-normalized”, such
that its value in a given iteration is maintained.

As an example, we show normalization of the loop of index k - even though it is not related to
scalarization of acc, we we eventually want to unroll this loop as well for performance reasons. For
brevity, we start by moving the assertion of k < U inside the loop body:

for (k = kk; k < min(U, kk + Tk); k++) => for (k = kk; k < kk + Tk; k++)
loop_body(k); => if (k < U) loop_body(k);

And now, normalization:

for (k = kk; k < kk + Tk; k++) => for (k = 0; k < ceil((kk + Tk - kk) / 1); k++)
if (k < U) loop_body(k); => if (kk + k*1 < U) loop_body(kk + k*1);

=> for (k = 0; k < Tk; k++)
=> if (kk + k < U) loop_body(kk + k);

With the loop normalized, it is ready to be unrolled. This is where the compile-time constantness
requirement comes into play: the compiler must know how many iterations to unroll. Below listing
shows how Tk iterations of the k loop are unrolled:

for (k = 0; k < Tk; k++) => if (kk < U) loop_body(kk);
if (kk + k < U) loop_body(kk + k); => if (kk + 1 < U) loop_body(kk + 1);

=> if (kk + 2 < U) loop_body(kk + 2);
=> ...
=> if (kk + Tk - 1 < U) loop_body(kk + Tk - 1);

13Loop unrolling also has the performance benefit of removing a number of loop variable increments and loop
condition evaluations equal to the number of iterations of the original loop, which of course comes at the cost of
replicated code.

19

However, since we make no assumptions as to the tile sizes at the point of code transforma-
tion, we must leave unrolling for later stages (ie. of whatever compiler that eventually performs
the actual transformation) and for now simply normalize.

Performing now loop normalization on all sequential loops of stride 1:

1 forall (iii = 0; iii < M; iii += Ty*Ry)
2 forall (jjj = 0; jjj < N; jjj += Tx*Rx)
3

4 acc[Ty, Tx, Ry, Rx];
5 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry)
6 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx)
7 for (i = 0; i < Ry; i++) ! normalized
8 for (j = 0; j < Rx; j++) ! normalized
9 if (ii + i < M && jj + j < N) ! inserted bounds check

10 acc[ii-iii, jj-jjj, i, j] = 0;
11

12 for (kk = 0; kk < U; kk += Tk)
13 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry)
14 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx)
15 for (k = 0; k < Tk; k++) ! normalized
16 if (kk + k < U) ! inserted bounds check
17 for (i = 0; i < Ry; i++) ! normalized
18 for (j = 0; j < Rx; j++) ! normalized
19 if (ii + i < M && jj + j < N) ! inserted bounds check
20 acc[ii-iii, jj-jjj, i, j] += A[ii+i, kk+k] * B[kk+k, jj+j]; ! updated indexing
21

22 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry)
23 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx)
24 for (i = 0; i < Ry; i++) ! normalized
25 for (j = 0; j < Rx; j++) ! normalized
26 if (ii + i < M && jj + j < N) ! inserted bounds check
27 C[i+ii, j+jj] = acc[ii-iii, jj-jjj, i, j];

Listing 9: Normalizing sequential loops of indices i, j, and k

This step concludes the block and register tiling code transformation.

20

2.2 Mapping transformed program to abstract hardware

Having finished code transformation of naive matrix multiplication into a block and register
tiled equivalent in pseudocode, we now want to examine how the transformed program most
efficiently can be mapped to abstract parallel hardware, as described in section 1 - after all,
the end goal is to implement our program for high-performance execution on a GPU. This will
help us to analyze how tiling improve temporal locality of reference and give insigt in how to
translate the psuedocode into a GPU kernel.

Below listing 10 shows the code after the block and register tiling tranformation - only now,
it is annotated with comments indicating which loops are parallel, and for each parallel loop;
which hardware level this particular loop corresponds to. Highlighted lines show where tiles are
copied to and from global, local, and private memory. This is all elaborated on in the following
subsections.

1 forall (iii = 0; iii < M; iii += Ty*Ry) ! parallel - group offset y
2 forall (jjj = 0; jjj < N; jjj += Tx*Rx) ! parallel - group offset x
3

4 acc[Ty, Tx, Ry, Rx]; ! inner two dimensions scalarized
5 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry) ! parallel - thread offset y
6 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx) ! parallel - thread offset x
7 for (i = 0; i < Ry; i++) ! sequential - unrolled
8 for (j = 0; j < Rx; j++) ! sequential - unrolled
9 if (ii + i < M && jj + j < N)

10 acc[ii-iii, jj-jjj, i, j] = 0;
11

12 for (kk = 0; kk < U; kk += Tk) ! sequential
13

14 A_loc = A[iii : iii + Ty*Ry, kk : kk + Tk] ! threads in a group collectively copy 2D slices
15 B_loc = B[kk : kk + Tk, jjj : jjj + Tx*Rx] ! of A and B from global to local memory
16

17 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry) ! parallel - thread offset y
18 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx) ! parallel - thread offset x
19

20 for (k = 0; k < Tk; k++) ! sequential
21 if (kk + k < U)
22

23 A_reg = A_loc[ii : ii + Ry, k] ! each thread copies 1D slices of A_loc and
24 B_reg = B_loc[k, jj : jj + Rx] ! B_loc from local to private (register) memory.
25

26 for (i = 0; i < Ry; i++) ! sequential - unrolled
27 for (j = 0; j < Rx; j++) ! sequential - unrolled
28 if (ii + i < M && jj + j < N)
29 acc[ii-iii, jj-jjj, i, j] += A_reg[i] * B_reg[j] ! read from private memory
30

31 forall (ii = iii; ii < min(M, iii + Ty*Ry); ii += Ry) ! parallel - thread offset y
32 forall (jj = jjj; jj < min(N, jjj + Tx*Rx); jj += Rx) ! parallel - thread offset x
33 for (i = 0; i < Ry; i++) ! sequential - unrolled
34 for (j = 0; j < Rx; j++) ! sequential - unrolled
35 if (ii + i < M && jj + j < N)
36 C[ii+i, jj+j] = acc[ii-iii, jj-jjj, i, j];

Listing 10: Mapping transformed code to abstract hardware

21

2.2.1 Mapping parallelism to hardware levels

The two outermost forall-loops of indices iii and jjj can be mapped to a two dimensional
grid. These loops have strides of Ty*Ry and Tx*Rx (ie. 2D block tile stride), respectively, which
can be seen as the block tile offset into A and B in global memory, respectively, of a particular
group.

The iii and jjj loops, of course, have �M / Ty*Ry� and �N / Tx*Rx� number of iterations,
respectively; if we let these be the dimensions of the grid (ie. the number of groups in each di-
rection), such that each group perform one of the iterations, then each group can de-normalize
their group indices into block tile offsets by:

blockTileOffset_y = groupId_y * Ty * Ry <=> iii,

blockTileOffset_x = groupId_x * Tx * Rx <=> jjj

The forall-loops of indices ii and jj can be mapped to two dimensional groups. These
loops have strides of Ry and Rx (ie. 2D register tile stride), respectively, which can be seen as the
register tile offset into A_loc and B_loc in local memory, respectively, of a particular thread.

The ii and jj loops, have Ty and Tx iterations, respectively; if we let these be the group
dimensions (ie. the number of threads per groups in each direction), such that each thread per-
form one of the iterations, then each thread can de-normalize their thread indices into register
tile offsets into the block tile by:

regTileOffset_y = threadId_y * Ry <=> ii,

regTileOffset_x = threadId_x * Rx <=> jj

2.2.2 Copying slices to local and private memory

The for-loop of index kk (on line 15) tiles the common dimension of the input matricies. Tiling
the loops have changed the order in which the result is computed. This means that, for each
iteration of this loop, 2D slices:

A[iii : iii+Ty*Ry, kk : kk+Tk],

B[kk : kk+Tk, jjj : jjj+Tx*Rx]

are used in all iterations of the inner loop of index k. These slices, which have dimensions
Ty*Ry*Tk and Tx*Rx*Tk, can be collectively copied (see section 4.3) by each group from A and
B in global memory to A_loc and B_loc in local memory (lines 17-18).

22

For each iteration of the for-loop of index k (line 20), 1D slices A_loc[ii : ii+Ry, k] and
B_loc[k, jj : jj+Rx] are used for all iterations of the inner loops of indices i and j. These
slices, of sizes Ry and Rx, can be copied from A_loc and B_loc in local memory to A_reg and
B_reg in private memory (lines 23-24).

2.2.3 Scalarizing acc

acc has been array expanded to an array of size Ty*Tx*Ry*Rx (declared on line 4) in which each
group accumulates its block tile result. The size of the two outer dimensions of acc matches the
number of threads per group and each thread produces an Ry*Rx 2D register tile of this result.
Since none of the elements are accessed by more than a single thread, acc is thread-private
such that each thread has a Ry*Rx private array. The loops of indices i and j (lines 7-8, 26-27,
33-34) iterate this register tile. These loops can be unrolled, which enables scalarizing the two
innermost dimensions of acc and storing them in private memory.

2.2.4 Tile sizes and hardware limitations

Certain hardware constants put natural restriction on tile sizes and also on certain combina-
tions of tile sizes. We should consider these resitrictions in code generation.

This means that tiling parameters need to be tuned to the specific hardware where the pro-
gram are executed.

• Tiling restriction: group dimensions

In two-dimensional block/register tiling, tile parameters Ty and Tx specify the y- and x-
group-dimensions.

Recall from table 1 that the maximum number of threads in a group is 1024, meaning the
multiple of dimensions in a 1, 2, or 3-dimensional group can be no greater than 1024; this would
imply that Ty and Tx must always be chosen such that Ty * Tx <= 1024.

For square work groups, this would mean a bound of Ty = Tx <= 32.

• Tiling restriction: size of local memory

The size of local memory also puts a natural restriction on the combinations of tile size pa-
rameters. As stated in table 2, the bound on local memory is 48 KiB per group, but if lmem_bound
is some arbitrary upper bound on local memory, then the set of combinations of tiling param-
eters are limited to those which satisfy the equation:

Tk * (t_size_A*Ty*Ry + t_size_B*Tx*Rx) <= lmem_bound,

where t_size_A and t_size_B are the sizes in bytes of the data types A and B consist of.

23

In lines 14-15 of listing 10, we copy two block tiles of sizes Tx*Rx*Tk and Ty*Ry*Tk from A
and B in global memory to local memory; assuming 32-bit data types in A and B, this means a
total of 4*Tk * (TxRx + TyRy) bytes of local memory is necessary to hold these block tiles.

In this example, choosing Ty = Tx = 32 and Ry = Rx = 2 (ie. the largest group size but
the smallest non-trivial register tile size) would imply Tk <= 96.

• Tiling restriction: number of registers per thread

Lastly, the number of available registers per thread sets a restriction on the register tile sizes,
Ry and Rx. The block/register tiled kernel is going to copy slices of A and B into arrays in private
memory of sizes Ry and Rx, in addition to maintaining a Ry*Rx array of accumulated result
values to be written to C.

This means that at least Ry + Rx + Ry*Rx registers are needed to accomodate full scalar-
ization of private memory arrays - not accounting for any constant number of additional regis-
ters needed for temporary values.

As stated, off-chip thread-private memory is used in case of register spilling, so we must be
careful not to choose Ry and Rx too large. For example, if we assume a maximum of 64 registers
per thread (as per table 2) and no additional temporary registers are needed, then 4*4, 4*12,
6*6, or 4*8 register tiles are valid, while 8*8 is not.

24

2.3 How tiling improves temporal locality for MM

We have now seen how the parallel loops in the tiled program can be mapped to the hardware
levels and where slices of the input matrices can be copied from global to local memory and
again in smaller slices from local to private memory. In this section, we will analyze how this
improves the temporal locality of reference by counting the number of memory accesses to see
how much reusing values reduce the number of expensive readings. We want to compare the
block and register tiled code to the naive program (as in listing 1) and a version which is block
tiled but not register tiled.

◦ Block tiled program

To obtain a program which is block-, but not register tiled we can follow the same
transformation steps as in section 2.1 with a few modifications.

In step 1 of the transformation, we instead singly stripmine the parallel loops
with strides Ty and Tx, respectively (equivalent to choosing register tile sizes
Ry = Rx = 1 and omitting the resulting single-iteration loops).

This makes step 5 (loop unrolling) redundant since now there is no inner sequen-
tialism. Instead, each thread produces only a single value in the result rather than a
two-dimensional tile.

When the tile sizes do not divide the input dimensions some threads will not perform mean-
ingful work and might access memory redundantly depending on how partial tiles are handled.
We will assume that the tile sizes do divide the input dimensions in this section. The following
table 3 shows the total number of accesses to global and local memory in MM with and without
tiling. They are explained and compared below.

25

Memory access Naive Block tiled Block and register tiled

Global memory reads 2MNU
MNU

Ty
+ MNU

Tx

MNU

TyRy
+ MNU

TxRx

Global memory writes MN MN MN

Local memory reads 0 2MNU
MNU

Ry
+ MNU

Rx

Local memory writes 0
MNU

Ty
+ MNU

Tx

MNU

TyRy
+ MNU

TxRx

Table 3

• Copying from global memory to local memory: When copying block tiles from global to
local memory M

TyRy · N
TxRx groups copy two tiles of sizes TyRyTk and TxRxTk for each of the U

Tk

iterations of the loop of index kk. This copies a total of MNU
TyRy + MNU

TxRx elements read from global
and written to local. Each copied element is temporarily stored in a register.

• Copying from local memory to private memory: When copying register tiles from local to
private memory each of the Ty ·Tx threads in each of the M

TyRy · N
TxRx groups copy slices of sizes Ry

and Rx for each of the U
Tk iterations of the kk-loop and Tk iterations of the nested k-loop. This

copies a total of MNU
Ry + MNU

Rx elements read from local memory.

• Accumulating the dot product: The operation computing the accumulation of the dot prod-
ucts is executed a total number of MNU times acc is read and written each time, and since acc
is scalarized these are accesses to private memory. Two operands originating from A and B are
also read once in each accumulation; with block tiling these can be read from local rather than
from global memory, and with register tiling they can be read from private memory. In this case,
it requires a total of 4MNU private memory accesses.

2.3.1 Block tiling vs block and register tiling

Block tiling reduces number of global reads by a factor of the block tile size. On the other hand it
also introduces (2+Ty−1+Tx−1)·MNU local accesses. This trade-off pays off since local memory
accesses are much cheaper than global memory accesses.

26

Adding register tiling expands the block tile sizes by factors of Ry and Rx, further reducing the
number of global memory reads. It also reduces the number of local memory accesses by this
factor. The number of threads per group is still Tx ·Tx and each thread now produces a tile of
the result instead of just a single value, which means fewer groups are needed to compute the
MM result and more of the work is sequential.

However, even if the program is not register tiled, some elements in the result might not be
computed in parallel. There is a hardware limitation on the number of threads which can be
physically manifested at a time. If the input is large enough that all available parallelism is ex-
ploited, some computations will need to be sequential anyway. In this case, we expect that reg-
ister tiling the program will speed up these sequential computations and improve performance.

Register tiling might not be beneficial if the input is small. Spawning a thread imposes some
overhead in itself, so having threads perform some sequential work can make sense, but in this
case, this should be covered by the sequential computation of the dot product.

Since global accesses are reduced with a factor of the block tile sizes, we want these to be as
large as possible. However, the larger the groups, the larger a number of threads potentially
will perform redundant work in partial tiles when tile sizes do not divide input dimensions. For
instance, in a case where input dimensions M and N are half the size of the block tiles, 75% of
the threads of the single executing group would be wasted.

A drawback to both block and register tiling is that the transformations increase the size and
complexity of the code. There might be a small negative impact on performance due to instruc-
tion caching but the greatest problem with this is that it worsens the readability and maintain-
ability of the code. This is an argument for having a compiler automatically generate tiled code
instead of writing it by hand.

27

2.4 Generalizing block and register tiling

So far we have considered tiling for ordinary MM. If we examine the transformation steps we
notice they are indifferent to certain parts of the program, which means that the transformation
could be applied to other similar programs as well. Ideally, when implementing the transfor-
mation into the Futhark compiler, we want the optimization to apply to as many different input
Futhark programs as possible.

In this section, we search for a more general pattern of programs which could benefit from
block- and register tiling.

2.4.1 Example: GEMM

Generalized matrix multiplication, or GEMM, computes the product C = αAB +βC �, where C
and C � both are M * N matrices.
let C = map2 (\A_row C'_row ->

map2 (\B_col c' ->
let ab = map2 (*) A_row B_col

|> reduce (+) 0
in alpha * ab + beta * c'
) (transpose B) C'_row

) A C'

Ordinary MM can be seen as a specific case of GEMM with α = 1 and β = 0, but with no
C' as input. Like ordinary MM, the temporal locality of GEMM could be improved by block
and register tiling. We want to be able to handle the additional operations before and after the
redomap computation (ie. the load from C and the scaling of ab and c') in a way that does not
negatively impact performance.

2.4.2 Generalizing the redomap

In the above GEMM example, the redomap takes two input 1D-arrays (a row of A and a column
of B), pair-wisely multiplies these and sums products, resulting in the dot product of the two
vectors.

• redomap input arrays

In general, for 2D tiling to be beneficial, this redomap expression should have at least two
input arrays arr1 and arr2, where arr1 is invariant to the innermost loop and arr2 is invariant
to the second innermost loop. Invariant here means that indexing of this particular array does
not depend on the given loop variable, such that the same element is used for all iterations
of that loop. Exactly because the same elements are used for multiple iterations of the two
innermost loops, there exists an opportunity to improve temporal locality so we can expect
tiling these loops to be beneficial.

If there exists a loop to which no input array is invariant, there would be no benefit to tiling
this loop. Attempting to tile it would not break the program but might damage performance by
for example redundant copies to local memory.

28

• redomap lambda and result types

The program should still be tileable even if the map and reduce operators in the redomap
are something other than (*) and (+), respectively.

Depending on input array dimensions and these operators, the result type of the redomap
might not be scalar. The result of the redomap is accumulated in private memory, and a non-
scalar redomap result takes up more space.

If the Ry*Rx per-thread accumulator is not able to fit in register memory, then values are
spilled to off-chip thread-private memory global memory instead. However, if the size of the
result is non-scalar but still small, eg. a tuple of 32-bit types, then register tiling might still be
beneficial, but register tiles would have to be smaller than would otherwise be possible with
scalar values.

2.4.3 Generalizing the parallel loop nest

Rather than recognizing only programs with exactly two outer loops, the optimization should
work with a deeper loop nest, for instance in case of batch matrix multiplication where multiple
matrix multiplications are executed in a loop nest. The loops we want to tile should be the
innermost loops in the nest.

2.4.4 Generalizing statements preceding and following the redomap

To generalize the pattern even further, we consider the statements preceding and following the
redomap.

For ordinary MM, preceding statements consists only of loads from A and B, and no state-
ments follow. For GEMM, additionally contains a read from C' preceding the redomap, while
the redomap is followed by statements scaling its result by some value α and adding c.

In general we would like to tile loops where the body of the loopnest follows this pattern:
code1
redomap
code2

However, if, code1 and code2 can be arbitrary, it can be hard to predict how they affect the
benefit of tiling transformation, so we might need some restrictions or modifications before we
choose to apply the tiling transformation.

• Rearranging statements

There might be some statements in code1 which the redomap does not depend on. These
can safely be moved to after the redomap. For GEMM, if we do not move the reading from C,
we would have to keep them in registers while computing the redomap and they would take
up space which could have been used elsewhere or cause other values in private memory to
be spilled to global memory. When these statements are concatenated with code2 they might
exhibit some pattern which can be further optimized in a later pass.

29

• Non-scalar code2 result

A non-scalar code2 result faces the same problems as a non-scalar redomap result dis-
cussed above.

code2 could potentially produce its non-scalar result directly in global memory rather than
storing it temporarily in private memory; however, the Futhark IR dictates that a kernel pro-
duces all of its results as the same hardware level.

• Multiple subsequent redomaps

When code1 or code2 contain additional redomaps, they might not benefit from the same
tiling depending on whether their input arrays are invariant to the same dimensions of the map
next. If these redomaps are independent, the loop nest could be distributed over them and the
tiling applied to whichever loop nest which would benefit from it.

30

3 Inside the Futhark compiler

To aid us in implementation, we would like to create a pseudocode sketch of what the program
should look like in the IR after it leaves our code transformation.

In preparations, we also need to examine the Futhark compiler as is to determine what it
needs (ie. what it is missing) in order to accomodate the block/register tiling code transforma-
tion we arrived at in section 2.2.

In this section, we eventually work towards visualizing the transformed code in the IR proper,
but first, we give an abstract overview of those aspects of the Futhark most important to the im-
plementation, and present an addition to the Kernels IR in RegTileReturns.

3.1 A tiny bit of the Futhark Kernels IR

In this subsection, we explain those of the non-trivial features of the intermediate representa-
tion which are relevant to our implementation - ie. what is expressible at this stage and how, and
what type of information is conveyed to later compiler stages. Where relevant, we will discuss
what the IR is missing before we can hope to implement block and register tiling.

The entire block/register tiling transformation will be performed in the loop tiling pass of the
Kernels stage of the compiler, in which loop tiling is performed - as such, this is the only opti-
mization pass we will have to worry about, but we nevertheless with to give the reader a little
context. The below diagram shows an abstract view of the compiler, with the Kernels stage
focused:

Figure 2: Abstract diagram of the Futhark compiler; Kernels stage highlighted.
Based on a more detailed diagram from [5].

31

Within the Kernels stage, the loop tiling pass is preceded by kernel babysitting, in which
sequential memory access patterns inside kernels are inspected and sub-arrays are transposed
if necessary to achieve coalesced memory access, in turn preceded by kernel extraction, in
which any nested parallelism left-over from the prior stage (the SOACs stage, which we will not
discuss) is flattened [6].

The Kernels IR is both typed and sized [6].

3.1.1 Kernels IR: grammar

We have chosen to devise a simplified version of the IR used in the Kernels stage of the Futhark
copiler, containing only those features and constructs relevant to the produced sketch. A gram-
mar for this version is shown in below figure 3; the grammar descibes the syntax of expressions
in the IR. In contrast to the actual Kernels IR, this simplified version is not typed.

Figure 3: Grammar of the simplified version of the Kernels IR which we use.

3.1.2 Kernels IR: segmap

In flattening, a perfect map nest of depth k ≥ 1 is translated into a so-called segmap (segmented
map) construct; a parallel construct operating over a k-level mapnest context, with each level
corresponding to a dimension of the map nest [7]. Each level specifies a formal parameter to
the function, aswell as the array whence it comes.

As such, the segmap is quite simply the flattened representation of the map nest. Below is
an example of the translation of a source language map nest into an IR segmap:

32

map (\bs -> =>
map (\b -> f b) bs => segmap {bs in bss} {b in bs}
) bss => (f b)

The mapnest context {bs in bss} {b in bs} should be read as a nested ”foreach bs in
bss; foreach b in bs”. But the above is actually an abstraction. In the IR, which at this point is
sized, each level is an index variable/index space boundary pair corresponding to a dimension
of the mapped array. These then explicitly index the formal parameters to the segmap inside
the body:

segmap {bs in bss} {b in bs} <=> segmap {i < bss.dimY} {j < bss.dimX}
(f b) <=> (f bss[i, j])

where bss.dimY and bss.dimX are the inner and outer dimensions of bss. The correspon-
dence to a nest of parallel forall loops holds:

segmap {i < bss.dimY} {j < bss.dimX} <=> forall (i = 0; i < bss.dimY; i++)
(f bss[i, j]) <=> forall (j = 0; j < bss.dimX; j++)

<=> f(bss[i, j]);

In addition to this, each segmap is annotated with an execution level (segLevel in the gram-
mar), indicating at what hardware-level this particular segmap executes; see section 1. We dis-
tinguish between execution levels group, thread, and threadPrivate, which correspond to
inter-group, intra-group, and thread private levels of execution.

3.1.3 Kernels IR: for loops and in-place updates

In section 2.1 we learned about loop normalization. The Futhark IR, as well as the source lan-
guage, supports only normalized for loops - this is no hindrance, however, as most of the loops
in the transformed code are going to benefit from unrolling and scalarization, which requires
normalization.

The general Futhark loop construct maintains a merge variable, which is initialized to some
value before the loop and updated at the end of each iteration; think tail-recursion. The IR
supports in-place updates of a merge variable (eg. if this is an array) if the merge initializor is
not used again later.

The below example shows how an array arr_init (declared earlier) is zeroed-out in-place
inside a Futhark (source language or IR) loop:

let arr_updated = loop (arr_merge = arr_init)
for i < arr_bound do

arr_merge with [i] <- 0

33

3.1.4 Kernels IR: KernelResult

The Kernels IR introduces a special construct for expressing the return value of one or more
groups of threads executing a kernel: KernelResult. The collaborative result of a number of
threads is typically an array in memory, so a KernelResult also conveys all information nec-
essary for determining how to construct just that array in memory - ie. what and where each
thread writes.

To accomodate block and register tiling, we need a KernelResult which can support the
case where:

1. each thread writes multiple values (ie. a register tile)

2. write values originate from private (eg. register) memory

3. per-thread write indices are non-contiguous (because multi-dimensional tiles means strided
write)

But as of the start of this project, the Kernels IR was missing a KernelResult suitable for this
case. The closest candidates were:

• TileReturns: each group of threads collaborate in writing a 2D slice of an array. Each
physical thread is expected to write at most one element, so this is not suitable for register
tiling, but this is used in the existing block tiling.

• ConcatReturns: each thread produces a chunk of the result, and per-thread chunks are
concatenated to form the result. Chunks do not have to be concatenated in thread-
order, but individual chunks can not be split up and interleaved with others so multi-
dimensional register tiles are impossible.

• WriteReturns: each thread is given an arbitrary number of index/value pairs and writes
these values to the corresponding indices of some result array. This immediately seems
promising, however WriteReturns requires a compile-time statically known number of
writes per thread, which is incompatible with user-configurable tile sizes.

In the following section, we discuss our work on designing the new KernelResult.

34

3.1.5 Kernels IR: RegTileReturns

Since none of the existing KernelResults are suitable for the transformation, we need to design
a new constructor which can convey all information necessary to produce an index function for
the per-thread write indices into the result array, as well as a boundary guard surrounding the
write-back as seen in the pseudocode for the code transformation in section 2.1.

We call the proposed new constructor RegTileReturns and look to the existing TileReturns
for inspiration.

TileReturns takes two parameters: the first being a list of tuples whose first element is a di-
mension in the result array and whose second element is the tile size with which this dimension
is tiled, and the second, the name of the tile this group writes (that is, the accumulated result
over all tiles this group has processed). The latter list of tuples is alone enough to generate an
index function which, at run-time, computes the individual thread’s scalar write index given
group and thread indices.

Let’s look at an example with two-dimensional tiling: if the result has dimensions M * N and
each group has dimensions Ty * Tx and is responsible for a tile of the same size (remember
TileReturns assumes threads write at most one element), then the list [(M, Ty), (N, Tx)]
carries sufficient information to generate the index function:

write_index_y = group_offset_y + thread_offset_y,

where group_offset_y and thread_offset_y are the y-direction offsets of this particular
group within the result array and this particular thread within the Ty * Tx tile (and similarly
for the x-direction), and where

group_offset_y = groupId_y * Ty,

thread_offset_y = threadId_y,

and similarly for the x-direction. These indices are then flattened to:

write_index_flat = write_index_y * N + write_index_x

= (groupId_y * Ty + threadId_y) * N

+ groupId_x * Tx + threadId_x.

Along with the unflattened write indices, the result dimensions are then all that is necessary
to generate code for the mentioned boundary guard.

35

As discussed multiple times throughout sections 2, with the block/register tiling transfor-
mation, each thread is now individually reponsible for a Ry × Rx tile. The group dimensions re-
main Ty * Tx, and as such each group is collectively responsible for a tile of size (Ty*Ry) * (Tx*Rx).
The group and thread offsets now become:

group_offset_y = groupId_y * Ty * Ry,

thread_offset_y = threadId_y * Ry,

and similarly for the x-direction. These should then be flattened to:

write_index_flat = write_index_y * N + write_index_x

= (groupId_y * Ty * Ry + threadId_y * Ry) * N

+ groupId_x * Tx * Rx + threadId_x * Rx.

It would appear that the input dimensions, along with the group and register tiles correspond-
ing to that dimension, is all that is needed to generate per-thread write-back index functions.

As for the boundary guard, we of course still only need to assert that each unflattened index
falls within its corresponding result dimensions, which would already be included by the above.

We then design RegTileReturns to take two parameters: a list of triples whose three elements
are a dimension in the result array, the group tile, and the register tile size corresponding to that
dimension, and the name of the per-group result tile.

This design should generalize to n-dimensional tiling, but using again the two-dimensional
tiling example from earlier, then here the list [(M, Ty, Ry), (N, Tx, Rx)] would generate
the desired index functions.

36

3.2 Sketching block and register tiled matrix multiplication in the IR

We are ready to present our IR sketch of the transformed code as it should look after leaving the
loop tiling pass.

However, before we dive into it, we make a couple of assumptions to ease understanding
and to focus attention on the less complex implementation details for the time being, and thus
the sketch presented here is simplified.

We shall, of course, later remove these assumptions when we discuss implementation in
more detail, but for now refer to appendix A for the full, unsimplified sketch.

3.2.1 IR sketch: added abstractions

First of all, we add two abstractions to the IR: collectiveCopy, which can be used by threads in
a group to collectively copy a slice from global memory to local memory in coalesced fashion,
and privateCopy, which can be used to let individual threads simultaneously copy a slice from
local to private memory. Implementations of the former will be discussed in section 4.3.

Second, we remove ourselves from the notion of residual input (from stripmining, as dis-
cussed in 2.1) and assume that input sizes are divided evenly by tile sizes (Ty*Ry divides M;
Tx*Rx divides N; Tk divides U), such that we do not have to worry about boundary checks yet in
the sketch. Boundary checks will become an important part of implementation once we move
away from this assumption, as we will discuss in section 4.2.

• On collectiveCopy in the IR

In ordinary matrix multiplication, we know that the second operand matrix B is semanti-
cally transposed before kernel execution, and as such the index function for coalesced access is
easily given. However, in general - that is, when the program is something different from ma-
trix multiplication - we cannot know anything about the second operand array or its layout in
memory (at least not at this stage in the compiler) and can only make qualified guesses which
result in coalesced access in the most cases.

Ideally, the IR would feature a built-in abstraction for specifying a collective copy from/to
global memory, which could then be resolved in a later compiler stage. However, at this point,
the IR does not feature such an abstraction, so for the sake of this abstract presentation, we add
our own in collectiveCopy. In section 4.3, we show how we actually generate code similar to
that which would ideally be auto-generated, but which only guarantees coalesced access in the
case where B is transposed, and thus definitively leave collectiveCopy for future work.

37

3.2.2 IR sketch: walkthrough

In this subsubsection, we walk through our IR sketch (seen below for reference), highlighting
non-trivial parts afterwards.

1 -- host code goes here. assume B is transposed at
2 -- this point, such that A :: [M][U], B :: [N][U].
3 let res = segmap group (gid_y < gridDim_y, gid_x < gridDim_x) {
4 -- each group computes block tile offset in both dimensions
5 let iii = gid_y * Ty * Ry
6 let jjj = gid_x * Tx * Rx
7

8 -- each thread produces an Ry*Rx private memory array,
9 -- initialized with neutral elements to the reduction.

10 let grp_acc_init =
11 segmap threadPrivate (ltid_y < Ty, ltid_x < Tx) {
12 let thd_acc_init = scratch([Ry][Rx], t)
13 in loop (thd_acc_merge = thd_acc_init) for i < Ry do {
14 loop (thd_acc_merge' = thd_acc_merge) for j < Rx do {
15 thd_acc_merge' with [i, j] <- 0
16 }
17 }
18 }
19

20

21 let group_res =
22 loop (grp_acc_merge = grp_acc_init) for kk0 < U/Tk do {
23 let kk = kk0 * Tk
24

25 -- threads in a group collectively copy 2D slices A[iii : iii + Ty*Ry, kk : kk+Tk]
26 -- and B[jjj : jjj + Tx*Rx, kk : kk+Tk] from global to local memory.
27 let A_loc = collectiveCopy A[iii : iii + Ty*Ry, kk : kk + Tk]
28 let B_loc = collectiveCopy B[jjj : jjj + Tx*Rx, kk : kk + Tk]
29

30 let thread_res = loop (grp_acc_merge' = grp_acc_merge) for k < Tk do {
31

32 -- each thread copies 1D slices A_loc[ltid_y*Ry : ltid_y*Ry + Ry, k]
33 -- and B_loc[ltid_x*Rx : ltid_x*Rx + Rx, k] from local to private mem.
34 let asss = privateCopy A_loc[ltid_y*Ry : ltid_y*Ry + Ry, k]
35 let bsss = privateCopy B_loc[ltid_x*Rx : ltid_x*Rx + Rx, k]
36

37 -- each thread computes redomap over its register tile.
38 in segmap threadPrivate (ltid_y < Ty, ltid_x < Tx) {
39 let as = asss[ltid_y, ltid_x]
40 let bs = bsss[ltid_y, ltid_x]
41 let thd_acc_init = grp_acc_merge'[ltid_y, ltid_x]
42

43 in loop (thd_acc_merge = thd_acc_init) for i < Ry do {
44 loop (thd_acc_merge' = thd_acc_merge) for j < Rx do {
45 let map_res = as[i] * bs[j]
46 let red_res = thd_acc_merge'[i, j] + map_res
47 in thd_acc_merge' with [i, j] <- red_res
48 }
49 }
50 }
51 }
52 in thread_res
53 }
54 in RegTileReturns [(M, Ty, Ry), (N, Tx, Rx)] group_res
55 }

38

• Lines 1-2: The code transformation should first produce some host code, fetching tile sizes
and computing kernel invariants such as grid dimensions, local memory size, and such - this is
omitted here but indicated by comments. Also, note that with ordinary matrix multiplication, B
will be transposed at this point.

• Line 3: The actual kernel comprises a group-level segmap with context corresponding to
the grid dimensions (as derived in section 2.2).

• Lines 11-15: Each thread should initialize its register tile of private memory with the neutral
element to the reduction operator of the later redomap. Since this is per-thread and pertains
to private memory only, it should be done in a thread-private segmap over work-group dimen-
sions Ty*Tx, with a sequential loop nest inside iterating the 2D register tile.

• Lines 22-53: The main sequential loop of index kk, which iterates the block tiles and accu-
mulates the result for each block in grp_acc_merge.

• Line 23: Here is an example of de-normalization of a loop; the loop of index kk0 is normal-
ized, whereas the original loop of index kk has a stride Tk, so we multiply kk0 with Tk.

• Lines 27-28: Here, we insert the abstract collectiveCopy to perform a group-wide, coa-
lesced copy of one entire block tile from global to local memory. As stated, more on this later.

• Lines 30-51: The inner sequential loop of index k, which iterates the recently copied block
tile, accumulating the result each time threads have finished processing their register tiles.

• Lines 34-35: Threads individually copy slices of local memory into private memory using
privateCopy - again, more on this later.

• Line 38: Now that each thread has copied over their private slices of A and B from local
memory, they are ready to compute the redomap. Since this is per-thread and all computations
are made using values stored in memory, this is performed using a thread-private segmap over
the group dimensions.

• Lines 43-49: Each threads computes its own redomap in a sequential loop nest of dimen-
sions Ry*Rx, since this is exactly the size of the register tile. Here, the loop body is the redomap
of an ordinary matrix multiplication, but recall from section 2.4 that this can take many forms.

Lines 54: Here, we insert an instance of RegTileReturns exactly as presented and discussed
in the previous section. Later compiler stages will handle code generation from this point on.

39

4 Implementation

This section documents solutions to select non-trivial problems encountered during imple-
mentation of the code transformation into the Futhark compiler.

• Source and installation

We build upon our own branch of the Futhark repository, which can be cloned from:
https://github.com/diku-dk/futhark/tree/aemilie_anders-block_reg_tile.git

To install our branch of the compiler, simply follow the steps given in section 1.2 of the offi-
cial installation guide found at https://futhark.readthedocs.io/en/latest/installation.
html, substituting our git link for the one listed in the guide. Installation requires an existing in-
stallation of stack.

We also include the full Haskell source code of our implementation in appendix D.

4.1 Implementation: starting point

In this first implementation subsection, we describe features related to our implementation,
but which should not be accredited to us; rather, our supervisors. These are parts of the imple-
mentation which we are not responsible for but build on top of, and so we will not dwell on the
details of these, but simply give credit where it is due.

4.1.1 Code pattern matching

As explained in section 2.4, the code transformation applies to a wide variety of programs. The
very first step in the program should be to actually recognize these patterns.

At the start of the project, Cosmin, our main supervisor, provided us with a couple hundred
lines of code in the module Futhark.Optimise.BlkRegTiling to use as a starting point. The
module consisted of a number of helper functions and a single exported function mm_BlkRegTiling.
This function took (and takes) as input an IR statement containing a let binding of an IR segmap.
The function would then pattern match the body of the segmap to determine whether it applies
for the tiling transformation. The body of this function, which would be executed on a success-
ful pattern match of the segmap, was of course left empty for us to finish.

This code, as well as our additions, can be found in appendix D.

4.1.2 Back-end support for RegTileReturns

In section 3.1.5 we discussed the design of RegTileReturns, a new KernelResult constructor
which could carry all information required by later compiler stages in order to generate index
functions for the final write to a result array.

40

Support for the new RegTileReturnswould have to be implemented in the imperative code
generation back-end of the Futhark compiler 14, rendering the task both out of scope of the
project - as we have only worked in the Kernels stage of the compiler (see figure 2) - not to
mention out of range of our abilities.

When finished designing the new constructor, we conveyed the design to our secondary
advisor Troels, who made most of the necessary changes to the back-end; as of the writing of
this report, code generation for the boundary check on the final write to the result array is still
missing. More on this in section 4.5.

4.1.3 Register tile sizes in the compiler

Later, in looking over generated code with our supervisors, we noticed how in the generated
code, arrays which were supposed to reside in private memory did not always; rather, these
were almost always being placed in local memory by the Explicit Memory Allocations compiler
stage. The problem here was that the Futhark compiler had not been told to treat register tile
sizes as being compile-time constant despite them being unknown at this time 15. This, too, has
been implemented by our secondary advisor Troels.

14Specifically the Futhark.CodeGen.ImpGen.Kernels.Base module.
15Actually, since Futhark programs support run-time configurable tuning parameters, register tile sizes are not

known until the user gives them as command-line input, after which a GPU kernel is compiled.

41

4.2 Implementation: handling residual input

In performing the stripmining transformation in section 2.1, we inserted boundary checks to
handle the cases where a tile size does not evenly divide the iteration space it tiles. Later, in
presenting our IR sketch in section 3.2, we brushed over the notion of residual input: When
computing the product of two matrices A and B of sizes M*U and U*N, respectively, using tiling,
tile sizes do not necessarily divide input dimensions. When they do not, we have residual input
at the boundaries of the matrices; we call these tiles partial tiles.

In this subsection, we first discuss each of the types of residual input and how we handle
them. Then, we present an optimization to the number of boundary checks involved in this
which we have implemented.

We might sometimes implicitly refer to certain loops or constructs of code; when we do, we
refer to the final version of the code transformation as it appeared in listing 10. We suggest the
reader to reacquaint themselves with the tiling parameters presented in section 2.1, as we shall
also make reference to these throughout the this section.

4.2.1 Identifying and handling partial tiles

Regardless of the particular type of residual input we are dealing with, we have two general
concerns to address.

First of all, we must assert not to over-step boundaries of arrays in global memory during
reads and writes, and so some boundary checks are necessary. These boundary checks can be
expensive, so we want to make sure that we perform as little redundant checks as possible.

Second, since we can only allocate a static amount of local memory for all groups in the
grid, so those groups which are responsible for processing partial tiles will naturally not always
fill up local memory with meaningful values (in fact, some groups in some cases will never).
Since Futhark is a functional language, we always need to write something to local memory, so
here, padding values are inserted.

We then identify three types of residual input which we need to handle:

#0 residual input in the common dimension U, which occurs when the redomap tile Tk does
not divide U.

#1 residual input in the M-dimension, which occurs when the outer block tile Ty*Ry does not
divide M.

#2 residual input in the N-dimension, which occurs when the inner block tile Tx*Rx does not
divide N.

42

• #0: Residuals in the common dimension U

In iterating the common dimension U, the outer loop variable kk specifies the offset in the
U dimension of a particular tile, while the inner loop of index k iterates that tile. If Tk does not
divide U, then the inner k-loop might overstep U. We need to assert this does not happen, which
amounts to an assertion of (kk + k) < U guarding computations inside the redomap.

Because the innermost sequential i- and j-loops are invariant to both kk and k, this guard
can be placed before these loops to avoid writing padding values from local to register memory,
as well as to avoid accumulating garbage results to acc (as we shall see later, the latter is not a
problem in ordinary matrix multiplication, whereas in infinitely many other cases it is fatal).

Since the common dimension is fully iterated by all groups, we know that each thread will ex-
perience the same amount of residual input, and that each group processes the same number
of tiles in the U dimension; precisely �U/Tk�.

• #1: Residuals in the M dimension

This type of residual not only needs to be considered inside the redomap, but also in the
read of A from global to local memory, as well as in the final write to C.

However, whereas type #0 residuals need to be handled by each group inside the redomap,
this type of residual is only experienced by groups residing on the edge of the grid in the y
direction - ie. groups for which group_index_y == grid_dim_y - 1.

• #2: Residuals in the N dimension

This type is symmetric to type #1 residuals and is thus handled similarly.

4.2.2 Optimization: handling U dimension residuals in an epilogue

Each type of residual input imposes a lot of boundary checks which can potentially be a nega-
tive for the performance of the program, even if memory is always going to be the dominating
bottle-neck.

As mentioned earlier, since each group iterates the common dimension U fully, each group
processes exactly �U/Tk� tiles in the U dimension, U/Tk of which are full tiles; if there is residual
input, then each group will finish iteration in a partial tile.

Threads are, of course, guaranteed to stay within bounds when iterating full tiles, so here,
boundary checks related to the U dimension can safely be omitted. The idea is then to unroll
the final iteration of the outer sequential kk-loop and to remove boundary checks from all but
this unrolled iteration - we call this the epilogue 16. Below is an example - notice how inside the
epilogue, on line 5, kk is set to the largest multiple of Tk less than or equal to U:

16Because it picks up where the main storyline left off and is sometimes redundant!

43

1 for (kk = 0; kk < ceil(U/Tk); kk += Tk) => for (kk = 0; kk < U/Tk; kk += Tk)
2 /* kk loop body */ => // kk loop body, with U
3 => // boundary checks omitted.
4 => if (U % Tk)
5 => // start of epilogue
6 => kk = (U/Tk) * Tk;
7 => // kk loop body

17

This optimization comes at a payoff in code size: the kk loop body constitutes the majority
of the program as is, so unrolling the last iteration in an epilogue means nearly doubling the
code, however, we choose to implement this optimization in our code generation.

17The branch with condition U % Tk on line 4 of the snippet is actually redundant, as U boundary checks inside
the epilogue provide this guard when there is no residual. We omit it in code generation since the presence of
residual input much more often than not is the case.

44

4.3 Implementation: collective copy

In section 3.2, we presented our simplified sketch of what the transformed program should look
like in the IR as it leaves Kernels stage. In the sketch, we omitted details on the implementation
of the collectiveCopy construction, which was simply an added abstraction to ease under-
standing and not an actual feature of the Kernels IR.

In this section, we discuss implementation of this collective copy to local memory, which
guarantees coalesced access when input matrix B is transposed.

4.3.1 Achieving coalesced access to global memory

We learned in section 1.3 how to ensure coalesced access to global memory when multiple
threads access at the same time.

For the purposes of this section, we return our attention to the transformed MM program as
it appeared in listing 10; the final step in which we first inserted abstract copies into the C-like
pseudocode of the block/register tiled program. We shall use this as the setting for demonstrat-
ing how to achieve coalesced access, focusing on the copy of A from global to local memory (the
copy from B is symmetric).

Recall from section 2.2 that A_loc has dimensions Ty*Ry*Tk. Now, we want to replace the
abstract slice copy of A to A_loc in line 14 of listing 10 with pseudocode representing an actual
implementation. Below snippet shows that pseudocode:

1 A_loc[Ty*Ry, Tk];
2 for (i0 = 0; i0 < Ry; i0++)
3 for (k0 = 0; k0 < ceil(Tk/Tx); k0++)
4 i = i0 * Ty + threadId_y; // threads go in stride ty * tx,
5 k = k0 * Tx + threadId_x; // offset by their indices.
6

7 A_row_idx = iii + i; // iii and kk denote block
8 A_col_idx = kk + k; // tile offsets into A.
9

10 if (A_row_idx < M && A_col_idx < U) // global memory boundary guard.
11 A_loc[i, k] = A[A_row_idx, A_col_idx];
12 else
13 A_loc[i, k] = 0;

The copy is performed in two nested and normalized for loops of dimensions Ry*ceil(Tk/Tx)
(lines 2-3); the loops have these dimensions such that when they are de-normalized in lines 4-5,
they have dimensions Ty*Ry*Tk (assuming Tx divides Tk), which is precisely the size of A_loc.

To achieve coalesced access to A, we want each thread to go in a group-dimensional stride
across loop iterations; this is achieved in lines 4-5, where thread indices are added to count as
local thread offset (recall section 1.3).

45

4.3.2 Implementing collective copy in the IR

Recall also from section 3 that at the Kernels stage of the compiler, we do not have knowledge
of the manifestation in memory of certain arrays. Here, we also dicussed the possibility of an
abstract collectiveCopy construction; we leave this for future work.

In implementing the collective copy in the compiler, we first notice a problem imposed by
the requirement of configurable tile sizes:

• Handling out of bounds local memory writes

In explaining the pseudocode for the collective copy arrived at above, we mentioned that
the nested for loops of dimensions Ry*ceil(Tk/Tx) share common dimensions with A_loc.
However, this is only the case when Tx divides Tk.

When Tx does not divide Tk, we run the risk of overstepping local memory boundaries dur-
ing writes. An easy fix is to enforce Tk to be a multiple of Tx, but this would be at the sacrifice of
full flexibility in tiling parameter tuning 18.

As such, we must guard local memory in a bounds check:

1 A_loc[Ty*Ry, Tk];
2 for (i0 = 0; i0 < Ry; i0++)
3 for (k0 = 0; k0 < ceil(Tk/Tx); k0++)
4 i = i0 * Ty + threadId_y; // threads go in stride ty * tx,
5 k = k0 * Tx + threadId_x; // offset by their indices.
6

7 A_row_idx = iii + i;
8 A_col_idx = kk + k;
9

10 if (k < Tk) // local memory boundary check.
11 if (A_row_idx < M && A_col_idx < U) // global memory boundary check.
12 A_loc[i, k] = A[A_row_idx, A_col_idx];
13 else
14 A_loc[i, k] = 0;
15 else
16 // out of bounds on local mem? don't write! do nothing.

As seen in the snippet, when we are out of bounds of local memory, we simply do nothing.
But here we run into another problem:

• Handling non-writes in a functional IR The IR is still functional at the Kernels stage. This
implies that we can not have if-statements with empty branches as in the above snippet. The
solution then to this is to use a KernelResult construct of the IR called WriteReturns (which
we briefly described in section section:ir-theory in explaining why it is unsuitable 19 for the
cases now supported by RegTileReturns).

18Modulo hardware restrictions; see section 2.2.
19WriteReturns required a compile-time statically known number of writes per thread, unsuitable with run-

time configurable tile sizes.

46

With WriteReturns, each thread specifies a number of index/value pairs and write these
values to those indices of a result array; Based on some per-thread computed condition, indi-
vidual threads obtain either non-negative indices or -1; the latter corresponding to a non-write
of the associated value 20.

In this case, there is one index/value pair per thread, and the result array is A_loc. The
condition is chosen to be whether the computed index is within bounds, which is redundant
seeing as WriteReturns already inserts a bounds guard. Nevertheless, this proved to be the way
to go as long as we did not have access to an abstract collectiveCopy or something similar.

Using WriteReturns also has the added benefit of greatly easing index computation into
local memory arrays, especially when Tx does not divide Tk, since the constructor takes only
flat indexed arrays and produces only flat write indices 21.

4.4 Implementation summary

Upon finishing implementation, we began inspecting the generated OpenCL code. After the
changes mentioned in 4.1.3, the generated code seemed satisfying: Arrays correctly manifested
where we expected them to be; un-flattened group and thread indices computed only once at
the beginning of the kernel; no redundant index computations made; etc.

Aside from the extra bounds checks imposed by WriteReturns, we were satisfied to start
validation and benchmark testing.

4.5 Implementation limitations

In this section, we discuss those of the proposed implementation goals which we did not man-
age to satisfy in the alloted time.

Disclaimer: we shall make no claim that the list that follows is exhaustive. Rather, it should
be considered an inspiration for future work.

4.5.1 Lack of generality

In section 2.4 we discussed how tiling applies in a more general case. While the goal of the
project from the start was to implement code generation for block and register tiled matrix mul-
tiplication, we hoped to build a more generic implementation which could handle for example
GEMM and batch matrix multiplication.

At the time of hand-in and writing this report, our implementation does not handle non-
trivial code1’s (ie. when code1 contains more than input two array load statements), nor does

20The avid reader shall recognize this as the parallel scatter operator.
21At later compiler stages, all indices are flattened, but not necessarily at this stage.

47

it handle a non-empty code2 following the redomap. This prevents us from correctly tiling
programs such as GEMM or batch MM.

Our implementation also does not correctly handle cases in which the segmap to be tiled
is itself nested inside additional, outer map dimensions. This also prevents us from correctly
tiling programs such as batch MM.

However, we have added pattern match guards to mm_BlkRegTiling which should detect
these cases and let the compiler fall-back to the existing block tiling pass.

4.5.2 Missing bounds check in RegTileReturns

As mentioned in section 4.1.2, the code generation back-end support for RegTileReturns is
still missing a boundary check on the final write to a result array.

In the following sections, in validating and benchmark our implementation, we are thus
forced to artificially insert this bounds check into the generated OpenCL kernel code.

We argue that this is still valid in terms of producing credible validation and benchmark
results for the reason that the boundary checks inserted are identical to what will eventually
be auto-generated in the back-end, and also that it is permissible with regards to the project
goals since the scope of this project was never to acquaint ourselves or to make changes to the
compiler outside the Kernels stage.

48

5 Validation testing

Having reviewed the limitations of our implementation, we now want to validate those parts of
our program which we do expect to be functional; in particular, programs with the pattern of
ordinary matrix multiplication, but also programs with slight variations from this pattern.

In this section, we discuss our validation strategy and test plan, and report and evaluate the
results of validation testing. For a guide on reproduction of tests, see appendix B.

5.1 Validation: strategy

In order to pass validation, our implementation needs to handle different types and sizes of
input; different tile size combinations; and a small number of different programs. As such,
there are a lot of factors which must come into play in an exhaustive validation.

In this subsection, we present the devised test plan and discuss to what degree it is satisfying.

5.1.1 Validation strategy: different types of input and tiling parameters

• Tiling parametrs and residual input

We want to test our implementation with different types and sizes of input, as well as with
different combinations of tiling parameters. Our implementation should correctly handle cases
both with and without partial tiles in the input.

Input sizes and tiling parameters are interdependent, since a certain combination of tiling
parameters may result in the presence of partial tiles for some inputs while it may not for others,
and vice versa. With respect to a ”nice” set of tiling parameters in which Ty and Tx both divide
Tk, we devise our validation input set such that we separately test inputs covering all possible
combinations of the three types of residuals; namely M, U, and N dimension residuals. However,
all input sizes are run with every set of tiling parameters.

• Tiling parameters and local memory boundaries

Another important assertion to make pertains to local memory boundaries: as discussed
in section 4.3, a consequence of configurable tile sizes happens when either Ty or Tx (or both)
does not divide Tk - in these cases, there is a risk of out of bounds writes to local memory when
reading from global memory. For each test we run across all input sizes, we test the aforemen-
tioned ”nice” case, which is the case in which both Ty and Tx divide Tk; cases where one of them
does, but the other does not; and cases where neither divide Tk.

49

In summary, below is a table of each test input set along with a brief description:

(M, U, N) Assuming (Ty, Tx, Tk, Ry, Rx) == (16, 16, 32, 8, 4)

(2, 3, 4) A single, partial register tile.

(15, 29, 27) A single, partial block tile.

(128, 32, 64) One group, one block tile per group, no residual.

(128, 103, 64) One group, multiple block tiles/group, no residual.

(512, 32, 1024) Multiple groups, one block tile per group, no residual.

(512, 128, 1024) Multiple groups, multiple block tiles pergroup, no residual.

(513, 128, 1024) Multiple groups, residual in M dim.

(512, 129, 1024) Multiple groups, residual in U dim.

(512, 128, 1025) Multiple groups, residual in N dim.

(513, 129, 1024) Multiple groups, residual in M and U dims.

(513, 128, 1025) Multiple groups, residual in M and N dims.

(512, 129, 1025) Multiple groups, residual in N and U dims.

(513, 129, 1025) Multiple groups, residual in all dims.

Table 4: Validation test input set

and similarly, for the tiling parameters we use:

(Ty, Tx, Tk, Ry, Ry) Description

(16, 16, 32, 8, 4) ”Nice” tiling parameters.

(13, 16, 16, 8, 4) Ty does not divide Tk.

(16, 13, 16, 8, 4) Tx does not divide Tk.

(13, 16, 16, 8, 4) Neither Ty nor Tx divides Tk.

(19, 16, 16, 8, 4) Ty greater than Tk.

(19, 16, 16, 8, 4) Tx greater than Tk.

(19, 19, 16, 8, 4) Both Ty and Tx greater than Tk.

Table 5: Validation test tiling parameter combinations

We argue that if our program correctly handles one case of each combination of input size
and tiling parameters, then it handles all such cases.

50

5.1.2 Validation strategy: different programs

We want to test our implementation with a couple of different programs:

• Ordinary MM

We first and foremost want to validate an ordinary MM program, as this is the program
we will be benchmarking in the next section. Here, we simply assert that our implementation
computes the correct matrix product.

• MM-like program with integer division

We wish to assert that we never make computations on inserted padding values in local
memory due to missing boundary guards. To do this, we run a test of an MM-like program, but
with integer division substituted for the map lambda.

This program is tested with input matrices of only non-zero elements, so if a zero division
exception is thrown, we can be certain that it is due to our implementation not correctly han-
dling boundaries.

• MM-like program with mixed types

To assert that we handle inputs other than 32-bit floats, we test a program whose input
matrices have element types i16 and f64, and whose return array has element type bool.

In addition, we let the reduction operator be logical AND to test whether we correctly ini-
tialize acc in register memory when this should not simply be zero-initialized.

5.1.3 Validation strategy: execution

We run our test suite using futhark-bench, Futhark’s benchmark utility, which: auto-generates
random input arrays in given dimensions; compiles a sequential version of the given test pro-
gram, which is used computed expected results over each input set; runs a benchmark of the
program; validates the result produced by the tested program against the generated, expected
result.

Each test in our validation suite is run once.

5.2 Validation: results

All validation tests pass successfully.

51

6 Benchmark testing

An important aspect of our project - the sole motivation, in fact - is improving the performance
of MM (and similarly structured) programs generated by the Futhark compiler.

Even though our implementation is lacking in numerous areas (as discussed in section 4.5),
we wish to benchmark those features which do work; as seen in the previous section, our im-
plementation does validate for ordinary MM (and other, simple programs), so this is what we
benchmark.

In this section, we discuss our benchmark strategy and test plan, and report and evaluate
the results of benchmarking. For a guide to reproduction of our benchmark results, we once
again refer to B (our test repository mentioned there also contains all programs mentioned in
this section).

6.1 Benchmarking: strategy

A lot of factors do and should come into play in benchmarking our implementation. First and
foremost, we wish to benchmark using different sizes of input, but that is not all - this section
details our benchmarking strategy.

6.1.1 Strategy: comparing different implementations

We are going to compare our generated block/register tiled kernel with the following programs:

• Naive parallel MM kernel

We wish to benchmark a naive parallel MM kernel to examine the effects of block and reg-
ister tiling compared to a kernel with no memory optimizations. The naive MM kernel is a
one-to-one correspondence between the source language map nest with a redomap inside, in
that it spawns a grid of M * N threads, each of which sequentially computes a U-element dot
product in a single for loop. This kernel has extremely bad memory access patterns and should
perform very slow compared to both the block tiled and block/register tiled kernels.

• Existing block tiled kernel

We benchmark the block tiled kernel currently produced by the Futhark compiler. Ideally,
we should see our block/register tiled kernel outperform it, because if it does not, then the
implementatoin does not particularly justify itself.

However, we do expect the block tiled kernel to be faster for small inputs, due to the lower
overhead in the block tiled kernel - in comparing our implementation to the block tiled kernel,
we will then look for a sweet-spot where our implementation starts outperforming.

52

• Handwritten kernel with MM-specific optimizations

Lastly, we wish to benchmark a handwritten and human-optimized matrix multiplication
kernel to see. Futhark is designed to easily generate efficient GPU code, and so to answer the
question of whether the ease of use of Futhark outweighs the payoff in performance, we test
against an optimal kernel written by a human programmer.

Like our implementation, the handwritten kernel employs an epilogue for the handling of
residuals, but differs greatly from our auto-generated kernel in a number of other ways. Most
notably, the handwritten, human-optimized kernel:

• omits a number of auxiliary private memory arrays and redundant copying from/to these,
which are otherwise required by the Futhark compiler to generate since Futhark is a func-
tional language.

• omits a number of redundant thread-synchronization barriers on local memory (such
as a barrier between loads of A and B from global to local memory) which the Futhark
compiler currently does not attempt to identify and remove.

• assumes that Tx and Ty both divide Tk, such that local memory boundaries can safely be
ignored when writing to local memory.

• utilizes minor, non-functional control flow, in that a break-statement exits the k loop of
the epilogue once all subsequent iterations can be (human-)inferred to be redundant.

In addition, the handwritten kernel utilizes a number of optimizations which are only valid
in the case of ordinary matrix multiplication and an infinite number of similar programs, but
which are unsafe in infinitely many other cases. We shall go in detail with these optimizations
in the benchmarking discussion, section 7.3.

53

6.1.2 Strategy: different types of input

Our implementation should be fast for all types of input - while we expect it to be for some, there
are still optimizations to be implemented for certain types of input (especially for the handling
of inputs with very large inner dimensions; see section 7.3).

However, due to limited time and scope, we see ourselves forced to benchmark only a single
type of input: near-square matrices of dimensions evenly distributed in the range (M, N, U)
∈ (214, 272, 263)...(4294, 4220, 4229). Input dimensions are randomly generated to
ensure (with great probability) that we always have partial tiles in all dimensions.

In section 6.3 we discuss this limitation.

6.1.3 Strategy: using optimal tiling parameters

We ideally want to benchmark our implementation using optimal tiling parameters. Since our
program features five different tiling parameters (Ty, Tx, Tk, Ry, Rx), determining the op-
timal combination can be tedious, considering that each parameter can be set independently
and that each type of input demands a different type of tiling parameters.

While the size of local memory (as well as other hardware constants) does technically set natural
restrictions on the number of possible combinations 22, we choose to limit the search space
significantly and search only those tile size combinations where:

Ty, Tx, Tk ∈ {12, 16, 24, 32}

Ry, Rx ∈ {4, 6, 8, 12}

for a total of 1024 combinations.

We write an automated script to search for optimal tile combinations. To ease the search
and subsequent benchmarking, we want to find a single set of optimal parameters for each GPU
we benchmark on, and in searching for optimal parameters, we test using only the same input
set of near-square matrices as discussed above - again, this is far from ideal, but a consequence
of the scope of the project.

The block tiled kernel has a single tiling parameter, ”TILE” - we also search for the optimal
value of this, but do so separately.

22Ignoring all but local memory restraints, the number of combinations is given by the number of solutions to
the equation t_size * Tk * (Ty*Ry + Tx*Rx) <= lmem_bound, where t_size is the size of the data type used
and lmem_bound is the bound on local memory size.

54

For each combination of implementation and the two GPUs we are going to benchmark, we
find the optimal tiling parameters to be:

• Existing block tiled kernel, both GPUs: TILE = 32

• Our block/register tiled kernel

· 2080ti: (Ty, Tx, Tk, Ry, Rx) = (16, 16, 16, 8, 4)

· 780ti: (Ty, Tx, Tk, Ry, Rx) = (16, 16, 16, 2, 2)

• Handwritten kernel, both GPUs: (Ty, Tx, Tk, Ry, Rx) = (16, 32, 32, 8, 4)

6.1.4 Benchmarking strategy: different GPUs

We have been granted access to two types of GPUs on a GPU cluster at DIKU: a GeForce GTX
780ti and a GeForce RTX 2080ti. We shall not go into detail with technical specifications, but
rather simply emphasize that the 780ti is already a 7 year old device, and that the 2080ti is con-
siderably faster with for example more sophisticated latency hiding 23.

We wish to run all of our benchmarks on both machines to examine whether we get to ex-
amine the effects of different hardware on speed- ups/downs.

23We refer to technical specs in [3]; the 780ti and 2080ti have compute capabilities 3.5 and 7.5, respectively.

55

6.2 Benchmarking: results

In this section, we report the results of our benchmark tests in pretty graphs. For hard numbers,
including deviations in measurement, see appendix C.

For each GPU we run our benchmarks on, we plot our block/register tiled kernel against
the three programs discussed in the previous section. In addition, we compare the block-tiled
kernel with the hand-written block/register tiled kernel to get a sense of the upper bound on
the benefits in block/register tiling.

Above each set of bars in the plots we indicate the factor of speed-up of our implementation
versus whichever kernel it is being compared to; below each plot, we give a short discussion of
the measured results.

6.2.1 Benchmark plots: 2080ti results

• Plot 1: As expected, our kernel greatly outperforms the naive, parallel kernel over all inputs
- save for the very smallest input, where the naive kernel is over twice as fast. This is explained
by the very low overhead of the naive kernel as compared to that of our implementation.

56

• Plot 2: Our implementation outperforms the existing block tiling from the third input set
and onwards, indicating a sweet-spot for square inputs at around M, U, N ~600.

From this point on, our implementation obtains speedup factors of x1.2 to x1.82 over the
block-tiled kernel. Speedups are more consistent for the larger inputs, indicating that the extra
locality benefits from register tiling begin to converge for larger inputs.

• Plot 3: With speeddowns as low as x0.41, the hand-written kernel greatly beats our imple-
mentation over all input sizes - this is of course expected given the optimizations employed by
the hand-written kernel.

57

However, it is still interesting to see the hand-written kernel outperform our implementa-
tion by roughly as much as our implementation outperformed the block-tiled kernel.

• Plot 4: The hand-written kernel beats the existing block-tiled kernel by up to factors of x4.25,
and often by factors greater than 4.

This would tell us that there might be room for much improvement in our implementation.

58

6.2.2 Benchmark plots: 780ti results

• Plot 5: Again, equally as expected as plot 1, our kernel outperforms the naive kernel on the
780ti aswell - however, here the speedups max out at x6.97 as opposed to x19.02 on the 2080ti.
This might indicate that the locality benefits in block/register tiling are not as greatly felt on

lesser hardware.

• Plot 6: Out of all benchmark results, these are perhaps the most interesting, yet the most
ambivalent: On the 780ti, our implementation barely outperforms the block-tiled kernel over
all inputs, with speedup factors between 1 and 1.09.

59

While the measurements for the largest five input sets show speedups which in isolation
might appear considerable and could indicate a sweet-spot for very large inputs, these results
are largely rendered insignificant by a stalemate across all smaller inputs.

When seen in the light of the results made on the 2080ti, this could also indicate an over-
head in block/register tiling that is not particularly outweighed by locality benefits on the lesser
hardware.

• Plot 7: On the 780ti, our implementation is beaten by a very consistent, roughly three times
faster execution by the hand-written kernel on the larger half of the input sets.

What is perhaps most interesting about this plot is the fact that while our implementation
failed to outperform the block-tiled kernel by a significant margin, there is now an even greater
gap between the two block/register tiled kernels.

This plot would prove that block/register tiling can be a visible improvement over block-
tiling (since the block tiled kernel’s results can largely be subtituted for our implementation in
this plot), thus putting into question our previous explanation of the results in plot 6.

We take this to be evidence that it must be possible to achieve better performance from a
Futhark-generated block/register tiled kernel than we have managed.

60

• Plot 8: Since our block/register tiled kernel performed about as well as the existing block
tiling kernel on the 780ti, plot 8 provides about the same information as plot 7.

61

6.3 Benchmarking: limitations and sources of error

Having presented and evaluated results of benchmarking, we will in this section discuss limita-
tions and potential sources of error in our benchmarking.

• Limitation: tile size combinations

As mentioned, we only test one set of tiling parameters per combination of program and
GPU. We did not manage to test very many different types of input test sets, but when we do
in the future, it will be equally meaningful to test a corresponding number of tile sizes. In fact,
ideally, we would test every input size with parameters optimal for just that particular type of
data. For example, if the data has a large M dimension, then it might not only be beneficial to
test with large Ty*Ry, but to tweak all parameters.

Futhark has a parameter auto-tuning utility called futhark-autotune. As of the time of
writing this project, auto-tuning of register tile size parameters is still a matter of future re-
search, but if ever implemented, then this limitation could more easily be levied.

• Limitation: test input sets

Our benchmarks are very limited in that we only use a single test set containing only one
type of input (near-square matrices). The benchmarks are therefore not very representative of
the actual performance of our program - in testing by hand, we have for example witnessed our
program not perform very well on inputs with long inner dimensions (but this is the matter of
future work; see section 7.3).

In the future, we would like to benchmark programs using all types of input sets besides
(near-)square matrices: two dimensions fixed and one varying; all dimensions small or large,
et cetera. Since each type of test set requires a different set of tiling parameters, this is an-
other thing which would be easier given automated tuning of register tile size parameters from
futhark-autotune.

• Limitation: the GPUs used

As puny bachelor’s students, we don’t have exclusive access to (nor do we ourselves own)
expensive GPU hardware. A consequence of this fact that we are limited to running benchmarks
on the GPUs provided to us by the department, greatly limiting generalizability 24.

As seen in section 6.2, the speedups gained on the 780ti were not nearly as significant (if
even significant at all) as those gained on the 2080ti; as dicussed, one possible explanation is
that the overhead of block/register tiling might not be as greatly amortized on the slower device.

24While the 2080ti is significantly faster and more capable than the 780ti (as evidenced by the benchmark re-
sults), the two devices are relatively near each other in technical hardware specifications.

62

It would be very meaningful to test and benchmark our implementation on both older,
aswell as newer, more high-end hardware, as compared to the 780ti and 2080ti, to examine
this further - perhaps our implementation is not even viable on smaller hardware.

Testing on a broader range of hardware could also teach us something about tuning, as opti-
mal tiling parameters for such hardware might look completely different from those we found.

• Source of error: occupied GPUs and imprecise measurements

Another consequence of the fact that we do not have exclusive access to GPUs are other
people using the machines. Before a given benchmark, we would use nvidia-smi to assert
that the particular GPU was not currently occupied running someone else’s computations, but
we cannot account for what happened between that and the end of a given set of benchmark
runs, which typically take a couple of minutes. This is typically not a big problem, as Futhark’s
benchmark mechanic reports deviations in measurements, so these errors are easy to spot.

• Source of error: ”optimal” tiling parameters

Another very plausible explanation for the results we saw on the 780ti is that the tiling pa-
rameters found by our automated script were not actually optimal for that kernel on the 780ti
- we were, in fact, surprised to see the script determine a 2*2 register tile to be optimal on the
780ti, considering that optimal register tile dimensions for the hand-written kernel were 8*4 for
both GPUs tested.

This may very well be due to source of error which is related to the prior. Our script for

finding optimal tile sizes does not take measurement deviation into account - in fact, it discards
this information completely and simply compares measurements. This is problematic with the
number of factors in play in the search for optimal tile sizes 25: the search took more than 8
hours to run overnight, and we have no way of accounting for whether other users’ work might
have occupied the GPUs in the mean-time, meaning the tile sizes we found may not actually be
optimal.

This limitation would of course not be affected by the support of register tile parameter tun-
ing in futhark-autotune, as occupation of a partciular GPU would still mean irrepresentative
measurements.

• Limitation: different programs

As stated in section 4.5, our implementation does not support very many programs besides
ordinary matrix multiplication, hence we only benchmark this. If or when block and register
tiling is implemented and generalized for eg. GEMM, then we should of course benchmark
these programs as well, because other types of programs may not necessarily benefit from the
transformation simply because they apply.

251024 parameter combinations, two GPUs, two programs, and 16 different inputs make 65536 tests; each was
run 1000 times for a total of some 65 million runs.

63

7 Conclusions and future work

We have argued for the theoretical benefits to temporal locality of reference in block and register
tiling: Where block tiling alone reduces the number of global accesses by a factor of block tile
sizes, register tiling further reduces this by a factor of register tile sizes.

We have expanded the IR of the Kernels stage of the Futhark compiler with RegTileReturns,
enabling support for register tiling.

We have succesfully reached the project goal of implementing block and register tiling for
ordinary matrix multiplication in the Kernels stage of the Futhark compiler.

In benchmarking programs optimized by our block and register tiling pass, we have seen
our implementation outperform block-tiling for most inputs and with an early sweet-spot on
the 2080ti, whilst on the 780ti we have not seen as significant speedups and a later sweet-spot.

Our implementation falls short of the performance of a hand-written, human-optimized
kernel by a large margin, indicating opportunity for improvement in future work.

Our implementation also greatly lacks in genericity, limiting its practical applications. Much
work is required before it is ready to be deployed alongside the existing block-tiling pass. How-
ever, we argue that is serves as a proof of concept - or, at the least, a grounds for future research
and testing.

64

7.1 Future work: alleviating limitations

In the future, we will want to look into all those limitations to our implementation discussed in
section 4.5, as well as all those limitations and sources of error we determined in benchmarking
in section 6.3. The former has priority as it is a prerequisite to the latter, as well to any imple-
mentation into an eventual release build of Futhark.

7.2 Future work: collectiveCopy in the IR

In section 3, we introduced the abstraction of a collectiveCopy to our simplified version of the
Kernels IR. Since the Kernels IR has no knowledge of the manifestation of arrays in memory, this
was a nice abstraction, which we unfortunately had to get rid of during implementation. Here,
we saw ourselves forced to use WriteReturns to handle cases of non-writes to local memory,
which produced extra, redundant branches in the generated code.

It would be very nice to see such a collectiveCopy construct added to the IR, which could
then be resolved at later compiler stages (eg. in the Explicit Memory Allocations stage) such
that a guarantee of (or at least a best-effort attempt at) coalesced access to arrays could be
made early in the compiler, without the need for redundant guards in the generated imperative
code.

7.3 Future work: future optimization

7.3.1 Parallelizing the redomap

In a footnote in section 2.1, we briefly mentioned the possibility of parallelizing the inner re-
domap, but omitted it from the code transformation as it was (and is) outside the scope of the
project. We discuss it in brief here.

In our implementation of the transformation, a grid of (M/Ry) · (N/Rx) threads cooperate in
computing the matrix product. In such cases where M and N are large, GPU resources are easily
saturated; however, when for example M and N are small, but U is very large, a very few threads
spend a lot of time sequentially iterating the U dimension.

We know that redomap is a parallel operator [1], and so there is an opportunity in tiling the
U dimension.

This tiling transformation introduces a sixth parameter, Rk, which is not a register tile size.
Instead, it is used to compute Tk*Rk, the factor of sequentialization of the common dimension,
and U / (Tk*Rk), the factor of parallelization of the common dimension.

This transformation has a slight lopside and generally small trade-off. The lopside is that
to compute the redomap in parallel, threads must compute local results and these must then
sequentially be accumulated after the MM kernel, and the trade-off being that in order to acco-
modate this, the kernel needs to expand the result array C by the parallelization factor. Neither

65

of these are big concerns, however, as they both are proportional to the size of C, ie. M*N, which,
as stated, is typically small when we choose this optimization.

Once we begin testing inputs other than (near-)square matrices, it would be interesting to
see this optimization in play.

7.3.2 Special case optimization: ordinary matrix multiplication

We saw the handwritten, human-optimized MM kernel outperform all other implementations
over all input sets and on both GPUs, with speedup factors in the range of ~2.1-3 over our im-
plementation on the 780ti. In section 6.1.1 we presented some of the optimizations used in the
handwritten kernel, and mentioned that it also employs some which are specific for MM. These
optimizations are in fact valid in many similar programs, but for this discussion we shall stick
to MM.

The optimization in question pertains to boundary checks surrounding local and register
memory, and checks surrounding computations made in register memory.

During code transformation of ordinary MM in section 2.1, we learned that when a loop is
stripmined, boundary checks are inserted to assert that we never exit the bounds of the original
loop when tile sizes do not divide input dimensions. Recall that padding values are sometimes
inserted into local memory during reading from global memory; without the aforementioned
checks, we would sometimes be making computations using padding values.

Now, since Futhark is a functional language, arrays are always written fully, and when the
data type in question is integral, the padding value is zero.

Consider the line of code which accumulates the dot product in MM:

acc[i, j] += as[i] * bs[j],

where as and bs are register tile slices of A and B. If either as[i] or b[j] (or both) is not an
actual value, but rather a padding value of zero, then the result of the multiplication will be zero
and nothing is accumulated in acc[i, j].

As such, mapping and accumulating padding values have no effect, and boundary checks
are not necessary when accessing local and register memory. Here, one can simply make the
computations, and any invalid results are then guarded against by the boundary check sur-
rounding the write to C - because if out of bounds, then acc[i, j] does not correspond to an
actual element of C.

To generalize, this optimization is safe whenever:

p map_op x = x map_op p = p map_op p = red_ne

66

where p is the padding value used; map_op is the map operator; x is an arbitrary, actual
input value; and red_ne is the neutral element to some reduce operator, and whenever map_op
is well-defined for all possible values of p.

However, in a more general case where map_op and the reduce operator are something other
than for example multiplication and addition, it is difficult to reason about how to choose p
such that the result of map_op becomes the neutral element to the reduction. It can also be
hard to determine whether the map_op is even well-defined: consider for example the case
map_op = (\x y -> x/y), where source arrays for x and y are integral. In this case, we can
definitely not pad with zeroes as this would very likely mean imposing integer zero division
exceptions upon a program which would not be the fault of the user.

In fact, this problem is not exclusive to the padding of the second operand matrix in lo-
cal memory; consider (\x y -> y/x). Choosing a padding value different from zero does
not guarantee non-failure either: For any padding value k hard-coded into code generation, a
map_op could always be chosen which could potentially produce an error, eg. (\x y -> x/(y - k)).

As such, there are infinitely many programs for which this optimization is illegal, but at the
same time there are infinitely many programs for which it is perfectly safe and beneficial. Since
this optimization is only legal for those specific redomap lambdas described above, we would
need some method of identifying this in pattern matching of the AST of the redomap.

In any case, these optimizations specific to matrix multiplication, while incredibly powerful
(as evidenced by our benchmark results), may not be as big of a priority since the benefits here
will only be felt by a small subset of programs, and because implementing pattern matching in
the compiler to detect all eligible programs might prove difficult.

7.3.3 Handling M and N dimension residuals in an ”epilogue”

In section 4.2 we saw how the number of boundary checks in the handling of residual input
in the common dimension could be optimized via an epilogue. A very similar optimization
can safely be applied to residuals in the M and N dimensions - except here, it is not so much an
epilogue as it is different versions of the code; nevertheless, we shall call it an epilogue because
it is conceptually similar.

As discussed only groups at the edges of the grid experience these residuals, so where we
previously unrolled the last iteration of the kk loop, here, we would let individual groups branch
off right after initialization of register memory, to a version of the same kernel but with M (or N)
boundary checks omitted.

67

The implementation is symmetric in the M and Ndimensions, so as an example, let’s consider
an epilogue in the M dimension. Here is what that program would look like:

if (group_index_y == grid_dim_y - 1 && // if last group in y-direction.
M % Ty*Ry) // if residual in M-dimension.

/* kernel body */

else /* epilogue: kernel body, with M boundary checks omitted */

As with the epilogue in the common dimension, the code nearly doubles in size. However,
one considerable difference between this epilogue and the type of epilogue we saw for residuals
in the U dimension is that not all groups benefit from this optimization 26, and the entire result
is of course not ready before all groups finish execution 27.

The optimization can of course be implemented simultaneously in the M and N dimension.
This program would look like so:

1 if (group_index_y == grid_dim_y - 1 && // if last group in both directions.
2 group_index_x == grid_dim_x - 1 &&
3 M % Ty*Ry && N % Tx*Rx) // if residual in both directions.
4

5 /* kernel body, with all boundary checks intact */
6

7 else if (group_index_y == grid_dim_y - 1 && M % Ty*Ry)
8 /* kernel body, with M boundary checks omitted */
9

10 else if (group_index_x == grid_dim_x - 1 && N % Tx*Rx)
11 /* kernel body, with N boundary checks omitted */
12

13 else /* kernel body, with both M and N boundary checks omitted */

and would obviously result in a quadruple in code size. The combined number of M and N
boundary checks omitted here is larger than the number of U boundary checks, so this should
be a welcomed optimization.

However, simple benchmarks (which we have not documented) showed an immense slow-
down very likely caused by this quadrupling and so we did not pursue it further. We did not look
into combining the U dimension epilogue with one or both of the M and N dimension epilogues.

26Because group_index_y == grid_dim_y - 1 for grid_dim_x number of groups.
27Due to the limit on the number of scheduled groups at a given time, this should be amortized as M and N grow,

since the number of bottlenecking ”epilogue” groups is propotional to N while the grid size is proportional to M*N.

68

References

[1] Cosmin E. Oancea. Lecture Notes for the Software Track of the PMPH Course. 2018.

[2] Michel Dubois, Murali Annavaram, and Per Stenstrom. Parallel Computer Organization
and Design. Cambridge University Press, 2012. ISBN 978-521-88675-8.

[3] Nvidia. Cuda C++ Programming Guide, Table 15: Technical Specifications per Compute
Capability. CUDA Toolkit Documentation, 2019. URL https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html.

[4] Mark Harris. How to Access Global Memory Efficiently in CUDA C/C++ Ker-
nels. Nvidia developer blog post, 2013. URL https://devblogs.nvidia.com/
how-access-global-memory-\efficiently-cuda-c-kernels/.

[5] Steffen Holst Larsen. Multi-GPU Futhark Using Parallel Streams. Msc thesis, 2019.

[6] Troels Henriksen. Design and Implementation of the Futhark Programming Language (Re-
vised). PhD thesis, 2017.

[7] Troels Henriksen, Frederik Thorøe, Martin Elsman, and Cosmin E. Oancea. Incremental
Flattening for Nested Data Parallelism. PPoPP, 2019.

69

Appendix

A Full, unsimplified IR sketch

Here comes the full, unsimplified sketch of block and register tiled (ordinary) matrix multipli-
cation using an epilogue to handle residual input, with a near-one-to-one correspondence to
the IR as it should look when it leaves the loop tiling step of the Kernels stage.

1 -- host code goes here. assume B transposed at this point, such that A :: [M][U], B :: [N][U].
2 let {[M][N]t res} = segmap group (gid_y < gridDim_y, gid_x < gridDim_x) {
3 let {i32 iii} = gid_y * Ty * Ry
4 let {i32 jjj} = gid_x * Tx * Rx
5

6 -- threads each allocate [Ry][Rx] of private memory and
7 -- initialize with neutral elements wrt. the reduction.
8 let {[Ty][Tx][Ry][Rx]t grp_acc_init} =
9 segmap threadPrivate (ltid_y < Ty, ltid_x < Tx) {

10 let {[Ry][Rx]t thd_acc_init} = scratch([Ry][Rx], t)
11 in loop (thd_acc_merge = thd_acc_init) for i < Ry do {
12 loop (thd_acc_merge' = thd_acc_merge) for j < Rx do {
13 thd_acc_merge' with [i, j] <- 0
14 }
15 }
16 }
17

18 -- allocate local memory.
19 let {[Ty*Ry][Tk]t A_loc_init} = scratch([Ty*Ry][Tk], t)
20 let {[Tx*Rx][Tk]t B_loc_init} = scratch([Tx*Rx][Tk], t)
21

22 -- START prologue
23 let {i32 num_full_tiles} = U/Tk
24 let {[Ty][Tx][Ry][Rx]t prologue_res} =
25 loop (grp_acc_merge = grp_acc_init) for kk0 < num_full_tiles do {
26 let {i32 kk} = kk0 * Tk
27

28 -- each group collectively copies 2D slices A[iii : iii + Ty*Ry, kk : kk+Tk]
29 -- and B[jjj : jjj + Tx*Rx, kk : kk+Tk] from global to local memory.
30

31 -- A_loc :: [Ty][Tx][Ry][Tk/Tx] <=> [Ty*Ry][Tk].
32 let {[Ty*Ry][Tk]t A_loc} =
33 segmap thread (ltid_y < Ty, ltid_x < Tx) {
34 loop (A_loc_merge = A_loc_init) for i0 < Ry do {
35 let {i32 i} = ltid_y + i0 * Ty
36 in loop (A_loc_merge' = A_loc_merge) for k0 < ceil(Tk/Tx) do {
37 let {i32 k} = ltid_x + k0 * Tx
38 let {t a_elem} = if (iii+i < M) then A[iii + i, kk + k] else 0
39 in A_loc_merge'
40 with [i, k] <- a_elem if (k < Tk) -- this check is necessary in case Tx does not divide Tk.
41 }
42 }
43 }
44

45 -- B_loc :: [Ty][Tx][Rx][Tk/Ty] <=> [Tx*Rx][Tk].
46 let {[Tx*Rx][Tk]t B_loc} =
47 segmap thread (ltid_y < Ty, ltid_x < Tx) {
48 loop (B_loc_merge = A_loc_init) for j0 < Rx do {
49 let {i32 j} = ltid_x + j0 * Tx
50 in loop (B_loc_merge' = B_loc_merge) for k0 < ceil(Tk/Ty) do {

70

51 let {i32 k} = ltid_y + k0 * Ty
52 let {t b_elem} = if (jjj+j < N) then B[jjj + j, kk + k] else 0
53 in B_loc_merge'
54 with [j, k] <- b_elem if (k < Tk) -- this check is necessary in case Ty does not divide Tk.
55 }
56 }
57 }
58

59 let {[Ty][Tx][Ry][Rx]t thread_res} =
60 loop (grp_acc_merge' = grp_acc_merge) for k < Tk do {
61

62 -- each thread copies 1D slices A_loc[ltid_y*Ry : ltid_y*Ry + Ry]
63 -- and B_loc[ltid_x*Rx : ltid_x*Rx + Rx, k] from local to private mem.
64 let {[Ty][Tx][Ry]t asss, [Ty][Tx][Rx]t bsss} =
65 segmap threadPrivate (ltid_y < Ty, ltid_x < Tx) {
66 let {[Ry]t as_init} = scratch([Ry], t)
67 let {[Rx]t bs_init} = scratch([Rx], t)
68 let {[Ry]t as} = loop (as_merge = as_init) for i < Ry do {
69 as_merge with [i] <- A_loc[ltid_y*Ry + i, k]
70 }
71 let {[Rx]t bs} = loop (bs_merge = bs_init) for j < Rx do {
72 bs_merge with [j] <- B_loc[ltid_x*Rx + j, k]
73 }
74 in (as, bs)
75 }
76

77 -- each thread computes redomap over its register tile.
78 in segmap threadPrivate (ltid_y < Ty, ltid_x < Tx) {
79 let {[Ry]t as} = asss[ltid_y, ltid_x]
80 let {[Rx]t bs} = bsss[ltid_y, ltid_x]
81 let {[Ry][Rx]t thd_acc_init} = grp_acc_merge'[ltid_y, ltid_x]
82

83 in loop (thd_acc_merge = thd_acc_init) for i < Ry do {
84 loop (thd_acc_merge' = thd_acc_merge) for j < Rx do {
85 if (iii + i < M && jjj + j < N) then {
86 let {t map_res} = as[i] * bs[j]
87 let {t red_res} = thd_acc_merge'[i, j] + map_res
88 in thd_acc_merge' with [i, j] <- red_res
89 }
90 else {
91 thd_acc_merge'
92 }
93 }
94 }
95 }
96 }
97 in thread_res
98 }
99 -- END prologue

100 -- START epilogue
101 let {[Ty][Tx][Ry][Rx]t epilogue_res = {
102 let {i32 kk} = num_full_tiles * Tk
103

104 let {[Ty*Ry][Tk]t A_loc} =
105 segmap thread (ltid_y < Ty, ltid_x < Tx) {
106 loop (A_loc_merge = A_loc_init) for i0 < Ry do {
107 let {i32 i} = ltid_y + i0 * Ty
108 in loop (A_loc_merge' = A_loc_merge) for k0 < ceil(Tk/Tx) do {
109 let {i32 k} = ltid_x + k0 * Tx
110 let {t a_elem} =
111 if (iii+i < M) && (kk+k < U) -- extra bounds check in the common dim.
112 then A[iii + i, kk + k] else 0
113 in A_loc_merge'
114 with [i, k] <- a_elem if (k < Tk)
115 }

71

116 }
117 }
118

119 let {[Tx*Rx][Tk]t B_loc} =
120 segmap thread (ltid_y < Ty, ltid_x < Tx) {
121 loop (B_loc_merge = A_loc_init) for j0 < Rx do {
122 let {i32 j} = ltid_x + j0 * Tx
123 in loop (B_loc_merge' = B_loc_merge) for k0 < ceil(Tk/Ty) do {
124 let {i32 k} = ltid_y + k0 * Ty
125 let {t b_elem} =
126 if (jjj+j < N) && (kk+k < U) -- extra bounds check in the common dim.
127 then B[jjj + j, kk + k] else 0
128 in B_loc_merge'
129 with [j, k] <- b_elem if (k < Tk)
130 }
131 }
132 }
133

134 let {[Ty][Tx][Ry][Rx]t thread_res} =
135 loop (grp_acc_merge' = grp_acc_merge) for k < Tk do {
136 if (kk + k < U) then { -- extra bounds check in the common dim.
137

138 let {[Ty][Tx][Ry]t asss, [Ty][Tx][Rx]t bsss} =
139 segmap threadPrivate (ltid_y < Ty, ltid_x < Tx) {
140 let {[Ry]t as_init} = scratch([Ry], t)
141 let {[Rx]t bs_init} = scratch([Rx], t)
142 let {[Ry]t as} = loop (as_merge = as_init) for i < Ry do {
143 as_merge with [i] <- A_loc[ltid_y*Ry + i, k]
144 }
145 let {[Rx]t bs} = loop (bs_merge = bs_init) for j < Rx do {
146 bs_merge with [j] <- B_loc[ltid_x*Rx + j, k]
147 }
148 in (as, bs)
149 }
150

151 in segmap threadPrivate (ltid_y < Ty, ltid_x < Tx) {
152 let {[Ry]t as} = asss[ltid_y, ltid_x]
153 let {[Rx]t bs} = bsss[ltid_y, ltid_x]
154 let {[Ry][Rx]t thd_acc_init} = grp_acc_merge'[ltid_y, ltid_x]
155

156 in loop (thd_acc_merge = thd_acc_init) for i < Ry do {
157 loop (thd_acc_merge' = thd_acc_merge) for j < Rx do {
158 if (iii + i < M && jjj + j < N) then {
159 let {t map_res} = as[i] * bs[j]
160 let {t red_res} = thd_acc_merge'[i, j] + map_res
161 in thd_acc_merge' with [i, j] <- red_res
162 }
163 else {
164 thd_acc_merge'
165 }
166 }
167 }
168 }
169 }
170 else { -- if out of bounds of common dim, keep current acc.
171 grp_acc_merge'
172 }
173 in thread_res
174 }
175 }
176 in RegTileReturns [(M, Ty, Ry), (N, Tx, Rx)] epilogue_res
177 }

72

B Test reproduction

To reproduce our validation and/or benchmark tests, do:

• log onto or be running a machine with a CUDA-enabled device.

• clone our branch of the Futhark compiler and install it per the instructions given in 4.

• to benchmark the block-tiled kernel, install Futhark from the master branch and do:

$ cp ~/.local/bin/futhark ~/.local/bin/futhark_block_tiled

before switching back to our branch and rebuilding. This should comply with our Makefiles.

• clone our public project repository at:

https://github.com/sortraev/nybachelorprojekt_public.git

• navigate to either of the testing/validationor testing/benchmarksdirectories inside
the repo.

• from here, browse our test suite; run make in either directory to run corresponding tests;
or browse through our Makefiles to see additional options.

73

C Benchmark results

C.1 Benchmark results: 2080ti

(M, U, N) (µs, GFlops) (RSD, min, max)

(214, 272, 263) (61, 501.92) (0.023, -4%, +18%)

(432, 415, 456) (233, 701.73) (0.132, -14%, +26%)

(704, 702, 807) (1106, 721.20) (0.112, -4%, +42%)

(1058, 1073, 991) (2591, 868.40) (0.084, -3%, +42%)

(1307, 1318, 1298) (4894, 913.76) (0.062, -2%, +42%)

(1648, 1640, 1550) (9195, 911.19) (0.052, -3%, +40%)

(1831, 1932, 1823) (34109, 378.13) (0.039, -2%, +39%)

(2122, 2110, 2124) (61504, 309.25) (0.033, -4%, +35%)

(2256, 2354, 2289) (95689, 254.07) (0.120, -4%, +37%)

(2713, 2642, 2627) (170354, 221.07) (0.309, -60%, +24%)

(2939, 2884, 2777) (223283, 210.84) (0.016, -3%, +3%)

(3135, 3196, 3141) (312417, 201.47) (0.018, -3%, +7%)

(3453, 3478, 3457) (419639, 197.87) (0.032, -1%, +59%)

(3579, 3594, 3759) (499253, 193.70) (0.002, -1%, +1%)

(3859, 3851, 3789) (587707, 191.62) (0.003, -1%, +1%)

(4294, 4220, 4229) (721880, 212.31) (0.018, -1%, +10%)

Table 6: Benchmark results: naive, un-tiled MM kernel; square matrices; 2080ti

74

(M, U, N) (µs, GFlops) (RSD, min, max)

(214, 272, 263) (43, 712.03) (0.023, -3%, +8%)

(432, 415, 456) (142, 1151.43) (0.025, -2%, +8%)

(704, 702, 807) (528, 1510.70) (0.129, -15%, +13%)

(1058, 1073, 991) (1205, 1867.25) (0.158, -10%, +31%)

(1307, 1318, 1298) (2301, 1943.48) (0.129, -6%, +34%)

(1648, 1640, 1550) (4194, 1997.72) (0.103, -3%, +37%)

(1831, 1932, 1823) (6290, 2050.51) (0.083, -2%, +38%)

(2122, 2110, 2124) (9341, 2036.19) (0.071, -2%, +38%)

(2256, 2354, 2289) (11914, 2040.63) (0.061, -2%, +38%)

(2713, 2642, 2627) (18396, 2047.15) (0.046, -1%, +38%)

(2939, 2884, 2777) (23021, 2044.92) (0.059, -2%, +39%)

(3135, 3196, 3141) (31085, 2024.84) (0.057, -2%, +41%)

(3453, 3478, 3457) (40640, 2043.16) (0.026, -2%, +34%)

(3579, 3594, 3759) (47638, 2029.97) (0.033, -2%, +15%)

(3859, 3851, 3789) (55477, 2029.97) (0.034, -2%, +32%)

(4294, 4220, 4229) (75500, 2030.00) (0.036, -2%, +36%)

Table 7: Benchmark results: block tiled MM kernel; square matrices; 2080ti

75

(M, U, N) (µs, GFlops) (RSD, min, max)

(214, 272, 263) (142, 215.62) (0.114, -14%, +21%)

(432, 415, 456) (202, 809.42) (0.096, -13%, +26%)

(704, 702, 807) (379, 2104.62) (0.130, -7%, +44%)

(1058, 1073, 991) (1007, 2234.39) (0.085, -3%, +40%)

(1307, 1318, 1298) (1525, 2932.42) (0.073, -4%, +44%)

(1648, 1640, 1550) (2502, 3348.69) (0.059, -2%, +40%)

(1831, 1932, 1823) (4692, 2748.87) (0.157, -17%, +23%)

(2122, 2110, 2124) (6865, 2770.59) (0.121, -20%, +14%)

(2256, 2354, 2289) (6971, 3487.60) (0.066, -3%, +39%)

(2713, 2642, 2627) (10870, 3464.52) (0.039, -4%, +37%)

(2939, 2884, 2777) (13315, 3535.57) (0.027, -6%, +33%)

(3135, 3196, 3141) (17566, 3583.19) (0.019, -1%, +38%)

(3453, 3478, 3457) (22269, 3728.68) (0.017, -1%, +39%)

(3579, 3594, 3759) (26245, 3684.64) (0.016, -1%, +38%)

(3859, 3851, 3789) (31444, 3581.50) (0.014, -2%, +32%)

(4294, 4220, 4229) (41925, 3655.69) (0.013, -1%, +30%)

Table 8: Benchmark results: block and register tiled MM kernel; square matrices; 2080ti

76

(M, U, N) (µs, GFlops) (RSD, min, max)

(214, 272, 263) (92, 332.80) (0.020, -2%, +20%)

(432, 415, 456) (132, 1238.66) (0.011, -1%, +11%)

(704, 702, 807) (267, 2987.46) (0.121, -11%, +30%)

(1058, 1073, 991) (579, 3886.07) (0.115, -10%, +43%)

(1307, 1318, 1298) (736, 6076.00) (0.090, -3%, +52%)

(1648, 1640, 1550) (1253, 6686.70) (0.074, -2%, +53%)

(1831, 1932, 1823) (1910, 6752.72) (0.056, -2%, +43%)

(2122, 2110, 2124) (2759, 6893.83) (0.046, -2%, +43%)

(2256, 2354, 2289) (3937, 6175.27) (0.102, -27%, +7%)

(2713, 2642, 2627) (5308, 7094.83) (0.036, -1%, +44%)

(2939, 2884, 2777) (5478, 8593.67) (0.033, -2%, +46%)

(3135, 3196, 3141) (7952, 7915.27) (0.030, -2%, +44%)

(3453, 3478, 3457) (10445, 7949.63) (0.038, -1%, +45%)

(3579, 3594, 3759) (11219, 8619.62) (0.022, -1%, +41%)

(3859, 3851, 3789) (14183, 7940.26) (0.021, -1%, +41%)

(4294, 4220, 4229) (18251, 8397.61) (0.017, -2%, +37%)

Table 9: Benchmark results: hand-written MM kernel using MM-specific optimizations; square matrices; 2080ti

77

C.2 Benchmark results: 780ti

(M, U, N) (µs, GFlops) (RSD, min, max)

(214, 272, 263) (288, 106.31) (0.006, -1%, +3%)

(432, 415, 456) (1066, 153.38) (0.031, -2%, +6%)

(704, 702, 807) (5751, 138.70) (0.055, -21%, +8%)

(1058, 1073, 991) (18616, 120.87) (0.178, -15%, +22%)

(1307, 1318, 1298) (41264, 108.37) (0.176, -12%, +30%)

(1648, 1640, 1550) (82875, 101.10) (0.009, -1%, +6%)

(1831, 1932, 1823) (132064, 97.66) (0.034, -3%, +5%)

(2122, 2110, 2124) (192540, 98.79) (0.050, -22%, +7%)

(2256, 2354, 2289) (261039, 93.14) (0.179, -15%, +31%)

(2713, 2642, 2627) (408035, 92.29) (0.177, -12%, +31%)

(2939, 2884, 2777) (514456, 91.51) (0.005, -1%, +3%)

(3135, 3196, 3141) (694050, 90.69) (0.032, -2%, +5%)

(3453, 3478, 3457) (918711, 90.38) (0.053, -22%, +8%)

(3579, 3594, 3759) (1071606, 90.24) (0.179, -16%, +32%)

(3859, 3851, 3789) (1324856, 85.00) (0.176, -12%, +30%)

(4294, 4220, 4229) (1691224, 90.62) (0.010, -1%, +6%)

Table 10: Benchmark results: naive, un-tiled MM kernel; square matrices; 780ti

78

(M, U, N) (µs, GFlops) (RSD, min, max)

(214, 272, 263) (114, 268.57) (0.004, -1%, +2%)

(432, 415, 456) (395, 413.93) (0.031, -2%, +6%)

(704, 702, 807) (1473, 541.52) (0.056, -21%, +8%)

(1058, 1073, 991) (4046, 556.11) (0.179, -16%, +31%)

(1307, 1318, 1298) (7861, 568.88) (0.176, -12%, +30%)

(1648, 1640, 1550) (14454, 579.66) (0.004, -1%, +2%)

(1831, 1932, 1823) (22179, 581.53) (0.032, -2%, +9%)

(2122, 2110, 2124) (32538, 584.55) (0.058, -24%, +8%)

(2256, 2354, 2289) (41456, 586.45) (0.179, -16%, +33%)

(2713, 2642, 2627) (64139, 587.15) (0.179, -15%, +33%)

(2939, 2884, 2777) (79766, 590.18) (0.177, -13%, +30%)

(3135, 3196, 3141) (116818, 538.81) (0.011, -1%, +5%)

(3453, 3478, 3457) (152900, 543.06) (0.032, -2%, +8%)

(3579, 3594, 3759) (175179, 552.03) (0.020, -1%, +6%)

(3859, 3851, 3789) (204795, 549.90) (0.176, -16%, +33%)

(4294, 4220, 4229) (279209, 548.92) (0.179, -13%, +30%)

Table 11: Benchmark results: block tiled MM kernel; square matrices; 780ti

79

(M, U, N) (µs, GFlops) (RSD, min, max)

(214, 272, 263) (114, 268.57) (0.006, -0%, +4%)

(432, 415, 456) (394, 414.98) (0.032, -2%, +5%)

(704, 702, 807) (1465, 544.47) (0.040, -24%, +7%)

(1058, 1073, 991) (4030, 558.32) (0.181, -16%, +33%)

(1307, 1318, 1298) (7833, 570.91) (0.177, -13%, +30%)

(1648, 1640, 1550) (14369, 583.09) (0.007, -1%, +6%)

(1831, 1932, 1823) (22049, 584.96) (0.033, -2%, +11%)

(2122, 2110, 2124) (32428, 586.53) (0.023, -1%, +8%)

(2256, 2354, 2289) (41411, 587.09) (0.179, -16%, +32%)

(2713, 2642, 2627) (64110, 587.42) (0.177, -16%, +22%)

(2939, 2884, 2777) (79748, 590.31) (0.178, -12%, +31%)

(3135, 3196, 3141) (106909, 588.75) (0.005, -1%, +2%)

(3453, 3478, 3457) (140577, 590.67) (0.032, -2%, +9%)

(3579, 3594, 3759) (162687, 594.41) (0.040, -21%, +8%)

(3859, 3851, 3789) (190198, 592.10) (0.175, -16%, +21%)

(4294, 4220, 4229) (260776, 587.73) (0.177, -12%, +31%)

Table 12: Benchmark results: block and register tiled MM kernel; square matrices; 780ti

80

(M, U, N) (µs, GFlops) (RSD, min, max)

(214, 272, 263) (105, 291.59) (0.004, -0%, +2%)

(432, 415, 456) (261, 626.45) (0.027, -1%, +6%)

(704, 702, 807) (676, 1179.96) (0.060, -21%, +9%)

(1058, 1073, 991) (1675, 1343.30) (0.180, -16%, +32%)

(1307, 1318, 1298) (3132, 1427.82) (0.177, -13%, +30%)

(1648, 1640, 1550) (5939, 1410.75) (0.008, -1%, +6%)

(1831, 1932, 1823) (8753, 1473.52) (0.033, -3%, +6%)

(2122, 2110, 2124) (11313, 1681.26) (0.031, -22%, +7%)

(2256, 2354, 2289) (13975, 1739.68) (0.179, -15%, +32%)

(2713, 2642, 2627) (21833, 1724.88) (0.179, -16%, +31%)

(2939, 2884, 2777) (26098, 1803.82) (0.175, -12%, +30%)

(3135, 3196, 3141) (36000, 1748.40) (0.009, -1%, +6%)

(3453, 3478, 3457) (46700, 1778.03) (0.032, -2%, +6%)

(3579, 3594, 3759) (53228, 1816.78) (0.055, -22%, +8%)

(3859, 3851, 3789) (63756, 1766.37) (0.177, -16%, +21%)

(4294, 4220, 4229) (86554, 1770.74) (0.176, -13%, +30%)

Table 13: Benchmark results: hand-written MM kernel; square matrices; 780ti

81

D Implementation source code: BlkRegTiling.hs

In this section of the appendix is the entire contents of Futhark.Optimise.BlkRegTiling.hs
as it appears in our branch of the Futhark repository at the time of hand-in.

Highlighted lines are our own additions, and lines not highlighted are courtesy of Cosmin,
and in part Troels, our supervisors.

1 -- | Perform a restricted form of block+register tiling corresponding to
2 -- the following pattern:
3 -- * a redomap is quasi-perfectly nested inside a kernel with at
4 -- least two parallel dimension (the perfectly nested restriction
5 -- is relaxed a bit to allow for SGEMM);
6 -- * all streamed arrays are one dimensional;
7 -- * all streamed arrays are variant to exacly one of the two
8 -- innermost parallel dimensions, and conversely for each of
9 -- the two innermost parallel dimensions, there is at least

10 -- one streamed array variant to it;
11 -- * the stream's result is a tuple of scalar values, which are
12 -- also the "thread-in-space" return of the kernel.
13 -- Test code can be found in "tests/mmm/sgemm.fut".
14 module Futhark.Optimise.BlkRegTiling
15 (mm_BlkRegTiling)
16 where
17 import Control.Monad.State
18 import Control.Monad.Reader
19 import qualified Data.Map.Strict as M
20 import qualified Data.Sequence as Seq
21 import Data.List
22 import Data.Maybe
23 import Debug.Trace
24

25 import Futhark.MonadFreshNames
26 import Futhark.Representation.Kernels
27 import Futhark.Tools
28 import Futhark.Transform.Rename
29

30 type TileM = ReaderT (Scope Kernels) (State VNameSource)
31 type VarianceTable = M.Map VName Names
32

33 mm_BlkRegTiling :: Stm Kernels -> TileM (Maybe (Stms Kernels, Stm Kernels))
34 mm_BlkRegTiling (Let pat aux (Op (SegOp (SegMap SegThread{} seg_space ts old_kbody))))
35 | KernelBody () kstms _ <- old_kbody,
36

37 -- build the variance table, that records, for
38 -- each variable name, the variables it depends on
39 initial_variance <- M.map mempty $ scopeOfSegSpace seg_space,
40 variance <- varianceInStms initial_variance kstms,
41

42 -- check that the code fits the pattern having:
43 -- some `code1`, followed by one Screma SOAC, followed by some `code2`
44 (code1, Just screma_stmt, code2) <- matchCodeStreamCode kstms,
45

46 Let pat_redomap _ (Op _) <- screma_stmt,
47

48 -- checks that the Screma SOAC is actually a redomap and normalizes it
49 Just (common_dim, arrs, (_, red_lam, red_nes, map_lam)) <- isTileableRedomap screma_stmt,
50

51 -- checks that the input arrays to redomap are variant to
52 -- exactly one of the two innermost dimensions of the kernel
53 Just _ <- isInvarTo1of2InnerDims mempty seg_space variance arrs,

82

54

55 -- get the variables on which the first result of redomap depends on
56 fst_res : _ <- patternValueElements pat_redomap,
57 Just res_red_var <- M.lookup (patElemName fst_res) variance, -- variance of the reduce result
58

59 -- we furthermore check that code1 is only formed by
60 -- 1. statements that slice some globally-declared arrays
61 -- to produce the input for the redomap, and
62 -- 2. potentially some statements on which the redomap
63 -- is independent; these are recorded in `code2'`
64 Just (code2', _) <- foldl (processIndirections (namesFromList arrs) res_red_var)
65 (Just (Seq.empty, M.empty)) code1,
66

67 null code2 && null code2', -- TODO: remove the need for these assumptions !
68

69 -- we get the global-thread id for the two inner dimensions,
70 -- as we are probably going to use it in code generation
71 (gtid_x, width_B) : (gtid_y, height_A) : rem_outer_dims <- reverse $ unSegSpace seg_space,
72

73 null rem_outer_dims, -- TODO: remove the need for this assumption !
74

75 -- sanity check that the reduce part is not missing
76 not $ null red_nes = do
77 let load_A : load_B : _ = stmsToList code1 -- TODO: unsafe in general, since first two
78 -- elements of code1 may be something else.
79 let inp_A : inp_B : _ = arrs
80 let map_t1 : map_t2 : _ = map (elemType . paramAttr) (lambdaParams map_lam)
81 let red_ne : _ = red_nes
82 red_t <- subExpType red_ne
83

84 ---- in this binder: host code and outer seggroup (ie. the new kernel) ----
85 (new_kernel, host_stms) <- runBinder $ do -- host code
86

87 tk_name <- nameFromString . pretty <$> newVName "Tk"
88 tx_name <- nameFromString . pretty <$> newVName "Tx"
89 ty_name <- nameFromString . pretty <$> newVName "Ty"
90 rx_name <- nameFromString . pretty <$> newVName "Rx"
91 ry_name <- nameFromString . pretty <$> newVName "Ry"
92 tk <- letSubExp "Tk" $ Op $ SizeOp $ GetSize tk_name SizeTile
93 tx <- letSubExp "Tx" $ Op $ SizeOp $ GetSize tx_name SizeTile
94 ty <- letSubExp "Ty" $ Op $ SizeOp $ GetSize ty_name SizeTile
95 rx <- letSubExp "Rx" $ Op $ SizeOp $ GetSize rx_name SizeRegTile
96 ry <- letSubExp "Ry" $ Op $ SizeOp $ GetSize ry_name SizeRegTile
97

98 tk_div_tx <- letSubExp "tk_div_tx" =<< ceilDiv tk tx
99 tk_div_ty <- letSubExp "tk_div_ty" =<< ceilDiv tk ty

100

101 tx_rx <- letSubExp "TxRx" =<< toExp (primFromSe tx * primFromSe rx)
102 ty_ry <- letSubExp "TyRy" =<< toExp (primFromSe ty * primFromSe ry)
103

104 a_loc_sz <- letSubExp "a_loc_sz" =<<
105 toExp (primFromSe ty * primFromSe ry * primFromSe tk)
106

107 b_loc_sz <- letSubExp "b_loc_sz" =<<
108 toExp (primFromSe tk * primFromSe tx * primFromSe rx)
109

110 gridDim_x <- letSubExp "gridDim_x" =<< ceilDiv width_B tx_rx
111 gridDim_y <- letSubExp "gridDim_y" =<< ceilDiv height_A ty_ry
112 grid_size <- letSubExp "grid_size" =<< toExp (primFromSe gridDim_x * primFromSe gridDim_y)
113 group_size <- letSubExp "group_size" =<< toExp (primFromSe ty * primFromSe tx)
114 let segthd_lvl = SegThread (Count grid_size) (Count group_size) SegNoVirtFull
115

116 gid_x <- newVName "gid_x"
117 gid_y <- newVName "gid_y"
118 gid_flat <- newVName "gid_flat"

83

119

120 ---- in this binder: outer seggroup ----
121 (ret_seggroup, stms_seggroup) <- runBinder $ do
122

123 iii <- letExp "iii" =<< toExp (LeafExp gid_y int32 * primFromSe ty_ry)
124 jjj <- letExp "jjj" =<< toExp (LeafExp gid_x int32 * primFromSe tx_rx)
125

126 -- initialize register mem with neutral elements.
127 cssss_list <- segMap2D "cssss" segthd_lvl ResultPrivate (ty, tx) $ _ -> do
128 css_init <- scratch "css_init" (elemType red_t) [ry, rx]
129 css <- forLoop ry [css_init] $ \i [css_merge] -> do
130 css' <- forLoop rx [css_merge] $ \j [css_merge'] -> do
131 css'' <- update' "css" css_merge' [i, j] red_ne
132 resultBodyM [Var css'']
133 resultBodyM [Var css']
134 return [Var css]
135 let [cssss] = cssss_list
136

137 a_loc_init <- scratch "A_loc" map_t1 [a_loc_sz]
138 b_loc_init <- scratch "B_loc" map_t2 [b_loc_sz]
139

140 let kkLoopBody kk0 (thd_res_merge, a_loc_init', b_loc_init') epilogue = do
141 kk <- letExp "kk" =<< toExp (LeafExp kk0 int32 * primFromSe tk)
142 a_loc <- forLoop ry [a_loc_init'] $ \i0 [a_loc_merge] -> do
143 loop_a_loc <- forLoop tk_div_tx [a_loc_merge] $ \k0 [a_loc_merge'] -> do
144

145 scatter_a_loc <- segScatter2D "A_glb2loc" a_loc_sz a_loc_merge'
146 segthd_lvl (ty, tx) $ \(thd_y, thd_x) -> do
147

148 k <- letExp "k" =<< toExp (LeafExp thd_x int32 +
149 LeafExp k0 int32 * primFromSe tx)
150 i <- letExp "i" =<< toExp (LeafExp thd_y int32 +
151 LeafExp i0 int32 * primFromSe ty)
152

153 letBindNames_ [gtid_y] =<< toExp (LeafExp iii int32 + LeafExp i int32)
154 a_col_idx <- letExp "A_col_idx" =<< toExp (LeafExp kk int32 + LeafExp k int32)
155

156 a_elem <- letSubExp "A_elem" =<<
157 eIf (toExp $ LeafExp gtid_y int32 .<. primFromSe height_A .&&.
158 if epilogue then
159 LeafExp a_col_idx int32 .<. primFromSe common_dim
160 else true)
161 (do addStm load_A
162 res <- index "A_elem" inp_A [a_col_idx]
163 resultBodyM [Var res])
164 (eBody [eBlank $ Prim map_t1])
165 a_loc_ind <- letSubExp "a_loc_ind" =<<
166 eIf (toExp $ LeafExp k int32 .<. primFromSe tk)
167 (toExp (LeafExp k int32 + LeafExp i int32 * primFromSe tk)
168 >>= letTupExp' "loc_fi" >>= resultBodyM)
169 (eBody [pure $ BasicOp $ SubExp $ intConst Int32 (-1)])
170 return (a_elem, a_loc_ind)
171 resultBodyM $ map Var scatter_a_loc
172 resultBodyM [Var loop_a_loc]
173

174 -- copy B from global to shared memory
175 b_loc <- forLoop tk_div_ty [b_loc_init'] $ \k0 [b_loc_merge] -> do
176 loop_b_loc <- forLoop rx [b_loc_merge] $ \j0 [b_loc_merge'] -> do
177 scatter_b_loc <- segScatter2D "B_glb2loc" b_loc_sz b_loc_merge'
178 segthd_lvl (ty, tx) $ \(thd_y, thd_x) -> do
179

180 k <- letExp "k" =<< toExp (LeafExp thd_y int32 +
181 LeafExp k0 int32 * primFromSe ty)
182 j <- letExp "j" =<< toExp (LeafExp thd_x int32 +
183 LeafExp j0 int32 * primFromSe tx)

84

184

185 letBindNames_ [gtid_x] =<< toExp (LeafExp jjj int32 + LeafExp j int32)
186 b_row_idx <- letExp "B_row_idx" =<< toExp (LeafExp kk int32 + LeafExp k int32)
187

188 b_elem <- letSubExp "B_elem" =<<
189 eIf (toExp $ LeafExp gtid_x int32 .<. primFromSe width_B .&&.
190 if epilogue then
191 LeafExp b_row_idx int32 .<. primFromSe common_dim
192 else true)
193 (do addStm load_B
194 res <- index "B_elem" inp_B [b_row_idx]
195 resultBodyM [Var res])
196 (eBody [eBlank $ Prim map_t2])
197

198 b_loc_ind <- letSubExp "b_loc_ind" =<<
199 eIf (toExp $ LeafExp k int32 .<. primFromSe tk)
200 (toExp (LeafExp j int32 + LeafExp k int32 * primFromSe tx_rx)
201 >>= letTupExp' "loc_fi" >>= resultBodyM)
202 (eBody [pure $ BasicOp $ SubExp $ intConst Int32 (-1)])
203 return (b_elem, b_loc_ind)
204 resultBodyM $ map Var scatter_b_loc
205 resultBodyM [Var loop_b_loc]
206

207 -- inner loop updating this thread's accumulator (loop k in mmm_kernels).
208 thd_acc <- forLoop tk [thd_res_merge] $ \k [acc_merge] -> do
209 resultBodyM =<< letTupExp' "foo" =<<
210 eIf (toExp $ if epilogue then LeafExp kk int32 + LeafExp k int32
211 .<. primFromSe common_dim
212 else true) -- if in prologue, always compute redomap.
213 (do reg_mem <- segMap2D "reg_mem" segthd_lvl
214 ResultPrivate (ty, tx) $ \(ltid_y, ltid_x) -> do
215 asss_init <- scratch "asss_init" map_t1 [ry]
216 bsss_init <- scratch "bsss_init" map_t2 [rx]
217

218 asss <- forLoop ry [asss_init] $ \i [asss_merge] -> do
219

220 a_loc_ind <- letExp "a_loc_ind" =<< toExp (LeafExp k int32 +
221 (LeafExp ltid_y int32 * primFromSe ry +
222 LeafExp i int32) * primFromSe tk)
223

224 asss <- index "A_loc_elem" a_loc [a_loc_ind]
225 >>= update "asss" asss_merge [i]
226 resultBodyM [Var asss]
227

228 bsss <- forLoop rx [bsss_init] $ \j [bsss_merge] -> do
229

230 b_loc_ind <- letExp "b_loc_ind" =<< toExp (LeafExp j int32 +
231 LeafExp k int32 * primFromSe tx_rx +
232 LeafExp ltid_x int32 * primFromSe rx)
233

234 bsss <- index "B_loc_elem" b_loc [b_loc_ind]
235 >>= update "bsss" bsss_merge [j]
236 resultBodyM [Var bsss]
237 return $ map Var [asss, bsss]
238

239 let [asss, bsss] = reg_mem
240

241 -- the actual redomap.
242 redomap_res <- segMap2D "redomap_res" segthd_lvl
243 ResultPrivate (ty, tx) $ \(ltid_y, ltid_x) -> do
244

245 as <- index "as" asss [ltid_y, ltid_x]
246 bs <- index "bs" bsss [ltid_y, ltid_x]
247 css_init <- index "css_init" acc_merge [ltid_y, ltid_x]
248

85

249 css <- forLoop ry [css_init] $ \i [css_merge] -> do
250 css <- forLoop rx [css_merge] $ \j [css_merge'] -> do
251 resultBodyM =<< letTupExp' "foo" =<<
252 eIf (toExp $ LeafExp iii int32 + LeafExp i int32 +
253 primFromSe ry * LeafExp ltid_y int32
254 .<. primFromSe height_A .&&.
255 LeafExp jjj int32 + LeafExp j int32 +
256 primFromSe rx * LeafExp ltid_x int32
257 .<. primFromSe width_B
258)
259

260 (do a <- index "a" as [i]
261 b <- index "b" bs [j]
262 c <- index "c" css_merge' [i, j]
263

264 map_res <- newVName "map_res"
265 map_lam' <- renameLambda map_lam
266 red_lam' <- renameLambda red_lam
267

268 addStms $ rebindLambda map_lam' [a, b] map_res
269 <> rebindLambda red_lam' [c, map_res] c
270

271 css <- update "css" css_merge' [i, j] c
272

273 resultBodyM [Var css])
274 (resultBodyM [Var css_merge'])
275 return [Var css]
276

277 resultBodyM $ map Var redomap_res
278)
279 (resultBodyM [Var acc_merge])
280 return [thd_acc, a_loc, b_loc]
281

282 -- build prologue.
283 full_tiles <- letExp "full_tiles" $ BasicOp $ BinOp (SQuot Int32) common_dim tk
284 prologue_res_list <-
285 forLoop' (Var full_tiles) [cssss, a_loc_init, b_loc_init] $
286 \kk0 [thd_res_merge, a_loc_merge, b_loc_merge] -> do
287

288 process_full_tiles <-
289 kkLoopBody kk0 (thd_res_merge, a_loc_merge, b_loc_merge) False
290

291 resultBodyM $ map Var process_full_tiles
292

293 let prologue_res : a_loc_reuse : b_loc_reuse : _ = prologue_res_list
294

295 -- build epilogue.
296 epilogue_res_list <- kkLoopBody full_tiles (prologue_res, a_loc_reuse, b_loc_reuse) True
297

298 let epilogue_res : _ = redomap_res_list
299

300 -- TODO: to support gemm and other programs with non-empty code2 and/or
301 -- TODO: code2', this should be implemented here with something like:
302 -- TODO: segmap (ltid_y < ty, ltid_x < tx) {
303 -- TODO: for i < ry do
304 -- TODO: for j < rx do
305 -- TODO: addStms code2 <> code2'
306 -- TODO: final_res <- some function of epilogue_res
307 -- TODO: return final_res
308

309 -- TODO: RegTileReturns is still missing boundary checks.
310 return [RegTileReturns [(height_A, ty, ry), (width_B, tx, rx)] epilogue_res]
311

312 let level' = SegGroup (Count grid_size) (Count group_size) SegNoVirt
313 space' = SegSpace gid_flat [(gid_y, gridDim_y), (gid_x, gridDim_x)]

86

314 kbody' = KernelBody () stms_seggroup ret_seggroup
315 return $ Let pat aux $ Op $ SegOp $ SegMap level' space' ts kbody'
316

317 return $ Just (host_stms, new_kernel)
318

319 mm_BlkRegTiling _ = do return Nothing
320

321 primFromSe :: SubExp -> PrimExp VName
322 primFromSe se = primExpFromSubExp int32 se
323

324 ceilDiv :: MonadBinder m => SubExp -> SubExp -> m (Exp (Lore m))
325 ceilDiv x y = eDivRoundingUp Int32 (eSubExp x) (eSubExp y)
326

327 scratch :: MonadBinder m => String -> PrimType -> [SubExp] -> m VName
328 scratch se_name t shape = letExp se_name $ BasicOp $ Scratch t shape
329

330 -- index an array with indices given in outer_indices; any inner
331 -- dims of arr not indexed by outer_indices are sliced entirely
332 index :: MonadBinder m => String -> VName -> [VName] -> m VName
333 index se_desc arr outer_indices = do
334 arr_t <- lookupType arr
335 let shape = arrayShape arr_t
336

337 let inner_dims = shapeDims $ stripDims (length outer_indices) shape
338 let inner_slices = map (\inner_dim -> DimSlice (intConst Int32 0)
339 inner_dim (intConst Int32 1)) inner_dims
340

341 let indices = map (DimFix . Var) outer_indices ++ inner_slices
342 letExp se_desc $ BasicOp $ Index arr indices
343

344 update :: MonadBinder m => String -> VName -> [VName] -> VName -> m VName
345 update se_desc arr indices new_elem = update' se_desc arr indices (Var new_elem)
346

347 update' :: MonadBinder m => String -> VName -> [VName] -> SubExp -> m VName
348 update' se_desc arr indices new_elem =
349 letExp se_desc $ BasicOp $ Update arr (map (DimFix . Var) indices) new_elem
350

351 forLoop' :: SubExp -- loop var
352 -> [VName] -- loop inits
353 -> (VName -> [VName] -- (loop var -> loop inits -> loop body)
354 -> Binder Kernels (Body Kernels))
355 -> Binder Kernels [VName]
356 forLoop' i_bound merge body = do
357 i <- newVName "i" -- could give this as arg to the function
358

359 let loop_form = ForLoop i Int32 i_bound []
360

361 merge_ts <- mapM lookupType merge
362 loop_inits <- mapM (\merge_t -> newParam "merge" $ toDecl merge_t Unique) merge_ts
363

364 loop_body <- runBodyBinder $ inScopeOf loop_form $
365 localScope (scopeOfFParams loop_inits) $ body i $ map paramName loop_inits
366

367 letTupExp "loop" $ DoLoop [] (zip loop_inits $ map Var merge)
368 loop_form loop_body
369

370 forLoop :: SubExp -> [VName] -> (VName -> [VName] -> Binder Kernels (Body Kernels))
371 -> Binder Kernels VName
372 forLoop i_bound merge body = do
373 res_list <- forLoop' i_bound merge body
374 return $ head res_list
375

376

377 -- given a lambda "lam", a list "new_params" of new
378 -- parameters which should be applied to the lambda,

87

379 -- and a VName "res_name" which the lambda result should
380 -- be bound to:
381 -- creates Stms corresponding to binding of new_params,
382 -- lambda body, and binding of lambda result to res_name.
383 rebindLambda :: Lambda Kernels
384 -> [VName]
385 -> VName
386 -> Stms Kernels
387 rebindLambda lam new_params res_name =
388 (stmsFromList $
389 map (\(ident, new_param) ->
390 mkLet [] [ident] $ BasicOp $ SubExp $ Var new_param)
391 $ zip idents new_params)
392 <> bodyStms lam_body
393 <> oneStm (mkLet [] [Ident res_name lam_ret_type] $ BasicOp $ SubExp lam_res)
394 where
395 (lam_params, lam_body, lam_ret_type : _) =
396 (lambdaParams lam, lambdaBody lam, lambdaReturnType lam)
397 idents = map (\param -> Ident (paramName param) (paramAttr param))
398 lam_params
399 lam_res : _ = bodyResult lam_body
400

401 -- | Tries to identify the following pattern:
402 -- code followed by some Screma followed by more code.
403 matchCodeStreamCode :: Stms Kernels ->
404 (Stms Kernels, Maybe (Stm Kernels), Stms Kernels)
405 matchCodeStreamCode kstms =
406 let (code1, screma, code2) = foldl (\acc stmt ->
407 case (acc, stmt) of
408 ((cd1, Nothing, cd2), Let _ _ (Op (OtherOp (Screma _ _ _)))) ->
409 (cd1, Just stmt, cd2)
410

411 ((cd1, Nothing, cd2), _) ->
412 (cd1 ++ [stmt], Nothing, cd2)
413

414 ((cd1, Just strm, cd2), _) ->
415 (cd1, Just strm, cd2 ++ [stmt])
416) ([], Nothing, []) (stmsToList kstms)
417 in (stmsFromList code1, screma, stmsFromList code2)
418

419

420 isTileableRedomap :: Stm Kernels
421 -> Maybe (SubExp, [VName],
422 (Commutativity, Lambda Kernels, [SubExp], Lambda Kernels))
423 isTileableRedomap stm
424 | Op (OtherOp (Screma w form arrs)) <- stmExp stm,
425 Just (reds, map_lam) <- isRedomapSOAC form,
426 Reduce red_comm red_lam red_nes <- singleReduce reds,
427 all (primType . rowType . paramType) $ lambdaParams red_lam,
428 all (primType . rowType . paramType) $ lambdaParams map_lam,
429 lambdaReturnType map_lam == lambdaReturnType red_lam, -- No mapout arrays.
430 not (null arrs),
431 all primType $ lambdaReturnType map_lam,
432 all (primType . paramType) $ lambdaParams map_lam =
433 Just (w, arrs, (red_comm, red_lam, red_nes, map_lam))
434 | otherwise =
435 Nothing
436

437

438 -- | Checks that all streamed arrays are variant to exacly one of
439 -- the two innermost parallel dimensions, and conversely, for
440 -- each of the two innermost parallel dimensions, there is at
441 -- least one streamed array variant to it. The result is the
442 -- number of the only variant parallel dimension for each array.
443 isInvarTo1of2InnerDims :: Names -> SegSpace -> VarianceTable -> [VName]

88

444 -> Maybe [Int]
445 isInvarTo1of2InnerDims branch_variant kspace variance arrs =
446 let inner_perm0 = map varToOnly1of2InnerDims arrs
447 inner_perm = catMaybes inner_perm0
448 ok1 = elem 0 inner_perm && elem 1 inner_perm
449 ok2 = length inner_perm0 == length inner_perm
450 in if ok1 && ok2 then Just inner_perm else Nothing
451 where varToOnly1of2InnerDims :: VName -> Maybe Int
452 varToOnly1of2InnerDims arr = do
453 (j, _) : (i, _) : _ <- Just $ reverse $ unSegSpace kspace
454 let variant_to = M.findWithDefault mempty arr variance
455 branch_invariant = not $ nameIn j branch_variant ||
456 nameIn i branch_variant
457 if not branch_invariant then Nothing -- if i or j in branch_variant; return nothing
458 else if nameIn i variant_to && not (nameIn j variant_to) then Just 0
459 else if nameIn j variant_to && not (nameIn i variant_to) then Just 1
460 else Nothing
461

462

463 varianceInStms :: VarianceTable -> Stms Kernels -> VarianceTable
464 varianceInStms = foldl varianceInStm
465

466 -- just in case you need the Screma being treated differently than
467 -- by default; previously Cosmin had to enhance it when dealing with stream.
468 varianceInStm :: VarianceTable -> Stm Kernels -> VarianceTable
469 varianceInStm v0 bnd@(Let _ _ (Op (OtherOp (Screma _ _ _))))
470 | Just (_, arrs, (_, red_lam, red_nes, map_lam)) <- isTileableRedomap bnd =
471 let v = defVarianceInStm v0 bnd
472 red_args = lambdaParams red_lam
473 map_args = lambdaParams map_lam
474 card_red = length red_nes
475 acc_lam_f = take (card_red `quot` 2) red_args
476 arr_lam_f = drop (card_red `quot` 2) red_args
477 stm_lam = (bodyStms $ lambdaBody map_lam) <> (bodyStms $ lambdaBody red_lam)
478

479 v' = foldl' (\vacc (v_a, v_fm, v_fr_acc, v_fr_var) ->
480 let vrc = oneName v_a <> M.findWithDefault mempty v_a vacc
481 vacc' = M.insert v_fm vrc vacc
482 vrc' = oneName v_fm <> vrc
483 in M.insert v_fr_acc (oneName v_fr_var <> vrc') $ M.insert v_fr_var vrc' vacc'
484) v $ zip4 arrs (map paramName map_args) (map paramName acc_lam_f) (map paramName arr_lam_f)
485 in varianceInStms v' stm_lam
486 | otherwise = defVarianceInStm v0 bnd
487

488 varianceInStm v0 bnd = defVarianceInStm v0 bnd
489

490 defVarianceInStm :: VarianceTable -> Stm Kernels -> VarianceTable
491 defVarianceInStm variance bnd =
492 foldl' add variance $ patternNames $ stmPattern bnd
493 where add variance' v = M.insert v binding_variance variance'
494 look variance' v = oneName v <> M.findWithDefault mempty v variance'
495 binding_variance = mconcat $ map (look variance) $ namesToList (freeIn bnd)
496

497 -- alternatively, import TileLoops?
498 segMap2D :: String -- desc
499 -> SegLevel -- lvl
500 -> ResultManifest -- manifest
501 -> (SubExp, SubExp) -- (dim_x, dim_y)
502 -> ((VName, VName) -- f
503 -> Binder Kernels [SubExp])
504 -> Binder Kernels [VName]
505 segMap2D desc lvl manifest (dim_x, dim_y) f = do
506 ltid_x <- newVName "ltid_x"
507 ltid_y <- newVName "ltid_y"
508 ltid_flat <- newVName "ltid_flat"

89

509 let segspace = SegSpace ltid_flat [(ltid_x, dim_x), (ltid_y, dim_y)]
510

511 ((ts, res), stms) <- runBinder $ do
512 res <- f (ltid_x, ltid_y)
513 ts <- mapM subExpType res
514 return (ts, res)
515 Body _ stms' res' <- renameBody $ mkBody stms res
516

517 letTupExp desc $ Op $ SegOp $
518 SegMap lvl segspace ts $ KernelBody () stms' $ map (Returns manifest) res'
519

520 segScatter2D :: String -- desc
521 -> SubExp -- arr_size
522 -> VName
523 -> SegLevel -- lvl
524 -> (SubExp, SubExp) -- (dim_y, dim_x)
525 -> ((VName, VName) -> Binder Kernels (SubExp, SubExp)) -- f
526 -> Binder Kernels [VName]
527 segScatter2D desc arr_size updt_arr lvl (dim_x, dim_y) f = do
528 ltid_x <- newVName "ltid_x"
529 ltid_y <- newVName "ltid_y"
530 ltid_flat <- newVName "ltid_flat"
531 let segspace = SegSpace ltid_flat [(ltid_x, dim_x), (ltid_y, dim_y)]
532

533 ((t_v, res_v, res_i), stms) <- runBinder $ do
534 (res_v, res_i) <- f (ltid_x, ltid_y)
535 t_v <- subExpType res_v
536 return (t_v, res_v, res_i)
537

538 Body _ stms' res' <- renameBody $ mkBody stms [res_i, res_v]
539 let [res_i', res_v'] = res'
540 let ret = WriteReturns [arr_size] updt_arr [([res_i'], res_v')]
541 let body = KernelBody () stms' [ret]
542

543 letTupExp desc $ Op $ SegOp $ SegMap lvl segspace [t_v] body
544

545 processIndirections :: Names -- input arrays to redomap
546 -> Names -- variables on which the result of redomap depends on.
547 -> Maybe (Stms Kernels, M.Map VName (VName, Slice SubExp, Type))
548 -> Stm Kernels
549 -> Maybe (Stms Kernels, M.Map VName (VName, Slice SubExp, Type))
550 processIndirections arrs _ acc (Let patt _ (BasicOp (Index arr_nm slc)))
551 | Just (ss, tab) <- acc,
552 [p] <- patternValueElements patt,
553 (p_nm, p_tp) <- (patElemName p, patElemType p),
554 nameIn p_nm arrs,
555 Array _ (Shape [_]) _ <- p_tp =
556 Just (ss, M.insert p_nm (arr_nm, slc, p_tp) tab)
557

558 processIndirections _ res_red_var acc stm'@(Let patt _ _)
559 | Just (ss, tab) <- acc,
560 ps <- patternValueElements patt,
561 all (\p -> not (nameIn (patElemName p) res_red_var)) ps =
562 Just (ss Seq.|> stm', tab)
563 | otherwise = Nothing

90

