
Sparse Approximate Inverse - A Massively
Parallel Implementation

Emil Vilandt Rasmussen
nbz406

Implementation GitHub: https://github.com/nbz406/SPAI

June 12, 2023

Abstract

The Sparse Approximate Inverse (SPAI) algorithm calculates an ap-
proximate inverse to a matrix used to precondition a linear sytem to
be solved by iterative solvers. The algorithm consists of independent
sub-problems across the columns of the matrix and lends itself well to
parallelization on GPU hardware. This project examines the theory
of the algorithm, discusses how it can be implemented sequentially as
well as in a GPU-parallel language. The project presents a sequential
as well as a partially GPU parallel implementation that match the
performance reported in the literature.

Contents

1 Introduction 3
1.1 Computing an Effective Preconditioner 3
1.2 Contributions of this Project 5

1.2.1 Details of SPAI . 5
1.2.2 Sequential and Parallel Implementations 5
1.2.3 Evaluation . 6

1.3 Restrictions . 6

1

2 Theory – The SPAI Algorithm 6
2.1 Initial Least Squares . 6
2.2 Sparsity Pattern Updates . 9
2.3 QR-updates in SPAI . 12
2.4 The Complete Algorithm . 15

3 Implementation 18
3.1 Initial Code Transformations 18

3.1.1 Loop Distribution . 18
3.1.2 Loop Interchange . 20
3.1.3 Coalesced Access and Irregular Problem Sizes 21

3.2 Parallel Implementation . 22
3.2.1 Map-reduces . 22
3.2.2 Caculating Au and r(I) 23
3.2.3 QR Decomposition using Householder Reflections . . . 23
3.2.4 Calculating J̃ . 25
3.2.5 Post-SPAI Assembly of M 26

3.3 Edge Cases . 27
3.4 Discussion . 27

3.4.1 Improvements . 27
3.4.2 Alternatives . 28

4 Evaluation 28
4.1 Sequential Implementation . 28

4.1.1 Correctness . 29
4.1.2 Convergence . 30

4.2 Parallel Implementation . 32
4.2.1 Correctness . 32

5 Further Work 32

6 Conclusion 33

A Appendix 36

2

1 Introduction

A parallel algorithm (SPAI) is presented for computing a sparse approximate
inverse of a sparse n × n matrix, A. The algorithm consists solving n inde-
pendent least squares problems for each column of A using QR factorization
given some sparsity structure that captures the sparsity pattern of A−1, such
that the inverse can function as an effective preconditioner to solving a linear
system Ax = b.

1.1 Computing an Effective Preconditioner

The problem of solving large, sparse linear systems of equations of the fol-
lowing form is widespread in fields such as engineering and machine learning.

Ax = b, x, b ∈ Rn

Direct solvers have proven to be expensive in both the amount of work and
storage required. Direct methods like Gaussian Elimination are also not very
effective to implement in a parallel environment because of their sequential
nature and are not effective for larger matrices due to their O(n3) running
time. Iterative solvers such as gmres, bcg, bi-cgstab and cg give an initial
guess x0 of the solution and iteratively compute better approximations xi

until a stopping criteria of ||b − Axi||/||b|| ≤ tolerance. Convergence is not
guaranteed and may be very slow for these methods. To rectify this problem,
a preconditioner to the system is introduced in the form of an approximate
inverse to A, called M . The preconditioner can be computed as a left or
right inverse with the (left) preconditioined system becoming:

AMy = b, where x = My, or MAx = Mb (1)

Preconditioning the system has shown to make convergence of iterative solvers
faster. In order for this timesave to be worth it and to reduce the overall
computation time, the preconditioner must be computed in an efficient and
parallel manner. The matrix-vector product My must also be calculated in
each iteration of the iterative solver, so the number of nonzero entries in M
should be relatively close to the number of nonzeros in A. Grote and Huckle
presented an algorithm for computing the preconditioner in their 1995 pa-
per: ”Parallel Preconditioning with Sparse Approximate Inverses” [1]. Their
algorithm (SPAI) minimizes the Frobenius norm of the error AM − I, which

3

leads to the inherently parallel algorithm of reducing the Frobenius norm
of each column of the error, since the Frobenius norm of the error can be
defined as:

||AM − I||2F =
nX

k=1

||(AM − I)ek||22

The solution to the problem above can be split into n independent least
squares problems that minimize the error of the n columns of the error:

min
mk

||Amk − ek||, k = 1, . . . , n (2)

where ek is the k’th column of the identity matrix. These sub-problems could
be solved explicitly, which would yield a small error, but also produce a spar-
sity structure that is very different from the actual inverse A−1. A similar
amount of non-zeros in M compared to A is required for the approximate
inverse to be an effective preconditioner. The SPAI algorithm starts with
an initial sparsity structure (often the identity matrix) and calculates mk for
that given sparsity structure using QR-decomposition and back substitution.
Until a threshold of the norm of the residual is reached, the algorithm aug-
ments the sparsity structure and recalculates mk using QR-updates. This
algorithm is known as dynamic SPAI, where static SPAI have a fixed spar-
sity structure. The algorithm is parallel across columns and lends itself well
to implementation on parallel hardware such as GPUs. Each step of the al-
gorithm can be solved in parallel using efficient GPU-parallel batched dense
matrix-operations.

There are three main criteria for the success of the SPAI algorithm. One,
it should be fast to compute. This is required for the effort of computing a
preconditioner to be worth it. This is measured by the time complexity of the
algorithm and the amount of iterations it takes for each column to reach the
stopping criteria. Two, it must produce a relatively good approximation of
the actual inverse of A. This ensures faster convergence of iterative solvers
on the preconditioned system. This criteria is measured by the Frobenius
norm of the error: ||AM − I||2F . Three, the sparsity structure of M must be
close to A. This ensures that the matrix-vector product My from Equation 1
is not too expensive to compute, as it has to be computed in each iteration
of the iterative solver. This criteria measured by the number of non-zeros of
M relative to A. A ratio that is low or close to 1 is preferable. These criteria
are what I will use to evaluate my implementation.

4

1.2 Contributions of this Project

There exist a number of papers on variations of the dynamic SPAI algo-
rithm, but the available research on implementing it on GPU-hardware is
very scarce. The goal of this thesis is to investigate the implementation de-
tails of the basic dynamic SPAI algorithm with QR-updates. I will present a
sequential implementation and a partially parallel implementation as well as
propositions for how to implement the remaining parts on parallel hardware,
both of which I will evaluate the performance of.

1.2.1 Details of SPAI

The theory of the algorithm is well-described in the literature, but I have
found implementation-specific details to be relatively lackluster. Usually only
the mathematical representation of the algorithm is presented and crucial
steps of the algorithm are left out. Most papers are not specific about what
and how much actually needs to be computed, especially in regards to the
QR-updates. My contribution is shedding more light on these details of the
algorithm.

1.2.2 Sequential and Parallel Implementations

This project presents one approach to implementing the algorithm in a GPU-
parallel language as well as presenting a simple sequential implementation.
My parallel implementation produces the same preconditioner as my sequen-
tial implementation but performs magnitudes better despite not being fully
parallel. Both produce error-norms and sparsity structures comparable with
the results in [1]. Some steps of the parallel implementation remain sequen-
tial, but I will propose possible methods of implementation. These include
the possibility of using the purely functional GPU- programming language
with nested parallelism, Futhark, [2] [3]. The parallel implementation is done
in the CUDA programming language [4], which is an extension to the C++
language that allows the user to write kernels that run on the GPU. I use
the CUBLAS library [5] for dense matrix-operations and the CUB library
[6] for sorting. The sequential implementation is done in Python [7] using
functionality from Numpy [8] and Scipy [9].

5

1.2.3 Evaluation

My sequential implementation is evaluated on the three criteria: accuracy,
sparsity of the result and speed of convergence. The results from my se-
quential implementation match the results reported by Grote and Huckle [1],
indicating that the implementation is correct. The

1.3 Restrictions

Due to time restrictions, my implementation is only partially GPU-parallel,
but most of the important matrix-operations are done in parallel using batched
implementations provided by CUBLAS [5]. These cover matrix-matrix and
matrix-vector multiplication as well as QR-decomposition using householder
transformations. I propose solutions to parallelize the missing parts of the
implementation. My partially parellel CUDA implementation has not worked
for matrices with more than 5,000 columns due the memory required being
very large. The CUDA implementation also has some issues that arise when
A has empty columns. My stopping criteria for the CUDA version is also
very naive and continues to update each column ofM , until all columns fulfill
the stopping criteria. This leads to excessive fill-in, and thus a high ratio of
non-zeros in M compared to A.

2 Theory – The SPAI Algorithm

The SPAI algorithm consists of n independent sub-problems, that each cal-
culate a column mk of the preconditioning matrix M . I will present the
algorithm for a single column and show how one could implement it sequen-
tially in Python. My algorithm follows Grote and Huckle [1] closely with
some slight modifications and some more explanations for the QR-updates.

2.1 Initial Least Squares

The algorithm starts with a given sparsity pattern of M , which in most cases
is chosen to be the identity matrix I. A sparsity pattern for a given column
refers to the row indices that contain non-zeros. For the identity this is k for
column k of I. A least squares problem that minimizes the Frobenius norm
is solved for this sparsity pattern as shown in Equation 2. Afterwards, the
sparsity pattern is updated, by introducing new non-zeros in mk, and the

6

least squares problem is solved again. This is done until a maximum fill-in
is reached, or the norm of the error for the given column is low enough. In
practice, the fill-in is kept low by limiting the amount of indices, that can
be added to mk in each iteration – usually 5 – and limiting the amount of
iterations – usually 5 to 20.

To avoid calculating a minimization problem with n rows as in Equa-
tion 2, minmk

||Amk − ek||, k = 1, . . . , n, we can exploit that the matrix
vector product Amk only requires the multiplication of the columns of A
with the non-zero values of mk. We define J to be the set of row-indices of
non-zero values in mk. An example is shown below.

∗ 0 0 ∗ 0
0 ∗ ∗ 0 ∗
0 0 ∗ 0 0
0 ∗ 0 0 0
0 0 0 ∗ 0

| {z }
A

0
1
1
0
0

| {z }
mk

The result of the multiplication also only has non-zeros in the row indices of
the non-zero rows of A(:, J):

0 0
∗ ∗
0 ∗
∗ 0
0 0

| {z }
A(:,J)

We define I to be the set of non-zero indices of A(:, J). We define the sizes
of the sets as n1 = |I|, n2 = |J |. This allows us to define a new reduced
minimization problem to be solved for each column:

min
m̂k

||Âm̂k − êk||, k = 1, . . . , n (3)

where Â = A(I, J), m̂k = mk(J), êk = ek(I). This minimization problem is
solved using QR-decomposition which decomposes Â into a matrix-product
of an upper triangular n2 × n2 matrix R and an orthogonal matrix Q:

Âm̂k = êk ⇐⇒ QRm̂k = êk

7

Since Q is orthogonal, its inverse is equal to its transpose, and the solution to
the minimization problem is found by solving the following upper triangular
linear system:

Rm̂k = QT êk(: n2)

Since êk is the k’th columm of the identity matrix in the row indices I, the
operation QT êk(: n2) is simply a selection of the first n2 elements of the kI ’th
column of QT , where kI is the index of k in I. Take I = {1, 2, 4} and k = 4
as an example. I would produce an êk that looks like this:

1 0
2 0

0
k = 4 1

0
0
...
0

| {z }
ek

→

0
0
1

| {z }
êk

which would then select the third column or QT . If I does not contain k,
then QT êk = 0n1

Upper triangular systems can be solved in O(n2
2) time using back sub-

stitution. It is worth noting that n2 is relatively small and bounded by the
amount of iterations of the SPAI algorithm and the number of indices added
to J in each iteration. This means that n2 at maximum is 1 + the number
of iterations multiplied by the number of indices added per iteration, if you
start with a sparsity pattern of the identity matrix. The QR-decomposition
in my implementation is performed using Householder Reflections which is
explained further in the implementation section.

Now that we have a column mk that minimizes the error for the given
sparsity structure, we can compute the residual and check whether or not
the norm of the residual is below a set threshold, ε:

r = A(:, J)m̂k − ek, stop if ||r = A(:, J)m̂k − ek|| < ε

However, since A(:, J)m̂k only contains non-zeros in the row-indices in I, we
do not need to compute the sparse matrix, dense vector product A(:, J)m̂k,

8

but we can get away with calculating the dense matrix, dense vector product
which will be useful in the parallel implementation.

r(I) = Âm̂k − êk

r(I) is then scattered to r using I. If k is not contained in I, then we need
to subtract 1 from r(k) in order to get the correct residual.

If ||r|| = ||A(:, J)m̂k−ek|| < ε, then we scatter m̂k toM [J, k]. If we are not
finished, the scatter operation is not performed. The Python implementation
for the initial least squares could look like the code in Listing 1. You would
also need a check for whether or not I includes k, but this is not included in
the code snippet.� �

1 J = m_k.nonzero ()[0] # gets row indices of non -zero elements

2 n2 = J.size

3 A_J = A[:,J]

4 I = np.unique(A_J.nonzero ()[0]) # gets row indices of non -zero rows

5 n1 = I.size

6 Ahat = A[np.ix_(I, J)]. todense ()

7 Q, R = np.linalg.qr(Ahat)

8

9 QTe = np.matrix(Q.T[:,list(I).index(k)]).T

10 mhat_k = scipy.linalg.solve_triangular(R, QTe [0:n2])

11

12 e_k = np.matrix ([0]*N).T

13 e_k[k] = 1

14 rI = Ahat * mhat_k - e_k[I] # dense matrix dense vector multiplication

15 r_norm = np.linalg.norm(rI) # calculate norm

16

17 r = np.zeros((M.shape [0] ,1)) # scatter

18 r[I] = rI� �
Listing 1: Python implementation for the initial least squares

2.2 Sparsity Pattern Updates

The rows where r is not equal to zero: L = I ∪ {k} are where we can
improve upon the the approximation. We consider the non-zero column
indices of A(L, :) that are not already in J defined by Jcand. An example
with L = {1, 5} is shown below. The rows indices of L are highlighted with

9

red, and the non-zero columns of these rows are highlighted with blue.

1 4
1 ∗ 0 0 ∗ 0

0 ∗ ∗ 0 ∗
0 0 ∗ 0 0
0 ∗ 0 0 0

5 0 0 0 ∗ 0

Jcand are candidates for being added to J to augment the sparsity structure
of mk. We want to calculate which indices of Jcand are the most profitable
to add to J in terms of reducing the norm of the residual ||r||. For each j in
Jcand, we consider the following minimization problem:

min
µj

||r + µjA(:, j)||

which is solved by

µj = − rTA(:, j)

||A(:, j)||2

The norm ρj squared of the new residual r + µjAej is then

ρj
2 = ||r||2 + µjAej = ||r||2 − (rTA(:, j))2

||A(:, j)||2

We select the most profitable indices – the indices with the lowest associated
ρ2j – usually a maximum of 5 to avoid unnecessary fill-in. Most indices
produce the same ρ2j , so we only pick the ones that are smaller than the
average. That is, we only pick an index j if

ρj
2 ≤ 1

|Jcond|

|Jcond|X

i=1

ρi
2

This heuristic also helps to reduce amount of unnecessary fill-in of mk. The
most profitable indices are contained in the set J̃ . Using the augmented set
J l = J l−1 ∪ J̃ l−1, where l indicates the iteration number, we could solve the
minimization problem in Equation 3 with a new I l = I l−1 ∪ Ĩ l−1, where Ĩ
is the nonzero rows of A(: J̃) not already contained in I. Grote and Huckle
define Ĩ to be the nonzero rows of A(: J ∪ J̃) not already contained in I,
but including J in the columns is redundant, since I ∩ Ĩ = Ø must hold. A
Python implementation of the sparsity pattern updates could look like this:

10

� �
1 while r_norm > epsilon and iter < maxiter:

2 iter += 1

3 L = np.union1d(I,k)

4 Jcand = np.array([],dtype=int) #Calculate Jcand: All of the the new

column indices of A that appear in all L rows but not in J

5 for l in L:

6 A_l = A[l,:]

7 NZofA_l = np.unique(A_l.nonzero ()[1])

8 N_l = np.setdiff1d(NZofA_l , J)

9 Jcand = np.union1d(Jtilde ,N_l)

10

11 avg_rho = 0

12 j_rho_pairs = []

13 for j in Jcand:

14 Ae_j = A[:,j]. todense ()

15 Ae_jnorm = np.linalg.norm(Ae_j)

16 rTAe_j = r.T * Ae_j

17 rho_jsquared = r_norm*r_norm - (rTAe_j * rTAe_j) / (Ae_jnorm *

Ae_jnorm)

18 avg_rho += rho_jsquared

19 j_rho_pairs.append ((rho_jsquared [0,0],j))

20 avg_rho = avg_rho / len(j_rho_pairs)

21

22 heap = [] # Creates min heap to quickly find indices with lowest

error.

23 for pair in j_rho_pairs:

24 heapq.heappush(heap , (pair[0], pair [1]))

25

26 pops = 0

27 Jtilde = [] # Select the 5 indices with rho below average that

create the lowest residuals

28 while len(heap) > 0 and pops < n_most_profitable_indices:

29 pair = heapq.heappop(heap)

30 if (pair [0] < avg_rho):

31 Jtilde.append(pair [1])

32 pops += 1

33

34 Jtilde = np.sort(Jtilde)

35 n2tilde = len(Jtilde)

36

37 Itilde = np.setdiff1d(np.unique(A[:,Jtilde]. nonzero ()[0]), I)

38 n1tilde = len(Itilde)� �
Listing 2: Python implementation for the sparsity pattern updates

We could then solve the minimization problem for the augmented spar-
sity structure as in the previous section and continue for a set number of
iterations, or until the ||r|| < ε. However, we can save great amount of work
by utilizing the fact that we have already computed the QR-decomposition
for a subset of the columns, J , and rows, I, of this new problem.

11

2.3 QR-updates in SPAI

The algorithm presented by Grote and Huckle uses QR-updates, but their
description fails to mention some significant details. Specifically the fact that
you are solving a system where the rows and columns are permuted, which is
noted by Matous Sedlacek in [10]. However, this, and other papers, are not
specific about what is needed to compute the updated Q and R. We wish to
solve the updated linear system of equations:

min
mk(J∪J̃)

∥ A(I ∪ Ĩ , J ∪ J̃)mk(J ∪ J̃)− ek(I ∪ Ĩ) ∥, k = 1, . . . , n

There exist permutation matrices, Pr, Pc, such that:

PrA(I ∪ Ĩ , J ∪ J̃)Pc = Ã =

�
A(I, J) A(I, J̃)

A(Ĩ , J) A(Ĩ , J̃)

�

The permutation matrices permute the new indices to the right and down in
the matrix. This means that we can solve an modified system of equations:

min
Pc

Tmk(J ∪ J̃)| {z }
m̃k

∥ PrA(I ∪ Ĩ , J ∪ J̃)Pc| {z }
Ã

Pc
Tmk(J ∪ J̃)| {z }

m̃k

−Prek(I ∪ Ĩ)| {z }
ẽk

∥, k = 1, . . . , n

and extract the original solution mk(J ∪ J̃) = PcPc
Tmk(J ∪ J̃) = Pcm̃k.

We do not have to calculate Pc and Pr, if we realize that the permutations
are given implicitly by treating the union operation ∪ as an concatenation
operation ⌢ that preserves the order of J and J̃ in J ⌢ J̃ . Thus we can
write:

Ã = PrA(I ∪ Ĩ , J ∪ J̃)Pc = A(I ⌢ Ĩ , J ⌢ J̃) =

�
A(I, J) A(I, J̃)

A(Ĩ , J) A(Ĩ , J̃)

�

m̃k = Pc
Tmk(J ∪ J̃) = mk(J ⌢ J̃)

ẽk = Prek(I ∪ Ĩ) = ek(I ⌢ Ĩ)

The end result, we are interested in is scattering the result mk(J ∪ J̃) to mk

using J ∪ J̃ , but we can solve for mk(J ⌢ J̃) and simply scatter the result
to mk using J ⌢ J̃ .

The form of Ã allows us to perform a QR-update instead of calculating
the whole decomposition of Ã, [11], [12]. We first realize that A(Ĩ , J) = 0,

12

since all of the non-zero rows if A(:, J) are included in I, and I ∩ Ĩ = Ø.
Multiplying Ã by the identity:

In1+ñ1 =

�
Q

Iñ1

��
QT

Iñ1

�

where ñ1 = |Ĩ|, and ñ2 = |J̃ | gives us:

Ã =

�
Q

Iñ1

��
QT

Iñ1

��
A(I, J) A(I, J̃)

0 A(Ĩ , J̃)

�

=

�
Q

Iñ1

��
QTA(I, J) QTA(I, J̃)

0 A(Ĩ , J̃)

�

By the definition of A(I, J) = QR, we get QTA(I, J) = R:

Ã =

�
Q

Iñ1

��
R QTA(I, J̃)

0 A(Ĩ , J̃)

�
⇐⇒ (4)

�
QT

Iñ1

�
Ã =

R Au [: n2, :]
0 Au [n2 :, :]

0 A(Ĩ , J̃)

 ⇐⇒ (5)

�
QT

Iñ1

�
Ã =

�
R B1

0 B2

�
(6)

Where Au = QTA(I, J̃). The first n2 columns of the right-hand side matrix
are already upper triangular. Applying householder transformations to make
the remaining n1+ ñ1−n2 columns upper triangular will involve multiplying
both sides with

�
In2

QT
B

�

where QB is the orthogonal matrix that transforms the bottom right square,
denoted B2 = QBRB, to upper triangular form in Equation 6. The upper
right square, denoted B1 remains unchanged. The result is our new updated
QR-decomposition of Ã:

�
In2

QT
B

��
QT

Iñ1

�
Ã =

�
R B1

0 RB

�
⇐⇒

13

Ã =

�
Q

Iñ1

��
In2

QB

�

| {z }
Qnew

�
R B1

0 RB

�

| {z }
Rnew

The resulting QR-decomposition Ã = QnewRnew is used to solve
minm̃k

∥ Ãm̃k − ẽk ∥ with back substitution, since Rnew is upper triangular.

m̃k = R−1
new(Q

T
newẽk)[: n2 + ñ2]

The matrix-matrix product that defines Qnew does not need to be calculated
explicitly, since the result is:

�
Q

Iñ1

��
In2

QB

�
=

�
Q[:, : n2] Q[:, n2 :]QB[: n2, :]

0 QB[n2 :, :]

�

and you just apply the householder transformations used to transform B2

to the last n1 + ñ1 − n2 columns of

�
Q

Iñ1

�
. If the norm residual is

still greater than ε, you update the index sets with l denoting the iteration
number Il = Il−1 ⌢ Ĩl−1 and Jl = Jl−1 ⌢ J̃l−1 and n1l = n1l−1

+ ñ1l−1
,

n2l = n2l−1
+ ñ2l−1

, update Ql = Qnew, Rl = Rnew and perform the sparsity

pattern update and QR-update again. In practice, Rl is stored in place in Ãl

along with the householder vectors that construct Ql and transform Ãl into
Rl. To get a better understanding of how Ã and thus Rl is updated in each
iteration, I have provided the following diagram:

Ãl =

Ãl−2 A(I l−1, J̃ l−1)

0 A(Ĩ l−1, J̃ l−1)
A(Il, J̃ l)

0 A(Ĩ l, J̃ l)

Rl =

Rl−2 Bl−1
1

0 Rl−1
B

Bl
1

0 Rl
B

The QR-update can be performed sequentially Python as shown in Listing 3:� �
1 AIJtilde = A[np.ix_(I, Jtilde)]

14

2 AItildeJtilde = A[np.ix_(Itilde ,Jtilde)]

3

4 QTAIJtilde = Q.T * AIJtilde

5 B_1 = QTAIJtilde [:n2 ,:]

6 B_2 = np.vstack ((QTAIJtilde[n2:n1 ,:], AItildeJtilde.todense ()))

7

8 QB , RB = np.linalg.qr(B_2 , mode="complete")

9 RB = RB[:n2tilde ,: n2tilde]

10

11 R = np.hstack ((np.vstack ((R, np.zeros ((n2tilde , n2)))), np.vstack ((B_1 ,

RB))))

12 q = np.hstack ((np.vstack ((Q[:,n2:], np.zeros((n1tilde ,n1-n2)))), np.

vstack ((np.zeros((n1,n1tilde)), np.identity(n1tilde)))))

13 Q = np.hstack ((np.vstack ((Q[:,:n2], np.zeros((n1tilde ,n2)))), q * QB))

14

15 J = np.append(J,Jtilde)

16 I = np.append(I,Itilde) # Itilde

17 n2 = J.size

18 n1 = I.size� �
Listing 3: Python implementation for the QR-update

2.4 The Complete Algorithm

The complete SPAI algorithm can be summarized as follows, given an initial
sparsity structure M . The initial least squares is shown in Algorithm 1 and
the iterative part of SPAI is shown in Algorithm 2.

15

Algorithm 1 Initial SPAI for a single column k

mk ← M [:, k]
J ← indices non-zero elements of mk, n2 ← |J |
I ← row indices of non-empty rows of A(:, J) , n1 ← |I|
Q,R ← QR-decompose(A(I, J))
if k ∈ I then

ĉk ← first n2 elements of the kI ’th column of QT , where kI is the index
of k in I
else

ĉk ← 0
end if
m̂k ← Solve upper triangular system Rm̂k = ĉk
r(I) ← A(I, J)m̂k − ek(I)
if k ̸∈ I then

r(k)− = 1
end if

16

Algorithm 2 SPAI sparsity pattern updates and QR-updates for column k

iter ← 0
while iter < maxiter and ∥ r ∥> ε do

iter++
Jcand ← indices of non-empty columns in A({k} ∪ I, :)
J̃ ← maximum of 5 indices from Jcand that produce lowest ρj

2 = ||r||2−
(rTA(:,j))2

||A(:,j)||2 that are also below the average ρj
2, ñ2 ← |J̃ |

Ĩ ← row indices of non-empty rows of A(:, J) not already in I, ñ1 ← |Ĩ|
Au ← QTA(I, J̃)
B1 ← Au(: n2, :)

B2 ←
�
Au(n2 :, :)

A(Ĩ , J̃)

�

QB, RB ← QR-decompose(B2)

R ←
�
R B1

0 RB

�

Q ←
�
Q[:, : n2] Q[:, n2 :]QB[: n2, :]

0 QB[n2 :, :]

�

J ← J ⌢ J̃ , n2 ← n2 + ñ2

I ← I ⌢ Ĩ, n1 ← n1 + ñ1

if k ∈ I then
c̃k ← first n2 elements of the kI ’th column of QT , where kI is the

index of k in I
else

c̃k ← 0
end if
m̃k ← Solve upper triangular system Rm̃k = c̃k
r(I) ← A(I, J)m̂k − ek(I)
if k ̸∈ I then

r(k)− = 1
end if

end while
M(J, k) ← m̃k

17

3 Implementation

This section contains a description of how one could implement a GPU-
parallel SPAI algorithm along with arguments for the correctness of the
transformations required. I will start with a general description and move
on to more specific kernels later. Both my sequential Python implemen-
tation and the partially parallel CUDA implementation can be found at
https://github.com/nbz406/SPAI. The CUDA code is self-contained within
SPAI/CudaRuntimeTest/CudaRuntimeTest/kernel.cu, and the Python im-
plementation can be found at SPAI/SpaiTest.py. The structure of the code
is not very clean due to time restrictions.

3.1 Initial Code Transformations

Before one can write GPU-parallel kernels, some transformations need to be
applied to the code that preserve the semantics of the program but make its
structure more suited for GPU execution. The matrices A and M are stored
in a compressed sparse column-major (CSC) format, and A is also kept in
compressed sparse row-major (CSR) format for easy access to rows. All the
dense matrices are stored in a flat column-major format.

3.1.1 Loop Distribution

To begin the parallel implementation, we must understand the structure of
the algorithm. This will allow us to apply safe transformations to the se-
quential implementation, that preserve the semantics of the algorithm while
allowing for easier parallelization. Assuming that we have a sequential im-
plementation in CUDA, the general structure of the program would look
something like this:� �

1 for (int k = 0; k < n_cols; k++) { // parallel loop

2 // perform initial least squares

3 J = nonzero_indices(M[:,k]);

4 Statement 1;

5 Statement 2;

6 ...

7

8 while (iterations < max_iter && norm(r) > epsilon) {

9 // Perform sparsity pattern updates

10 // and solve linear system using QR -updates

11 Statement 3;

12 ...

13 }

18

14

15 // Distribute m_k to sparse representation of M(J,k)

16 Statement 4;

17 ...

18 free(allocations);

19 }� �
Listing 4: Initial sequential CUDA implementation

The algorithm consists of n independent sub-problems, which means that
every iteration of the outer for-loop is independent of one another; it is a
parallel loop. Using the fact that a parallel loop may be distributed across
each of its inner statements [13], we can transform the code to the following:� �

1 // perform initial least squares

2 for (int k = 0; k < n_cols; k++) { // parallel loop

3 J = nonzero_indices(M[:,k]);

4 }

5 for (int k = 0; k < n_cols; k++) { // parallel loop

6 Statement 1;

7 }

8 for (int k = 0; k < n_cols; k++) { // parallel loop

9 Statement 2;

10 }

11 ...

12

13 for (int k = 0; k < n_cols; k++) { // parallel loop

14 while (iterations < max_iter && norm(r) > epsilon) {

15 // Perform sparsity pattern updates

16 // and solve linear system using QR -updates

17 Statement 3;

18 ...

19 }

20 }

21 // Distribute m_k to sparse representation of M(J,k)

22 for (int k = 0; k < n_cols; k++) { // parallel loop

23 Statement 4;

24 }

25 ...� �
Listing 5: Outer loop distributed

Prior to the distribution of the loop over the individual statements, we could
keep a single array for each of our data-structures, J , for example. However,
distributing the loop requires us to keep each Jk stored in a way, that is
accessible between loops. This is done by array expansion, which takes all
scalars and arrays used between statements and expands them with an array
dimension equal to the size of the outer loop. Each access is then replaced
with an index into this large array based on the size of each sub-array [13].

19

The while loop will run for a different number of iterations for each sub-
problem. This poses an issue, since we cannot further distribute the outer
parallel loop inside the while loop. Due of a lack of time, I have chosen the
simple strategy of letting the loop run until the max number of iterations has
been reached, or until all columns have converged, that is, if

Vn
k=0 ||rk|| < ε.

As we will see in the evaluation section, this is a poor strategy, since a good
amount of columns do not converge, which makes the while loop run for the
full number of iterations causing unnecessary fill-in.

A simple alternative to this approach is to resize the parallel loop in
each iteration of the while loop and only computing the columns that have
not converged. This would require scattering the arrays and matrices of
the unfinished columns to a smaller array while keeping track of the column
number. This should speed up each kernel. However, if the amount of
unfinished columns is very small, we could run into the problem of there not
being enough parallelism to fully utilize the GPU.

3.1.2 Loop Interchange

With either of the choices made above, we can exploit the fact that the while
loop will always run for the same number of iterations; either we perform
the body of the while loop for all columns as in my implementation, or we
resize the parallel loop to be n cols = n cols - n cols finished. Since
the while loop is now essentially a sequential for loop of fixed size nested
perfectly inside the outer parallel for loop, we can perform loop interchange.
From Corollary 2 of [13], in a perfect loop nest, it is always safe to interchange
a parallel loop inwards one step at a time. The outer loop is interchanged
inwards and further distributed across its inner statements becoming:� �

1 while (iterations < max_iter) {

2 for (int k = 0; k < n_cols; k++) { // parallel loop

3 Statement 1;

4 }

5 for (int k = 0; k < n_cols; k++) { // parallel loop

6 Statement 2;

7 }

8 ...

9 // Only perform work on non -converged columns

10 n_cols = n_cols - n_cols_finished

11 // scatter remaining data structures into smaller sized array

12 }� �
Loop interchange can also be used to make data accesses more efficient by
letting the index that accesses the innermost dimension of an array come

20

from the inner loop.

3.1.3 Coalesced Access and Irregular Problem Sizes

One of the most important parts of writing efficient GPU-parallel code is
coalesced access, which refers to a pattern where each thread of the GPU
executing in lockstep accesses consecutive memory addresses in global mem-
ory in a load or store operation. Sequential code is often not written with
this in mind, so we may need to perform some transformations. Take the
following pseudocode for matrix-vector multiplication of a row-major matrix
A and vector v, which has good spatial locality if run on a CPU.� �

1 for (int i = 0; i < m; i++) { // parallel

2 res[i] = 0;

3 for (int j = 1; j < n; j++) { // sequential

4 res[i] += A[i * n + j] * v[j]; // row major access

5 }

6 }� �
Assigning a thread for each of the m rows, each of which executes the inner
loop, the SIMD load instruction that reads A[i * n + j] will read elements
that are n elements apart in memory. This is uncoalesced access. The prob-
lem can be rectified by instead transposing A and accessing it in column-major
format. Now each thread accesses consecutive elements, making reads and
writes very efficient on the GPU.� �

1 for (int i = 0; i < m; i++) { // parallel

2 res[i] = 0;

3 for (int j = 1; j < n; j++) { // sequential

4 res[i] += A[j * m + i] * v[j]; // column major access

5 }

6 }� �
Transposition requires that each sub-array has the same dimensionality. For
each column of the SPAI algorithm, there is no guarantee that the problem
sizes are the same. This means that, if we want to transpose and get coalesced
access, we must pad our sub-arrays with data to make all the dimensions
match the dimensions of the largest possible sub-array. Therefore, I allocate
enough space for n of the largest possible arrays and matrices that will exist
across the columns. Each A matrix will have size maxk{n1k} · maxk{n2k},
etc. For matrices A and Q, I pad the extra memory with zeros and with
ones on the diagonal. Padding with ones on the diagonal ensures that the
back-substitution for solving the linear system does not contain divisions by

21

zero, and when Q is constructed, it is initialized to be the identity. My sub-
arrays for I and J are padded with some large value, specifically n, since I
am sorting them and they can only contain values up to n−1 with zero-based
indexing.

3.2 Parallel Implementation

Now that the sequential CUDA-code consists of a number of for loops over
the n columns, we can look at some specific ways to parallelize parts of the
algorithm.

A big concern when writing GPU-parallel code is memory reuse. Alloca-
tions and frees on the GPU are expensive and we want to keep them to a
minimum. Since we already know that the size of Jk at maximum will be the
maximal sparsity pattern that we allow, we can allocate a single array for the
n arrays of Jk at once and reuse the memory in each iteration. The size of this
array is usually max{nnz(mk)} = nnz(mk)iteration0 +maxiter×max{|J̃ |} =
1 + 10 × 5. During the implementation, I worked under the assumption,
that we could not determine a maximum size of Ik beforehand, and as a
result the sizes of the Ã and Q. Therefore, I chose to limit the amount of al-
locations by doubling the size of a given array until it had enough space
for the new problem size. This ensured that I would at maximum per-
form O(log2 max array size needed) allocations. In practice this was very
few. However, we can propose an upper bound on |Ik| as I mention in the
discussion, which would completely eliminate the extra allocations.

For all the major matrix-operations, I use the batched functions from
the CUBLAS library[5]. This includes matrix-matrix multiplication, matrix-
vector multiplication, QR-decomposition and solving upper triangular sys-
tems. I also use the segmented sort functionality from [6].

3.2.1 Map-reduces

Some of the the loops that I have not yet parallelized can be written in terms
of a nested map-reduce operations. An example is the calculation of the norm
of each column of the original matrix A shown below:� �

1 for (int k = 0; k < n_cols; k++) // map (^2) reduce (+)

2 {

3 A_col_norms[k] = 0;

4 const int c_ptr = csc_col_ptr_A[k];

5 const int c_size = csc_col_ptr_A[k + 1] - c_ptr;

22

6 for (int i = 0; i < c_size; i++)

7 {

8 const double v = csc_val_A[c_ptr + i];

9 A_col_norms[k] += v*v;

10 }

11 A_col_norms[k] = sqrt(A_col_norms[k]);

12 }� �
The inner map-reduce would be mapped on each column by an outer map.
The inner map would map the squaring function to each row element followed
by a reduction using the addition operator. Lastly a map of the square root
function on each column would produce the desired result. This sort of nested
parallel code can be written in a functional style in Futhark [2], [3], which
can be compiled to CUDA code and linked to the larger parallel application.

3.2.2 Caculating Au and r(I)

Au = QTA(I, J̃) and r(I) = Ãm̃k− ẽk can both be performed using CUBLAS
batched matrix-matrix and matrix-vector multiplication. For r(I) = Ãm̃k −
ẽk, I first initialize r(I) = ẽk, and then perform r(I) = Ãm̃k − r(I), since the
CUBLAS matrix-vector multiplication has the capability of performing an
update on the input vector. This eliminates the need for a separate negation
kernel.

3.2.3 QR Decomposition using Householder Reflections

During SPAI, for each column we have to perform a QR-decomposition of
A

n1×n2

in the initial least squares as well as a QR-decomposition of B2
n1+ñ1−n2×ñ2

each iteration of the while loop. The QR-decomposition can be performed
using Householder reflections. I use CUBLAS’ batched QR-decomposition,
which transforms n matrices of the same size A to upper triangular form R
in place using householder transformations. It stores the householder vectors
used for the transformation in the lower-triangular part of A. Since the SPAI
algorithm uses QR-updates, we need to calculate Q explicitly such that it
can be used for the QR-update in the next iteration. To do this, I use part
of the Householder QR algorithm presented in [14], which, through a series
of householder transformations, converts a given m × n matrix A to upper
triangular form, which is the R of the QR decomposition:

R = Pn−1 . . . P2P1A

23

Here Pi = I − 2
viT vi

vivi
T , and vi is a householder vector. The algorithm also

computes the orthogonal matrix Q = P T
1 P

T
2 . . . P T

n−1, which is what we are
interested in. The algorithm for constructing Q be summarized as follows in
pseudocode assuming that we already have the householder vectors vi and
β = 2

viT vi
, stored in the lower triangular part of A and in betas respectively.� �

1 Q = Identity(m);

2 for (int k = 0; k < n; k++) { // sequential

3 v = A[k:m,k];

4 Q[:m, k:m] = Q[:m, k:m] - betas[k] * Q[:m, k:m] * v * v^T;

5 }� �
The contents of the loop can be broken down into matrix-vector multipli-
cation of Q and v, a scalar-vector multiplication of β and Qv and a rank-1
update of Q:� �

1 Q = Identity(m);

2 for (int k = 0; k < n; k++) { // sequential

3 v = A[k:m,k];

4 Qv = Q[:m, k:m] * v;

5 betaQv = betas[k] * Qv;

6 Q[:m, k:m] = Q[:m, k:m] - betaQv * v^T;

7 }� �
Since we have to perform this for each of our n cols columns, we get:� �

1 for (int kk = 0; kk < n_cols; kk++) { // parallel

2 Q = Identity(m);

3 for (int k = 0; k < n; k++) { // sequential

4 v = A[k:m,k];

5 Qv = Q[:m, k:m] * v;

6 Qv = betas[k] * Qv;

7 Q[:m, k:m] = Q[:m, k:m] - betaQv * v^T;

8 }

9 }� �
Performing array expansion on Q, Qv, A, betas, interchanging the parallel
loop inwards and distributing it over the sub-statements gives us a pseu-
docode representation of the kernels that we need:� �

1 for (int kk = 0; kk < n_cols; kk++) { // parallel

2 Q[kk] = identity(m);

3 }

4 for (int k = 0; k < n; k++) { // sequential

5 for (int kk = 0; kk < n_cols; kk++) // parallel kernel

6 v[kk] = A[kk][k:m,k];

7 for (int kk = 0; kk < n_cols; kk++) // parallel batched matrix -vector

mult

8 Qv[kk] = Q[kk][:m, k:m] * v[kk];

9 for (int kk = 0; kk < n_cols; kk++) // parallel kernel

10 Qv[kk] = betas[kk][k] * Qv[kk];

24

11 for (int kk = 0; kk < n_cols; kk++) // parallel batched rank -1 update

12 Q[kk][:m, k:m] = Q[kk][:m, k:m] - Qv[kk] * v[kk]^T;

13 }

14 }� �
The code for setting the householder vector v[kk] = A[kk][k:m,k]; looks
like this:� �

1 __global__ void set_vs_initial(double* vs, int k_to_m , double* Ahats , int

A_size , int* n2s , int maxn1 , int k, int n)

2 {

3 const unsigned int tid = threadIdx.x + blockIdx.x * blockDim.x;

4 const unsigned int kk = tid / k_to_m;

5 const unsigned int i = tid % k_to_m;

6 if (tid < n)

7 {

8 if (n2s[kk] - 1 < k)

9 vs[k_to_m * kk + i] = 0;

10 else

11 {

12 if (i == 0)

13 vs[k_to_m * kk + i] = 1;

14 else

15 vs[kk * k_to_m + i] = Ahats[A_size * kk + IDX2C(k + i, k,

maxn1)];

16 }

17 }

18 }� �
Since the innermost dimension of v and Ahats are accessed by consecutive
threads, we have coalesced access. The kernel for the scalar-vector multipli-
cation is similarly simple and has coalesced access. For the rank-1 update, I
use the batched matrix-matrix multiplication from CUBLAS, which updates
a matrix C with a the result of a matrix-matrix multiplication. In this case,
my matrices are Qv|{z}

m×1

and vT|{z}
1×k−m

, which makes the total operation a rank-1

update.

3.2.4 Calculating J̃

Grote and Huckles way of calculating J̃k for column k involves first setting J̃k
to be the set of all new column indices of A that appear in all Lk = Ik ∪ {k}
rows but not in Jk and then eliminating non-profitable indices from that set.
The size of this set can grow to be very large. When allocating space for
sets that we do not know the size of beforehand, we have to overestimate
the amount of memory needed, and we would normally allocate memory

25

for |Lk| · maxj{nnz(A(:, j)} integers. My alternative approach uses min-
heaps to calculate J̃ . Each column k requires only to allocate memory for
3 · |Lk| integers which is a significant reduction in the constant factor of the
allocations needed.

For a given column, the min heap is initialized with the first column index
of each row in l ∈ L. It also stores how many nonzero elements are left in this
row along with a pointer to the next element. While the heap is non-empty,
the smallest element is popped. If it is different from the previous examined
index, and it is not contained in J , we compute ρ2j and put (−ρ2j , j) into
another min-heap with a capacity of 5, which in turn keeps track of the 5
smallest ρ2j by popping the smallest (−ρ2j , j) in each iteration. Finally of the
5 smallest (ρ2j , j) pairs, we keep the indices j, where ρ2j ≤ avgj{ρ2j}

I use the same strategy for the calculation of I and Ĩ, since it is essentially
a union of sorted vectors. The step, where I check, whether a new index is
contained in the previous set, requires that I have the sorted representation
of the set, which is maintained using CUB’s segmented radix sort [6].

This part of the implementation is not currently performed on the GPU,
however it should be relatively simple to implement, since the min heap is
just an array with an associated set of functions. Allocating all the heaps
in a single array on the GPU and adjusting the functions to take a column
number and a max heap size and using max heap size * k as the starting
index for each heap should be enough for an embarrassingly parallel solution.

3.2.5 Post-SPAI Assembly of M

After the while loop has finished, we can assemble the result in CSC format.
Since each Jk is not sorted, we do this by performing a segmented key-value
sort of Js = {J0, J1, J2, . . . Jn−1, } and mtildes = {m̃0, m̃1, m̃2, . . . m̃n−1, }.
With the offsets being the result of an exclusive scan of the array of n2s.
This can easily be done using CUB’s cub::DeviceScan::ExclusiveSum and
cub::DeviceSegmentedRadixSort::SortPairs. The sorted values become
the values Mval of the CSC representation, the J indices become the row
indices Mrowinds, and the result of the scan becomes the column pointer
Mptr.

26

3.3 Edge Cases

When there is a matrix, A, with an empty column, I is empty initially,
and we cannot compute a QR-decomposition, since A(I, J) is also empty.
This means that we have to handle the case where n1 = 0 in the while loop.
Normally we would insert A(I, J̃) at position (0, n2) in the new A and A(Ĩ , J̃)
at position (n1, n2), however since I is empty, we have to insert it at (0, 0).

I have also found that matrices with empty columns produce singular R’s,
which means that there is no solution to the best approximation ofM(:, k) for
the given sparsity structure. I have not found a way to handle this gracefully.

3.4 Discussion

3.4.1 Improvements

There are a number of ways to improve the parallel implementation. One is to
realize that the upper bound for |Ik| is maxk{|Jk|}·maxj{nnz(A(:, j))}. This
would allow us to allocate memory for all matrices and arrays beforehand
with Jmax = maxk{|Jk|} and Imax = Jmax ·maxj{nnz(A(:, j))}. The sizes of
the arrays would be:

J : n× Jmax

I : n× Imax

Ã : n× Imax × Jmax

Q : n× Imax × Imax

m̃k : n× Jmax

r̃ : n× Imax

Reducing the amount of GPU allocations would greatly increase the potential
performance of the algorithm. I also ran into issues with being out of memory
on larger matrices, which I have not been able to investigate due to time
restrictions but it may have something to do with the fact that I double my
allocation size, whenever I need more memory.

Another strategy for increasing the performance is to include some sort of
caching strategy for the QR-decompositions. When we have to decompose a
matrix, that has already been decomposed, we could fetch the result from a
cache instead of recomputing the result. Most matrices have a lot of overlap
between the columns, and from [15] Table 4.4, we see that between 2 and
99% of QR-decompositions are made redundant by using a caching strategy,
depending on the matrix.

27

3.4.2 Alternatives

The construction of I and Ĩ could be performed using a combination of
the parallel segmented basic blocks. Since they are essentially a segmented
union of sorted arrays, they can be performed in the following way with
I as an example. Each column k represents a segment, each of which
contains the row indices of rowinds(A[:, J]) = rowinds(A[:, j0, j1, . . .]) =
[i00, i

0
1, . . .| {z }

A[:,j0]

, i10, i
1
1, . . .| {z }

A[:,j1]

, . . .]. Sorting each this for each column k involves a seg-

mented sort. You could them map a function that marks unique elements
with a 1. Performing a segmented scan with the addition operator on this ar-
ray would produce the indexes that each element should be scattered copied
to. This method of stream compaction is described in section 39.3.1 of GPU
Gems 3 [16].

The parallel basic blocks of map and scan used for the operations above,
are provided in Futhark [3] [2]. This language provides allows the user to
write functional, nested parallel programs written in terms of map, reduce,
scan etc. It also allows compilation to CUDA code, which means that you
could write the code in Futhark and link it to your CUDA application, where
you perform the rest of the algorithm.

Finding the 5 smallest ρ2j in the calculation of J̃ could also be written
in terms of a map reduce. Mapping Jcand with a function that produces
a 5-tuple containing, where each entry contains a (ρj, j) pair and reducing
with an operator that that maintains the 5 pairs with the smallest ρjs would
produce the desired result.

4 Evaluation

4.1 Sequential Implementation

A large concern of this project was implementing the algorithm correctly
according to the literature. Since I am not able to compare to other imple-
mentations, the second best measure of the quality of my implementation,
would be to see how well it performs as a preconditioner. I could do this by
using it to precondition a linear system and solving it using an iterative solver
such as gmres, bcg, bi-cgstab and cg. This is what Grote and Huckle do
and most other papers on SPAI variations. However, since I am limited on

28

time, I will instead mainly be evaluating my implementation based on the
two measurements, that are also often reported in the literature:
(1) The Frobenius norm of the residual, ∥ AM − I ∥F , as a measure of the

proximity of AM to the identity. This is what the algorithm minimizes
for a given sparsity structure and is a good proxy measure for the
quality of the preconditioner.

(2) The ratio of the number of non-zeros M to the number of non-zeros in

A: nnz(M)
nnz(A)

I will also gague the effectiveness of the algorithm based on whether or not
each column converges to a satisfactory error within the specified number
of iterations and how quickly. However, I cannot compare against other
implementations as I have not found this measure reported in the literature.

4.1.1 Correctness

I will almost exclusively be comparing the results of my sequential imple-
mentation against the results reported by Grote and Huckle. This is due to
the fact that my partially parallel implementation runs for the full number
of iterations because to my naive stopping criteria. Grote and Huckle do not
report their max number of iterations, but I have kept mine at 10. The max
fill-in per iteration is 5.

Table 1 shows my a reproduction of Table 2 from Grote and Huckle, page
14 [1] using results from my sequential implementation. The table contains
the Frobenius norm of the residual and the ratio of non-zero values in M to A
after the SPAI algorithm using different stopping criteria, ε, for the orsirr 2
matrix: an oil resevoir simulation matrix with n = 886 and nnz = 5970.

∥ AM − I ∥F nnz(M)
nnz(A)

M = I 1.54× 106 0.148
ε = 0.6 14.27 0.320
ε = 0.5 11.30 0.607
ε = 0.4 8.977 0.891
ε = 0.3 7.131 1.528
ε = 0.2 4.987 3.144

Table 1: ∥ AM − I ∥F and ratio of non-zero values in M to A for different
values of ε for the orsirr 2 matrix

29

Cross-referencing the results, I get exactly the same norm and ratio from
ε = 0.6 until ε = 0.4. For ε = 0.3 and ε = 0.2, my norm is slightly higher
than theirs, but my ratio of non-zeros is lower. Since their results have higher
fill-in it indicates to me that they have used a higher number of maximum
iterations. If I use a maximal number of iterations of 20, I get the same result
of ∥ AM − I ∥F= 4.817 and nnz(M)

nnz(A)
= 3.393 for ε = 0.2.

The rest of the results reported from Grote and Huckle are only on the
ratio of non-zeros for different ε, iterations and matrices. I will evaluate my
results against theirs for the shermanx black oil simulators, consisting of 5
matrices:

• sherman1: n = 1000, nnz = 3750,
• sherman2: n = 1080, nnz = 23094
• sherman3: n = 5005, nnz = 20033
• sherman4: n = 1104, nnz = 3786
• sherman5: n = 3312, nnz = 20793

My results are reported in Table 2. They show a great reduction in the
Frobenius norm along with a set of relatively small ratios of non-zeros in M
compared to A. Their results match mine closely except for sherman2 and
sherman5, where I have slightly higher ratios of nonzeros. This could be due
to the fact that my max. nnz(mk) is 101, and 51, where theirs are 100 and 50.
This is due to the fact that my nnz(mk) = 1+maxiter×max{|J̃ |} = 1+10×5
and 1 + 10 × 10 respectively. Overall, the results indicate to me that my
sequential implementation is correct.

∥ AM − I ∥F before ∥ AM − I ∥F after nnz(M)
nnz(A)

sherman1, ε = 0.4, max iter = 20 68.017 8.454 1.337
sherman2, ε = 0.4, max iter = 10 7.004× 109 16.442 1.219
sherman3, ε = 0.2, max iter = 20 1.357× 107 9.941 2.421
sherman4, ε = 0.2, max iter = 10 483.988 4.304 2.450
sherman5, ε = 0.2, max iter = 10 1.4032× 104 5.996 1.471

Table 2: ∥ AM − I ∥F and ratio of non-zero values in M to A for the
shermanx matrices.

4.1.2 Convergence

To show the fact that most columns converge to their desired stopping criteria
and do so at a reasonable speed, I have compiled a series of histograms of

30

how many iterations it takes to converge, x-axis, for how many columns y-
axis. The last bucket of each histogram shows the amount of columns that
did not converge within the set number of iterations and is marked in red in
each figure. I performed the test on the shermanx matrices with the same
stopping criteria from Table 2 shown in Figure 1 and the and orsirr 1 and
orsirr 2 matrices with maxiter = 20 and ε = 0.2 shown in Figure 2. Larger
figures are included in the appendix.

sherman1 sherman2 sherman3

sherman4 sherman5

Figure 1: Convergence results from shermanx matrices

(a) orsirr 1 (b) orsirr 2

Figure 2: Convergence results from orsirr x matrices

31

We see that there is a great deal of variation of the convergence rates
between the matrices. sherman2 has a lot of columns that do not converge
which is also clear in Table 2. The rest of the matrices have more satisfactory
convergence rates.

4.2 Parallel Implementation

4.2.1 Correctness

During the development of the CUDA implementation, I ensured that it
matched the exact results from the sequential Python implementation. How-
ever, as mentioned, the parallel implementation runs for the full number of
iterations for every column because of my naive stopping criteria. In or-
der to compare the implementations, I let the Python version run for the
full number of iterations for every column as well. The results of the fill-in,
nnz(M)
nnz(A)

, are exactly the same between the two implementations, Indicating
to me that the sparsity pattern update is correct in my parallel implemen-
tation. However the Frobenius norm is 3.856 for my parallel implementation
and 3.728 for my Python implementation when running 10 iterations for all
columns on the orsirr 2 matrix. This may be due to an error of my paral-
lel implementation. The discrepancy could also arise from differences in the
QR-decomposition and upper-triangular system solving functionality from
numpy and scipy versus CUBLAS.

5 Further Work

During this project, I did not finish implementing the parallel version of the
algorithm in full. This presents a great opportunity for further work. My
section on how to parallelize the remainder of the implementation also has
room for improvement, as I did not get specific with code examples.

Additionally, my evaluation can not be considered satisfactory for evalu-
ating the performance of the SPAI algorithm. Further work could include a
full evaluation of the performance of my preconditioner in helping the con-
vergence rates of iterative solvers. Performing a full evaluation by including
the time taken to compute the preconditioner in a fully parallel implemen-
tation, would reveal whether or not, calculating the preconditioner is worth
the effort.

32

6 Conclusion

In this project I have presented the dynamic SPAI algorithm with a focus
on understanding the algorithm in detail in terms of what is required for a
correct and efficient implementation. With this understanding, I have imple-
mented a sequential Python and a partially GPU-parallel CUDA version of
the algorithm and given some possible methods for parallelizing the remain-
ing sequential parts. Experimental results validate the correctness of the
both implementations in terms of the their ability to minimize the Frobenius
norm of the residual for a given sparsity structure.

References

[1] Marcus Grote and Thomas Huckle. Parallel preconditioning with sparse
approximate inverses. SIAM Journal on Scientific Computing, 18:838–
853, 01 1996.

[2] R. Schenck, O. Rønning, T. Henriksen, and C. E. Oancea. Ad for an
array language with nested parallelism. In 2022 SC22: International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC) (SC), pages 829–843, Los Alamitos, CA, USA, nov 2022.
IEEE Computer Society.

[3] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein,
and Cosmin E. Oancea. Futhark: Purely functional gpu-programming
with nested parallelism and in-place array updates. SIGPLAN Not.,
52(6):556–571, jun 2017.

[4] NVIDIA®. Cuda toolkit documentation 12.1 up-
date 1. https://docs.nvidia.com/cuda/index.html#

cuda-toolkit-documentation-v12-1, 2023.

[5] NVIDIA®. cublas documentation, v.12.1. https://docs.nvidia.com/
cuda/cublas/index.html#, 2023.

[6] NVIDIA®. Cub documentation. https://nvlabs.github.io/cub/,
2022.

[7] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual.
CreateSpace, Scotts Valley, CA, 2009.

33

[8] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Tay-
lor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fernández del Ŕıo, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
gramming with NumPy. Nature, 585(7825):357–362, September 2020.

[9] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,
Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan
Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R.
Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python. Nature Methods, 17:261–
272, 2020.

[10] Matous Sedlacek. Sparse approximate inverses for preconditioning,
smoothing, and regularization. Technische Universität München, 2012.

[11] Andreas Roy. Untersuchung dünnbesetzter qr-verfahrenbei der berech-
nung d̈ınnbesetzter approximativer inverser. Technische Universität
München, 2008.

[12] Robert Andrew and Nicholas Dingle. Implementing qr factorization
updating algorithms on gpus. Parallel Computing, 40(7):161–172, 2014.
7th Workshop on Parallel Matrix Algorithms and Applications.

[13] Cosmin E. Oancea. Lecture Notes for the Software Track of the PMPH
Course. sep 2018.

[14] Andrew Kerr, Dan Campbell, and Mark Richards. Qr decomposition on
gpus. In Proceedings of 2nd Workshop on General Purpose Processing
on Graphics Processing Units, GPGPU-2, page 71–78, New York, NY,
USA, 2009. Association for Computing Machinery.

34

[15] Alexander Kallischko. Modified sparse approximate inverses (mspai)
for parallel preconditioning. Technische Universität München, Zentrum
Mathematik, 2008.

[16] Hubert Nguyen. Gpu Gems 3. Addison-Wesley Professional, first edi-
tion, 2007.

35

A Appendix

Figure 3: orsirr 1

36

Figure 4: orsirr 2

37

Figure 5: sherman1

38

Figure 6: sherman2

39

Figure 7: sherman3

40

Figure 8: sherman4

41

Figure 9: sherman5

42

