
U N I V E R S I T Y O F C O P E N H A G E N
F A C U L T Y O F S C I E N C E

Master’s Thesis

Efficient GPU Implementation of
Multi-Precision Integer Division
Aske N. Raahauge, Martin B. Marchioro & Marc I. Løvenskjold

Supervisor: Cosmin E. Oancea

Submitted: June 2, 2025

Abstract

Efficient arithmetic on multi-precision integers is a cornerstone of many scientific
and cryptographic applications that require computations on integers that exceed
the native sizes supported by modern processors. While GPU-efficient addition and
multiplication has been well explored, division has been subject to less attention
due to its greater algorithmic complexity. This thesis attempts to bridge this gap
by implementing a GPU-efficient division, that works on integers up to 250.000 bits
in size which fit in a single cuda block, exploiting the temporal data reuse of fast
scratchpad memory. The algorithm is based on the Newton-inspired method for
computing the reciprocal of the divisor presented by Watt in [33], which performs
exact division entirely within the integer domain. Our main product is an efficient
implementation in cuda, although not outperforming the popular cgbn library,
it demonstrates promising scalability results. Moreover, to our knowledge, we are
the first to implement a parallel division capable of operating on inputs larger than
215 bits. Finally, we implement a Futhark version to explore the practical aspects
of using a high-level functional language, and conclude that current compiler
limitations introduce considerable overheads and scalability issues.

2

Contents

1 Introduction 5

2 Related Work 8

3 Background 10
3.1 GPU Architecture . 10
3.2 The CUDA Programming Model 14
3.3 The Futhark Programming Language 16
3.4 Representation of Multiple Precision Integers 18

4 Division via Newton’s Method 21
4.1 Quotient and Remainder . 21
4.2 Parameterization over Multiplication 23

5 Supporting Arithmetic 24
5.1 Addition . 24
5.2 Subtraction . 26
5.3 Classical Multiplication . 26
5.4 FFT Multiplication . 28

6 The Whole Shifted Inverse 31
6.1 Convergence . 31
6.2 Initial Value Choice . 32
6.3 Shorter iterates & divisor prefixes 32
6.4 Close Products . 33
6.5 Original Algorithm . 34
6.6 Complexity Analysis . 36

7 Algorithmic Revisions 38
7.1 Handling Negative Values . 38
7.2 Limitations of the Initial Approximation 38
7.3 Overestimation from Divisor Prefixes 40
7.4 Refined Algorithm . 43

8 Efficient CUDA Prototype 47
8.1 General Strategies & Limitations 47
8.2 Shifting . 51
8.3 Initial Value Computation . 52
8.4 Classical Multiplication . 53
8.5 Warp-Level SOACs . 59
8.6 Optimizing Arithmetic on Powers of B 62
8.7 Runtime Analysis . 63

9 Futhark Implementation 66
9.1 Futhark’s Strengths and Weaknesses 66
9.2 Implementation . 67

3

10 Validation & Benchmarking 70
10.1 Correctness . 70
10.2 Performances Metrics . 71
10.3 Benchmark Setup . 72
10.4 Performance Results . 73
10.5 Performance on Other Hardware 78

11 Conclusion 79
11.1 Future Work . 79

12 Appendix 84

4

1 Introduction

Modern processors are typically limited to 32-bit or 64-bit integer operations,
imposing inherent limits on the size of numbers that can be directly manipulated.
However, many scientific and cryptographic applications require computations
on integers that far exceed these native sizes. To address this need, multiple
precision arithmetic extends standard operations to arbitrarily sized integers by
representing them as arrays of smaller fixed-size words, avoiding the rounding
errors and numerical instability introduced by floating-point representations.

As modern algorithms demand ever-larger integer sizes, the importance of de-
veloping efficient multiple precision arithmetic increases, especially in parallel
settings, as the slowing of Moore’s Law shifts the focus from faster processors
to greater parallelism. While efficient parallel implementations for addition and
multiplication have been successfully showcased in the past, the division counter-
part continues to lag behind in terms of efficiency and scalability, likely due to its
greater algorithmic complexity. Yet, division is particularly important, since it
serves as a building block for other fundamental operations, such as the Euclidean
algorithm, which efficiently computes the greatest common divisor (GCD) of two
integers. Improving the performance of multi-precision division is therefore key
to accelerating a wide range of higher-level algorithms.

This thesis addresses this gap by extending parallel arithmetic operations on multi-
ple precision integers with an efficient implementation of division, complementing
existing addition and multiplication implementations [30]. More specifically, we
present a cuda implementation capable of performing division on integers of
approximately 250.000 bits in size, which fit in fast scratchpad memory of a single
cuda block. This approach enables us to exploit temporal data reuse through fast
scratchpad memory, which offers substantially lower latency compared to global
memory. Moreover, to our knowledge, we are the first to report a GPU-based
multi-precision division implementation capable of operating on inputs larger
than 215 bits.

Our algorithm is based on a method proposed by Watt in [33], which performs
exact division by computing the whole shifted inverse of the divisor, a technique
that adapts Newton’s method to remain entirely within the domain of integers.
Moreover, the algorithm is generic with the underlying multiplication technique,
allowing it to be paired with different multiplication algorithms, such as classical,
Karatsuba, or FFT-based methods, depending on the operand size.

We evaluate our cuda prototype against the state-of-the-art cgbn arithmetic
library, developed by NVIDIA, which supports arithmetic operations for integers
up to 215 bits. Although our implementation does not outperform cgbn, it shows
promising results, indicating that it may prove competitive for sizes close to 218

bits. However, our main advantage lies in supporting integers with up to eight
times more bits than the cgbn limit, which corresponds to representing values
that are up to 2229376 times larger.

We also implement and evaluate a high-level version of the algorithm in Futhark,
which unfortunately does not produce performant code due to compiler limitations.

5

We discuss advantages and challenges of this high-level functional approach, and
conclude that there are significant overheads and scalability issues rooted to the
compiler shortcomings when handling nested parallelism with irregular structures.
This may well serve as inspiration for developing new optimizations passes in
Futhark that address said limitations, thereby improving performance for a
broader class of parallel applications.

Finally, we extend our cuda implementation to compute greatest common divisor
(GCD) via the Euclidean algorithm, and provide a performance comparison with
cgbn.

Main Contributions

• An adaptation of the whole shifted inverse algorithm [33] to support an
unsigned multi-precision integer representation, along with corrections of
previously unspecified behavior.

• An efficient cuda division implementation supporting integers up to 218

bits, which to our knowledge is the only parallel division algorithm capable
of handling integers up to this size.

• A high-level implementation in futhark, exploring overhead and scalability
issues related to compiler limitations.

• A benchmark driven performance evaluation of our cuda division against
cgbd, finding it 3× slower at 215-bit integers. However, unlike cgbd, our
implementation scales to 218 bits.

The thesis is structured as follows. Section 2 provides a brief overview of related
academic work. Section 3 gives a short introduction to the technical foundations,
including general GPU architecture, the cuda programming model, the Futhark
programming language, along with our representation of a multi-precision integer.
Section 4 touches upon Newton’s method and how it relates to integer division,
which serves as a foundation for later sections. Section 5 showcases previous
work consisting of parallel implementations of supporting arithmetic operations
needed for the division algorithm. Section 6 analyses the whole shifted inverse
algorithm and it’s properties, while Section 7 presents revisions to the algorithm
that ensure correct handling of negative values and that highlights existing bugs.
Section 8 provides a detailed overview of our high-performance cuda prototype,
showcasing general strategies, implementation specifics and limitations. Section
9 explores how to produce a semantically equivalent program in the high-level
programming language Futhark. Section 10 benchmarks our implementations
against the cgbn library and analyzes the results. Finally, Section 11 concludes
the thesis and examines the prospect of future work.

Software Structure

The code referenced in this thesis can be found in the repository linked below.
And all tests can be replicated using the Makefiles in the corresponding directories
as follows e.g. div/cuda/make, div/futhark/make or cuda/cgbn-tests/make.

6

https://github.com/aske0778/midint-arithmetic-division.git

Division implementation The division implementation is located in the div
directory, and has a sub-directory for the cuda and futhark implementations
respectively. The main.cu file contains the benchmarking setup, while ker-
division.cu.h contains the main cuda kernels and device functions. The
directories binops and helpers contain auxiliary functions used as part of the
division itself and during benchmarking.

All major functions related to the futhark implementation can be found in
div.fut, which also contains the benchmarks. Similarly the div-helpers.fut,
add.fut, mul.fut, sub.fut and helpers.fut all contain supporting functions
similar to cuda.

CGBN The benchmarking results for cgbn can be found in the cuda/cgbn-
tests directory, as they extend upon an existing framework. cgbn-perf.cu
contains the benchmarking setup, while cgbn-kers.cu contains the kernels.

7

2 Related Work

Previous work has demonstrated efficient implementations of basic arithmetic
operations on parallel hardware. Our main inspiration for this thesis comes
from "GPU Implementations for Midsize Integer Addition and Multiplication" by
Oancea and Watt [30]. This paper and the corresponding implementation forms
the basis of this thesis, since the code developed as part of this thesis builds on
top of their parallel implementation of addition and multiplication. Oancea and
Watt provide both implementations and performance results for integer addition
as well as for classical and FFT-based (Fast Fourier Transform) multiplication of
integers. In particular their FFT multiplication is shown to produce log-linear
work, outperforming classical multiplication for big integers of sizes 216 bits and
greater. Traditionally FFT-based multiplication uses the Discrete Fast Fourier
Transform (DFFT) in the domain of complex numbers, but this introduces the
possibility of rounding errors and loss of precision due to leaving the domain of
integers. To avoid this, the authors find primes numbers, such that the DFFT can
be mapped to prime fields that are guaranteed to have all roots of unity, mapping
the computation to the integral domain. A suitable prime is chosen to maximize
utilization of native integer operations, loosing only one bit per multi-precision
digit. This method is based on the Cooley-Tukey algorithm, and is designed for
execution within a single cuda block, allowing reuse of fast scratchpad memory.
Additionally the authors examine the efficiency of futhark in supporting this
type of operations, however the futhark implementation has overhead and
scalability issues, caused by the absence of efficient sequentialization of excess
parallelism in the futhark compiler [30].

Previous efforts have been made to implement the algorithm by Watt [33] in same
manner as addition and multiplication by [30]. One such work is presented in
"Efficient Big Integer Arithmetic Using GPGPU" by Bringgaard [10], which details
the process of establishing a sequential and a parallel division implementation
in Futhark. This paper provides the foundation for our own implementation in
Futhark, as we use some of the existing library by Bringgaard, in particular their
addition, subtraction and multiplication. Working cuda implementations of
addition and classical multiplication are provided, and shown to be competitive
with the cgbn library [26], for operations on multi-precision integers in the range
of 214 to 218 bits.

A previously successful attempt at implementing arithmetic for multiple precision
integers is the Cooperative Groups Big Numbers (cgbn) library, authored
by NVLabs. This library supports multi-precision integers of sizes up to 32K
bits, and includes high-performance implementation of most common arithmetic
operations. The library advertises exceptional performance, due to operations
utilizing architecture specific warp-level primitives, which allows for efficient
sharing of values between individual threads in a warp. However the library stops
short of supporting integers of up to the 218 bits, as limited by shared memory,
which prompts our thesis. We use this library to establish a baseline comparison
for the limits of parallel performance on cuda GPUs.

We include some other loosely related works that have tackled similar problems

8

in the field of arithmetic on multi-precision integers:

• Previous work includes looking at the algorithms behind some of the basic
operations included in multi-precision libraries like GMP, and if they could
be expanded to a parallel setting. Ultimately, it was found that due to the
architectural differences of the CPU and the GPU, most of the existing
sequential algorithms could not easily be ported to a parallel setting, instead
prompting research into new inherently parallel algorithms [13].

• Efficient parallel algorithms for division has been previously explored when
certain conditions are met. One such study is by Emmart and Weems,
which used a modified version of Jebelean’s exact division algorithm for the
case when the divisor is of a single precision value. Their study utilizes this
property to propose an algorithm with a complexity of O(n/p+ log p) for a
given number of processors p [14]. Their paper shows a significant speedup
is possible when restrictions on the input are considered.

• Other multi-precision arithmetic libraries have also been developed. One
such example is CAMPARY, which includes both sequential CPU and
parallel cuda implementations. It represents real numbers as unevaluated
sums of multiple floating-point numbers to extend precision, using error-free
transformations to manage rounding errors during arithmetic operations
[18]. CAMPARY supports basic arithmetic operations such as addition,
subtraction, multiplication, division, and square root, and is designed for
precisions up to a few hundred bits

• A similar, but older GPU-based library, CARPREC provides arithmetic
operators, mathematical functions, and data-parallel primitives. It supports
both multi-digit and multi-term number formats. The library includes
a GQD (Generalized Quad-Double) module that offers precision up to
approximately 62 decimal digits [22]. While the authors report results for
computations with up to 1000 decimal digits, such extended functionality
does not appear to be available in the public implementation.

9

3 Background

The following section is intended to provide a brief introduction to the GPU
architecture and programming models associated with this thesis, which laid the
foundation for the work done. We describe the necessary preliminaries, beginning
with general concepts of modern GPU architecture, followed by introductions to
the cuda programming model and the Futhark programming language, which are
the two languages used throughout this thesis. Finally, we define the underlying
representation of the multiple precision integer considered in this thesis, along
with its properties.

3.1 GPU Architecture

In this section, we present an overview of the GPU architecture relevant to
understanding the work in this thesis. The terminology will be based upon
NVIDIA technology as their cuda programming model has become the industry
standard within the field of parallel computing [6]; however, the underlying
principles should be generic and therefore relevant for other architectures as well.

Modern CPUs include upwards of dozens of complex cores, and advertise advanced
features like out-of-order execution and branch prediction, designed to minimize
the execution time of sequential tasks. GPUs in contrast incorporate hundreds or
thousands of simpler processing cores, which are then explicitly run in parallel in
order to maximize the total amount of work completed per unit time (throughput).
These GPUs feature a hierarchical hardware structure designed to manage and
execute parallel workloads efficiently. More specifically, the GPU contains a
number of Streaming Multiprocessors (SMs) ranging from a few to over a hundred
for high-end models. Each SM acts as an independent processor capable of
executing multiple thread blocks concurrently as part of a kernel. The SM is
responsible for the scheduling and execution of threads, which happens in groups
of 32 parallel threads at a time called a warp. Each thread in a warp executes the
same instruction in lockstep, which optimizes the total throughput when run on
large parallel problems. The core design philosophy of a GPU is thus to execute
a massive number of threads concurrently. This makes GPUs exceptionally
well-suited for problems that exhibit significant data parallelism – where the
same operation can be applied independently to many different data elements
simultaneously.

SM (Streaming Multiprocessors) cuda-core

hierarchy high-level, contains multiple cuda-cores low-level, processing core

purpose scheduling & thread management execution of thread instructions

contains cores, registers, cache, scheduler simple ALU

Table 1: Brief comparison between SM and cuda-core.

Table 1 gives a simplified overview of the connection between the SM and the
processing cores it schedules, called cuda-cores. The SM dispatches a warp of

10

threads to the cuda-cores at a time. The total number of cores per SM is specific
to the hardware, while warps always consists of 32 threads.
Figure 1 showcases a simplified view of the architectural differences between
a CPU with four cores and a GPU containing eight SMs. The figure is color
coded to represent the equivalent parts of the hardware between GPU and CPU.
Some initial observations are that while GPUs have a much greater number of
processing cores, they are each without a control block, and as such are dependent
on the limited number of SMs for scheduling. Additionally the size and amount
of lower level caches are much smaller for the GPU making them less versatile,
and inefficient memory management much more costly.

Figure 1: Figure showing the layout of CPU vs GPU.

Memory Hierarchy The memory layout of modern GPUs is split into a
hierarchical structure consisting of three main layers, each one of a different size
and with different behavior. An overview of the hierarchy can be seen in Figure
2, and we will briefly describe each of them below.

• Each thread has access to a number of it’s own private 32-bit registers. This
memory is associated with extremely low latency, and is private in the sense
that no synchronization issues can occur as only one thread can read/write
to it. If a thread runs out of register memory, the compiler can instead
spill these into shared or even global memory. This practice ensures that
whatever is stored in memory is never lost, however it comes at the cost
of increased latency due to reads and writes to this higher level cache [4].
Thus registers are primarily used for storing variables and smaller arrays
that are associated with the given thread.

• Shared memory, also called scratchpad memory, is the next immediate
layer accessible by a thread. It is aptly named for being shared between
all threads in a block, meaning that other threads from other blocks in
the grid are not able to access it. Shared memory is associated with more
latency than registers, however it is the lowest level memory in which it is
possible for threads to share information aside from warp shuffles, thus any
application with any amount of inter-warp communication needs to access
this memory. Managing this memory efficiently is crucial for the performance
of applications as the latency introduced by accesses can quickly produce

11

significant overhead. Shared memory can both be allocated statically and
dynamically during runtime and has the same lifetime as its associated
thread-block.

• Global memory is the largest and consequently slowest of the three memory
layers, it is accessible to all threads and is not associated with a any specific
kernel. As this memory can outlive a kernel and is instead associated with
the life-time of the host application, the responsibility of allocation and
de-allocation is delegated to the host. Global memory is therefore used for
the initial copying of data from the host to the device.

Figure 2: The cuda memory hierarchy, showing access speed vs size

Occupancy As the main idea behind GPUs is to maximize throughput, we
want to maximize the number of warps concurrently running at all times i.e. we
want to maximize the occupancy of our program. The main idea is that when
one warp stalls (e.g. is waiting for data from global or shared memory), the SM
can quickly switch to another idle warp, keeping the cores busy. If occupancy is
low, it means that fewer warps are available to be scheduled, reducing the SM’s
ability to hide latency and leading to underutilization of the underlying hardware.
A number of factors affect how many threads are active at any given time, most
notable is the combination of the block size, and the amount of memory it requires.
Generally, as the amount of memory used by a thread block increases, the number
of blocks executed concurrently on the SM decreases.

As an example, if the blocks of a kernel utilize 1024 threads each, these will be
allocated in terms of 32 warps. However, as an SM has a maximum number of
resident warps of 48, only one block will be scheduled at a time, meaning that
each SM is underutilized by 16 warps during execution [4].

Coalesced Memory Access Some algorithms have their performance bounded
by the overhead of accessing higher level memory, and we call these algorithms
memory bound in contrast to compute bound. However, regardless of the bound,
optimizing the accesses to global memory is imperative to ensure good performance,
which on GPUs is ensured through coalesced memory access. Coalesced memory
is optimized when consecutive threads within a block access contiguous data or
memory addresses in global memory. It is encouraged to perform memory accesses
like this which optimizes the spacial locality of a program.

12

Since all data transfers to and from global memory happens by the memory
bus, coalesced access will reduce the total amount of reads/writes that has to
be performed when accessing the data. As an example, the Nvidia A100 has a
memory bus with a width of 5120 bits, this means that if all 32 threads in a
warp read 64-bit integers each in a coalesced access in global memory, it could
be done in a single memory transfer. The worst case occurs when each thread
accesses different memory addresses such that the stride is larger than the width
of the bus, resulting in one access for each thread, significantly slowing down the
computation [10].

(a) An example of uncoalesced access. (b) An example of coalesced access.

Figure 3: Examples of both uncoalesced and coalesced memory access to global
memory, when the sequentialization factor is 2.

Figure 3 shows an example of both uncoalesced and coalesced memory accesses,
with arrows representing reads/writes to a memory cell. The separation between
registers is meant to emphasize that registers are thread exclusive. Figure 3a shows
each thread accessing multiple consecutive elements in global memory, resulting
in poor spacial locality when processing high volumes of data. In comparison
Figure 3b shows consecutive threads access consecutive elements of global memory,
resulting in coalesced access. This optimizes locality, as each warp of threads can
fit into the width of the memory bus. Both examples use the sequentialization
factor of Q = 2, meaning that each thread fetches two elements from memory. In
practice, this factor changes based on the input, which will affect the performance
when memory access is uncoalesced [28].

Having some degree of serialization can improve performance by reducing the
need for inter-thread communication, and allow for better temporal locality.
An example is that of a simple reduction. A parallel implementation with
no serialization would involve each thread computing a single reduction before
performing an expensive write back to shared memory. In contrast, with some
degree of serialization multiple elements are reduced sequentially by each thread.
This approach results in more work for each thread, however these computations
may still be faster, as they result in significantly less accesses to shared memory.
In practice, the degree of serialization is often chosen as a result of testing different

13

values, and picking the best performing one on the given problem [27].

3.2 The CUDA Programming Model

cuda is a heterogeneous programming model, meaning that it integrates more
than one kind of processing unit in order to handle different tasks. It acts as a
framework on top of C++ allowing for easy integration between the CPU, called
the host, and the GPU, called the device. To distinguish which code runs on
which processor, cuda introduces a set of function specifiers:

• The __host__ defines a function that can only be called and executed by
the host i.e. on the CPU.

• Similarly, functions annotated with __device__, can only be called and
executed by the device, and are not allowed to be called from the host.

• Lastly, functions annotated with __global__, also called kernels, are func-
tions called by the host that signal to start execution of the function on the
device.

Figure 4: Execution sequence between host and device

When writing in cuda the programmer has to manage the control-flow between
the host and the device using synchronization barriers. In particular, when a
kernel returns control flow to the host, all threads are not necessarily finished
computing. In this case if the host requires the result, a barrier is used tells
the calling host-process to wait for the device to have returned. This process of
interweaving control flow between the host and device is showcased in Figure 4.

Individual threads on the device itself can get our of sync as well, this can happen
when thread-diverging behavior is necessary to achieve a desired functionality,

14

or simply due to an uneven distribution of the workload. In some cases this can
result in a data dependency due to a race condition between threads, if multiple
threads attempt to read/write to a shared memory location [29]. In order to
prevent this, the programmer can programatically synchronize all threads in a
block, providing a barrier between reads and writes. However, an overuse of this
can negatively impact performance, as it potentially causes a large number of
threads to idle for an extended period of time.

In addition to the synchronization barriers cuda offers atomic functions which
can be used to interact with shared or global memory while ensuring atomicity.
These functions are among others defined for all standard arithmetic operations
and bitwise operations. They work by reading a value from a shared address,
modifying it according to the given operation, before writing back to the same
address. These functions can easily be used to implement block-level reductions,
however due to their atomic nature of blocking other threads from reading or
writing to the memory address, this is generally inefficient. Additionally, they do
not work as general barriers, meaning that a synchronization is often required
afterwards to ensure memory consistency across threads [4].

Thread Hierarchy The cuda programming model contains a given number
of virtual threads, which are bundled into warps of 32. When a kernel is launched
these warps are scheduled as part of block, which are matrices of three dimensions
in which the threads are exposed to the programmer. Additionally, a block is
itself a part of a three dimensional grid, in which all blocks of the given kernel
are stored. In practice both the block and the grid can have any shape between
one, two or three dimensions, which is typically chosen by the programmer to
fit the shape of the data, as the dimensionality is merely an abstraction of the
underlying implementation. Each thread can then be accessed by the programmer
by specifying the corresponding identifier of the block in the dimensions {x, y, z}
as seen in Figure 5.

Figure 5: Two-dimensional grid (right) of two-dimensional blocks (left), each
containing individual threads.

The blocks within a grid are required to execute independently, a concept know
as block independence, allows them to be scheduled in any order and enables
scalable execution. This means that the result of a kernel is invariant to the
specific scheduling of thread-blocks during runtime, and allows an implementation
to scale with the number of cores available on the given hardware [4].

15

Thread divergence GPUs make use of the Single Instruction Multiple Threads
(SIMT) execution model, which is a multi threaded extension of the Single
Instruction Multiple Data (SIMD) model. The result is that threads execute the
same instructions in warps of 32, which results in very high throughput when
all threads are engaged in relevant computation. A downside of this approach
is that while individual threads programatically look to be separable, they are
not. Instead, if diverging paths of execution occur within a warp, the SM will
serialize them, essentially taking both paths in series. This means that for optimal
performance, one should strive to eliminate diverging execution paths for the
different threads within a warp [4].

if (threadIdx.x % 2 == 0) {
A;
B;

} else {
C;

}
D;

(a) Code causing thread divergence
(b) Serialization caused by diverging
threads

Figure 6: Example of thread divergence.

The above Figure 6 showcases a simple example of thread divergence, where the
threads within a block will be divided evenly between the two branches based on
the individual thread identifiers. However as the split does not cleanly divide a
warp, the divergent paths are serialized.

3.3 The Futhark Programming Language

Futhark is a high-level, pure functional programming language designed to ease
data parallel programming on the GPU. It compiles to intermediate code in both
sequential C, OpenCL, and cuda, meaning that it is hardware-agnostic in the
sense that it can compile to both sequential CPU and parallel GPU code [16].
Traditional GPU programming models, such as cuda or OpenCL, require manual
management of threads, memory hierarchies, and synchronization, which can be
error-prone and complex. Futhark abstracts these details away by providing a
functional programming model that automatically compiles to efficient GPU code.
The language is statically typed and free of side effects, which simplifies reasoning
about program behavior, instead relying on aggressive compiler optimizations.

One of the key selling points of Futhark is the efficient parallel implementation
of Second-Order Array Combinators (SOACs), which are higher-order functions
that operate on arrays and encapsulate common parallel patterns. By leveraging
SOACs, Futhark can be written in a style that closely resembles mathematical
specifications, allowing concise and readable programs, while achieving efficient

16

parallel performance. Some of these main SOACs are described below, as combi-
nations of these are what allow for complex expressions to be modeled in parallel
and analyzed. When analyzing the asymptotic time complexity of the parallel
implementation of a given algorithm, one considers the work and depth of the
algorithm. Work considers the classical notion of asymptotic time complexity,
covering the total amount of work done as part of the algorithm, across all opera-
tions that may be performed in parallel. The depth, also called span, considers
the longest sequential dependency of the algorithm, and describes the degree of
parallelism the algorithm exhibits. As an example, if an algorithm has a span
of O(k) and is executed on a theoretical machine with infinite threads, it will
terminate in O(k) time. In the same sense, if an algorithm has a constant span,
it will execute in O(1) time on our theoretical machine, regardless of the total
amount of work. When describing the asymptotic complexities below, we assume
that the operators carried by the higher order functions are executed in constant
(O(1)) time, as the complexities naturally depend on this.

The map combinator is a direct implementation of a mathematical mapping, and
takes in a function f and maps the input array to an output array where the
function has been applied to all elements. The total work of the mapping is O(n).
However since there is no sequential dependency between the individual function
applications, each operation can be performed in parallel, resulting in a span of
O(1).

map :: (α→ β)→ [α]→ [β]

map f [a0, a1, ..., an−1] ≡ [f a0, f a1, ..., f an−1]

The reduce is semantically similar to that of fold as seen in other functional
programming languages, with a few key differences [2, 8]. Reduce enforces as-
sociativity of the operator and requires an explicit neutral element (or identity
element) to ensure correctness in parallel execution. The total work of reduce
is O(n), as each element is processed exactly once. Additionally, due to the
associative property of ⊕, the computation can be structured as a balanced binary
tree, where partial reductions are computed in parallel. This results in a span of
O(log n), meaning the computation depth grows logarithmically with input size.

reduce :: (α→ α→ α)→ α→ [α]→ α

reduce ⊕ e [a0, a1, ..., an−1] ≡ e⊕ a0 ⊕ a1 ⊕ · · · ⊕ an−1

The scan (or prefix scan), shares similarities with sequential fold operations but
differs in that it retains all intermediate reduction results rather than producing a
single final value. Like reduce, scan requires an associative operator and a neutral
element to guarantee correct parallel execution. It is asymptotically equivalent to
a reduce operation, as it requires only an extra phase called the upsweep, which
is equal in complexity. The scan combinator comes in two variants, an inclusive
and an exclusive scan, with the difference being that elements are reduced up
until i at index i for the inclusive scan, and only i− 1 for the exclusive scan. The

17

native function in futhark implements an inclusive scan.

scan :: (α→ α→ α)→ α→ [α]→ [α]

scan ⊕ e [a0, a1, ..., an−1] ≡ [a0, a0 ⊕ a1, ..., a0 ⊕ · · · ⊕ an−1]

The key value of using Futhark lies in modeling problems through the combination
of these higher order functions in order to generate efficient parallel code, which
maintains readability. In this regard, Futhark does make some sacrifices as well.
Most notable of which is it requires that nested arrays must be regular, as the
compiler needs to perform an incremental flattening on these in order to efficiently
schedule the operations across parallel hardware. In extension of this, recursion
is completely unsupported as well, despite the functional nature, as the compiler
currently does not infer recursion bounds, which may result in poor performance
when run in parallel [17].

3.4 Representation of Multiple Precision Integers

In the context of performing arithmetic on multiple precision integers we may
need an arbitrary amount of space in order to represent them. In general, as the
size of integers increase beyond the scope of what can be computed on traditional
hardware with fixed-point arithmetic, it becomes unfeasible to store numbers
using words of a fixed number of bits, corresponding to the size of processor
registers. Instead, we implement these numbers using a statically sized array u

with elements composed of individual statically sized integers each ui. Similar to
the format of a polynomial, each ui corresponds to the product of the value at
index i and the base lifted to the power of the index itself. Formally we use the
following representation as previously used in [30] which is defined as follows

Definition 1. (multiple precision integer).

We say that an integer u ∈ N can be expressed in base B ∈ N+ with m digits such
that

u =

m−1∑
i=0

ui ·Bi

Additionally, we denote the precision of an integer as the number of base-B digits,
i.e.

precu = ⌊logB |u|⌋+ 1

When choosing the size of the base B (or the radix) of the big integer we
intentionally choose the size of a machine word, as this allows for the use of
efficient implementations of arithmetic operations on the individual digits. More
specifically, we choose each index to be represented by an unsigned integer uint_t
of base B, as this allows for the most direct mapping between our big integers
and regular ones. In fact the representation of these big integers can be intuitively
viewed as a big binary of size B · m bits, stored in little endian; Thus, if the
word-size is 32 bits and m is 16, then the result is a 512-bit integer, where the
bits 0-32 represent the least significant bits. The big integer thus represents a
(B ·m)-bit unsigned integer.

18

Figure 7: Representation of a mutiple precision integer of base B.

Generally in integer arithmetic, we distinguish between two types of integers;
arbitrary precision, and exact precision integers. Arbitrary precision integers are
able to dynamically scale based on the required size during runtime. These types
of integers never lose precision as long as there is enough memory to store the
result, and are thus commonly used for multiple precision arithmetic libraries
such as GMP [1]. The problem with arbitrary precision is that since the sizes of
the integers can change during runtime, they have to be stored in dynamically
allocated memory. Due to the memory layout of modern GPUs (as presented in
Section 3.1), the overhead related to accessing shared dynamic memory is much
higher than when accessing thread-level static memory. Additionally, dynamically
changing workloads during runtime maps poorly to parallel hardware, as it
becomes much harder to distribute the collective work in a load-balanced way,
practically rendering arbitrary precision arithmetic unproductive on the GPU.

Instead for the purposes of our implementation we choose to represent the integers
using exact precision, meaning that all of the numbers are bounded. The sizes
can then be arbitrarily set either statically or during runtime, meaning that the
exact size of the integers is always known. This allows for better load-balancing
between threads, and for the integers to be stored in the lowest level memory for
faster lookup.

Name Definition
uint_t The base
ubig_t Double the base
uquad_t Quadruple the base
carry_t Size of carries

bits Number of bits in base
HIGHEST Maximum value of base

Table 2: Big integer interface definitions from [10]

By default the multiple precision integer as per Definition 1 is meant to represent
a big unsigned number. However, at times we may need to account for the sign as
part of some algorithm, and as such need to represent signed integers. The most
common signed number representation is two’s complement which requires bitwise
negation, however for the sake of simplicity, we choose to go with a more simple
approach. In the rare case we utilize a modified version of signed magnitude
representation, we simply return an extra bit of information corresponding to the
sign of the integer. This does have the unfortunate side effect of representing 0

and −0 as two different numbers, but since this can easily be circumvented and
the sign is rarely used, we consider this a minor byproduct. Furthermore, signed

19

multiplication and division can be accomplished by performing the operations on
the unsigned big integer representation, and then applying a bit according to the
signs of the original operands afterwards.

In general we refer to the digits of a multiple precision integer as size uint_t
corresponding to a machine word, which can be statically changed to be between
16, 32 and 64 bits. We extend this notion into a big integer interface containing
definitions like ubig_t and uquad_t, corresponding to double and quadruple
the word size, among others. We refer to Table 2 for an overview of the whole
interface, and their definitions.

20

4 Division via Newton’s Method

The most common method for integer division is the long division algorithm,
also known as grade-school division, which involves computing one digit of the
quotient at a time. Another common approach called repeated subtraction works
by subtracting the divisor from the dividend until the remainder is less than the
divisor. Although these methods are conceptually simple, they scale inefficiently
for large numbers. Finally, division can also be performed by multiplying the
dividend by the reciprocal of the divisor i.e. u

v = u · 1v , which opens up the
possibility for faster algorithms by computing the reciprocal instead of a division
[20].

However, the GNU Multiple Precision Arithmetic Library (GMP) uses a hybrid
division approach, where different algorithms are used depending on the size of
the input [1]. When the divisor fits within a single machine-word – or limb in
GMP terminology – the reciprocal approach is used. Otherwise, it resorts to a
specialized long division method, namely Knuth’s algorithm [20]. This algorithm
is inherently sequential, finding one digit at each iteration, resulting in linear
depth, making it unfit for parallel execution. In contrast, efficient parallel division
usually relies on Newton’s method to compute the reciprocal of the divisor, by
solving for f(x) = 1/x− v = 0, where v is the divisor, and x = 1

v its reciprocal.
This is achieved by the Newton iteration:

x(i+1) = x(i) −
f(x(i))

f ′(x(i))
= x(i) + x(i)

(
1− v · x(i)

)
(1)

Newton’s method uses a series of iterative steps to refine the precision of the
reciprocal using multiplication. Even though these iterations are also inherently
sequential, each iteration roughly doubles the precision, implying logarithmic
depth, which is much more suitable for parallel architectures such as GPGPUs.
However, Newton’s method in its general form requires working in a related domain
where the reciprocal exists. Working in another domain is not always desirable
and can lead to a library structure where arithmetic domains are interdependent.
Additionally, internal floating point representation can lead to potential loss of
precision and overhead when converting between the domains.

To address said issue, this thesis works upon the concept of a whole shifted inverse,
proposed by Watt in [33]. This approach enables the computation of an adapted
reciprocal that remains entirely within a single domain, provided a suitable shift
operation exists, such as for integers or polynomials. The intuition is to use the
shift operation to scale the input to such a degree that captures all the necessary
information from the fractional counterpart. Computations are then carried out at
this higher scale, and a corresponding inverse shift is applied at the end to restore
the result to its original magnitude, avoiding the potential loss of information.
This strategy is explained further in detail in Section 6.

4.1 Quotient and Remainder

Whenever the dividend does not exactly divide the divisor, the result ends up as
a fraction. However, as we operate exclusively in the integer domain, we adopt

21

the notion of a quotient and remainder defined as follows:

u quo v = ⌊u/v⌋
u rem v = u− v · ⌊u/v⌋

(2)

As previously mentioned, the quotient can be computed using a shift, and the
whole shifted inverse. The two operations are defined as follows:

Definition 2. (Whole shift and shifted inverse in Z)

Let B > 1 be an integer base. For integers n, u, and v ̸= 0, with n ≥ 0, the
base-B whole n-shift of u and the base-B n-shifted inverse of v are defined as

shiftn,B(u) = ⌊uBn⌋ shinvn,B(v) =
⌊
Bn

v

⌋
When B is clear from context, we write shiftn(u) and shinvn(v).

When n ≥ 0 shiftn,B(u) corresponds to integer multiplication u × Bn. When
n < 0 it is instead a specialized quotient operation, with u as dividend and Bn

as divisor. Using our multi-precision integer representation, this is equivalent to
an arithmetic shift, e.g. shift1([1, 2, 3]) = [0, 1, 2] and shift−1([1, 2, 3]) = [2, 3, 0].
In contrast, the whole shifted inverse shinvn(v) corresponds to a specialized
reciprocal. In other words, it is simply a reciprocal that has been shifted into
our domain e.g. shinv3(8) = shift3(0.125) = 125. These operations enable us to
express the quotient of two integers as presented by the Theorem 1:

Theorem 1. (Quotient by whole shifted inverse in Z)

Given two positive integers u and v, with u ≤ Bh,

u quo v = shift−h(u · shinvh v) + δ, δ ∈ {0, 1}.

Thus by multiplying u by the whole shifted inverse of v, and then applying a
reverse shift, we obtain a result that has at most an error; δ at most 1 unit off
from the correct result, as proven by Watt [33]. Additionally, the outcomes of
δ = {0, 1} occur with equal frequency.

Example: Let u = 22, v = 11, h = 3 and B = 10. Then the whole shifted
inverse of v in base B is given by:

shinv10 (11) =
⌊
100

11

⌋
= 9

Next, we multiply u with the shifted inverse, and then shift the result by −h:⌊
22 · 9
100

⌋
= 1

However, since the correct result is
⌊
22
11

⌋
= 2, the approximation is off by one.

22

Luckily, adjusting for δ is quite trivial. We first compute an approximate quotient
q = shift−h(u ·shinv(v, h,B)) along with the corresponding remainder r = u−v ·q.
Then if r ≥ v, it indicates that we underestimated the initial quotient and need
to add δ = 1. The full procedure for computing the division of two big integers
using the shifted inverse can be seen in Algorithm 1.

Algorithm 1: Div(u, v, m, B) in Z
Input: u, v ∈ Zm

+ , m, B ∈ Z+

Output: (q, r) where q = u quo v, r = u rem v

Uses : Prec, to compute precision
Shift, for shifting the integer
Shinv, the shifted inverse (Algorithm 6.5)

1: function Div(u, v, m, B)
2: h←prec(u)
3: q ← shift−h(u · shinv(v, h,B))

4: r ← u− v · q
5: if r ≥ v then
6: q ← q + 1

7: r ← r − v

8: return (q, r)

4.2 Parameterization over Multiplication

The efficiency of computing the reciprocal via Newton’s iteration (shown in
Equation 1), is fundamentally tied to the cost of the underlying multiplication.
Although each iteration involves both addition, subtraction, and multiplication,
it is the multiplication that asymptotically dominates the performance, making it
the most critical operation to optimize.

The best known theoretic upper bound for multiplication is O(n log n), which is
believed to be tight [15]. In contrast, classical multiplication scales poorly with a
much greater asymptotic complexity of O(n2). However, it is typically preferred
for smaller input sizes due to very limited overhead. For intermediate-sized values,
asymptotically faster methods such as Karatsuba (O(nlog2 3)) [19] or Toom-Cook
(O(nlog3 5)) [11] are often used. For large inputs, more advanced techniques such
as Schönhage-Strassen or FFT-based methods become more efficient [31].

Since Newton’s method approximately doubles the number of correct bits at
each iteration, computing the reciprocal requires O(log(n)) iterations. Thus, if
multiplication has complexity O(M(n)), then Newton’s method yields an overall
complexity of O(M(n)·log n). Although this can be greatly improved by exploiting
the fact that, since the precision doubles at each iteration, most multiplications
only need to be performed on a small part of the input size, which can reduce
the overall asymptotic work to O(M(n)). This concept of shorter iterates is
elaborated further in Section 6.3.

23

5 Supporting Arithmetic

In order to discuss a parallel algorithm for division we require equally performant
implementations of the supporting arithmetic operations. As our division relies
on calculating the reciprocal of the divisor (as shown in Equation 1), we are
required to define both addition, subtraction, and multiplication. In this section,
we will look at how to adapt these supporting arithmetic operations to work on
the multiple precision integers as per Definition 1. In particular, we will discuss
how these can be implemented efficiently and adapted to a parallel setting.

5.1 Addition

Possibly the most basic arithmetic operation, the grade-school algorithm for
performing addition requires each digit of the two numbers to be added together
individually, propagating the carries throughout. This algorithm scales poorly in
parallel systems as the asymptotical time complexity of the longest sequential
dependency (or span) is O(n) i.e. linear with respect to the number of bits n,
with no degree of parallelism possible.

In practice, modern ALUs use a more efficient version of this operation which
works for binary digits by utilizing bitwise operations instead. More specifically,
for two unsigned integers it’s the case that bitwise XOR corresponds to an
addition without the carries, and bitwise XOR left-shifted by 1 corresponds to the
carries between them. Oancea and Watt describe an algorithm for adapting this
operation to the big integers as per Definition 1, which can be seen in Figure 8.
This algorithm adds together all indices correspondingly, while propagating the
carries separately. Computing the carries is a case of a true dependency, as each
element is dependent on the computation of the element immediately preceding
it, resulting in an algorithm inherently linear with respect to the number of bits.

Figure 8: Sequential and parallel procedures for addition as defined in [30].

Contrary to perhaps initial intuition this problem is shown to have log n span
by [9, 30], meaning that the depth is sublinear. The secret lies in recognizing
that only the carry propagation itself requires a sequential dependency between
elements, and that this can be modeled in terms of a scan [30]. More specifically, it

24

has been shown by [21] that each overflow occurs if and only if the current addition
overflows, or if the previous addition overflowed and the current addition results
in the maximally representable element. For two input tuples, corresponding to
the boolean value of overflow and maximal value for two elements, we can define
the operator capturing this logic ⊗ like so:

x⊗ y = (ovx,mxx)⊗ (ovx,mxx) = (ovx ∧mxy ∨ ovy, mxx ∧mxy)

This operator has been shown by [21] to be associative and have the neutral
element (False, True). With this in mind, the addition of two integers can be
modeled in terms of SOACs (map and scan), with only three simple steps, as
shown by [30]. The algorithm works as follows:

1. Compute the element-wise addition at each index i to form a partial result
p. Additionally for each element, record the following: (i) whether the
addition results in an overflow i.e. there is a carry, and (ii) if the result of
the addition is the maximum element of the base B.

2. Combine the overflow-highest pairs over all indices.

3. For each element add together the partial result and the carry.

The resulting algorithm can be seen in Figure 8, where the three steps are outlined.
In Step 1, the element-wise sums without the carries are calculated alongside
the wrap-around semantics needed to compute the carries. In terms of a more
functional approach we say that this step maps over the inputs with an operator
⊕ such that:

x⊕ y = (x+ y, (x+ y < x, x+ y == B − 1))

Step 2 is modeled by a scan as detailed above, and finally in Step 3 the partial
result is simply added with the carries via the ⊙ operator. The resulting algorithm
can thus be defined in terms of the operators ⊕, ⊗, ⊙ and the neutral element e
like so

x⊕ y :=
(
(x+ y, (x+ y < x, x+ y == B − 1)

)
x⊗ y := (ovx,mxx)⊗ (ovx,mxx) = (ovx ∧mxy ∨ ovy, mxx ∧mxy)

x⊙ y := x+ (y&1)

e := (False, True)

(3)

The operators can then be used to implement the algorithm using simply two
maps and a scan for two big integers u, v ∈ Nm:

1 (r, a) = map2 ⊕ u v
2 c = scan_exc ⊗ e a
3 w = map2 ⊙ r c

All operations as part of the parallel SOACs are constant time operations i.e.
O(1). Hence it is trivial to deduce that the algorithm runs in O(n) work and
O(log n) span with respect to the number of elements in the big integers.

25

5.2 Subtraction

Due to our choice of big integer representation as per Definition 1 signed integers
are not possible to represent. However, it is still relevant to define subtraction on
these, as it is a required operation in order to calculate the reciprocal of the divisor.
More specifically, it is required as a part of Newton’s method, as seen in Equation
1. Thus, if it at any point is possible for the signage to change throughout the
algorithm due to subtraction, we will instead consider this separately, as it is
trivial to compute whether the subtraction has underflowed or not.

Subtraction is exceedingly similar to the case of addition, resulting in a true
dependency between carries as well. In fact, we are able to define an algorithm
for subtraction on big integers based on the one for addition, by only changing
the operators used during Step 1 and 3. This results in the following algorithm:

x⊕ y :=
(
x− y, (x− y > x, (x− y == 0)≪ 1)

)
x⊗ y := (ovx,mxx)⊗ (ovx,mxx) = (ovx ∧mxy ∨ ovy, mxx ∧mxy)

x⊙ y := x− (y + 1)

e := (False, True)

(4)

5.3 Classical Multiplication

The last remaining arithmetic operation needed for Newton’s method is multipli-
cation, which is asymptotically more expensive than addition and subtraction.
The classical algorithm (long multiplication) requires multiplying all digits of the
multiplicand with all digits of the multiplier individually, followed by adding all
of the intermediate results together to get the final product. The result is an
algorithm that requires asymptotically quadratic work O(n2), which is suboptimal
(an improvement will be discussed in Section 5.4), but is still performantly com-
petitive in a wide variety of inputs. Classically multiplying two integers u, v ∈ N
with m digits and base B has previously been formulated by [10] as follows:

u · v =

m−1∑
k=0

 ∑
i+j=k

0≤i,j,k<m

ui · vj

 ·Bk (5)

From Equation 5 we denote the following observations:

• The intermediate products wk can have double the size of the bases of ui
and vi i.e. 2B.

• All products across the m convolution are unique, and the number of terms
needed to calculate wk scales linearly.

Since there are m convolutions of sizes 0 to m − 1, there are a total of m2/2

products to be computed. In order to parallelize this, we present two load-
balancing schemes for which to delegate the parallel work between threads. One
option is to let the k’th thread, denoted tk compute the k’th convolution wk, then

26

if the number of convolutions exceeds the number of threads, simply loop around.
This scheme performs poorly as m increases because the amount of work increases
linearly, resulting in an uneven distribution of workload between threads.

An alternative "embarrassingly parallel" load-balancing is proposed by [30]. This
scheme comes from the realization that the number of products as part of com-
puting wk, in addition to those from computing wm−k−1, always results in m+ 2

products, regardless of k. Thus, if the same thread is used to compute convolu-
tions k and m− k− 1, the work distributed between threads stays constant. As a
natural extension of this, one can increase the number of convolutions calculated
by each thread, denoted the sequentialization factor Q. As long as this factor is
a multiple of two, the scheme can extend to support arbitrary sizes of integers,
even though the number of threads stays constant.

Because the convolutions can be handled in parallel by independent threads,
and only ever require O(m) space, the schema allows these to be computed in
the lowest thread-level memory (in cuda this corresponds to register memory).
Additionally, since all products across all convolutions are unique, the amount
of computation as part of the proposed scheme is optimal, as all products are
computed exactly once. This proposed load-balancing scheme is shown in Figure
9, where the sequentialization factor is Q = 2 meaning that every thread computes
two convolutions each.

w0 = u0 · v0 := t0
w1 = u0 · v1 + u1 · v0 := t1
w2 = u0 · v2 + u1 · v1 + u2 · v0 := t2
...

...
...

wm−3 = u0 · vm−3 + ...+ um−3 · v0 := t2
wm−2 = u0 · vm−2 + ...+ um−3 · v1 + um−2 · v0 := t1
wm−1 = u0 · vm−1 + ...+ um−3 · v2 + um−2 · v1 + um−1 · v0 := t0

Figure 9: Embarrassingly parallel load-balancing schema as proposed by [30]
where each thread computes m products.

Since the intermediate products can double the size of the integer, the accumulation
of the partial results as computed by the convolutions, need to be stored in buffers
of double the size of the base B. Additionally, the process of summing multiple
double-sized values can itself lead to overflows if the cumulative sum exceeds the
capacity of the accumulator. Thus, once a partial sum and it’s corresponding
carries have been computed we are left with the following parts:

1. A low part : These are the Q elements of the accumulated sum that cor-
respond to a single digit in base B (i.e., the sum modulo B, or the least
significant B digits of the result).

2. A high part : These B bits represents the more significant portion of the
accumulated sum (i.e., the most significant digits of the result).

27

3. An aggregated carry : These final B digits correspond to any overflow
of the high part of the aggregated result as generated during the initial
accumulation of products.

Finally the the three different parts can be published to arrays corresponding to
the low and high bits of the result (denoted L and H respectively). The method
for this is defined as follows; The low part keeps the original indices and are
published to L. The high part is published to H, at the original indices shifted by
a factor of Q. Lastly the carry is published to H as well, at the original indices
shifted by a factor of Q + 1. The result are the two arrays L and H which can
finally be added together using the algorithm described in Section 5.1 in order to
complete the product of the two multi-precision integers. This method of which
to publish the low part, high part and aggregated carry can be seen in Figure 10.

Figure 10: An example of publishing the low part, high part and aggregated carry
for a thread when Q = 2. Finally the two arrays are added to form the product.

5.4 FFT Multiplication

The classical multiplication algorithm requires asymptotically quadratic work,
which is suboptimal on larger integers as sub-quadratic algorithms exist such as
the Karatsuba, Toom-Cook, or the Schönhage-Strassen algorithm, which utilizes
a Fast Fourier Transform (FFT) [31]. In particular, FFT-based multiplication
algorithms runs much faster on larger integers with a time complexity of O(n log n).
These algorithms have been shown to be efficient [7, 30] and are actively used
as part of the GMP library [1]. However in practice, performing multiple FFTs
increase the runtime by a large constant factor, meaning that they are inefficient
on integers below a certain size. For this reason it is common practice to define
size thresholds for using the different algorithms, and then switch between them
depending on this [1]. Tempted by the prospect of an asymptotic decrease in
runtime we explore how this algorithm can be implemented on multiple precision
integers.

fft(wk) = fft

 ∑
i+j=k

0≤i,j,k<m

ui · vj

 = fft(uk) · fft(vk)

wk = ifft
(
fft(uk) · fft(vk)

)

28

The motivation behind using the FFT algorithm lies in the fact that multiplying
two integers represented as polynomials, when converted to the domain of the
discrete Fourier transform (DFT) can be performed using pointwise multiplica-
tion. The pointwise multiplications can then be performed in linear time (if the
representation lies within a single machine word), making the algorithm upper
bounded by the cost of computing the FFT and the inverse FFT (IFFT).

To multiply two multiple precision integers using the FFT algorithm without
losing precision due to floating-point rounding errors, we first need to find suitable
roots of unity in a finite field (a Galois field) rather than relying on complex-valued
roots on the unit circle. Following the method by [30] we initially want to find
primes of the shape:

p = k · 2n + 1

Better known as Proth primes, these accept 2n distinct roots of unity, for a large
enough n. Using Fermat’s little theorem we want to find values of a not divisible
by p i.e. values that satisfy the following:

∀a, ak·2n ≡ 1 (mod p)

We denote g = ak, and then following from the equation above we have that
g2

n
= 1 mod p. Then to find a g that is a 2n’th root of unity, we iterate through

all elements a ∈ Zp and choose one such that q < 2n and gq ̸= 1. Finally we are
able to make an M ’th root of unity called ω such that M is a power of 2 and
M < 2n i.e.

ω = g2
n/M = g

n−log2 M

Oancea and Watt have already found that

p32 = 3221225473 and p64 = 4179340454199820289,

are suitable prime fields for implementing the FFT algorithm, when individual
digits are represented by 32-bit and 64-bit words respectively [30]. Thus for the
remainder of this paper we shall consider these values as well.

The multiplication algorithm itself an adaptation of [32] and is conceptually
similar to the classical algorithm described in Section 5.3, with some additional
restrictions due to the FFT. Firstly, M has to be a power of 2, which can be
ensured by sufficient padding. Secondly, the sequentialization factor Q must be
equal or greater than 2, and has to evenly divide M . Which thus restricts the
number of threads to be M

Q per cuda block. With these restrictions in place,
the algorithm has the following steps

1. First the big integers are converted to the DFT domain using the prime
fields as described above.

2. Then the algorithm performs an pointwise multiplication.

3. The algorithm then converts back into the regular domain using the inverse
FFT algorithm.

29

4. The word size of the result is changed to one less. And the per-thread
results are published to shared memory following a method similar to the
one described in Figure 10.

5. Finally the low and high parts can be added together to compute the output.

The final result is an asymptotically faster but more restrictive multiplica-
tion algorithm, that computes the product of two variable sized integers of
(word size− 1) ·M bits.

30

6 The Whole Shifted Inverse

Equation 1 illustrates the use of Newton’s iteration for computing the reciprocal
of a number. However, since our goal is to compute the shifted inverse i.e.
shinvn,B(v) =

⌊
Bn

v

⌋
, it requires some adaptation. Instead of solving the equation

f(x) = 1/x − v = 0, we consider f(x) = Bn/x − v = 0. Applying Newton’s
method to this function results in the following Newton’s iteration:

x(i+1) = x(i) −
f(x(i))

f ′(x(i))
= x(i) + x(i)

(
1− v

Bn
· x(i)

)
(6)

Solving this iteration requires division, which is what we ultimately are trying to
implement, therefore this is not a viable approach. Luckily, this division is close
to being a shift, which allows us to use a specialized version of Newton’s iteration:

w(i+1) = w(i) + shift−h(shifth(w(i))− vw2
(i)), w(i) ∈ Z

= w(i) +
⌊
w(i)(B

n − vw(i))B
−n)

⌋
(7)

As this is not the usual Newton’s iteration, but instead discretized to integers, its
correctness and convergence properties need to be reestablished. Watt addresses
this in [33] through a series of theorems, some of which we present in the following
subsections.

6.1 Convergence

In the subsequent sections, we will refer to SZ as the integer-valued counterpart
of Newton’s iteration:

SZ : Z→ Z = w 7→ w +
⌊
w
(
1− v

u
w
)⌋

, where 1 < v < u (8)

Note that this corresponds to an integer approximation of Equation 6, where
Bn is generalized to an arbitrary value of u. Through detailed analysis Watt
shows the fixed points and convergence properties of SZ, which culminates in the
following two theorems:

Theorem 2. (SZ Convergence)

The sequence of iterates S
(i)
Z (w), i ≥ 1, converges if and only if w ∈ [0 .. 2u/v]. If

the series converges, then it is to one of {0, 1, ⌊u/v⌋−1, ⌊u/v⌋}. For w ∈ [2 .. u/v],
S
(i)
Z (w) converges to ⌊u/v⌋ − 1 or ⌊u/v⌋.

Theorem 3. (Fast SZ Convergence)

If w(0) ∈
[
(1− 1

4)
u
v .. (1 +

1
4)

u
v

]
and u

v ≥ 2, then

S
⌈log2 log2(u/v)⌉
Z (w(0)) ∈ {⌊u/v⌋ − 1, ⌊u/v⌋} .

Theorem 2 shows that SZ always converges when w ∈ [0 .. 2u/v], and when it
does, it is to one of the fixed points {0, 1, ⌊u/v⌋ − 1, ⌊u/v⌋}. Additionally, if

31

w ∈ [2 .. u/v] then we are guaranteed that it converges to either ⌊u/v⌋ − 1 or
⌊u/v⌋.

Theorem 3 builds on top of Theorem 2, and shows that if the initial value w(0) is
chosen within 25% of u/v, then it converges to one of the final two fixed points
within ⌈log2 log2(u/v)⌉ steps. Note that the theorems state convergence to either
⌊u/v⌋ − 1 or ⌊u/v⌋, which might seem problematic, since we want to compute
shinvn,B(v) =

⌊
Bn

v

⌋
as per Definition 2 with no error. Watt addresses this issue

by increasing the intermediate results by a factor of Bg by using a shift, where g

is the number of guard digits, followed by shifting the result back to its original
magnitude in order to return the final value [33].

6.2 Initial Value Choice

Having a bound for w that yields fast convergence allows us to compute an initial
choice, satisfying the conditions of Theorem 3:

Theorem 4. (Initial Value Choice)

Let B ≤ v < Bk+1 and 2v ≤ u = Bh for B ≥ 16, and let v = V Bk−f + R with
f, V,R ∈ Z, Bf ≤ V < Bf+1, 0 ≤ R < Bk−f and f ≥ min(k, 2).

Then the choice w(0) =

⌊
Bf+2

V

⌋
Bh−k−2 gives

S
⌈log2 log2(u/v)⌉
Z (w(0)) ∈

{⌊u
v

⌋
,
⌊u
v

⌋
− 1

}
.

Theorem 4 states that an iteration starting point that ensures fast convergence
can be efficiently computed by inverting a short prefix of v. Specifically, when
k ≥ 2, we have B2 ≤ V < B3, which means that V is chosen as the three most
significant digits of v.

Example: Let v = 123123, h = 8. Then V = 123, and the initial approximation
w0 =

⌊
10000
123

⌋
· 10 = 810, which is very close to the exact value of the whole shifted

inverse and well within the 25% accuracy required by Theorem 3:

shinv8(123123) =
⌊
100000000

123123

⌋
= 812

6.3 Shorter iterates & divisor prefixes

A common strategy when dealing with iterative methods of multi-precision values
is to start with low precision and increase it with each iteration, a method that
Watt refers to as short iterates. The intuition is that because the precision
of the approximated shifted inverse starts low and roughly doubles with each
step, the same principle can be applied to the size of w, since only the leading
digits significantly influence the computation. This reasoning also extends to
the intermediate values of v. When v is large compared to w, only the leading
digits will have a significant effect on the iteration, and thus divisor prefixes
can be applied. However, this optimization introduces a potential risk, which
we discuss in Section 7.3. Applying both strategies allows us to reduce the cost

32

substantially, as most arithmetic operations operate on values that are a fraction
of the full size. The exact complexity is described in Section 6.6. Incorporating
these optimizations into Equation 7, the resulting iteration scheme becomes:

w(i+1) = SZ

(
k + 2ℓ(i) − s(i), shift−s(i)v, shiftℓ(i)w(i)

)
= w(i)B

ℓ +
⌊
w(i)

(
Bℓ −B−k+s(i)⌊vB−s(i)⌋w(i)

)⌋
(9)

where

ℓ(i+1) = 2ℓ(i) − 1, s(i) = max(0, k − 2ℓ(i) + 1)

6.4 Close Products

Each iteration of the integer Newton’s method (Equation 7) involves computing
the difference Bh− vw. However, vw is often very close to Bh, which allows us to
optimize this computation by avoiding redundant work. Watt refers to this concept
as close products. Essentially, what this means is that when |Bh − vw| ≤ Be for
some e < h, the result of Bn − vw contains significantly fewer than h base B
digits, meaning most of the digits in vw are predetermined. When Bh > vw the
difference is positive, and the upper digits of vw are all B − 1. When Bh < vw

the difference is negative, and the upper digits of vw are all 0. For example, in
base 10:

• If Bh < vw all upper digits of vw are 9 (i.e. B − 1):

10000000− 9999667 = 333

• If Bh > vw all upper digits of vw are 0:

10000000− 10000333 = −333

In both cases, only the lower e digits are needed to compute the result:

10000000− 9999667 = 333 ⇐⇒ 1000− 667 = 333

10000000− 10000333 = −333 ⇐⇒ 1000− 1333 = −333

Since most digits of vw are predetermined, it is enough to compute only the lower
e digits as:

vw rem Be ⇐⇒ (v rem Be)(w rem Be)

This optimization can significantly improve efficiency by avoiding full-width
multiplication and subtraction. However, the optimization is most noticeable
when "shorter iterates" and "divisor prefixes" are not applied, as they already
provide a part of this benefit.

33

6.5 Original Algorithm

The algorithm presented by Watt, which encapsulates the findings of the previous
sections, is outlined below. We divide it into 3 main parts: special case handling,
initial approximation and iterative refinement.

Special Case Handling (lines 2-10) This ensures that the easy cases are
handled (B < v ≤ Bh/2), and that the base is sufficiently large (B >= 16), such
that the prerequisites for the initial value choice in Theorem 4 are met.

Initial Approximation (lines 11-14) This computes the initial value as
described in Section 6.2, using f = min(k, 2). If sufficiently many digits are
correct, this value is shifted to the appropriate magnitude and then returned.
Since the size of the divisor prefix used to approximate the initial value is bounded,
this short inversion at line 11 can be performed in constant time. Note that the
division at line 11 is semantically the same as computing ⌊B2l/V ⌋ = B2l quo V .
By subtracting B2l by V , the dividend goes from 5 to 4 digits, meaning that the
division can be performed on a smaller native word size.

Iterative Refinement (Refine, Step, PowDiff) If the initial approximation
is not sufficiently accurate, it is refined using one of three refinement routines
described below:

• Refine1 corresponds to the unoptimized integer version of Newton’s itera-
tion (Equation 7). It starts by shifting w to the desired final length, while
using the entire divisor v to compute each iteration.

• Refine2 improves on Refine1 by taking upon the shorter iterates strategy,
proposed in Section 6.3, to only work with the lowest necessary precision
of w, and thus decreasing the size needed for the intermediate arithmetic
operations.

• Finally, Refine3 is the most optimized and the one used in practice. It
employs both shorter iterates and divisor prefixes and corresponds to the
optimized iteration scheme from 9.

All refinement methods call the Step function, which performs a single Newton
iteration. Step invokes PowDiff, which computes Bh − v · w using the close
product strategy described in Section 6.4 for improved efficiency. Lastly, Step
shifts the intermediate result according to the chosen refinement strategy.

34

Algorithm 1: Shinv(v, h, B) in Z
Input: v, h, B ∈ Z>0, B

k ≤ v < Bk+1

Output: Shinvhv ▷ All shifts are with respect to B
Uses : Mult, a multiplication method

PowDiff, to compute Bh − v · w (Algorithm 2)
Refine

1: Function Shinv(v, h, B):
2: ▷ Group digits if base is small
3: if B < 16 then
4: p← min(6−B, 2)
5: return shifth rem p−pShinv(v, h quo p+ 1, Bp)

6: ▷ Special cases guarantee B < v ≤ Bh/2

7: if v < B then return Bh quo v ▷ Divide by 1 digit
8: if v > Bh then return 0

9: if 2v > Bh then return 1

10: if v = Bk then return Bh−k

11: ▷ Form initial approximation, returning it if sufficient
12: ℓ← min(k, 2)

13: V ←
∑ℓ

i=0 vk−ℓ+i ·Bi

14: w ←
(
B2ℓ − V

)
quo V + 1 ▷ Divide 4 digits by 3 digits

15: if h− k ≤ ℓ then return shifth−k−ℓ(w)
16: ▷ Refine iteratively using one of the methods below
17: return Refine(v, h, k, w, ℓ)

18: Function Refine1(v, h, k, w, ℓ):
19: g ← 1
20: h← h+ g
21: w ← Shifth−k−l(w) ▷ Scale initial value to full length
22: while h− k > ℓ do
23: w ← Step(h, v, w, 0, ℓ, 0)
24: ℓ← min(2ℓ− 1, h− k) ▷ Number of correct digits

25: return shift−g(w)

26: Function Refine2(v, h, k, w, ℓ):
27: g ← 2
28: while h− k > ℓ do
29: m← min(h− k + 1− ℓ, ℓ)
30: w ← shift−1(Step(k + ℓ+m+ g, v, w, m, ℓ, g))
31: ℓ← ℓ+m− 1

32: return shift−g(w)

33: Function Refine3(v, h, k, w, ℓ):
34: g ← 2 ▷ Guard digits
35: w ← shiftgw
36: while h− k > ℓ do
37: m← min(h− k + 1− ℓ, ℓ)
38: s← max(0, k − 2ℓ+ 1− g) ▷ How to scale v
39: w ← shift−1(Step(k + ℓ+m− s+ g, shift−s(v), w, m, ℓ, g))
40: ℓ← ℓ+m− 1

41: return shift−g(w)

42: Function Step(h, v, w, m, ℓ, g):
43: shiftm(w) + shift2m−h(Mult(w,PowDiff(v, w, h−m, ℓ− g,B)))

35

Algorithm 2: PowDiff(v, w, h, ℓ, B) in Z
Input: v, w, h, ℓ, B ∈ Z>0 such that prec|w − shinvhv| ≤ prec(w)− ℓ

Output: Bh − v · w
Uses : Mult(a, b) = a · b

MultMod(a, b, d, B) = (a · b) mod Bd

1: Function PowDiff(v, w, h, ℓ, B):
2: L← precBv + precBw − ℓ+ 1;
3: if v = 0 ∨ w = 0 ∨ L ≥ h then return Bh −Mult(v, w);
4: else
5: P ←MultMod(v, w, L,B);
6: if P = 0 then return 0;
7: else if PL−1 = 0 then return −P ;
8: else return BL − P ;

6.6 Complexity Analysis

As multiplication is asymptotically dominating the runtime of the algorithm, we
naturally base the complexity analysis on the number of multiplications performed.
Each iteration performs two multiplications; one inside Step and one as part of
PowDiff. PowDiff returns a big integer of length min(n,L), which is used by the
multiplication inside Step. Size L is returned when the close products strategy is
applied, and is given by

L = precBv + precBw − ℓ+ 1,

where n is particular to the chosen refinement method. In the following we
compare the time complexity of the algorithm using each of the three refinement
routines. We denote O(M(N)) as the time complexity of a single multiplication
and we ignore additive constants.

Refine1 This function starts by shifting w to its final length of h − k digits,
while the full v of k + 1 digits is used, meaning that L ≈ h− 2i. We also have
n = h. The multiplication inside Step is then of length h − k and h − 2i. The
multiplication inside PowDiff is of length min(h−k, h−2i) and min(k, h−2i). Both
multiplications are upper bounded by O(h) and since we perform O(log(h− k))

iterations the time complexity becomes:

T (h, k) = O

log(h−k)∑
i=0

Step+

log(h−k)∑
i=0

PowDiff

= O

log(h−k)∑
i=0

M(h) +

log(h−k)∑
i=0

M(h)

= O(log(h− k) ·M(h))

36

Refine2 This function employs the shorter prefixes strategy, reducing the length
of w to 2i, while v remains at k + 1 digits. In addition, we have L ≈ k and
n ≈ k+2i. Consequently, the multiplication in Step is of length 2i and k, while the
multiplication in PowDiff is of length min(2i, k) and k. The total time complexity
thus becomes:

T (h, k) = O

log(h−k)∑
i=0

Step+

log(h−k)∑
i=0

PowDiff

= O

log(h−k)∑
i=0

M(k) +

log(h−k)∑
i=0

M(max(2i, k))

= O

log(h− k) ·M(k) +

log(h−k)∑
i=log(k)

M(2i)

= O(log(h− k) ·M(k) +M(h− k))

The final derivation assumes that M(n) has at least polynomial growth, that is
M(n) = C · nϵ for some ϵ > 0, the sum

∑log(n)
i=0 M(2i) is dominated by its largest

term, and thus O(M(n)).1

Refine3 The final refinement routine uses both shorter iterates and divisor
prefixes strategies, which reduces the size of w, v, L and n to 2i digits. The
multiplication inside Step is of length 2i and 2i. The multiplication in PowDiff is
of length 2i and min(2i, k). This results in the total time complexity:

T (h, k) = O

log(h−k)∑
i=0

Step+

log(h−k)∑
i=0

PowDiff

= O

log(h−k)∑
i=0

M(2i) +

log(h−k)∑
i=0

M(2i)

= O(M(h− k))

Again, the final derivation assumes that M(n) has at least polynomial growth.

Both Refine1 and Refine2 exhibit complexities in the form M(N) multiplied by
a logarithmic factor, whereas Refine3 is linear in relation to M(N). i.e., for the
theoretical M(N) ∈ O(n log n), then the overall time complexity of whole shifted
inverse using Refine3 is O(n log n).

1∑logn
i=0 M(2i) ≤

∑logn
i=0 C(2i)ϵ = C

∑logn
i=0 2iϵ = O(2ϵ logn) = O(nϵ) = O(M(n))

37

7 Algorithmic Revisions

Watt’s algorithm provides an efficient method for computing the whole shifted
inverse, but certain edge cases require additional care to ensure correctness in
all scenarios. In this section, we introduce a series of refinements that address
these edge cases without altering the core structure of the algorithm. Specifically,
we tackle the handling of negative intermediate values, limitations of the initial
approximation, and subtle overestimation problems that arises when using divi-
sor prefixes. These refinements culminate in a revised algorithm that remains
asymptotically efficient while offering stronger guarantees of correctness. We then
implement this revised algorithm in both cuda and Futhark.

7.1 Handling Negative Values

When Bh < vw, PowDiff returns a negative value. However, the multi-precision
integer representation presented in Section 3.4 does not support negative values.
Even though it could be extended to include a sign bit, negative values are rarely
used in the whole shifted inverse computation, and thus not necessarily worth the
extra memory usage. Instead, we modify PowDiff to always return the absolute
value along with a separate boolean indicating the sign. The Step function needs
to be updated accordingly, as when PowDiff is negative, the second term of Step
will be negative as well, requiring subtraction rather than addition. The decision
between addition and subtraction is made based on the sign boolean returned by
PowDiff.

A more subtle yet important distinction between handling positive and negative
values lies in the behavior of shift. We want shift to mimic integer base-B division,
which rounds down to the nearest integer. When shift is applied to positive values,
it naturally rounds the number down towards 0, which is what we expect i.e.

⌊11/10⌋ = ⌊1.1⌋ = 1 ⇐⇒ shift−1(11) = 1

However, for negative values, we also want shift to behave the same as for negative
division, which rounds down towards negative infinity. If we naively perform shift
on the absolute value, and then apply the sign afterward, we risk rounding in the
wrong direction.

⌊−11/10⌋ = ⌊−1.1⌋ = −2 ⇍⇒ −shift−1(11) = −1

Thus, to ensure rounding toward negative infinity for negative values, whenever
the base-B division does not evenly divide the dividend, we want increment it
by 1 before applying the sign. Determining whether the division is exact is
straightforward, and only requires examining the n least significant digits. If all n
digits are 0, the division is exact. Otherwise, it is division with remainder and we
add 1 to the shifted result. The resulting procedure can be seen in Algorithm 3.

7.2 Limitations of the Initial Approximation

As described in Section 6.5, Watt uses an inverted short prefix of v as the starting
point of the algorithm. The algorithm uses the 3 most significant digits of v as

38

Algorithm 3: Shift Applied to Negative Numbers
1: y ← shiftn(x);
2: if any of the n least significant digits of x are nonzero then
3: y ← y + 1;

the short prefix. This initial approximation is assumed to have min(k, 2) correct
digits, and thus it is early returned when the divisor v, has the same or one fewer
digits than the dividend u. Unfortunately, we are not always guaranteed that the
most significant digits of this initial approximation are correct, an issue that does
not seem to be addressed in [33].

Suppose we want to evaluate the whole shifted inverse shinvh,B(v) in decimal
base, with h = 5, B = 10 and v = 1119. Based on Definition 2, this gives
us shinv5,10(1119) =

⌊
100000
1119

⌋
= 89. The initial approximation, as described in

Theorem 4, is given by:

w(0) =

⌊
Bf+2

V

⌋
Bh−k−2 where V =

⌊
v

Bk−2

⌋
Because k = 3, we have f = min(k, 2) = 2, and thus the initial approximation
becomes:

w(0) =

⌊
10000

⌊1119/B3−2⌋

⌋
B5−3−2 =

⌊
10000

111

⌋
= 90

Since h− k ≤ 2, Watts algorithm terminates early, but clearly this is not safe as
shinv5,10(1119) = 89 ̸= 90. In other words, by not considering the full value of v,
we risk overestimating the initial short inversion. To address this issue, we avoid
early termination by always performing at least one refinement after the initial
approximation. Now that the initial approximation is never returned prematurely,
we can afford a less precise initial approximation, as long as it still adheres to
Theorem 3 for fast convergence. Therefore, we modify Theorem 4 to allow for a
smaller prefix v when computing the initial inversion approximation.

Theorem 5. (Modified Initial Value Choice)

Let B ≤ v < Bk+1 and 2v ≤ u = Bh for B ≥ 16, and let v = V Bk−f+1 +R with
f, V,R ∈ Z, Bf−1 ≤ V < Bf , 0 ≤ R < Bk−f+1 and f ≥ min(k, 2).

Then the choice w(0) =

⌊
Bf+1

V

⌋
Bh−k−2 gives

S
⌈log2 log2(u/v)⌉
Z (w(0)) ∈

{⌊u
v

⌋
,
⌊u
v

⌋
− 1

}
.

Proof. Since V ≥ 4 and R < Bk−f+1, we have 1
4 > R

V Bk−f+1 so(
1 +

1

4

)
u

v
>

(
1 +

R

V Bk−f+1

)
u

v
=

Bh

V Bk−f+1
≥

⌊
Bf+1

V

⌋
Bh−k−2

39

On the other hand, since V < Bf , we have Bf+1

4V > 1 and(
1− 1

4

)
u

v
=

3

4

u

V Bk−f+1 +R
≤ 3

4

Bh−k+f−1

V

<

(⌊
Bf+1

V

⌋
+ 1− Bf+1

4V

)
Bh−k−2 <

⌊
Bf+1

V

⌋
Bh−k−2

The conditions of Theorem 3 are satisfied, so we have our result.

Intuitively, this means that inverting a short prefix of only 2 digits of v is
now sufficient to ensure fast convergence. Or in other words, using the two most
significant digits of v still lies within 25% of Bh

v . An advantage of this modification
is that the smaller prefix can fit within a smaller native word size, allowing us
to use a bigger base B without increasing the computational complexity of the
initial division.

7.3 Overestimation from Divisor Prefixes

As hinted at in Section 6.3, employing the divisor prefixes strategy comes at
a cost. It turns out that when divisor prefixes are used, the overestimation
problem presented in the previous section goes beyond the scope of the initial
approximation. Specifically, whenever we don’t consider the entire v as there are
edge cases where the least significant digits affect the much higher ones, resulting
in an overestimation. We show an example of such case:⌊

10000000000

1111119

⌋
= 8999 ̸=

⌊
1000000000

111111

⌋
= 9000

Essentially what happens is that when 10000000000
1111119 ≈ 8999.94 i.e. fractional part

approximates 1, even a small fractional increase is enough to tip the result over
to the next integer. Because the divisor and quotient are inversely proportional,
decreasing the divisor by a certain percentage results in an increase in the quotient
by the same percentage. Since we have 9000−8999.94

9000 · 100 ≈ 0.00067, decreasing
v by at least 0.00067 percent is enough to round the result up to 9000. In our
case the decrease is: 1111119−1111110

1111119 · 100 ≈ 0.00081% > 0.00067%, which explains
why we observe the incorrect result. We illustrate this issue using the optimized
iteration scheme from Equation 9, which incorporates both shorter iterates and
divisor prefixes:

w(i+1) = SZ

(
k + 2ℓ(i) − s(i), shift−s(i)v, shiftℓ(i)w(i)

)
= w(i)B

ℓ +
⌊
w(i)

(
Bℓ −B−k+s(i)⌊vB−s(i)⌋w(i)

)⌋
where

ℓ(i+1) = 2ℓ(i) − 1, s(i) = max(0, k − 2ℓ(i) + 1)

Specifically, we compute shinv10,10(1111119), where h = 10 and k = 6. In this
example, we omit guard digits as it simplifies the computation and does not affect
the outcome. Note that each iteration shifts the intermediate result by -1 (i.e.
divides by 10), to account for the subtraction in ℓ(i+1) = 2ℓ(i) − 1.

40

• Initial approximation:

w0 =

⌊
10000

111

⌋
= 90

• Refine iteration 1:

w0 = 90, ℓ = 2, s = 3

w1 =

⌊
9000 +

⌊
90

(
100− 1

1000 · 1111 · 90
)⌋

10

⌋
= 900

• Refine iteration 2:

w1 = 900, ℓ = 3, s = 1

w2 =

⌊
90000 +

⌊
900

(
1000− 1

100000 · 111111 · 900
)⌋

10

⌋
= 9000

• Termination: Since h− k ≤ ℓ, terminate and return 9000.

Hence, the algorithm returns 9000, while the actual whole shifted inverse equals⌊
10000000000

1111119

⌋
= 8999. In turn, this can make the quotient computation as defined

in Theorem 1 invalid. Suppose we define shinv’ which overapproximates the
original shinv by λ:

shinvn,B(v) =
⌊
Bn

v

⌋
⇒ shinv’n,B(v) =

⌊
Bn

v

⌋
+ λ, λ ∈ Z≥0

Since ⌊x+ y⌋ = ⌊x⌋+ ⌊y⌋+ ϵ where ϵ ∈ {0, 1}, we have:

shift−h(u · shinv’h v) = shift−h

(
u ·

(⌊
Bn

v

⌋
+ λ

))
= shift−h(u · shinvhv + uλ)

= shift−h(u · shinvhv) +
⌊
uλ

Bh

⌋
+ ϵ, ϵ ∈ {0, 1}

Which allows us to express the quotient based on shinv’ as:

u quo v = shift−h(u · shinvh v) + δ, δ ∈ {0, 1}

= shift−h(u · shinv’h v) + δ −
⌊
uλ

Bh

⌋
− ϵ, ϵ, δ ∈ {0, 1}

This shows that directly applying the quotient computation as presented by Watt
while using a shifted inverse overestimated by λ can result in an overestimated
quotient by: ⌊

uλ

Bh

⌋
+ ϵ, ϵ ∈ {0, 1}

41

This is quite problematic, as we want to continue using the optimized divisor
prefixes, because it allows for smaller intermediate products. Obviously we want
to utilize this optimization which significantly reduces the asymptotic runtime,
but we cannot compromise on the correctness. Fortunately, it turns out that
the algorithm overestimates the shifted inverse by at most 1, that is λ ∈ {0, 1}.
Given that u ≤ Bh, it follows that

⌊
uλ
Bh

⌋
= 0, which means that the quotient is

overestimated by at most 1. This allows us to restate Theorem 1 as follows:

Theorem 6. (Quotient by shinv’ in Z)

Given two positive integers u and v, with u ≤ Bh,

u quo v = shift−h(u · shinv’h v) + δ, δ ∈ {−1, 0, 1}

where

shinv’h,B(v) =
⌊
Bh

v

⌋
+ λ, λ ∈ {0, 1}

Theorem 6 relies on the fact that λ ∈ {0, 1}, which is not immediately obvious. To
understand this we consider q = Bh

v which has h−k base-B digits. Since q < Bh−k

it implies that any relative change less than 1
Bh−k will affect q by less than 1. As

stated previously, the divisor and quotient are inversely proportional, which means
that as long as the divisor is decreased by less than 1

Bh−k , we are guaranteed that
the increase in the quotient is less than 1. Recall that Bk ≤ v < Bk+1, which
means that v has k+1 digits. If we keep only the h− k+1 most significant digits
of v, the remaining part has Bk+1−(h−k+1) = B2k−h digits. From this we get:

B2k−h

v
<

B2k−h

Bk
=

1

Bh−k

Thus, as long as we consider the h−k+1 most significant digits of v, the remaining
2k−h digits will change v by less than 1

Bh−k , resulting in an error in q less than 1.
Now consider how many digits of v are actually used in each iteration of Refine3.
The algorithm shifts v by −max(0, k−2l+1−q). In the last iteration of Refine3
the minimum value of l is

⌊
h−k
2

⌋
. Thus, since g = 2, the maximum amount that

v is shifted in the last iteration is:

k − 2

⌊
h− k

2

⌋
+ 1− 2 ≥ 2k − h− 1

Because v has k+1 digits, the smallest shifted prefix of v has k+1−(2k−h−1) =

h− k + 2 digits. This means that we always consider at least h− k + 2 digits of
v in the last iteration, which is more than enough to guarantee that the impact
on q is at most 1. This justifies the assumption that λ ∈ {0, 1}. Now that we
have established that the whole shifted inverse can overestimate by 1, we need to
update the division algorithm presented in Section 4.1 to account for δ = −1 as
well. The result is Algorithm 4 as seen below:

42

Algorithm 4: Div(u, v, m, B) in Z
Input: u, v ∈ Zm

+ , m, B ∈ Z+

Output: (q, r) where q = u quo v, r = u rem v

Uses : Prec, to compute precision
Shift, for shifting the integer
Shinv, the shifted inverse (Algorithm 7)

1: function Div(u, v, m, B)
2: h←prec(u)
3: q ← shift−h(u · shinv(v, h,B)) ▷ Quotient
4:

5: ▷ Handle δ = −1
6: if u < v · q then
7: q ← q − 1

8: r ← u− v · q ▷ Remainder
9:

10: ▷ Handle δ = 1

11: if r ≥ v then
12: q ← q + 1

13: r ← r − v

14: return (q, r)

7.4 Refined Algorithm

The refined quotient algorithm based on Algorithm 6.5 by Watt, considers the all
of the changes outlined in this section. It still consists of the 3 main components:
special case handling, initial approximation and iterative refinement.

Special Case Handling (lines 2-10) This remains the same as the original
algorithm, as our redefined initial value choice (Theorem 5) still still relies on the
assumption that B < v ≤ Bh/2 and B >= 16.

Initial Approximation (lines 11-13) The initial approximation now inverts
only the two most significant digits of v, compared to the previous three-digit
approach. As described in Theorem 5, inverting this two-digit short prefix is
still an accurate enough approximation to ensure fast convergence. Because the
case k = 0 is already handled by the first special case v < B, we can safely
assume k ≥ 1, implying that v always has at least two digits. Thus it suffices to
always use l = 2 instead of the original l = min(k, 2). We use the semantically
equivalent B3 quo V instead of (B3 − V) quo V + 1. B3 fits within 4 digits, and
since computer architectures favor sizes that are powers of 2, there is no real
advantage in decreasing the size to 3 digits. Lastly, we no longer return the initial
approximation early, as we showed that it is not safe in Section 7.2.

Iterative Refinement (Refine, Step, PowDiff) As the initial approximation
is no longer considered safe for early return, it is always refined unless one of
the special cases applies. This initial value is refined using one of the refinement

43

methods: Refine1, Refine2 or Refine3. Refine3 employs both shorter iterates
and divisor prefixes, allowing smaller products, making it more efficient and the
one used in practice. As a result, we have omitted the asymptotically inferior
Refine1 and Refine2, and renamed Refine3 to Refine. Refine1 and Refine2
can be found in Appendix 8.

The original while-loop has been replaced with a for-loop, as the number of
required iterations is predetermined by the values of h and k. Specifically, the
loop continues until l reaches at least h − k. Since each iteration updates l by
l← l +m− 1 and m = l in all except the final iteration, we can model the loop
progress by solving the recurrence relation:

li+1 = 2li − 1

We use forward substitution to try and identify a pattern:

l1 = 2l0 − 1

l2 = 2l1 − 1 = 2(2l0 − 1)− 1 = 4l0 − 3

l3 = 2l2 − 1 = 2(4l0 − 3)− 1 = 8l0 − 7

l4 = 2l3 − 1 = 2(8l0 − 7)− 1 = 16l0 − 15

We observe that iteration li is given by:

li = 2il0 − (2i − 1)

Since l0 = 2 it allows us to simplify:

li = 2i · 2− (2i − 1) = 2i+1 − 2i + 1 = 2i + 1

We can now determine for which i we have li ≥ h− k:

2i + 1 ≥ h− k

2i ≥ h− k − 1

i ≥ log2(h− k − 1)

Since i is an integer we round up to nearest whole number:

i = ⌈log2(h− k − 1)⌉

This means that the original algorithm performs i = ⌈log2(h− k − 1)⌉ Newton
iterations when l0 = 2. However, since we no longer return the initial approxima-
tion early, we must perform additional iterations to compensate for the inaccuracy
of the initial guess. In practice, we found that performing just one extra iteration
in rare cases was insufficient to guarantee the accuracy of the 2-digit inversion.
Therefore we opted for two extra initial iterations, although a formal analysis
would be required to fully justify this choice. Nonetheless, this results in a total
iteration count of:

⌈max (log2(h− k − 1), 0)⌉+ 2

44

The Step function is responsible for performing a single Newton iteration, adding
or subtracting based on the sign boolean returned from Powdiff. In the case of
subtraction, we also apply a correction for potential rounding errors in the shift,
as described in Section 7.1. Powdiff has been altered to avoid negative values, as
our multi-precision integer representation does support them. It now computes
the absolute value of Bh− v ·w along with a boolean flag indicating the true sign
of the result. It still leverages the close products strategy from Section 6.4 for
improved efficiency. The result is the optimized Algorithm 7 as seen below:

Algorithm 5: PowDiff(v, w, h, ℓ, B) in Z
Input: v, w, h, ℓ, B ∈ Z>0 such that prec|w − shinvhv| ≤ prec(w)− ℓ

Output: (sign, |Bh − v · w|)
Uses : Mult(a, b) = a · b

MultMod(a, b, d, B) = (a · b) mod Bd

1: Function PowDiff(v, w, h, ℓ, B):
2: L← precBv + precBw − ℓ+ 1;
3: if v = 0 ∨ w = 0 ∨ L ≥ h then
4: if Bh > Mult(v, w) then return (1, Bh −Mult(v, w));
5: else return (0, Mult(v, w)−Bh);

6: else
7: P ←MultMod(v, w, L,B);
8: if P = 0 then return (1, 0);
9: else if PL−1 = 0 then return (0, P);

10: else return (1, BL − P);

45

Algorithm 5: Shinv(v, h, B) in Z
Input: v, h, B ∈ Z>0, B

k ≤ v < Bk+1

Output: Shinvhv ▷ All shifts are with respect to B

Uses : Mult, a multiplication method
PowDiff, to compute Bh − v · w (Algorithm 2)
Refine

1: Function Shinv(v, h, B):
2: ▷ Group digits if base is small
3: if B < 16 then
4: p← min(6−B, 2)

5: return shifth rem p−pShinv(v, h quo p+ 1, Bp)

6: ▷ Special cases guarantee B < v ≤ Bh/2

7: if v < B then return Bh quo v ▷ Divide by 1 digit
8: if v > Bh then return 0

9: if 2v > Bh then return 1

10: if v = Bk then return Bh−k

11: ▷ Form initial approximation, returning it if sufficient
12: V ← vk−1 + vk ·B
13: w ← B3 quo V ▷ Divide 4 digits by 2 digits
14: return Refine3(v, h, k, w, ℓ) ▷ Refine w iteratively

15: Function Refine(v, h, k, w, ℓ):
16: g ← 2 ▷ Guard digits
17: w ← shiftgw

18: for i← 0; i < ⌈max (log2(h− k − 1), 0)⌉+ 2; i++ do
19: m← min(h− k + 1− ℓ, ℓ)

20: s← max(0, k − 2ℓ+ 1− g) ▷ How to scale v

21: w ← shift−1(Step(k + ℓ+m− s+ g, shift−s(v), w, m, ℓ, g))

22: if i < 2 then shift−m(w)

23: else
24: shift−1(w)

25: ℓ← ℓ+m− 1

26: if (h− k < 2) then shifth−k−4(w)

27: else shift−2(w)

28: Function Step(h, v, w, m, ℓ, g):
29: (sign, x)← PowDiff(v, w, h−m, ℓ− g,B)))

30: if sign then shiftm(w) + shift2m−h(Mult(w, x))
31: else
32: tmp←Mult(w, x)
33: res← shiftm(w)− shift2m−h(tmp)

34: if any of the 2m− h least significant digits of tmp are nonzero then
35: res← res− 1

36: return res

46

8 Efficient CUDA Prototype

In order to get a reference for the performance of a highly optimized low-level
division implementation, we develop one such prototype based on the revised
whole shifted inverse algorithm from Section 7.4 in cuda. Our implementation
applies this technique to multi-precision integers that fits within a cuda block,
leveraging temporal reuse from scratchpad memories, following the same approach
used in prior work on addition and multiplication [30]. We parallelize the key
components of the shifted inverse iteration, employing efficient use of shared
memory and register storage, and apply classical techniques such as efficient
sequentialization to maximize throughput. The resulting prototype serves both as
a performance benchmark and a demonstration of how exact arithmetic division
can be implemented directly on GPUs using only integer operations.

8.1 General Strategies & Limitations

This subsection outlines key strategies and limitations that guided the process of
designing an efficient division kernel. We adopt the following notation:

Word size: The number of bits in each digit of the big integer. We
assume a word size of either 16-bit, 32-bit or 64-bit, as these are the
sizes supported by the prototype.

M: The total number of digits in the big integer. For example, an
integer with 217 bits could be represented using M = 2048 and a 64-bit
word size.

Sequentialization factor (Q): The amount of sequential work each
thread performs. For simplicity, we assume that Q evenly divides M .

Kernel Memory Limitations Currently the cuda prototype supports integer
division on integers up to 218 bits in size. This is the upper limit of what is
possible to support if all operations are to be performed entirely within a single
block, due to limitations on the maximal amount of shared memory2. In principle,
one could go beyond this bound by utilizing global memory, but this approach
would require expensive global memory management, significantly impacting
performance.

In addition to shared memory, cuda also has restrictions on the number of
registers available per thread and per block. The current version supports a
maximum of 255 registers per thread or 64k registers per block, whichever is
lowest. Since we want to maximize occupancy we use all 1024 threads in a block
when computing on integers larger than 215 bits, meaning in practice we may have
as little as 64 registers per thread. The amount of register memory used by the
kernel is extremely difficult to reason about, as it is a point of complex compiler
optimizations. When the register demand exceeds the bounds of the specifications,

2The current maximum amount of shared memory for a cuda block is 99KB, and since we
need to store two 218-bit integers of 32KB each in shared memory as part of the multiplication,
this bounds the division as well.

47

the compiler resorts to store these in a higher level cache, a fallback mechanism
known as register spilling [4]. Accessing this cache is substantially slower than the
register memory directly, and as such this is generally to be avoided if possible,
as it can incur significant latency. Unfortunately, our implementation proved to
easily reach the maximum number of registers per block when enough threads
are used. We suspect that the reason for the large consumption of registers stems
from the compiler not being able to reuse registers efficiently. This resulted in
a kernel launch error, since the compiler tries to assign too many registers per
block during runtime. Luckily we were able to mitigate this by specifying the
number of threads per block during compile time by giving the kernel statically
known launch bounds using C++ templates. This allowed the compiler to allocate
just enough registers per thread to fit within the block register limit, by spilling
the remaining ones.

Determining an optimal value of Q we are encouraged to keep it small in order to
limit sequential dependencies, and since our classical multiplication implementa-
tion is optimized for Q = 4 we found the ideal value to be this. When operating
on the biggest integers supported with this value of Q we spill 160 bytes to storage,
corresponding to 40 registers (as each register stores 32 bit values). In addition
we access 392 bytes of spilled storage, corresponding to each stored register being
read just under 3 times. We found that if we increased Q sufficiently enough, we
could eliminate register spilling completely. This is because as Q is increased, the
number of threads decreases correspondingly because the number of threads in a
block is set to M/Q, and thus the total register count within the block decreases
as well. However regardless of the extra accesses to higher-level caches as a result
of spilling, we found that increasing Q beyond 4 reduced the overall performance
as well, making the change not worthwhile.

Problem Instances per Block When designing the cuda kernel we consider
how many instances of multi-precision division should be computed per block,
we call this metric the number of problem instances per block (IPB). As we are
motivated by performance reasons to store integers in fast shared (scratchpad)
memory, we want to limit the accesses to global memory to the minimum required.
Problem instances are thus not shared between blocks, as this would require
expensive reads/writes to grid-level (global) memory.

Because we are targeting performance on very large integers, we do not concern
ourselves with implementing multiple problem instances per block, as this would
only increase performance when integers are small enough such that multiple can
be stored simultaneously. Most critically, allowing multiple instances per block
would result in nested-irregular parallelism, which would then require flattening,
something extremely difficult to achieve in our case due to input-dependent
branching. Additionally, multiple problems of the same length might terminate at
completely different speeds, e.g. by hitting one of the special fast cases, causing
warps to be idle while waiting for slower instances to return.

For these reasons the cuda kernel is structured to always consider exactly one
problem instance per block, which ensures that different blocks can compute
independent problems concurrently, with no inter-dependencies. Thus during

48

stress-testing we simply compute enough problem instances via concurrently
running blocks in order to sufficiently saturate the GPU.

Load balancing Ideally, we want to spawn a kernel where all threads within
each block remain fully active and saturated throughout the entire division
computation. However, due to the use of shorter iterates and divisor prefixes, the
sizes required for the arithmetic operations increase for each iteration, making
it challenging to maintain full thread saturation. Since we need at least enough
threads to perform a full-size multiplication, when performing arithmetics of
smaller sizes threads are going to be idle.

If possible, we would want to pair problem instances from later iterations with
those from earlier ones to better distribute the computational load. Unfortunately,
since cuda’s execution model enforces block independence, once a warp has
been assigned a block, it can not be reused by other blocks until the block
terminates, making this a nonviable approach. An alternative approach to achieve
a more balanced computational load is to increase the sequentialization factor
Q. However, this could exhaust registers and local memory leading to sequential
bottlenecks, thus decreasing efficiency. Also, since we only spawn one block per
SM, initializing a block with fewer threads and thus fewer warps limits the SM’s
ability to perform key optimizations such as efficient instruction scheduling and
memory latency hiding.

Coalesced Global Memory Access Accessing global memory is extremely
slow, even on modern GPU architectures, requiring around 290 clock cycles,
compared to shared memory which takes roughly 20 cycles [5]. Thus, in order to
optimize the memory access pattern of the kernel, we are encouraged to limit the
number of accesses to global memory to the initial read and final write. Each read
and write to global memory should be managed carefully, to fully exploit spacial
locality, and perform as few memory transactions as possible. This means copying
Q total elements with all threads, such that each thread copies elements by a
stride corresponding to the total number of threads. This maximizes both spacial
and temporal locality as whenever a warp of threads accesses global memory,
the cached reads can easily be reused as neighboring threads access neighboring
elements. Such an implementation can be found in Listing 1 where it is assumed
that Q evenly divides M , thus each thread copies Q elements from global to
shared, and finally to register memory.

1 template <class uint_t , uint32_t M, uint32_t Q>
2 __device__ inline void
3 cpyGlb2Sh2Reg(uint_t* AGlb
4 , volatile uint_t* ASh
5 , uint_t AReg[Q]
6) {
7 const int glb_offs = blockIdx.x * M;
8

9 #pragma unroll
10 for (int i = 0; i < Q; i++) {
11 int idx = i * blockDim.x + threadIdx.x;
12 ASh[idx] = AGlb[idx+glb_offs];

49

13 }
14 __syncthreads ();
15 #pragma unroll
16 for (int i = 0; i < Q; i++) {
17 AReg[i] = ASh[Q * threadIdx.x + i];
18 }
19 }

Listing 1: Coalesced copy of big integer from global to shared to register memory.

An essential part that you do not seem to explain, is that "allocating arrays
to register memory" is possible (efficient), only when the compiler can perform
scalarization, i.e., replacing a thread private array of Q elements with Q registers.
This means that the indexing into the thread privte arrays has to be very simple.

Register Allocation for Multi-Precision Integers When operating on
multi-precision integers, we ideally want most memory accesses to go through the
lowest latency thread-level (register) memory for faster lookup. With that being
said, storing the entire integer per thread is infeasible, as each thread only has
a maximum of 255 32-bit registers for storing variables. Instead, we distribute
the representation of the integer across the threads in a cuda block, assigning
to each thread a small slice of the integer of size equal to the sequentialization
factor Q. The integers are partitioned such that each thread t stores the digits in
the range:

{t ·Q, t ·Q+ 1, . . . , t ·Q+Q− 1},

i.e. in sequential order which can also be seen depicted in Figure 11. By ensuring
that the indexing into these thread private arrays are simple and known at compile
time, the compiler can perform scalarization, which maps the digits to actual
registers. This is typically achieved through loop unrolling, a technique used
extensively throughout our code. This enables each thread to perform extremely
efficient computation on its assigned portion of the integer entirely within registers,
thereby limiting shared memory access.

Figure 11: Integer being store in register memory in partitions of Q = 2.

50

8.2 Shifting

Although the shift operation is relatively simple, it is central to our algorithm,
and thus we cover its implementation. The shift is given by:

shiftB(u, n) =

{
u ·Bn n ≥ 0

⌊ u
B|n| ⌋ otherwise,

and can be intuitively thought of as an arithmetic shift of the big integer u by n

digits, either to the left or the right, while zeroing out the rest.

1 template <class uint_t , uint32_t M, uint32_t Q>
2 __device__ inline void
3 shift(int n
4 , uint_t u[Q]
5 , volatile uint_t* sh_mem
6 , uint_t RReg[Q]
7) {
8 #pragma unroll
9 for (int i = 0; i < Q; i++) {

10 int idx = Q * threadIdx.x + i;
11 int offset = idx + n;
12 uint_t val = 0;
13 if (offset >= 0 && offset < M) {
14 val = u[i];
15 } else {
16 offset = M-idx -1;
17 }
18 sh_mem[offset] = val;
19 }
20 __syncthreads ();
21 #pragma unroll
22 for (int i = 0; i < Q; i++) {
23 RReg[i] = sh_mem[Q * threadIdx.x + i];
24 }
25 }

Listing 2: Shift

The cuda function accepts four parameters. The big integer u stored in register
memory, the shift amount n, a shared memory pointer for cross-thread commu-
nication and a register array for the result as we might want to reuse u later
in the algorithm. We are generally encouraged to perform as many operations
in register memory since lookups there incurs a much smaller time penalty in
comparison to shared memory. Depending on the size of n however, most or all
of the elements in a given thread will have to be shifted into another thread,
resulting in unavoidable accesses to shared memory. More specifically if n ≥ Q we
need to move the entire integer into shared memory anyway. For simplicity, and
since the above condition is expected to occur often, we move the entire offset
integer to shared memory at once, before moving it back into register memory
at the shifted address of the result. Finally we are required to synchronize all
threads in the block after writing to shared memory, in order to eliminate the
possibility of a true dependency due to racing threads [29]. The result is the

51

implementation of the shift operator for multi-precision integers that can be seen
in Listing 2, which is able to shift in-place.

8.3 Initial Value Computation

As discussed in Section 7.2, a sufficiently accurate initial approximation for fast
convergence can be computed in constant time using ⌊B3

V ⌋, i.e. inverting a short
prefix of the two most significant digits of v. However, since the divisor B3

spans four digits, performing this division requires native sizes that are four times
the word size. For word sizes up to 32 bits this is not an issue, since C++ has
native support for unsigned integers up to 128 bits. However, as our implemen-
tation is based on the multiplication from [30], which reports a performance
increase of approximately 50% when using 64-bit digits compared to 32-bit, we
naturally want to support 64-bit digits as well. For 64 bits, computing ⌊B3

V ⌋
would require 256-bit arithmetic, which is beyond the limits of any native type
in cuda. Therefore we split the initial approximation into two cases, one for
64 bits word sizes, and for all smaller ones. The resulting code is found in Listing 3.

1 if (threadIdx.x == 0) {
2 ubig_t tmp;
3 ubig_t V = (ubig_t)VSh[k - 1] | (ubig_t)VSh[k] << Base::bits;
4 if (Base::bits == 64) {
5 tmp = divide_u256_by_u128 ((__uint128_t)1 << 64, 0, V);
6 } else {
7 tmp = ((uquad_t)1 << 3*Base::bits) / V;
8 }
9 RReg [0] = (uint_t)(tmp);

10 RReg [1] = (uint_t)(tmp >> Base::bits);
11 if (tmp == 0) RReg [2] = 1;
12 }

Listing 3: Computation of initial approximation as part of the shinv function.

To construct V , we simply combine the two most significant digits of v using a
bitwise OR, where the most significant digit is shifted by a word size, as the shift
guarantees no overlapping bits between the digits. For word sizes less than 64
bits, we apply native division on a unsigned integer of four times the word size,
denoted as a uquad_t.

For the 64-bit case, although native 256-bit arithmetic is unavailable, we still have
enough space in a uint128 to store the entire divisor, meaning that the division
can be achieved via short division. Since short division requires double the divisor
size for the remainder, we opt for a bit-wise version. This approach allows us to
perform the division using only uint128_t values by handling overflow explicitly
using a bool flag. The exact implementation is seen below.

1 __device__ inline uint128_t divide_u256_by_u128(uint128_t high ,
2 uint128_t low , uint128_t divisor) {
3 uint128_t quotient = 0;
4 uint128_t rem = 0;
5 bool overflow = false;

52

6 for (int i = 192; i >= 0; i--) {
7 if (rem & (__uint128_t)1 << 127) {
8 overflow = true;
9 }

10 rem <<= 1;
11

12 if (i == 192) {
13 rem |= 1;
14 }
15 quotient <<= 1;
16 if (rem >= divisor || overflow) {
17 rem -= divisor;
18 quotient |= 1;
19 overflow = false;
20 }
21 }
22 return quotient;
23 }

Listing 4: Bitwise long division defined for a 192-bit numerator.

Finally, the computed short prefix inverse is stored in the corresponding register
array entries of the big integer. In the case of it being 0, it corresponds to a
corner case where the result is three digits, but the last bit overflows since tmp is
only two digits long. Specifically, this occurs when diving B3 by B, which results
in B2 = [0, 0, 1]. In that case we store a 1 in RReg[2]. Also, since Q ≥ 4, we can
store the entire result in the registers of the first thread, allowing us to perform
the initial approximation sequentially in the first thread only.

8.4 Classical Multiplication

As previously established, multiplication is the main building block of our division
algorithm, making it a critical component to optimize. We base our approach
on the classical multiplication method presented in [30], which computes the
convolution in an "embarrassingly parallel" fashion, as described in Section 5.3.
However, the multiplication from [30] is highly specialized for the fixed M and Q,
which are sent as compile time arguments to the kernel. As a result, it always
computes exactly M elements utilizing all threads efficiently, while cutting off
any potential overflow. In contrast, the whole shifted inverse algorithm performs
variable sized multiplications. To avoid redundant computation and to preserve
the algorithm’s linear theoretical runtime with respect to multiplication, we adapt
the original method to support dynamic multiplication based on the operand size.
This technique shown in Listings 5.

1 if (maxMul <= blockDim.x) {
2 smallMult <Base , Q>(USh , VSh , VReg , RReg , VReg , maxMul);
3 } else if (maxMul <= 2* blockDim.x) {
4 smallMult2x <Base , Q>(USh , VSh , VReg , RReg , VReg , maxMul);
5 } else {
6 bmulRegsQ <Base , 1, Q/2>(USh , VSh , VReg , RReg , VReg , M);
7 }

Listing 5: Dynamic multiplication switching based on operant sizes.

53

Moreover, Theorem 1 requires computing the product u · shinvh v. Both operands
can potentially be of size h, which is upper-bounded by M . Since multiplication
can potentially double in size, we need the full result of up to 2M digits to ensure
that we do not lose information. As the original multiplication discards digits
beyond M , we adapt it to ensure that all 2M resulting digits are preserved, we
call this Complete Multiplication.

8.4.1 Small Multiplication

To efficiently handle smaller multiplications, we implement a separate function
specialized for this case. Although the efficiency of small multiplications is not
critical to the overall performance, provided it maintains the correct asymptotic
behavior, we still aim for a highly efficient implementation in practice. For
instance, a full-sized multiplication involves M2 operations, whereas halving the
operands yields (M2)2 = M2

4 operations, and further halving reduces it to M2

16 , and
so on. Thus all subsequent multiplications, assuming only one is performed per
iteration, collectively contribute to approximately M2

4 of the total work load.

While our small multiplication implementation still adopts the structure from [30],
it is limited to exclusively operate on big integers of size less than the number of
threads initialized in the block. Instead of performing the entire convolution of M
elements, we only compute the necessary entries, where each thread is responsible
for a single entry in the convolution. This proposed load-balancing schema is
illustrated in Figure 12. Although this scheme results in a more unbalanced
workload between threads compared to the original approach, the total work is
significantly reduced, resulting in less overhead.

w0 = u0 · v0 := t0
w1 = u0 · v1 + u1 · v0 := t1
w2 = u0 · v2 + u1 · v1 + u2 · v0 := t2
...

...
...

wn−3 = u0 · vn−3 + ...+ un−3 · v0 := tn−3

wn−2 = u0 · vn−2 + ...+ un−3 · v1 + un−2 · v0 := tn−2

wn−1 = u0 · vn−1 + ...+ un−3 · v2 + un−2 · v1 + un−1 · v0 := tn−1

Figure 12: Small convolution where each thread computes threadIdx.x + 1
products. Assumes n < blocksize.

The per-thread results of the convolution are two variables, accum of type bigint_t
and carry of type uint_t. accum accounts for the overflow in multiplication,
while the carry manages the potential overflow of the summations. Unfortunately,
when publishing these results to shared memory, since we only compute one
elm per thread, the high and carry will overlap. This requires us to publish to
three locations in shared memory, which in turn results in 2 additions. Luckily,
since addition is cheap relative to the convolution, the impact on performance is
minimal. Additionally, since we assume that Q ≥ 4, the available shared memory

54

is more than sufficient to store three slices of blocksize. This process is shown in
Figure 13.

Figure 13: An example of publishing the per thread variables accum and carry
to shared memory.

The cuda implementation that combines the previous steps is shown in Listing 6.
Lines 20-30 perform the convolution, while reg2ShmConv on line 33 publishes the
result to shared memory. Lines 44-45 perform the additions of the low, high,
and carry arrays from Figure 13. The final result is then copied back to register
memory.

1 template <class Base , uint32_t Q>
2 __device__
3 void smallMult(volatile typename Base:: uint_t* Ash
4 , volatile typename Base:: uint_t* Bsh
5 , typename Base:: uint_t Arg[Q]
6 , typename Base:: uint_t Brg[Q]
7 , typename Base:: uint_t Rrg[Q]
8 , uint32_t M
9) {

10 using uint_t = typename Base:: uint_t;
11 using ubig_t = typename Base:: ubig_t;
12 using carry_t= typename Base:: carry_t;
13

14 // 1. copy from shared to register memory
15 cpyReg2Shm <uint_t ,Q>(Arg , Ash , M);
16 cpyReg2Shm <uint_t ,Q>(Brg , Bsh , M);
17 __syncthreads ();
18

19 // 2. perform small convolution
20 ubig_t accum = 0;
21 carry_t carry = 0;
22 if (threadIdx.x < M) {
23 #pragma unroll

55

24 for (int i = 0; i <= threadIdx.x; i++) {
25 ubig_t ck = (ubig_t)Ash[i] * (ubig_t)Bsh[threadIdx.x ←↩

- i];
26 uint_t accum_prev = (uint_t) (accum >> Base::bits);
27 accum += ck;
28 carry += (((uint_t)(accum >> Base::bits)) < ←↩

accum_prev);
29 }
30 }
31

32 // 3. publish convolution to shared memory
33 reg2ShmConv <Base , ubig_t , carry_t , Q>(accum , carry , Ash , Bsh ,←↩

M);
34 __syncthreads ();
35

36 // 4. load back to registers.
37 uint_t arg; uint_t brg; uint_t crg;
38 if (threadIdx.x < M) {
39 arg = Ash[M + threadIdx.x];
40 brg = Bsh[M + threadIdx.x];
41 crg = Ash[2*M + threadIdx.x];
42 }
43

44 // 5. perform the addition of the carries.
45 uint_t res = baddRegsNaive <uint_t , uint_t , carry_t , Base::←↩

HIGHEST >((carry_t *)&Bsh [2* blockDim.x], arg , brg);
46 res = baddRegsNaive <uint_t , uint_t , carry_t , Base::HIGHEST >(←↩

(carry_t *)Bsh , res , crg);
47

48 // 6. copy the result back to registers.
49 Ash[threadIdx.x] = res;
50 __syncthreads ();
51 cpyShm2Reg <uint_t , Q>(Ash , Rrg , M);
52 }

Listing 6: CUDA wrapper function that computes a small quadratic integer
multiplication.

In addition to smallMult we have implemented a similar function smallMult2x,
which allows for sizes up to two times the blocksize. The approach is very similar
to the one mentioned above, and hence not shown. The convolution is performed
as the original approach from [30], in a low and high part, meaning that each
thread processes two elements instead of one in a load balanced fashion.

8.4.2 Complete Multiplication

Extending the original multiplication to produce the full 2 ·M result is relatively
straightforward. We start by modifying the convolution, such that the low part
processes the first m elements, while the high part is responsible for the subsequent
m. This means that sequential factor Q effectively doubles. This structure shown
in Figure 14.

56

w0 = u0 · v0 := t0
w1 = u0 · v1 + u1 · v0 := t1
w2 = u0 · v2 + u1 · v1 + u2 · v0 := t2
...

...
...

wm−2 = u0 · vm−2 + ...+ um−3 · v1 + um−2 · v0 := tn−2

wm−1 = u0 · vm−1 + u1 · vm−2 + ...+ um−2 · v1 + um−1 · v0 := tn−1

wm = u0 · vm + u1 · vm−1 + ...+ um−1 · v1 + um · v0 := t0
wm+1 = u0 · vm + ...+ um−2 · v1 + um+1 · v0 := t1

...
...

...
w2m−3 = um−1 · vm−3 + um−2 · vm−2 + um−3 · vm−1 := tn−3

w2m−2 = um−1 · vm−2 + um−2 · vm−1 := tn−2

w2m−1 = um−1 · vm−1 := tn−1

Figure 14: Embarrassingly parallel load-balancing schema as proposed by [30]
where each thread computes 2 ·m products.

Contrary to the previous convolutions, most of the work lies in the middle entries.
Thus we can achieve a load balancing partitioning by assigning threads to entries
that are m indices apart, i.e.:

{(w0, wm), (w1, wm+1), . . . , (wm−1, w2m−1)}.

This means that all threads perform a total of 2M multiplications (when Q = 1).
With that being said, to our surprise, we did not observe a performance increase
when using this load-balancing schema. Therefore, our current implementation
uses the same entry mapping as in [30], where each thread is assigned its opposite
counterpart i.e. {(w0, w2m−1), (w1, w2m−2), . . . , (wm−1, wm)}, leading to unbal-
anced workload across threads. Another challenge in regards to this extension is
that we no longer can store the entire result twice in shared memory, when adding
the carries. Instead we opt for publishing half of the result in shared memory,
perform the addition, before handling the remaining half.

The cuda wrapper function for the complete multiplication implementation is
found in Listing 7. Note that we have altered the implementation of addition,
such that it returns an overflow flag as well, since the first addition might overflow.
After performing both additions we add 1 to the entry m of the integer, if the
flag is true. All in all this corresponds to approximately double the work for the
convolution compared to the original approach, as each thread has to perform
twice as many multiplications.

1 template <class Base , uint32_t IPB , uint32_t Q>
2 __device__
3 void bmulRegsQComplete(volatile typename Base:: uint_t* Ash
4 , volatile typename Base:: uint_t* Bsh
5 , typename Base:: uint_t Arg[2*Q]
6 , typename Base:: uint_t Brg[2*Q]
7 , typename Base:: uint_t Rrg[4*Q]
8 , uint32_t M

57

9) {
10 using uint_t = typename Base:: uint_t;
11 using ubig_t = typename Base:: ubig_t;
12 using carry_t= typename Base:: carry_t;
13

14 // 1. copy from global to shared to register memory
15 cpyReg2Shm <uint_t ,2*Q>(Arg , Ash , M);
16 cpyReg2Shm <uint_t ,2*Q>(Brg , Bsh , M);
17 __syncthreads ();
18

19 // 2. perform the convolution
20 uint_t lhcs [2][2*Q+2];
21 wrapperConvQComplete <uint_t , ubig_t , 2*Q>(Ash , Bsh , lhcs , M ←↩

);
22 __syncthreads ();
23

24 volatile uint_t* Lsh = Ash;
25 volatile uint_t* Hsh = Bsh;
26

27 // 3. publish the low parts normally , and the high and carry ←↩
shifted by one.

28 uint_t highCarry [2];
29 from4Reg2ShmQFirstHalf <uint_t , Q*2>(lhcs[0], Lsh , Hsh , ←↩

highCarry , M);
30 __syncthreads ();
31

32 // 4. load back to register and perform the addition of the ←↩
carries.

33 uint_t Lrg[2*Q];
34 uint_t Hrg[2*Q];
35 cpyShm2Reg <uint_t ,2*Q>(Lsh , Lrg);
36 cpyShm2Reg <uint_t ,2*Q>(Hsh , Hrg);
37 __syncthreads ();
38

39 bool overflow = baddRegsOverflow <uint_t , uint_t , carry_t , 2*Q←↩
, Base::HIGHEST >((carry_t *)Lsh , (carry_t *)Hsh , Lrg , Hrg ,←↩
Rrg , M);

40 __syncthreads ();
41

42 from4Reg2ShmQSecondHalf <uint_t , Q*2>(lhcs[1], Lsh , Hsh , ←↩
highCarry , M);

43 __syncthreads ();
44

45 cpyShm2Reg <uint_t ,2*Q>(Lsh , Lrg);
46 cpyShm2Reg <uint_t ,2*Q>(Hsh , Hrg);
47 __syncthreads ();
48

49 baddRegs <uint_t , uint_t , carry_t , 2*Q, Base::HIGHEST >((←↩
carry_t *)Lsh , Lrg , Hrg , &Rrg[Q*2]);

50 if (overflow) add1 <Base , Q*2>(&Rrg[Q*2], Hsh);
51 }

Listing 7: CUDA wrapper function that computes a complete quadratic integer
multiplication.

58

8.4.3 Clipped Products

Sometimes only a portion of the digits of a big integer product are required.
Usually these constitute the least or most significant digits, for example when
computing initial values or refinement steps in iterative approximation schemes.
Occasionally, only a middle segment of the product is required, though this is less
common. Computing a segment of the product can be quite tricky, as the digits
are not independent, i.e. carries from less significant positions might affect more
significant ones.

For classical multiplication, computing the least significant digits is quite straight-
forward, as it just requires to limit the convolution range. This is effectively what
happens inside MultMod, which computes (a · b) rem Bd, retaining only the d

least significant digits of the product. However, the multiplication inside step
computes a product of size 2N × N and immediately left shifts the result my
N digits, essentially only utilizing the last 2N digits. Consequently, the work
spent computing the first N digits goes to waste. This redundant work can be
mitigated by only computing a slice of the product instead, a technique described
in [24], referred to as aclipped product, which are defined for both classical and
Karatsuba multiplication methods.

The same optimization applies to the complete multiplication discussed in the
previous section. The algorithm computes shift−h(u · shinvh v), i.e. the product
is shifted by -h, and thus only the h most significant digits are preserved. Thus,
by employing classical multiplication with clipped products, one can reduce the
reduce the time complexity by approximately half, since we would only need half
as many multiplications in the convolution. Although clipped products are highly
relevant and would reduce the overall computational workload of our algorithm,
we deem it beyond the scope of this thesis. The optimization may be explored in
future work.

8.5 Warp-Level SOACs

The cuda programming model provides highly optimized warp-level intrinsics
that enable efficient data exchange and collective operations within a warp (i.e.
a group of 32 threads that execute in lockstep). These intrinsics such as _-
_shfl_sync, __shfl_up_sync, __ballot_sync, among others can be used to
implement exceedingly low-latency warp-wide scan and reduce operations. In
our implementation, we exploit these warp-level primitives to build specialized
versions of the following SOACs with sequential dependencies:

• Scan used for the carry propagation during addition and subtraction, where
carry flags are propagated throughout the integer in warp-level increments.

• Reduce for aggregating boolean conditions as part of determining if an
integer is less-than or greater-than another.

Warp-level operations avoid shared memory, operating entirely within the warp’s
register file. Additionally, since warps perform operations in lockstep there is
no need for synchronization barriers, as data-dependencies related to shared

59

memory resources do not occur in the same way. As a result, these operations
are significantly faster than block-level or device-level equivalents. We found that
utilizing these warp-level primitives improved the performance of addition in [30]
by up to 10 percent. These results are showcased in Appendix 3.

Since these big integers exceed a single warp’s width, we combine these warp-level
scan/reduce with shared memory staging to construct the full block implementa-
tions. Each warp computes a partial result, which is then combined with others
through a second level of scan/reduce operation at the block level. This multi-level
scan/reduce maintains optimal performance regardless of integer size, we will
therefore discuss the implementation of these individually in more detail below.

1 template <class OP >
2 __device__ inline int
3 scanIncWarp(int u
4 , uint32_t lane
5) {
6 #pragma unroll
7 for (int i = 1; i < WARP; i *= 2) {
8 int elm = __shfl_up_sync (0xFFFFFFFF , u, (lane >= i) ? i :←↩

0);
9 u = OP::apply(elm , u);

10 }
11 return u;
12 }

Listing 8: Warp-level scan implementation.

We define operation-invariant implementations using C++ templates, which allow
us to plug in any custom associative operator (e.g. addition, maximum, logical
OR). The low-level warp scan can be seen in Listing 8 which consists of log2(WARP)
iterations, at each of which we shuffle up towards the highest element of the warp
with the associative operation OP::apply [3]. The schema for which we shuffle
upwards as part of the scan can be seen in Figure 15. The scan is consistent
with the Kogge-Stone lookahead adder for calculating parallel prefixes [12], and
while other scan implementations exist that result in less overall inter-thread
communication, they present no immediate performance benefit due to all threads
operating in lockstep.

Figure 15: Example of warp-level scan with the addition operator with a warp of
size 8.

For implementing the block-wide scan we initially scan each warp individually,
this calculates the prefix sum within each warp but does not consider the exclusive
prefix (i.e. the sum up to the beginning lane of the warp). The exclusive prefix

60

can however simply be computed by an additional warp-level scan over all of
the last elements within each separate warp. Finally this exclusive prefix can be
applied to each element within the corresponding warp which results in the code
as seen in Listing 9. The implementation of the block-level scan is presently only
used as part of the addition and subtraction functions, however because it uses
generic operations it can easily be adapted to any function that can be modeled
in terms of a scan.

1 template <class
2 template <class OP >
3 __device__ inline int
4 scanIncBlock(uint32_t u
5 , volatile uint32_t* sh_mem
6) {
7 __syncthreads ();
8 int idx = threadIdx.x;
9 const unsigned int lane = idx & (WARP -1);

10 const unsigned int warpid = idx >> lgWARP;
11

12 int res = scanIncWarp <OP >(u, lane);
13

14 if (lane == (WARP -1)) { sh_mem[warpid] = res; }
15 __syncthreads ();
16

17 if (warpid == 0) {
18 scanIncWarp <OP >(sh_mem[threadIdx.x], lane);
19 }
20 __syncthreads ();
21

22 if (warpid > 0) {
23 res = OP::apply(sh_mem[warpid -1], res);
24 }
25 __syncthreads ();
26

27 sh_mem[idx] = res;
28 __syncthreads ();
29

30 return res;
31 }

Listing 9: Block-level scan implementation.

The code for the block-level reduction is very similar to the scan implementation,
except it is missing the final step where the exclusive prefix is applied for all
elements of the block. Instead it is simply applied to the last element of the block
which is then returned. This function is operation invariant similar to the scan
implementation, and as such can easily be extended. It is used to implement the
less-than operator for comparing the sizes of big integers. The operator itself is
not inherently associative, instead we use the operator presented by Bringgaard
in [10] which is defined as follows:

(l1, e1)⊙ (l2, e2) := (l2,∨ (e2 ∧ l1), e1 ∧ e2)

The intuition is that if the most significant digit of the first integer is strictly
smaller than the equivalent for the second, then the entire first integer is less.

61

Alternatively, if the two digits are equal then the condition is propagated down
towards the less significant digits. The operand is shown to return the boolean
value corresponding to whether the first integer is strictly smaller than the second,
and it is proven to be associative and have neutral element (false, true) as part
of [10], hence why we omit this. The final code for the block-level reduction which
is used to implement this less-than can be found in Listing 14.

8.6 Optimizing Arithmetic on Powers of B

A central part of the whole shifted inverse algorithm revolves around performing
arithmetic on integers corresponding to the base B lifted to some power. We
denote these as Bn where n is a positive integer, which is numerically represented
by a big integer where all digits are zero, except for the n’th digit which is 1.
Due to the numerical representation of this type of integer, as the base B is
increased, the integer quickly becomes sparsely populated. This results in a lot of
unnecessary overhead both in terms of computation but also from simply storing
them in memory. Therefore, we exploit the structure of these base-B big integers,
to define a set of specialized auxiliary functions, allowing us to define simpler
more efficient implementations of addition, subtraction and comparison. Although
these operations are not asymptotically dominating the runtime of division, we
see to it that they are optimized regardless.

Figure 16: Illustration of efficient specialized subtraction, u−Bn where u ≥ Bn.

An example of a specialized subtraction is found in Listing 10. The function
computes u−Bn where u ≥ Bn, making the result a positive number. Since Bn is
defined as an integer with a 1 at n’th index and zero otherwise, there is no need to
save the entire number in memory, and thus only a uint32 is passed as parameter.
The function starts by locating the first non-zero digit with an index greater than
or equal to n. This is first done sequentially within each thread and then across
threads using shared memory, meaning that the inter-thread communication is
reduced. Since we need to find the lowest index among each thread, this can be
efficiently achieved via efficient block-level primitives. In contrast to ordinary
subtraction, which has to keep track of all carries and perform multiple scans,
this approach allows us to only do a single reduction using atomicMin, which is
highly optimized on modern hardware. Once the lowest relevant non-zero index

62

is identified, we simply subtract one from all digits between n and the index
at thread-level, using exclusively register memory. The intuition behind this
approach is straightforward, since Bn only contains a single non-zero digit at
position n, subtracting it from u only requires borrowing once. This approach is
illustrated in Figure 16.

1 template <typename Base , uint32_t Q>
2 __device__ inline void
3 sub(typename Base:: uint_t u[Q]
4 , uint32_t bpow
5 , volatile typename Base:: uint_t* sh_mem
6) {
7 using uint_t = typename Base:: uint_t;
8

9 uint32_t tmp = UINT32_MAX;
10 sh_mem [0] = tmp;
11 __syncthreads ();
12

13 // find lowest non -zero digit with index >= bpow
14 #pragma unroll
15 for (int i = 0; i < Q; i++) {
16 int rev_i = Q - i - 1;
17 int idx = Q * threadIdx.x + rev_i;
18 if (u[rev_i] != 0 && idx >= bpow) {
19 tmp = idx;
20 }
21 }
22 atomicMin ((uint32_t *)sh_mem , tmp);
23 __syncthreads ();
24

25 // subtract one from all digits between bpow and the computed←↩
index

26 uint32_t ind = sh_mem [0];
27 #pragma unroll
28 for (int i = 0; i < Q; i++) {
29 uint32_t idx = Q * threadIdx.x + i;
30 if (idx >= bpow && idx <= ind) {
31 u[i] -= 1;
32 }
33 }
34 }

Listing 10: Efficient big integer subtraction with divisor specialized to Bn.

8.7 Runtime Analysis

Contrary to Section 6.6 which looked at the asymptotic complexity of the al-
gorithm, this section focuses on the exact amount of work performed by our
cuda implementation. This analysis is then used as the basis for selecting a
suitable performance metric during benchmarking. And as the runtime of division
is tightly tied to the cost of multiplication, we base the runtime analysis on
the number of full multiplications performed. By full multiplication, we mean
a multiplication performed on all M digits. We assume that Q = 4, since our
implementation is optimized for this value, meaning that there are M

4 threads in

63

total per block. Since we do smaller multiplications for sizes up to two times the
blocksize, a full multiplication will be performed whenever more than M

2 digits
of the result are required. As showcased in Algorithm 7, each iteration of the
whole shifted inverse algorithm performs two multiplications, one inside Step and
another one inside PowDiff.

Number of Full Multiplications of PowDiff As part of PowDiff we apply
the close products strategy whenever L < h′. When calculating

L = precBv + precBw − ℓ+ 1,

the terms precBw and l roughly cancel out, leaving precBv. Thus L is based
on the precision of v. When employing divisor prefixes, we shift v by k − 2l,
leaving precBv ≈ min(2l, k). On the other hand we have h′ ≈ 3l. This implies
that h′ grows faster than L, meaning that the algorithm will use close products
whenever the iteration count is sufficiently large. Therefore it suffices to analyze
the multiplication behavior of MultMod inside PowDiff when determining the
number of full size multiplications. Multmod computes v · w mod BL, which
means that only the first L digits of the product are effectively used. Since L is
roughly given by precBv ≈ min(2l, k), the maximum multiplication is less than
M/2 when k ≤ h/2, since h < M . As a result no full multiplication is performed.

When k > h/2, and a full multiplication is performed, we know that h/2 <

precBki ≤ 2li. Also, we know that the loop terminates when li ≥ h− k. Given
that k > h/2 we have h−k ≤ ⌊h/2⌋, which means that the algorithm is guaranteed
to terminate whenever li reaches h/2. Since li+1 = 2li − 1, in the next iteration
we have:

h/2 < 2li ⇒ h/2− 1 < li+1

Note that li+1 is one of reaching h/2. This means that we in most cases perform
one full multiplications inside PowDiff, and in rare cases we need to perform two.

Number of Full Multiplications of Step Step computes the product between
w and v, which are approximately of sizes l and 2l. Thus, whenever a full
multiplication is done we know that h/2 ≤M/2 < 3li. Again we consider 2 cases,
k ≤ h/2 and k > h/2. When k > h/2 we can apply the same logic as for Powdiff.
After the next two iterations we have:

h/2 < 3li ⇒
2

3
h/2−1 < li+1 ⇒

4

3
h/2−3 < li+2 ⇒ h/2 < li+2 for h ≥ 18

As before, we know that the algorithm is guaranteed to terminate whenever li
reaches h/2, resulting in at most two full multiplications when h ≥ 18. For
k ≤ h/2 we consider the worst case, which occurs when 3l is exactly equal to
h/2. This means that w is of size l = h/6 while v is of size 2l = h/3. We are
are guaranteed that the loop stops at h− k ≤ l or 2/3h ≤ l since v ≥ h/3. If we
were to double li (and thus the precision of w) at each iteration, we would only
require 2 iterations as we would have li+2 = 2/3h. However, since we subtract by

64

one at each iteration, three iterations would in rare cases be required.

Total Number of Full Multiplications In total, we perform at most four full
multiplications as part of computing the shifted inverse. Obtaining the quotient
additionally requires two multiplications, one of them being of double length,
which corresponds to two full multiplications. This yields a minimum of three
and a maximum of seven size-M full multiplications for division.

65

9 Futhark Implementation

Futhark is a high-level functional programming language designed to allow a
programmer to easily implement highly parallel programs. Futhark abstracts away
concerns associated with low-level languages like hierarchical memory, thread
management and coalesced memory accesses. Instead, the programmer only
need to conceptualize the algorithm in terms of SOACs, which the compiler then
translates into efficient parallel low-level code to be run on GPUs. This results in
cleaner code, and doesn’t require the domain knowledge of the underlying GPU
architecture, in order to produce semantically equivalent programs.

In this section we present our implementation of the division algorithm by [33] for
multiple precision integers in Futhark, and where it is applicable compare it to
the lower-level implementation cuda prototype as described in Section 8. The
underlying idea behind developing a semantically equivalent program in Futhark
is to explore the compiler’s ability to produce competitive code in comparison to
a highly optimized low-level implementation.

9.1 Futhark’s Strengths and Weaknesses

Futhark is a purely functional data-parallel array language, which offers several
advantages for implementing algorithms that express a level of parallel behavior.
Because the language is purely functional, it’s syntax closely resembles that of
algorithmic pseudo code, and since there are no side effects, it makes it straight
forward to reason for the correctness of programs. Programming parallel constructs
in Futhark can easily be expressed in terms of SOACs, which is then compiled
to efficient parallel code. Thus the programmer only has to concern themselves
about expressing algorithms in terms of array combinators instead of interacting
with manually interacting with individual threads.

Futhark relies on advanced compiler optimization techniques in order to produce
efficient parallel programs. In particular it uses a technique called incremen-
tal flattening to transform nested parallelism in programs operating on regular
multi-dimensional arrays into efficient GPU-executable code. This technique
incrementally maps levels of map-based parallelism to hardware by applying
transformations like map fission and map loop interchange. For each discovered
map operation, the compiler generates multiple code versions: one that maps
the current parallel context to a GPU kernel, another that recursively flattens
inner parallelism into an intra-group kernel using shared memory, and additional
versions for deeper transformations. These variants are dynamically selected at
runtime via autotuned thresholds to ensure optimal performance across different
workloads. Futhark employs use of memory optimizations in the form of memory
reuse and short-circuiting analysis. Memory reuse refers to the compiler reusing
memory buffers once their lifetimes have ended, similar to how registers are
reused. Short-circuiting avoids unnecessary memory copies by directly writing
results into the target memory space when it’s safe to do so. Together, these
optimizations help reduce the overall memory footprint of the program. [16,17,30].

66

The main weakness of Futhark is that it is an inherently high-level language,
meaning that the performance of programs is very much reliant on the compiler’s
ability to generate optimized code. In particular it is not possible to provide
low-level optimizations by hand in the same manor as when interacting with a
lower level language e.g. C++. One case where these compiler optimizations cause
restrictions is when a program exhibits irregular parallelism, which is the case
when a nested structure expresses varying sizes of parallelism across different
levels. When confronted with this type of parallelism, the incremental flattening
technique used by the compiler breaks down and is unable to compile to a parallel
backend. Instead this can lead the compiler to sequentialize parts of the code,
which negatively impacts the performance [17]. This restriction on irregular
parallelism is particularly problematic with regards to the case of division, as the
degree of parallelism changes shape during refinement.

9.2 Implementation

Similar to the structure of the cuda prototype which uses an existing frame-
work for multiplication and addition, our Futhark implementation utilizes these
functions from a library developed by [10]. This library implements the same
underlying algorithms, from which we use addition, subtraction and classical
multiplication. With these we compute the shifted inverse in Futhark results in
code very similar to the pseudo code by [33], and can be seen in Listing 11.

One of the main differences between the function and it’s equivalent in cuda
C++ is that most of the auxiliary C++ functions worked on mutable arrays with
no return value. In comparison since Futhark is without side effects, all branches
need to return a value of the same type. Additionally, the incremental flattening
performed by the compiler ensures that the resulting kernel maintains intermediate
arrays in shared memory while performing bulk operations in registers. Thus
when writing the corresponding functions in Futhark we never need to concern
ourselves about efficiently mapping intermediate results in and out of different
layers of memory. When computing the initial approximation of the shifted
inverse, we require the existence of an integer of 4 times the size of a single digit,
meaning that we have had to restrict ourselves to only support 16-bit words. This
is because Futhark only supports integer arithmetic up to 64 bits. If Futhark
offered support for 128-bit integers, the implementation could easily be extended
to include 32-bit integers, as this is the the only part of the algorithm that requires
quadruple-sized integer values.

1 def shinv [m][ipb] (vs: [ipb *(4*m)]u16) (h: i64) (k: i64) : [ipb←↩
*(4*m)]u16 =

2 if k == 0 then
3 quo_single h (vs) (ipb *(4*m)) :> [ipb *(4*m)]u16
4 else if k >= h && !(eqBpow vs h) then
5 vs
6 else if k == h - 1 && vs[k] > u16.highest / 2 then
7 zeroAndSet 1 0 (ipb *(4*m)) :> [ipb *(4*m)]u16
8 else if eqBpow vs k then
9 zeroAndSet 1 (h - k) (ipb *(4*m)) :> [ipb *(4*m)]u16

10 else

67

11 let l = i64.min k 2
12 let V = (u64.u16 vs[k - 2]) | (u64.u16 vs[k - 1]) << 1*16←↩

| (u64.u16 vs[k]) << 2*16
13 let b2l = 1u64 << 4*16
14 let tmp = (b2l - V) / (V + 1)
15

16 let ws = tabulate (ipb *(4*m)) (\i ->
17 if i == 0 then u16.u64 tmp
18 else if i == 1 then u16.u64 (tmp >> 16)
19 else 0u16)
20 in if h - k <= l then
21 shift (h-k-l) ws
22 else
23 refine vs ws h k l

Listing 11: Implementation of the shifted inverse in Futhark

Using the shifted inverse to perform a division of two big integers works largely
the same as in cuda. In order to circumvent an infinite loop during refinement,
we perform an initial check to correct the precision of the divisor if k is initially
equal to 2. We also perform a full multiplication, meaning that we compute the
full product without truncating the overflow. In cuda this meant implementing,
a special version of multiplication without truncation, where we manage register
usage and shared memory explicitly. In Futhark much of this is delegated to the
compiler, instead we can simply pad the shifted inverse and dividend arrays with
leading zeroes. The full product is then left shifted and truncated to the first M

entries, obtaining the quotient in the correct array size. The rest of the function
simply corrugates for the error δ ∈ {0, 1}, resulting in the following code as seen
in Listing 12.

1 def div [m][ipb] (us: [ipb *(4*m)]u16) (vs: [ipb *(4*m)]u16) : ([←↩
ipb *(4*m)]u16 , [ipb *(4*m)]u16) =

2 let h = prec us
3 let k = (prec vs) - 1
4 let (kIsOne , us , vs , h, k) =
5 if k == 1 then
6 let h = h + 1
7 let k = k + 1
8 let us = shift 1 us
9 let vs = shift 1 vs

10 in (true , us , vs, h, k)
11 else
12 (false , us, vs, h, k)
13 let quo =
14 let m = m * 2
15 let quo_padded = ((shinv vs h k) ++ (replicate (ipb *(4*(m←↩

/2))) 0u16)) :> [ipb * (4 * m)]u16
16 let us_padded = (us ++ (replicate (ipb *(4*(m/2))) 0u16)) ←↩

:> [ipb * (4 * m)]u16
17 let mul_res = convMulV3 quo_padded us_padded
18 let mul_shifted = shift (-h) mul_res
19 let res = take (ipb *(4*(m/2))) mul_shifted
20 in res
21 let quo = quo :> [ipb * (4 * m)]u16
22 let (rem , _) = convMulV2 vs quo
23 |> bsub us

68

24 let (quo , rem) =
25 if not (lt rem vs) then
26 let quo = badd1u16 quo
27 let (rem , _) = bsub rem vs
28 in (quo , rem)
29 else
30 (quo , rem)
31 let rem =
32 if kIsOne then
33 shift (-1) rem
34 else
35 rem
36 in (quo , rem)

Listing 12: The complete division algorithm in Futhark

9.2.1 Refinement

As part of the process of refining the initial approximation when calculating the
shifted inverse, Watt [33] presents multiple subroutines. The routine used as part
of the cuda prototype is the third and most efficient variant, which optimizes
the total work of the algorithm by using differently sized multiplications during
each step. However, due to the Futhark compiler’s limitations with regards to
irregular parallelism, it is not possible to generate this pattern routine in parallel
code [17]. Instead we perform full multiplications at each step of refinement,
essentially doing an amount of work corresponding using the first refinement
routine. Using these fixed-size multiplications instead of varying sizes results in
an overall runtime of O(n2 · log(h− k)) instead of O(n2), meaning that we expect
the performance of the Futhark implementation to be slower than that of cuda.
The resulting implementation of the refine routine can be seen in Listing 18.

1 def refine [m][ipb] (vs: [ipb *(4*m)]u16) (ws: [ipb *(4*m)]u16) (h:←↩
i64) (k: i64) (l: i64) : [ipb *(4*m)]u16 =

2 let ws = shift 2 ws
3 let (ws, _, _) = loop (ws , l, i) = (ws , l, 0)
4 while h - k > (l + 1) do
5 let n = i64.min (h - k + 1 - l) l
6 let s = i64.max 0 (k - 2 * l + 1 - 2)
7 let vs = shift (-s) vs
8 let tmp = step vs ws (k + l + n - s + 2) l n
9 let ws = shift (-1) tmp

10 let l = l + n - 1
11 let i = i + 1
12 in (ws, l, i)
13 in shift (-2) ws

Listing 13: Refinement routine without irregular parallelism.

69

10 Validation & Benchmarking

This section presents the results of our two implementations of the division
algorithm by Watt [33] in cuda C++ and Futhark. We start by arguing for
the correctness of our implementations, before delving into the performance of
each one in detail. The performance will be upheld against the state of the
art Cooperative Groups Big Numbers (CGBN) library [26] authored by NVlabs,
which is a highly optimized framework for performing arithmetic on multiple
precision integers written in cuda.

10.1 Correctness

In order to effectively measure the performance of our implementations it is
essential that we verify their correctness, as if they produce incorrect results then
the underlying work may not be representative of the algorithm. This is especially
important in the field of arbitrary precision integer arithmetic as is the case for
Algorithm 6.5, as the entire idea behind not leaving the domain of integers is to
preserve precision during computation.

As we argue for the correctness of the algorithm and our refinements in Section
6 and Section 7 respectively, we will not delve further into this in this section.
Instead, we will focus solely on the correctness of our implementations. To do this
we validate our efficient cuda prototype and Futhark implementation against
the GNU Multi-Precision Library (GMP) which implements efficient arithmetic
operations sequentially on the CPU. Thus, for the purposes of validation, it is
assumed the GMP functions are correct.

The cuda framework allows for the division kernel to be launched with over
an arbitrary number of problem instances, which are then scheduled for parallel
execution on the GPU. As part of our correctness testing, we initialized each
problem instance with randomly generated integers and a randomly generated
precision (number of non-zero digits). Each set of integers is then evaluated
against the GMP division implementation in order to compare the results. To
ensure broad coverage of potential edge cases, we run this setup for 1000 iterations,
which provides a substantial amount of variation across inputs. In addition to this
randomized testing approach, we also performed manual testing of known edge
cases, including the over-approximation of the whole shifted inverse showcased in
Section 7.3 We similarly ensured that all fast cases were properly handled. All
tests were consistent with the GMP outputs, providing strong evidence for the
correctness of our implementation.

We did not find it possible to automatically validate against GMP in Futhark, as
there is no port of the library in the language. Instead, we manually verified the
correctness of the implementation against GMP for a fixed set of inputs. These
tests confirmed that the Futhark implementation, when compiled to parallel cuda
code, produced results identical to GMP. However, for some randomly generated
inputs we found discrepancies between the Futhark output and the equivalent
from GMP, confirming the existence of bugs in our implementation. Therefore, we
consider the Futhark implementation to be partially validating, though a closer

70

inspection shows that its control flow correctly follows the algorithm for the gen-
erated test inputs. Therefore we are confident that the implementation performs
an amount of work, corresponding to that of a fully correct implementation. For
this reason we include the Futhark benchmark results below, as the performance
is still representative of the its general capabilities on this type of problem.

10.2 Performances Metrics

When performing classical multiplication, the number of computations heavily
outnumbers the memory transactions, indicating that the operation is compute
bound. Since the cost of our algorithm mainly comes from multiplication, we
evaluate the performance using a normalized metric which reflects the number of
algorithmic operations per second. This is essentially derived by estimating the
number of operations based on the known asymptotic complexity and dividing
by the measured runtime. This approach is commonly used for benchmarking
algorithms (e.g., previous multiplication implementations [30]), as it normalizes
the workload, allowing more meaningful comparisons across algorithms, datasets,
and hardware platforms.

A natural choice is to base this metric around the number of uint_t operations.
But as we work with uint16_t in Futhark, and both uint32_t and uint64_t
in cuda, this would create a discrepancy between the measures. Therefore, we
further normalize the result to be consistent with uint32_t. As a result we use
Gu32ops/s, which represents the number of giga-32-bit operations per second.
The definition follows:

Definition 3. (division performance metric)

We measure the number of operations for division based on classical multiplication
as follows, where c,NumInsts,M ∈ Z+ represent a constant reflecting the number
of full multiplications, the number of problem instances, and the number of big
integer digits respectively:

Gu32ops = c ·NumInsts ·m2, m =
M · sizeof(uint)

4

In our case we fix c = 3 to reflect the minimum number of full multiplications
performed during refinement in the cuda version, as discussed in Section 8.7.

The m in Definition 3 ends up representing the number of digits in the big integer,
normalized to 32-bit numbers, which is squared due to the O(m2) asymptotic
complexity of the classical multiplication used by the division implementation.
The constant c is based off the number of full multiplications performed as part
of refinement. This was found to be between three and seven full multiplications
are performed when no fast case is taken. For this reason we use a conservative
approach, and set the constant to c = 3 during performance testing to effectively
reflect the amount of work being performed.

71

10.3 Benchmark Setup

The benchmarking was performed using an Nvidia A100 GPU, which has 6912
cores, a peak global memory bandwidth of 1,555 GB/sec and FP32 peak perfor-
mance of 19.5 TFlops. The CPU in the system is a AMD EPYC 7352, with 24
processing cores running at 2.3 GHz, with 32KB data and 32KB instruciton cache
(per core), 512KB of l2 cache (per core) and 128MB of l3 cahce (shared), and a
peak memory bandwidth of 204.8GB/s. The system has 503GB of memory, and
the operating system is Red Hat Enterprise Linux 8.10.

The cuda benchmarking setup is built on top of an existing framework initiated
by [30], which has been extended to include corresponding implementations of
division and GCD (see Section 10.4.2). Each problem instance is initialized with
randomly generated integers. The precision of u is fixed at M − 2 (accounting
for the two guard digits in Refine), while the precision of v is randomly selected
between 2 and M/2. This configuration ensures that the refinement loop always
performs the maximum number of iterations.

The framework requires parameters to be stated explicitly during setup such as the
integer word size, the sequentialization factor Q and the total number of runs. For
the word size we test for both the 32-bit and 64-bit implementations, however we
expect the 64-bit word size to prove superior, as this has been previously shown to
be the case for multiplication [30]. For similar reasons we set the sequentialization
factor Q to default to 4 (as discussed in Section 8.1), as larger values have shown
to prove inferior results. However, when testing the maximum sized integer of
218 bits, the 32-bit cuda version requires that we set Q = 8 to run. This occurs
due to the maximal number of threads of a cuda block being 1024. For a 218

bit integer and a word size of 32, we have M = 218/32 = 8192, meaning that Q
must be at least 8 in order to fully distribute the big integer between all threads.
Lastly, as in [30], we average over 25 runs to eliminate statistical variance.

Benchmarking is natively supported in Futhark, which runs a specific entry point
with randomized inputs until the performance has been determined within a 95%
confidence interval across a minimum of 10 runs. However, Futhark benchmarks
the entire entry point including our initial setup, responsible for setting the
precision of the divisor v, which we ultimately disregard, as it is asymptotically
negligeable compared to the algorithm itself. Lastly previous sources [10,30] have
shown that the Futhark benchmarking results can be directly compared with
timed cuda kernels, thus we will directly compare our results as well.

In addition to our own implementations we test the performance against both
the open source GMP library, and the cgbn library by NVlabs. Both libraries
abstract away the underlying representation of the integers, and thus its interface
provides no notion of word sizes. All benchmarks are performed on a fixed input
size of exactly 232 bits, which is decomposed into batches of varying integer sizes,
ranging from 29 to 218 bits.

Futhark Autotuning As an additional step in optimizing the program, the
Futhark compiler provides a native program autotuner, which is a tool designed to
automatically improve runtime performance by empirically searching for optimal

72

values of tunable parameters. Specifically, the autotuner targets threshold param-
eters, which are compiler-level variables that influence the degree of parallelism
of different parts of the code by use of incremental flattening. It performs a
series of timed benchmark runs on open entry points with different parameter
configurations and generates a tuning file with the best performing settings for a
given hardware and input size configuration [23].

Despite the potential benefits of the autotuner, it was not effective in our case.
Our implementation of division involves efficient management of dynamically
allocated memory as part of nested parallel computations, which likely falls
outside the tuning capabilities of the current Futhark autotuner. As such the
resulting parameters found during the autotuning process resulted in an identical
runtime to the one recorded without the tuned parameters. It known that the
autotuner is guaranteed to be near-optimal only when the degree of parallelism
conforms with a monotonic property [23]. We speculate that the reason behind
the autotuner being ineffective may be due to the large amount of dynamically
allocated shared memory required, which then voids this monotonic property. As
a result when performance testing the Futhark implementation we test without
any particular tuning setup.

10.4 Performance Results

The results of our performance testing are presented in Table 6, where the different
platforms have been divided in terms of the total integer size in bits. The first
column is the integer size in bits while the second is the number of instances
performed. Cells filled with — denote that kernel launch failed due to a compile
or runtime error. Please note that the total number of processed bits across all
results remains constant i.e.

num bits · num insts = 232

Looking at Table 6 multiple observations stand out. Firstly, only our cuda
implementation and the GMP framework support integers in the entire range
of {2n | n ∈ Z, 9 ≤ n ≤ 18} bits. During testing we found that the cgbn
division implementation produced a compile-time error which has been previously
documented for integers greater than 215 bits. More interestingly, we found that
our Futhark implementation failed to produce any results for integers larger than
213 bits, as it failed during runtime with an error message stating:

‘bytes of memory exceeds device limit‘

We speculate this to be due to the compiler’s capability to efficiently manage
dynamically allocated shared memory when compiled to the cuda backend. As we
specifically had to increase the maximum amount for the cuda implementation.
In this context, we would like to further study the compiled intermediate code,
in order to understand the reason behind the error. Unfortunately it was not
possible to use Futhark’s profiler to generate this kernel, as it fails on the entry
point as well. We therefore leave the reason for the error, and understanding of it
to future works.

73

Num
Bits

Num
Insts

CUDA
32-bit

CUDA
64-bit

Futhark
16-bit CGBN GMP

218 214 725 2.351 — — 208
217 215 1.042 2.338 — — 166
216 216 1.053 2.083 — — 99
215 217 940 1.383 — 5.031 110
214 218 792 725 — 4.658 98
213 219 455 538 20 3.967 41
212 220 318 162 15 3.024 22
211 221 109 56 16 2.443 12
210 222 36 16 9 1.712 5
29 223 11 13 6 812 2

Table 3: Performance of division measured in Gu32ops/sec (higher is better).

By examining the supported integer sizes, we observe that the performance of our
cuda implementations steadily increases with the integer size. This is partially
due to the fact that, for smaller bit sizes, the runtime of the multiplications does
not dominate the total runtime as much. As a result, the relative overhead from
other arithmetic operations and comparisons becomes more significant, limiting
overall performance.

For sizes above 214 bits we find that the 64-bit variant consistently outperforms
the 32-bit one. This behavior is expected, as it was recorded that the underlying
multiplication kernel, which our division is based upon, showed a ∼ 1.6 increase
in speed for 64 bits. However, for integer sizes smaller than 215 bits, the 32-bit
version generally outperformed the 64-bit one. We expect that this is manly
due to the differences in occupancy, i.e. how well the cuda is able to utilize all
threads and warps in each streaming multiprocessor (SM), which is essentially a
byproduct of only instantiating one instance per block. For the smallest tested
integers of 29 bits, the number of 64-bit digits is M = 29/64 = 8, and since we
have the sequentialization factor Q set to 4, we only instantiate 2 threads per
block. But because cuda allocates threads in warps, a full warp (32 threads) is
reserved even though 30 threads remain idle throughout the entire computation.
In contrast, when using 32-bit digits, the number of digits M doubles, which in
turn doubles the number of threads in each block, thus increasing the thread
occupancy in each warp. For 64-bit words, all 32 threads in a warp are used
whenever

numBits ≥ 4 · 64 · 32 = 213,

which is reflected in our results as well.

Moreover, each SM is restricted to a maximum of 32 resident blocks and a total of
1536 active threads. Since 32 ·48 = 1536, whenever we instantiate blocks with less
than 48 threads, we are not fully using all of the potential parallellism capabilities
of each SM. The number of threads initilaized in a block is given by:

blockSize =
numBits

WordSize ·Q

74

For 64-bit digits a block size of 48 results in:

numBits ≥ 48 · 64 · 4 ⇒ numBits ≥ 12288

Which corresponds to at least 214 numBits for the SM to be able to allocate all
its available threads. For 32-bit integers it is 213 instead. We were surprised
to find that for 214 bits, the 32-bit configuration outperformed the 64-bit one,
which slightly contradicts our earlier arguments. A possible explanation is that
the 32-bit version uses four warps per block instead of two, which enables more
efficient warp scheduling and better potential for latency hiding.

Comparing the runtime across implementations we see that the Futhark version
is much slower, and in particular the runtime scales much worse, resulting in
performance being orders of magnitude worse than the cuda variant, for the
larger integers. This was the expected behavior for three main reasons. Partially
because the Futhark implementation uses 16-bit integers as the internal digit
representation, and since the 64-bit cuda implementation proved superior com-
pared to 32-bit, we expect the 16-bit variant to perform even worse. However,
the main reason for the poor scaling is due to the Futhark implementation being
asymptotically slower than the cuda version. As showcased in Section 9.2.1, the
Futhark implementation performs work asymptotically equivalent to the Refine1
subroutine instead of the improved Refine3, which incurs an asymptotic penalty
by a factor of O(log(h− k)) as described in Section 6.6. This is an inherent
problem related to the shorter iterates strategy used by the improved refinement
routine, which in practice involves nested irregular parallelism, something the cur-
rent Futhark compiler is unable to deal with. Lastly, as Futhark is a higher-level
language, it prioritizes simplicity and generalizability over fine-grained control of
threads and blocks, which results in certain limitations in compiler flexibility and
performance.

The cgbn library outperforms both our cuda and Futhark implementations for
the supported integers in the bit-range 211 to 215. This was somewhat anticipated,
as cgbn is highly optimized for warp-level operations meaning that it utilizes
specific instructions that work in lockstep on one warp of threads at a time, which
allows for very low latency communication between threads. In comparison, our
cuda implementation performs most operations on a block-level basis (with
a few exceptions, see Section 8.5) which is less efficient but does not rely on
specialized hardware instructions. Likewise, the Futhark compiler is likely not
able to generate cuda code featuring these advanced instructions either, due to
them being highly specific.

Additionally, we expect the cgbn library to achieve higher occupancy for smaller
integer sizes compared to our cuda implementation, by processing multiple
problem instances per block. However, as the main objective of this thesis was to
optimize performance for the largest integer sizes that could fit in shared memory
(i.e. integers up to 218 bits) we disregarded this optimization.

Lastly, since most division algorithms are inherently parameterized over multipli-
cation, we suspect that cgbn library exploits this by using dynamic thresholds
to switch between different multiplication strategies, such as classical, Karatsuba

75

and FFT-based methods. As our implementation always resorts to classical mul-
tiplication, we expected GCBN to be asymptotic superior, especially for bigger
input sizes. For 215-bit input sizes our cuda implementation is approximately 3
times slower, a gap that would shrink if additional optimizations were applied,
such as clipped products and dynamic multiplication switching.

GMP performs significantly worse than both cuda and cgbn versions, being
about 10 times slower on average than the best performing cuda implementation.
This comes at no surprise, as GMP is a sequential CPU-based framework. It is
only slightly faster than our Futhark implementation for medium sized integers
(212 and 213 bits), which we attribute to Futhark performing asymptotically more
work. This is both due to the fact that the Futhark implementation always
performs full multiplications, and that GMP likely switches between different
multiplication algorithms based off integer size, similar to cgbn.

The total runtimes for all implementations when not normalized to Gu32ops/s
can be found in Appendix 7.

10.4.1 Performance of Division Relative to Multiplication

To examine the overhead introduced by our cuda division implementation, as
well as to reason about how cgbn might perform if input sizes up to 218 bits
were supported, we compare the performance of division relative to multiplication
for both our 64-bit cuda version and cgbn. The multiplication performance
was normalized using the metric defined in Definition 3, without the constant c.
We were able to produce previously undocumented results for multiplication on
218 bit integers [30], by ensuring that dynamic shared memory was allocated for
storing the big integers in each block. These results are shown in Table 4.

Num
Bits

Num
Insts CUDA MULT CGBN MULT CUDA DIV CGBN DIV

µs Gu32ops/sec µs Gu32ops/sec µs Gu32ops/sec µs Gu32ops/sec
218 214 271.205 4.054 7.354.041 149 1.402.839 2.351 — —
217 215 130.994 4.196 488.289 1.125 705.266 2.338 — —
216 216 69.059 3.980 66.306 4.145 395.807 2.083 — —
215 217 38.048 3.612 33.840 4.061 297.871 1.383 81.950 5.031
214 218 24.619 2.791 16.287 4.219 284.117 725 44.251 4.658
213 219 19.198 1.789 9.088 3.780 191.265 538 25.982 3.967
212 220 9.834 1.746 5.047 3.403 316.834 162 17.043 3.024
211 221 6.096 1.409 2.977 2.885 457.797 56 10.547 2.443
210 222 7.504 572 1.945 1.104 757.187 16 7524 1.712
29 223 3.845 558 1.624 2.644 482.085 13 7931 812

Table 4: Performance of 64-bit cuda and cgbn division and multiplication
measured in µs and Gu32ops/sec

As analyzed in Section 8.7, our cuda implementation performs between 3 and
7 full multiplications depending on the precision of the inputs. In practice,
whenever we do the maximum iterations in refinement (which we ensured during
benchmarking) we expect an average of 5 full multiplications. For the lower
bit-sizes however, the runtime differences between multiplication and division
is far greater than 5×, which is linked to cuda not being able to fully utilize
its available hardware, and due to the previously established overheads. For
larger sizes, the runtimes seem to stabilize around 5 times the runtime of a single
multiplication.

76

The cgbn division is pretty consistently 2,5× slower than multiplication across
all input sizes. The specifics of how this is achieved is unclear, as the available
documentation is limited. For instance, we are not aware whether cgbn uses
a variation of Newton’s iteration as for our case, or if it employs an alternative
strategy. Assuming that the 2,5× slowdown factor would still persist for integer
sizes above 215 bits, a linear extrapolation based on the cgbn multiplication
would reveal a slower runtime than our cuda implementation for integers of 217

bits and above. Although these projections are only speculatives, and should not
be interpreted as a definitive.

10.4.2 Performance of Greatest Common Divisor

We extended the division implementation to also support computation of the
Greatest Common Divisor (GCD), reflecting a more realistic use case for big
integer arithmetic. This was achieved using the Euclidean algorithm, which works
by iteratively computing the remainder of two integers, replacing the inputs with
the divisor and remainder at each step. The process continues until the remainder
is zero, which means that the greatest common divisor has been found. We argue
that our GCD implementation is correct, as all tests validate, and it additionally
validates against GMP.

According to Knuth [20], the expected number of divisions performed by the
Euclidean Algorithm is approximately:

E[steps] ≈ 12 ln 2

π2
lnN ≈ 0.843 lnN

Expressed in terms of bits, i.e. N = 2n, we get:

E[steps] ≈ 0.843 ln 2n ≈ 0.58n

This implies that the number of divisions in the Euclidean algorithm grows linear
with the input bit length. Thus, when applying GCD to integers of 218 bits, we
would need 218 · 0.58 ≈ 152.043 iterations (and thus divisions) on average.

Due to the extremely high computational demand, we have decreased the total
works of the input from 232 to 228 bits, which as before is split into batches of
varying integer sizes, ranging from 29 to 218 bits.

We denote the number of giga-32-bit unit operations per second based on
E[steps] ≈ 0.58n as:

Gu32ops = 0.58 ·NumBits · Runtime of division,

although this is an overestimation in practice, as we perform smaller and smaller
divisions as the algorithm progresses.

Analyzing the results in Table 5, we find that our GCD implementation performs
orders of magnitude slower than both the GMP and cgbn libraries. When running
on smaller inputs, the performance is initially comparable to GMP, however as
we increase the size of the inputs we are steadily outperformed. We expect the
difference in magnitudes arises from the libraries employing a more optimized

77

version of the Euclidean method or an entirely different algorithm. In addition,
if these algorithms involve multiplication, they likely avoid the classical O(n2)

approach for unsuitable input sizes, achieving better asymptotical complexity
relative to the number of bits. Furthermore, during GCD computation, the sizes
of the divisions naturally decrease over time, leading to progressively smaller
operations. In our implementation, however, only the multiplications scale down
accordingly, while some other functions continue to operate on the full size of the
initial input, irrespective of any leading zeros. This shortcoming, combined with
the fact that we already perform poorly on small numbers, produces a significant
amount of overhead.

Num
Bits

Num
Insts

CUDA
64-bit CGBN GMP

218 210 — — 2.417.963
217 211 — — 820.691
216 212 2.889 — 287.257
215 213 2.519 5.971.960 102.729
214 214 1.920 3.073.873 36.890
213 215 1.228 1.208.655 12.030
212 216 397 390.020 3.631
211 217 138 138.063 1.077
210 218 43 50.990 325
29 219 30 15.626 110

Table 5: Performance of GCD measured in Gu32ops/sec (higher is better).

10.5 Performance on Other Hardware

The parallel performance results have all been recorded using NVIDIA A100
GPUs, as this is the hardware that has been available to us. However both of our
implementations alongside the cgbn library should easily be able to be deployed
directly to any cuda GPU with minimal issues. The cuda prototype may
possibly be hindered by the amount of shared memory and registers per thread of
smaller GPUs, restricting the sizes for which it is possible to perform a division.

We expect the performance of our implementations to be invariant of the under-
lying hardware because no hardware-specific techniques have been used. As such
we predict that the performance should remain consistent when normalized by
the peak compute performance of the underlying hardware. Regardless of this,
it could prove interesting to test the performance across different hardware to
ensure this claim.

78

11 Conclusion

We have shown how to implement an efficient exact division, based on the concept
of a whole shifted inverse from [33]. We provided a series of refinements to
said algorithm, addressing previously undocumented edge cases. By exploiting
temporal reuse of fast scratchpad memory, our approach enables efficient division
of integers up to approximately ∼ 250.000 bits, which we, to our knowledge,
are the only ones to have achieved in parallel. Additionally, we have conclude
that there exists several compiler limitations in Futhark, in particular related to
irregular nested parallelism, which limits the ability of performant high-level code,
when dealing with complex problems.

The implementations are tested for performance against the GMP and cgbn
libraries which represent state-of-the-art performance in the field of multiple
precision arithmetic for sequential and parallel computing respectively. Although
not managing to outperform cgbn for input of sizes 215 and below, our main
advantage lies in providing a parallel implementation capable of handling integers
as large as 218 bits.

11.1 Future Work

As our division inherits the asymptotic behavior of the underlying multiplica-
tion, future work could explore exactly when and how different multiplication
strategies offer performance advantages. By analyzing the overheads and asymp-
totic behaviour of different multiplications at different input sizes, they could
be carefully applied at different stages of the algorithm, to potentially improve
overall efficiency. For example by applying an asymptotically faster FFT-based
method for the biggest multiplications, which was shown to outperform classical
multiplication for sizes 216 and over in [30].

Additionally, as our results show, the restriction of only computing one problem
instance per cuda block of threads severely impacts the performance on small
and medium sized integers. As a future addition, the implementations can be
made more competitive for these input sizes by allowing multiple divisions to be
computed within a single block. However, as this would introduce nested-irregular
parallelism, careful flattening strategies would need to be applied, a non-trivial
challenge due to input-dependent branching.

Lastly, one could incorporate the clipped products strategy as described in [25]
into the algorithm, by only computing the required section of the product, thereby
reducing the overall workload and increasing performance.

79

References

[1] Gnu multiple precision arithmetic library. https://gmplib.org/manual/
index. [Accessed 12-05-2025].

[2] Haskell wiki. https://wiki.haskell.org/Fold. [Accessed 30-04-2025].

[3] Using cuda warp-level primitives. https://developer.nvidia.com/blog/
using-cuda-warp-level-primitives/. [Accessed 20-05-2025].

[4] 1. Introduction; CUDA C++ Programming Guide — docs.nvidia.com.
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.
html#programming-model, 2016. [Accessed 25-03-2025].

[5] Hamdy Abdelkhalik, Yehia Arafa, Nandakishore Santhi, and Abdel-Hameed
Badawy. Demystifying the nvidia ampere architecture through microbench-
marking and instruction-level analysis. 2022.

[6] Richard Ansorge. Programming in Parallel with CUDA: A Practical Guide.
Cambridge University Press, 2022.

[7] Hovhannes Bantikyan. Big integer multiplication with cuda fft(cufft) library.
International Journal of Innovative Research in Computer and Communica-
tion Engineering, 2:6317–6325, 2014.

[8] R. S. Bird. An introduction to the theory of lists. In Proceedings of the
NATO Advanced Study Institute on Logic of Programming and Calculi of
Discrete Design, page 5–42, Berlin, Heidelberg, 1987. Springer-Verlag.

[9] G.E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on
Computers, 38(11):1526–1538, 1989.

[10] Thorbjørn B. Bringgaard. Efficient big integer arithmetic using gpgpu, 2024.

[11] Stephen A. Cook and Stål O. Aanderaa. On the minimum computation time
of functions. Transactions of the American Mathematical Society, 142:291–
314, 1969.

[12] Michael Garland Duane Merrill. Single-pass parallel prefix scan with decou-
pled look-back. 2016.

[13] Niall Emmart. A Study of High Performance Multiple Precision Arithmetic
on Graphics Processing Units. PhD thesis, University of Massachusetts, 2018.

[14] Niall Emmart and Charles Weems. Parallel multiple precision division by a
single precision divisor. pages 1–9, 2011.

[15] David Harvey and Joris van der Hoeven. Integer multiplication in time O(n
log n). Annals of Mathematics, March 2021.

[16] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and
Cosmin E. Oancea. Futhark: Purely functional gpu-programming with nested
parallelism and in-place array updates. pages 556–571, 2017.

80

[17] Troels Henriksen, Frederik Thorøe, Martin Elsman, and Cosmin Oancea.
Incremental flattening for nested data parallelism. In Proceedings of the 24th
Symposium on Principles and Practice of Parallel Programming, PPoPP ’19,
pages 53–67, New York, NY, USA, 2019. ACM.

[18] Mioara "Joldes, Jean-Michel Muller, Valentina Popescu, and Warwick"
Tucker. "campary: Cuda multiple precision arithmetic library and ap-
plications". pages "232–240", "2016".

[19] Anatoly Karatsuba and Yu. Ofman. Multiplication of many-digital numbers
by automatic computers. Proceedings of the USSR Academy of Sciences,
145:293–294, 1962. English translation in Physics-Doklady, 7 (1963), pp.
595–596.

[20] Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminu-
merical Algorithms. Addison-Wesley, Boston, 3rd edition, 1997.

[21] Walter Restelli-Nielsen Kristian Olesen, Amar Topalovic. Multiple-precision
integer arithmetic. Master’s thesis, University of Copenhagen, 2022.

[22] Mian Lu, Bingsheng He, and Qiong Luo. Supporting extended precision on
graphics processors. In Proceedings of the Sixth International Workshop on
Data Management on New Hardware, DaMoN ’10, pages 19–26, New York,
NY, USA, 2010. ACM.

[23] Philip Munksgaard, Svend Lund Breddam, Troels Henriksen, Fabian Cristian
Gieseke, and Cosmin Oancea. Dataset sensitive autotuning of multi-versioned
code based on monotonic properties. In Viktória Zsók and John Hughes,
editors, Trends in Functional Programming, pages 3–23, Cham, 2021. Springer
International Publishing.

[24] Arthur C. Norman and Stephen M. Watt. Computing clipped products,
2024.

[25] Arthur C. Norman and Stephen M. Watt. Computing clipped products. 2024.
Unpublished manuscript.

[26] NVlabs. Cooperative groups big numbers (cgbn). https://github.com/
NVlabs/CGBN. [Accessed 20-05-2025].

[27] Cosmin E. Oancea. Lecture notes for the software track of the pmph course.
1(1), 2018.

[28] Cosmin E. Oancea. Demonstrating locality of reference on multi-cores and
gpus, 2024. September 2024 PMPH Lecture Slides.

[29] Cosmin E. Oancea. Loop parallelism i, 2024. September 2024 PMPH Lecture
Slides.

[30] Cosmin E. Oancea and Stephen M. Watt. Gpu implementations for midsize
integer addition and multiplication, 2024.

81

[31] Arnold Schönhage and Volker Strassen. Schnelle multiplikation großer zahlen.
Computing, 7:281–292, 1971.

[32] Charles van Loan. Computational Frameworks for the Fast Fourier Transform.
SIAM, 1992.

[33] Stephen M. Watt. Efficient generic quotients using exact arithmetic, 2023.

82

K Ø B E N H A V N S U N I V E R S I T E T

Declaration of using generative AI tools (for students)

☒ I/we have used generative AI as an aid/tool (please tick)

☐ I/we have NOT used generative AI as an aid/tool (please tick)

If generative AI is permitted in the exam, but you haven’t used it in your exam paper, you

just need to tick the box stating that you have not used GAI. You don’t have to fill in the

rest.

List which GAI tools you have used and include the link to the platform (if possible):

ChatGPT [https://chatgpt.com/]

Describe how generative AI has been used in the exam paper:

1) Purpose (what did you use the tool for?)

We used generative AI exclusively as a helping tool during proof-reading

2) Work phase (when in the process did you use GAI?)
Final stages.

3) What did you do with the output? (including any editing of or continued work on the
output)
AI suggestions were carefully reviewed, and the generel ideas were incorporated when
restructuring sentences. No AI-generated content was directly copy/pasted into the
final work.

Please note: Content generated by GAI that is used as a source in the paper requires correct

use of quotation marks and source referencing. Read the guidelines from Copenhagen

University Library at KUnet.

12 Appendix

Refine1 and Refine2

Algorithm 5: Refine1 and Refine2

1: Function Refine1(v, h, k, w, ℓ):
2: g ← 1 ▷ Guard digits
3: h← h+ g

4: w ← shifth−k−l(w)

5: for i← 0; i < ⌈max (log2(h− k − 1), 0)⌉+ 2; i++ do
6: w ← Step(h, v, w, 0, ℓ, 0)
7: if i > 1 then ℓ← min(2ℓ− 1, h− k)

8: return shift−g(w)

9: Function Refine2(v, h, k, w, ℓ):
10: g ← 2 ▷ Guard digits
11: w ← shiftgw

12: for i← 0; i < ⌈max (log2(h− k − 1), 0)⌉+ 2; i++ do
13: m← min(h− k + 1− ℓ, ℓ)

14: w ← shift−1(Step(k + ℓ+m+ g, v, w, m, ℓ, g))

15: if i < 2 then shift−m(w)

16: else
17: shift−1(w)

18: ℓ← ℓ+m− 1

19: if (h− k < 2) then shifth−k−4(w)

20: else shift−2(w)

Warp-level Scan Performance

Num
Bits

Num
Insts

1-Add
Shared Mem

6-Add
Shared Mem

1-Add
Shuffle-based

6-Add
Shuffle-based

218 214 1047 574 1155 595
217 215 1211 823 1280 854
216 216 1272 614 1360 895
215 217 1272 833 1360 770
214 218 1270 588 1355 685
213 219 1273 789 1360 1006
212 220 1272 629 1359 880
211 221 1269 757 1356 920
210 222 1272 719 1359 735
29 223 1273 774 1355 759

Table 6: Performance of Addition in GB/sec: Shared Memory vs. Shuffle-based
Scan. GB/sec are computed by: 3NumInsts · NumBits

8 as in [30].

84

Warp-level Reduce

1 template <class OP , class uint_t >
2 __device__ inline int
3 reduceBlock(uint_t u
4 , volatile uint_t* sh_mem
5) {
6 int idx = threadIdx.x;
7 const unsigned int lane = idx & (WARP -1);
8 const unsigned int warpid = idx >> lgWARP;
9

10 int res = scanIncWarp <OP >(u, lane);
11

12 if (lane == (WARP -1) || idx == blockDim.x - 1) { sh_mem[←↩
warpid] = res; }

13 __syncthreads ();
14

15 if (warpid == 0) {
16 res = scanIncWarp <OP >(sh_mem[threadIdx.x], lane);
17 if (threadIdx.x == ((blockDim.x + WARP - 1) / WARP) - 1) ←↩

{
18 sh_mem [0] = res;
19 }
20 }
21

22 __syncthreads ();
23 return sh_mem [0];
24 }

Listing 14: Block-level reduce implementation.

Performance of Division in Microseconds

Num
Bits

Num
Insts

CUDA
32-bit

CUDA
64-bit

Futhark
16-bit CGBN GMP

218 214 4.548.382 1.402.839 — — 15.810.697
217 215 1.581.627 705.266 — — 9.896.245
216 216 782.638 395.807 — — 8.239.808
215 217 438.181 297.871 — 81.950 3.742.565
214 218 259.928 284.117 — 44.251 2.091.939
213 219 226.079 191.265 5.270.800 25.982 2.509.687
212 220 161.592 316.834 3.395.729 17.043 2.236.662
211 221 235.262 457.797 1.560.186 10.547 2.159.846
210 222 353.791 757.187 1.297.623 — 2.454.895
29 223 549.785 482.085 998.890 — 3.035.170

Table 7: Runtime of division measured in microseconds (lower is better).

85

Cuda Main Functions

1 /**
2 * Calculates (a * b) rem B^d
3 */
4 template <typename Base , uint32_t M, uint32_t Q>
5 __device__ inline void
6 multMod(volatile typename Base:: uint_t* USh
7 , volatile typename Base:: uint_t* VSh
8 , typename Base:: uint_t UReg[Q]
9 , typename Base:: uint_t VReg[Q]

10 , int d
11 , typename Base:: uint_t RReg[Q]
12) {
13 if (d <= blockDim.x) {
14 smallMult <Base , Q>(USh , VSh , UReg , VReg , RReg , d);
15 } else if (d <= 2* blockDim.x){
16 smallMult2x <Base , Q>(USh , VSh , UReg , VReg , RReg , d);
17 } else {
18 bmulRegsQ <Base , 1, Q/2>(USh , VSh , UReg , VReg , RReg , M);
19 #pragma unroll
20 for (int i=0; i < Q; i++) {
21 if (Q * threadIdx.x + i >= d) {
22 RReg[i] = 0;
23 }
24 }
25 }
26 }
27

28 /**
29 * Calculates B^h-v*w
30 */
31 template <typename Base , uint32_t M, uint32_t Q>
32 __device__ inline bool
33 powDiff(volatile typename Base:: uint_t* USh
34 , volatile typename Base:: uint_t* VSh
35 , typename Base:: uint_t VReg[Q]
36 , typename Base:: uint_t RReg[Q]
37 , int h
38 , int l
39) {
40 using uint_t = typename Base:: uint_t;
41

42 int vPrec = prec <uint_t , Q>(VReg , (uint32_t *)USh);
43 int rPrec = prec <uint_t , Q>(RReg , (uint32_t *)VSh);
44 int L = vPrec + rPrec - l + 1;
45 bool sign = 1;
46

47 if (vPrec == 0 || rPrec == 0) {
48 zeroAndSet <uint_t , Q>(VReg , 1, h);
49 } else if (L >= h) {
50 __syncthreads ();
51 int maxMul = vPrec + rPrec;
52 if (maxMul <= blockDim.x) {
53 smallMult <Base , Q>(USh , VSh , VReg , RReg , VReg , maxMul←↩

);
54 } else if (maxMul <= 2* blockDim.x) {

86

55 smallMult2x <Base , Q>(USh , VSh , VReg , RReg , VReg , ←↩
maxMul);

56 } else {
57 bmulRegsQ <Base , 1, Q/2>(USh , VSh , VReg , RReg , VReg , M←↩

);
58 }
59 __syncthreads ();
60 if (lt<uint_t , Q>(VReg , h, (uint32_t *)USh)) {
61 sub <Base , Q>(h, VReg , VSh);
62 } else {
63 sub <Base , Q>(VReg , h, VSh);
64 sign = 0;
65 }
66 } else {
67 __syncthreads ();
68 multMod <Base , M, Q>(USh , VSh , VReg , RReg , L, VReg);
69 __syncthreads ();
70

71 if (!ez<uint_t , Q>(VReg , USh)) {
72 if (ez<uint_t , Q>(VReg , L-1, VSh)) {
73 sign = 0;
74 } else {
75 sub <Base , Q>(L, VReg , &VSh [4]);
76 }
77 }
78 }
79 return sign;
80 }
81

82 /**
83 * Iterative towards an approximation in at most log(M) steps
84 */
85 template <typename Base , uint32_t M, uint32_t Q>
86 __device__ inline void
87 step(volatile typename Base:: uint_t* USh
88 , volatile typename Base:: uint_t* VSh
89 , int h
90 , typename Base:: uint_t VReg[Q]
91 , typename Base:: uint_t RReg[Q]
92 , int n
93 , int l
94 , int g
95) {
96 using uint_t = typename Base:: uint_t;
97 using ubig_t = typename Base:: ubig_t;
98 using carry_t = typename Base:: carry_t;
99

100 bool sign = powDiff <Base , M, Q>(USh , VSh , VReg , RReg , h - n, ←↩
l - g);

101 __syncthreads ();
102

103 int rPrec = prec <uint_t , Q>(RReg , (uint32_t *)VSh);
104 int vPrec = prec <uint_t , Q>(VReg , (uint32_t *)USh);
105 __syncthreads ();
106 int maxMul = rPrec+vPrec;
107 if (maxMul <= blockDim.x) {
108 smallMult <Base , Q>(USh , VSh , RReg , VReg , VReg , maxMul);

87

109 } else if (maxMul <= 2* blockDim.x){
110 smallMult2x <Base , Q>(USh , VSh , RReg , VReg , VReg , maxMul);
111 } else {
112 bmulRegsQ <Base , 1, Q/2>(USh , VSh , RReg , VReg , VReg , M);
113 }
114 __syncthreads ();
115

116 shift <uint_t , M, Q>(n, RReg , USh , RReg);
117 if (sign) {
118 shift <uint_t , M, Q>(2 * n - h, VReg , VSh , VReg);
119 __syncthreads ();
120 baddRegs <uint_t , uint_t , carry_t , Q, Base::HIGHEST >((←↩

carry_t *)VSh , RReg , VReg , RReg);
121 } else {
122 bool isZero = ezShift <uint_t , Q>(VReg , 2 * n - h, VSh);
123 __syncthreads ();
124 shift <uint_t , M, Q>(2 * n - h, VReg , USh , VReg);
125 if (! isZero) add1 <Base , Q>(VReg , VSh);
126 __syncthreads ();
127 bsubRegs <uint_t , uint_t , carry_t , Q>((carry_t *)VSh , RReg ,←↩

VReg , RReg);
128 }
129 }
130

131 /**
132 * Refine the approximation of the quotient
133 */
134 template <typename Base , uint32_t M, uint32_t Q>
135 __device__ inline void
136 refine3(volatile typename Base:: uint_t* USh
137 , volatile typename Base:: uint_t* VSh
138 , typename Base:: uint_t VReg[Q]
139 , typename Base:: uint_t TReg[Q]
140 , int h
141 , int k
142 , int l
143 , typename Base:: uint_t RReg[Q]
144) {
145 using uint_t = typename Base:: uint_t;
146

147 shift <uint_t , M, Q>(2, RReg , (uint_t *)USh , RReg);
148

149 for (int i = 0; i < (int)ceilf(max(log2f(h-k-1), 0.0f)) + 2; ←↩
i++) {

150 int n = min(h - k + 1 - l, l);
151 int s = max(0, k - 2 * l + 1 - 2);
152 shift <uint_t , M, Q>(-s, VReg , VSh , TReg);
153 __syncthreads ();
154 step <Base , M, Q>(USh , VSh , k + l + n - s + 2, TReg , RReg ,←↩

n, l, 2);
155 __syncthreads ();
156 if (i < 2) {
157 shift <uint_t , M, Q>(-n, RReg , USh , RReg);
158 }
159 else {
160 shift <uint_t , M, Q>(-1, RReg , USh , RReg);
161 l = l + n - 1;

88

162 }
163 }
164 shift <uint_t , M, Q>((h - k < 2) ? h - k - 4 : -2, RReg , VSh , ←↩

RReg);
165 }
166

167 /**
168 * Refine the approximation of the quotient
169 */
170 template <typename Base , uint32_t M, uint32_t Q>
171 __device__ inline void
172 refine2(volatile typename Base:: uint_t* USh
173 , volatile typename Base:: uint_t* VSh
174 , typename Base:: uint_t VReg[Q]
175 , typename Base:: uint_t TReg[Q]
176 , int h
177 , int k
178 , int l
179 , typename Base:: uint_t RReg[Q]
180) {
181 using uint_t = typename Base:: uint_t;
182

183 shift <uint_t , M, Q>(2, RReg , (uint_t *)USh , RReg);
184

185 for (int i = 0; i < (int)ceilf(max(log2f(h-k-1), 0.0f)) + 2; ←↩
i++) {

186 int n = min(h - k + 1 - l, l);
187 int s = 0;
188 shift <uint_t , M, Q>(-s, VReg , VSh , TReg);
189 __syncthreads ();
190 step <Base , M, Q>(USh , VSh , k + l + n - s + 2, TReg , RReg ,←↩

n, l, 2);
191 __syncthreads ();
192 if (i < 2) {
193 shift <uint_t , M, Q>(-n, RReg , USh , RReg);
194 }
195 else {
196 shift <uint_t , M, Q>(-1, RReg , USh , RReg);
197 l = l + n - 1;
198 }
199 }
200 shift <uint_t , M, Q>((h - k < 2) ? h - k - 4 : -2, RReg , VSh , ←↩

RReg);
201 }
202

203 /**
204 * Refine the approximation of the quotient
205 */
206 template <typename Base , uint32_t M, uint32_t Q>
207 __device__ inline void
208 refine1(volatile typename Base:: uint_t* USh
209 , volatile typename Base:: uint_t* VSh
210 , typename Base:: uint_t VReg[Q]
211 , typename Base:: uint_t TReg[Q]
212 , int h
213 , int k
214 , int l

89

215 , typename Base:: uint_t RReg[Q]
216) {
217 using uint_t = typename Base:: uint_t;
218 h = h+1;
219 shift <uint_t , M, Q>(h-k-l, RReg , (uint_t *)USh , RReg);
220

221 for (int i = 0; i < (int)ceilf(max(log2f(h-k-1), 0.0f)) + 2; ←↩
i++) {

222 __syncthreads ();
223 shift <uint_t , M, Q>(0, VReg , VSh , TReg);
224 __syncthreads ();
225 step <Base , M, Q>(USh , VSh , h, TReg , RReg , 0, l, 0);
226 __syncthreads ();
227 if (i > 1) {
228 l = min (2*l-1, h-k);
229 }
230 }
231 shift <uint_t , M, Q>(-1, RReg , VSh , RReg);
232 }
233

234 /**
235 * Calculates the shifted inverse
236 */
237 template <typename Base , uint32_t M, uint32_t Q>
238 __device__ inline void
239 shinv(volatile typename Base:: uint_t* USh
240 , volatile typename Base:: uint_t* VSh
241 , typename Base:: uint_t VReg[Q]
242 , typename Base:: uint_t TReg[Q]
243 , int h
244 , int k
245 , typename Base:: uint_t RReg[Q]
246) {
247 using uint_t = typename Base:: uint_t;
248 using ubig_t = typename Base:: ubig_t;
249 using uquad_t = typename Base:: uquad_t;
250

251 if (k == 0) {
252 quo <Base , Q>(h, VSh[0], VSh , RReg);
253 return;
254 }
255 if (k >= h && !eq<uint_t , Q>(VReg , h, &USh [2])) {
256 return;
257 }
258 if (k == h-1 && VSh[k] > Base:: HIGHEST / 2) {
259 set <uint_t , Q>(RReg , 1, 0);
260 return;
261 }
262 if (eq<uint_t , Q>(VReg , k, &USh [3])) {
263 set <uint_t , Q>(RReg , 1, h - k);
264 return;
265 }
266

267 if (threadIdx.x == 0) {
268 ubig_t tmp;
269 ubig_t V = (ubig_t)VSh[k - 1] | (ubig_t)VSh[k] << Base::←↩

bits;

90

270

271 if (Base::bits == 64) {
272 tmp = divide_u256_by_u128 ((__uint128_t)1 << 64, 0, V)←↩

;
273 } else {
274 tmp = ((uquad_t)1 << 3*Base::bits) / V;
275 }
276 RReg [0] = (uint_t)(tmp);
277 RReg [1] = (uint_t)(tmp >> Base::bits);
278 if (tmp == 0) RReg [2] = 1;
279 }
280 __syncthreads ();
281

282 refine3 <Base , M, Q>(USh , VSh , VReg , TReg , h, k, 2, RReg);
283 }
284

285 /**
286 * Implementation of multi -precision integer division using
287 * the shifted inverse and classical multiplication
288 */
289 template <typename Base , uint32_t M, uint32_t Q>
290 __device__ inline void
291 divShinv(volatile typename Base:: uint_t* USh
292 , volatile typename Base:: uint_t* VSh
293 , typename Base:: uint_t UReg[Q]
294 , typename Base:: uint_t VReg[Q]
295 , typename Base:: uint_t RReg1 [2*Q]
296 , typename Base:: uint_t RReg2[Q]
297) {
298 using uint_t = typename Base:: uint_t;
299 using carry_t = typename Base:: carry_t;
300

301 int h = prec <uint_t , Q>(UReg , (uint32_t *)USh);
302 int k = prec <uint_t , Q>(VReg , (uint32_t *)&USh [1]) - 1;
303

304 shinv <Base , M, Q>(USh , VSh , VReg , RReg2 , h, k, RReg1);
305 __syncthreads ();
306

307 bmulRegsQComplete <Base , 1, Q/2>(USh , VSh , UReg , RReg1 , RReg1 ,←↩
M);

308 __syncthreads ();
309

310 shiftDouble <uint_t , M, Q>(-h, RReg1 , VSh , RReg1);
311 __syncthreads ();
312

313 bmulRegsQ <Base , 1, Q/2>(USh , VSh , VReg , RReg1 , RReg2 , M);
314 __syncthreads ();
315

316 if(lt<uint_t , Q>(UReg , RReg2 , USh)) {
317 __syncthreads ();
318 sub <Base , Q>(RReg1 , 0, VSh);
319 bsubRegs <uint_t , uint_t , carry_t , Q>((carry_t *)VSh , RReg2←↩

, VReg , RReg2);
320 }
321 __syncthreads ();
322 bsubRegs <uint_t , uint_t , carry_t , Q>((carry_t *)VSh , UReg , ←↩

RReg2 , RReg2);

91

323 if (!lt<uint_t , Q>(RReg2 , VReg , USh)) {
324 __syncthreads ();
325 add1 <Base , Q>(RReg1 , USh);
326 bsubRegs <uint_t , uint_t , carry_t , Q>((carry_t *)VSh , RReg2←↩

, VReg , RReg2);
327 }
328 }
329

330 /**
331 * Main division kernel
332 */
333 template <typename Base , uint32_t M, uint32_t Q>
334 __global__ void
335 __launch_bounds__(M/Q, BLOCKS_PER_SM *1024*Q/M)
336 divShinvKer(typename Base:: uint_t* u
337 , typename Base:: uint_t* v
338 , typename Base:: uint_t* quo
339 , typename Base:: uint_t* rem
340) {
341 using uint_t = typename Base:: uint_t;
342

343 extern __shared__ char sh_mem [];
344 volatile uint_t* VSh = (uint_t *) sh_mem;
345 volatile uint_t* USh = (uint_t *)(VSh + M);
346 uint_t VReg[Q];
347 uint_t UReg[Q];
348 uint_t RReg1 [2*Q] = {0};
349 uint_t* RReg2 = &RReg1[Q];
350

351 cpyGlb2Sh2Reg <uint_t , M, Q>(v, VSh , VReg);
352 cpyGlb2Sh2Reg <uint_t , M, Q>(u, USh , UReg);
353 __syncthreads ();
354

355 divShinv <Base , M, Q>(USh , VSh , UReg , VReg , RReg1 , RReg2);
356 __syncthreads ();
357

358 cpyReg2Sh2Glb <uint_t , M, Q>(quo , VSh , RReg1);
359 cpyReg2Sh2Glb <uint_t , M, Q>(rem , USh , RReg2);
360 }

Listing 15: cuda main division functions.

Futhark Code Listing

1 def div [m][ipb] (us: [ipb *(4*m)]u16) (vs: [ipb *(4*m)]u16) : ([←↩
ipb *(4*m)]u16 , [ipb *(4*m)]u16) =

2 let h = prec us
3 let k = (prec vs) - 1
4

5 let (kIsOne , us , vs , h, k) =
6 if k == 1 then
7 let h = h + 1
8 let k = k + 1
9 let us = shift 1 us

10 let vs = shift 1 vs
11 in (true , us , vs, h, k)
12 else

92

13 (false , us, vs, h, k)
14

15 let quo =
16 let m = m * 2
17 let quo_padded = ((shinv vs h k) ++ (replicate (ipb *(4*(m←↩

/2))) 0u16)) :> [ipb * (4 * m)]u16
18 let us_padded = (us ++ (replicate (ipb *(4*(m/2))) 0u16)) ←↩

:> [ipb * (4 * m)]u16
19 let mul_res = convMulV2 quo_padded us_padded
20 let mul_shifted = shift (-h) mul_res
21 let res = take (ipb *(4*(m/2))) mul_shifted
22 in res
23 let quo = quo :> [ipb * (4 * m)]u16
24

25 let (rem , _) = convMulV2 vs quo
26 |> bsub us
27

28 let (quo , rem) =
29 if not (lt rem vs) then
30 let quo = badd1u16 quo
31 let (rem , _) = bsub rem vs
32 in (quo , rem)
33 else
34 (quo , rem)
35

36 let rem =
37 if kIsOne then
38 shift (-1) rem
39 else
40 rem
41

42 in (quo , rem)

Listing 16: Implementation division function in Futhark

1 def shinv [m][ipb] (vs: [ipb *(4*m)]u16) (h: i64) (k: i64) : [ipb←↩
*(4*m)]u16 =

2 if k == 0 then
3 quo_single h (vs) (ipb *(4*m)) :> [ipb *(4*m)]u16
4 else if k >= h && !(eqBpow vs h) then
5 vs
6 else if k == h - 1 && vs[k] > u16.highest / 2 then
7 zeroAndSet 1 0 (ipb *(4*m)) :> [ipb *(4*m)]u16
8 else if eqBpow vs k then
9 zeroAndSet 1 (h - k) (ipb *(4*m)) :> [ipb *(4*m)]u16

10 else
11 let l = i64.min k 2
12 let V = (u64.u16 vs[k - 2]) | ((u64.u16 vs[k - 1]) << ←↩

1*16) | ((u64.u16 vs[k]) << 2*16)
13 let b2l = 1u64 << 4*16
14 let tmp = (b2l - V) / (V + 1)
15

16 let ws = tabulate (ipb *(4*m)) (\i ->
17 if i == 0 then u16.u64 tmp
18 else if i == 1 then u16.u64 (tmp >> 16)
19 else 0u16)
20 in if h - k < l then
21 shift (h-k-l) ws

93

22 else
23 refine vs ws h k l

Listing 17: Implementation of shinv in Futhark

1 def refine [m][ipb] (vs: [ipb *(4*m)]u16) (ws: [ipb *(4*m)]u16) (h:←↩
i64) (k: i64) (l: i64) : [ipb *(4*m)]u16 =

2 let ws = shift 2 ws
3 let (ws, _, _) = loop (ws , l, i) = (ws , l, 0)
4 while h - k > (l + 1) do
5 let n = i64.min (h - k + 1 - l) l
6 let s = i64.max 0 (k - 2 * l + 1 - 2)
7 let vs = shift (-s) vs
8 let tmp = step vs ws (k + l + n - s + 2) l n
9 let ws = shift (-1) tmp

10 let l = l + n - 1
11 let i = i + 1
12 in (ws, l, i)
13 in shift (-2) ws

Listing 18: Implementation of refine in Futhark

1 def step [m][ipb] (vs: [ipb *(4*m)]u16) (ws: [ipb *(4*m)]u16) (h: ←↩
i64) (l: i64) (n: i64) : [ipb *(4*m)]u16 =

2 let (sign , tmp) = powDiff ws vs (h-n) (l-2)
3 let tmp = convMulV2 ws tmp
4 |> shift (2 * n - h)
5 let ws = shift n ws
6 in if sign != 0 then
7 --baddu16 ws tmp
8 baddV3 ws tmp
9 else

10 -- bsubu16 ws tmp
11 let (ret , _) = bsub tmp ws
12 in ret

Listing 19: Implementation of shift in Futhark

1 def powDiff [m][ipb] (vs: [ipb *(4*m)]u16) (ws: [ipb *(4*m)]u16) (h←↩
: i64) (l: i64) : (u32 , [ipb *(4*m)]u16) =

2 let precV = prec vs
3 let precW = prec ws
4 let L = precW + precV - l + 1
5

6 in if (precV == 0 || precW == 0) then
7 let ret = zeroAndSet 1u16 h (ipb *(4*m))
8 let ret = ret :> [ipb *(4*m)]u16
9 in (1, ret)

10 else if (L >= h) then
11 let ret = convMulV2 vs ws
12 in if ltBpow ret h then
13 let bpow = zeroAndSet 1 h (ipb *(4*m))
14 let (ret , _) = bsub bpow ret
15 in (1, ret)
16 else
17 let bpow = zeroAndSet 1 h (ipb *(4*m))
18 let (ret , _) = bsub ret bpow
19 in (0, ret)

94

20 else
21 let ret = multmod vs ws L
22 in if !(ez ret) && ret[L-1] == 0 then
23 (0, ret)
24 else
25 let bpow = zeroAndSet 1 L (ipb *(4*m))
26 let (ret , _) = bsub bpow ret
27 in (1, ret)

Listing 20: Implementation of powDiff in Futhark

1 def multmod [m][ipb] (us: [ipb *(4*m)]u16) (vs: [ipb *(4*m)]u16) (d←↩
: i64) : [ipb *(4*m)]u16 =

2 let res = convMulV2 us vs
3 in tabulate (ipb *(4*m)) (\i -> if i >= d then 0u16 else res[i←↩

])

Listing 21: Implementation of multMod in Futhark

95

