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Abstract

This thesis explores the Sparse Approximate Inverse (SPAI) preconditioner, which calculates
an approximate inverse of a large and sparse matrix. The SPAI algorithm iteratively constructs
a sparse approximation of an inverse matrix by minimising the norm, column by column, while
preserving the sparsity. It is inherently parallel and thus our aim is to execute it eciently on
the Graphics Processing Unit (GPU). The thesis elaborates on the original SPAI algorithm by
Grote and Huckle by incorporating theoretical explanations of QR decomposition with House-
holder reections and permutations. We have implemented sequential prototypes in Python and
C, followed by a parallel version using CUDA kernels. Experimental results demonstrate the ac-
curacy of the SPAI algorithm. We compare the sequential SPAI implementations to Scipy and
cuSOLVERs functions for nding the exact inverse and nd the run time of the library functions
superior. We perform experiments on the CUDA kernels implemented in the parallel SPAI imple-
mentation. The results show that the kernels executed on the GPU exhibits superior run time to
the corresponding sequential code running on the Central Processing Unit (CPU).

This thesis shows that the SPAI preconditioner eciently computes approximate inverses of
e.g. large Hessian matrices in the Newton method. We show that the parallel implementation
running on the GPU outperforms the sequential implementations running on the CPU.
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1 Introduction

For centuries mathematicians have been faced with the challenge of solving systems of linear equa-
tions, and without calculators and computers, solving larger systems proved dicult. Directly nding
the exact inverse A−1 of a large and sparse matrix A would historically be infeasible, and nowadays
extremely expensive in terms of computational work and memory. In this thesis we will consider an
iterative method for constructing a sparse approximation to the inverse of such a matrix A, where
the sparsity is preserved in the inverse. Due to the preservation of the sparsity pattern, the work will
be proportional with the amount of nonzero elements and not the size of the matrix.

Since the 1970’s, the technique of preconditioning have been investigated and lead to great results.
Among these are Grote and Huckle’s sparse approximate inverse preconditioner (SPAI) based on the
Frobenius norm minimisation [1]. SPAI is an eective preconditioner, because it is able to update a
given sparsity structure automatically, while maintaining the sparsity of the original matrix for each
iteration. Thus it splits up each computation into an independent least squares problem for each
column and is inherently parallel. Inherently parallel preconditioners become of increasing impor-
tance as parallel clusters with millions of cores are build and the paradigm of parallel programming
develops [3]. A great advantage is the time and space complexity, which, for a sparse matrix, relies
on the number of nonzero elements rather than the size of matrix.

The ongoing eorts to advance the SPAI algorithm stem from its practical applications on large
amounts of sparse data. Determining the optimal solutions inexpensively with the Newton method is
essential in dierent areas such as statistics, applied mathematics, numerical analysis, economics and
nance [5]. The Newton method nds the roots of a dierential function F , which are the solutions
to the equation F = 0. In order to do so, we have to nd the inverse of a Hessian matrix, which is
a square matrix of second-order partial derivatives. This is were the SPAI preconditioner becomes
highly relevant, because computing the exact inverse of a Hessian of large dimensions will be require
many resources.

To nd the exact inverse of a dense matrix, we perform Gaussian elimination on the augmented
A and identity matrix I [6].

AA−1
= I

[A∣I]↝ [I ∣A−1]
Since Gaussian elimination will be extremely laborious for a large, sparse matrix, the method of
nding the approximate inverse is very relevant.

Developing on the initial SPAI algorithm by Grote and Huckle, several theses have been dedicated
to improving the Sparse Approximate Inverse preconditioner.

Among these are the dissertation Modied Sparse Approximate Inverses (MSPAI) for Parallel
Preconditioning by Kallischko, which introduces variants of the Sparse Approximate Inverse tech-
nique; the modied SPAI (MSPAI) algorithm and the factorised SPAI (FSPAI) algorithm [2]. The
dissertation Sparse Approximate Inverses for Preconditioning, Smoothing, and Regularization by Sed-
lacek improves on the SPAI algorithm and its variants also by modifying and factorising it and goes
into depth with the theory behind updating the QR decomposition [3]. Gao, Chu and Wang presents
a new heuristic SPAI preconditioner in the the paper HeuriSPAI: a heuristic sparse approximate
inverse preconditioning algorithm on GPU, which combines the advantages of static and dynamic
SPAI algorithms [8]. The three papers each present relevant solutions to problems we have encoun-
tered in our implementation, which we will discuss further in the related works part of the discussion.

In this thesis we have implemented the SPAI algorithm both sequentially and parallel. We have
implemented a highlevel version in Python, which we use to test against. We use the python imple-
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mentation to debug the C and CUDA versions and later compare the accuracy and the runtime of the
implementations. We take a deep dive into the SPAI algorithm and explain parts of the algorithm
that are not exhausted in Grote and Huckles [1] explanation of the algorithm. This includes the
use of QR decomposition with Householder reections and how to update the QR decomposition
eciently.

Section 2 will provide the background for the work in the thesis. We will account for precon-
ditioning and explain the Compressed Sparse Column (CSC) format used in the implementation.

Section 3 will provide the theoretical prerequisites for the SPAI algorithm and fulll the theo-
retical learning goals. We will explain QR decomposition and its relevance for the algorithm. We will
elaborate further on the method for computing the QR decomposition using Householder reections.
We will explain a technique for how to nd the exact inverse of a matrix and account for row and
column permutation matrices.

Section 4 is devoted to the sparse approximate preconditioner (SPAI) by Grote and Huckle and will
elaborate on sparse approximate inverses and the algorithm for determining such. We will method-
ically go trough the algorithm and explain in depth the most relevant parts. We will explain the
Frobenius norm minimisation, how to compute the sparsity structure J and I and how to apply the
Householder QR decomposition. We will describe how to improve upon M by updating the sparsity
structure and the QR decomposition. We will present our pseudocode, that we use as a foundation
for our implementation. We will go trough a numerical example for which, we have traced by hand
every step of one iteration of the algorithm for one subproblem.

Section 5 concerns our implementations of the SPAI algorithm. We have implemented a sequen-
tial prototype in Python to use as a basis for our tests. In C we have implemented the algorithm
sequentially and used cuBLAS functions to compute the QR decomposition and the inverse of R.
Finally we have implemented the algorithm parallel in CUDA. The implementation does not work
suciently for larger matrices, but we will describe and explain how we have implemented a parallel
implementation aimed at GPU execution. We will thoroughly explain the decisions we have made
and discuss the shortcomings present in our implementations. Additionally, we will present relevant
code snippets to provide a clearer understanding of our approach.

Section 6 shows the test results of our experiments. We have tested the accuracy of our im-
plementations of the SPAI algorithm. We have tested our implementations on dierent sizes and
sparsity degrees of randomised matrices. We have performed experiments to nd the run times of
our sequential SPAI implementation and Scipy and cuSOLVERs library functions for nding the
exact inverse. We have tested the run time and GB/s for individual CUDA kernels from our parallel
implementation and compared with corresponding sequential code.

Section 7 compares and analyses the results obtained in numerical experiments. We will discuss the
accuracy of our Python, C and CUDA implementations. The result shows that the SPAI algorithm
successfully converges when reaching the accepted tolerance. We have compared the run times of our
sequential SPAI implementation to library functions for nding the exact inverse. The results show
that the library functions outperform the sequential implementations. In theory the parallel imple-
mentation should exhibit better run times for larger matrices, but since the implementation does not
work suciently for large matrices, we cannot show this. We have tested individual CUDA kernels
from our parallel implementation and the results clearly demonstrate that the GPU-executed kernels
exhibit signicantly faster run times compared to their corresponding sequential code running on
the CPU. For a broader perspective, we discuss the advantages of parallelism. This section will also
discuss how related works have contributed to our thesis and developed further on the SPAI algorithm.
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Section 8 is the conclusion.

The link to our GitHub repository is:
https://github.com/mikkelwillen/SPAI.

This code presented in this thesis is based on the commit "Commit presented in the thesis"

from June 5, 2023. Changes and optimisation may have been committed since then.
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2 Background

This section will provide the background for the work in order to make the thesis easier to follow.
We will account for preconditioning and explain the Compressed Sparse Column (CSC) format used
in the implementation.

2.1 Preconditioning

Preconditioning is a technique used for enhancing convergence speed. Many iterative methods con-
verge very slow for not preconditioned systems. The goal of preconditioning is to modify the system
in such a way that an iterative method converges signicantly faster.

In linear algebra a preconditioner P of a matrix A is a matrix such that P−1A has a smaller condition
number than A [6]. The condition number measures how much the output value can change for a
small change in the input argument. So it is used to measure how much an error in the output results
from an error in the input.

Preconditioners play a valuable role in iterative methods used to solve linear systems of the form
Ax = b. By applying a preconditioner, the convergence rate of most iterative linear solvers improves.
This improvement occurs due to the reduction in the condition number of the matrix, which is a
direct outcome of preconditioning. Instead of solving the original linear system Ax = b for x, one
may consider the right preconditioned system

AP−1Px = b

and solve
AP−1y = b

for y and
Px = y

for x. Alternatively, one may solve the left preconditioned system

P−1Ax − b = 0.

Assuming the preconditioner matrix P is nonsingular, both systems yield an identical solution to the
original system. The left preconditioning approach is used more often.

The Sparse Approximate Inverse preconditioner minimises ∥AM−I∥F , where ∥⋅∥F is the Frobenius
norm and M = P−1.

The concept of preconditioning is theoretically straightforward, but practical implementations require
careful consideration of various technical details. When constructing a preconditioner M , we must
nd a balance between reducing the number of iterations required and not making the preconditioner
too computationally expensive to construct. A well chosen preconditioner must be

• relatively cheap to construct

• not use too much memory

• improve the condition number of A

• be parallelisable when both constructed and implemented

• and performing linear solves with the preconditioner should be cheap [4]
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2.2 Sparse matrices

Matrices can have specic structures or hold special properties. Some matrices only have a small
amount of nonzeros compared to their dimensions, and these are called sparse matrices. There is not
a strict denition of a sparse matrix, but a general perception is that a matrix will be called sparse
if the storage of only the nonzero elements and/or the application of an algorithm adapted to sparse
matrices lead to a computational advantages over a dense matrix [2].

Sparse matrices enables us to construct methods which prots from the sparse structure in terms
of fast algorithms and ecient storage.

2.3 Sparse Compressed Column format

When storing a sparse matrix, we do not want to waste space storing the great amount of zeros. We
can store the nonzeros either row- or column-wise. Since the SPAI algorithm is computed column-
wise, we want fast access to the columns and therefore we would like to store our data in a column
format. The format we will use in this thesis is called Sparse Compressed Columnn (CSC) format.

In the format, the matrix is stored in three arrays. The rst array offset contains the accu-
mulated number of nonzeros elements in each column. The flatData contains the nonzero entries
ordered after columns. The flatRowIndex contains the row indices of the nonzero entries also or-
dered after columns. Here is an example of the CSC storage format:

A =

⎛
⎜⎜⎜
⎝

20 0 0
0 30 10
0 0 0
0 40 0

⎞
⎟⎟⎟
⎠

CSC format
→

offset = 0,1,3,4⟫
flatData = 20,30,40,10⟫
flatRowIndex = 0,1,3,1⟫

Figure 1: Example of the CSC storage format

The compressed storage saves communication between processing elements i parallel environments,
because we only have to exchange the nonzero elements [3].
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3 Theoretical prerequisites for the SPAI algorithm

This section will provide the theoretical basis for the sparse approximate inverse preconditioner and
the implementation of it.

3.1 QR decomposition

QR decomposition is a decomposition of a matrix A into a product A = QR, consisting of an or-
thonormal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the
linear least squares problem and that is why it is relevant later in the SPAI algorithm.
There are several ways of computing the QR decomposition of a matrix, but in this thesis we will
solely focus on the method using Householder reections. The CUBLAS library, we will use for
the implementation of the SPAI algorithm in C and CUDA, computes the QR decomposition via
Householder reections.

3.2 QR decomposition with Householder reections

QR decomposition with Householder reections computes the upper triangular matrix R from a
matrix A of size m × n by applying a sequence of Householder reections to A. A matrix H of the
form

H = I − 2
vvT

vT v
(1)

is called a Householder reection, with v being a Householder vector and I being the m×m identity
matrix equal to QTQ. We can dene the rst Householder transformation as the matrix H1 from
the rst Householder vector v1 :

H1 = I − 2 ⋅
v1 ⋅ v

T
1

vT
1
⋅ v1

(2)

v1 is the rst Householder vector for the rst column vector a1 from our input matrix A. We can
calculate v1 from:

v1 = a1 + sign a11 ∥a1∥ e1,
with ∥a1∥ being the vector length of the rst matrix column in A and and e1 being the rst column
of the identity matrix. The sign function is an extraction of the sign of a number [7].

This way, we don’t compute our Q explicitly but instead as a sum of Householder reections.

Q =H1⋯Hk, (3)

where k = minm − 1, n and H is the Householder reections. We can nd R by triangularising A

with the Householder reections.

⎛
⎜⎜⎜⎜⎜⎜
⎝

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

× × × × ×

0 × × × ×

0 × × × ×

0 × × × ×

0 × × × ×

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

× × × × ×

0 × × × ×

0 0 × × ×

0 0 × × ×

0 0 × × ×

⎞
⎟⎟⎟⎟⎟⎟
⎠

A H1A H2H1A

Figure 2: Triangularising A with Householder reections
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Figure 2 illustrates how a sequence of Householder transforms may be chosen from columns
of A to bring it into triangular form. Once the input matrix has been overwritten with the rst
Householder transformation H1A, the rst column will contain zeros below the diagonal. We proceed
to the next column and move one row down to repeat the process, calculating the next Householder
transformationH2. This process is iterated for all columns in the updated input matrix corresponding
to R, continuing until A is triangularised [13].

R =Hk⋯H1A (4)

Since we can reconstruct the Householder transformations Hk quite easily from the Householder
vectors, we can store them eciently in the lower triangular part of R, that is not used for anything
else than zeros.

Kerr, Campbell and Richards presents an algorithm for computing the QR decomposition of A

with Householder reections [13]. Here is our version of it:

Algorithm 1: Compute the QR decomposition of A via Householder reections

Q← I

for k = 1 to n do

Q1 ∶m,k ∶m = Q1 ∶m,k ∶m − βQ1 ∶m,k ∶mvvT
end for

Here v is the Householder vector and β =
2

vHv
[13].

We can observe from the analysis of the algorithm’s running time that it operates in On3 com-
plexity. When examining the section inside the for loop, we notice that the algorithm performs two
matrix-vector multiplications and a matrix-matrix subtraction. Matrix-vector multiplication takes
Om ⋅ m time since each element in the rows is multiplied by the corresponding element in the
vector. This results in one multiplication per element in the m×m sized matrix. The matrix-matrix
subtraction, similarly, involves subtracting each element in the rst matrix from the corresponding
element in the second matrix, leading to a time complexity of Om ⋅m. As the for loop iterates
n times, the overall running time of the algorithm becomes Om ⋅ n2. In the case of SPAI, where
Q is a square matrix, the running time of QR decomposition with Householder reections is On3,
where n × n represents the size of the matrix Q.

3.3 Inversion

A n × n matrix A is invertible if there exists a matrix B such that:

AB = BA = In (5)

B is the inverse of A, which is commonly denoted as A−1 [6]. We can compute the matrix inverse by
solving the linear system AB = I, for example:

⎛
⎜
⎝

a11 a12 a13 1 0 0
a21 a22 a23 0 1 0
a31 a32 a33 0 0 1

⎞
⎟
⎠
Gauss − Jordan
→

⎛
⎜
⎝

1 0 0 b11 b12 b13
0 1 0 b21 b22 b23
0 0 1 b31 b32 b33

⎞
⎟
⎠

(6)

Then B will be the inverse. We compute the left side of the arrow from the right side by performing
Gauss-Jordan elimination.

Gauss-Jordan elimination is the process of performing a series of elementary row operations to
produce a matrix that is on reduced row-echelon form. This can be performed by ensuring that each
pivot has the value 1 and eliminating values above and below the pivots [6].
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3.4 Row and column permutations

A permutation matrix is a square matrix derived from the identity matrix of the same size through
a rearrangement of its rows. The resulting matrix remains row equivalent to an identity matrix [6].
In a permutation matrix, each row and each column contains precisely one non-zero entry, which is
always a 1. Consequently, there exist two 2 × 2 permutation matrices.

( 1 0
0 1

) ,( 0 1
1 0

) (7)

There are n! permutation matrices of size n [6].

Left multiplication by a permutation matrix rearranges the corresponding rows. This is then called
a row permutation matrix [6]. Here the application is shown on a vector and a matrix:

⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠

⎛
⎜
⎝

x1
x2
x3

⎞
⎟
⎠
=

⎛
⎜
⎝

x2
x3
x1

⎞
⎟
⎠

(8)

⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠

⎛
⎜
⎝

a a a

b b b

c c c

⎞
⎟
⎠
=

⎛
⎜
⎝

b b b

c c c

a a a

⎞
⎟
⎠

(9)

Right multiplication by a permutation matrix rearranges the corresponding columns. This is thus
called a column permutation matrix [6]. Here it is shown on a matrix:

⎛
⎜
⎝

a b c

a b c

a b c

⎞
⎟
⎠

⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠
=

⎛
⎜
⎝

c a b

c a b

c a b

⎞
⎟
⎠

(10)

By multiplying with the row permutation on the left side and the column permutation on the right
side, we obtain a full rearrangement of our matrix. This is useful for sorting matrices and will be
used in our implementation.

⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠

⎛
⎜
⎝

a b c

d e f

g h i

⎞
⎟
⎠

⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠
=

⎛
⎜
⎝

f d e

i g h

c a b

⎞
⎟
⎠
. (11)
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4 The SPAI Algorithm

In 1995, Grote and Huckle published Parallel preconditioning with Sparse Approximate Inverses
[1], which presented an algorithm designed to nd the approximate inverse of a sparse matrix by
minimising the Frobenius norm. This section will go trough the SPAI algorithm and explain the
algorithm in depth.

4.1 Frobenius norm minimisation

We can compute a sparse approximate inverse M ≈ A−1 via Frobenius norm minimisation. The main
idea is to, column for column, minimise the norm and thus obtain a closer approximation of the
inverse.

The minimisation

min
M

∣∣AM − I ∣∣2F (12)

with A ∈ R
n×n and the unity matrix I with the same dimensions is the Frobenius norm minimisation.

The smaller the norm is, the closer M will be to the exact inverse of A.

M

⎛
⎜
⎝

◻ ◻ ◻

◻ ◻ ◻

◻ ◻ ◻

⎞
⎟
⎠

⎛
⎜
⎝

△ △ △

△ △ △

△ △ △

⎞
⎟
⎠

⎛
⎜
⎝

× × ×

× × ×

× × ×

⎞
⎟
⎠

A AM

Figure 3: Intuitive example of the matrix multiplication of AM − I. Here it is shown clearly how
column 0 in the product AM is dependent on the entries of the blue column in M and the both the

red, yellow and orange rows of A.

⎛
⎜
⎝

× × ×

× × ×

× × ×

⎞
⎟
⎠

−

⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠

≈

⎛
⎜
⎝

0 0 0
0 0 0
0 0 0

⎞
⎟
⎠

AM I AM − I

Figure 4: Example of how the identity matrix subtracted from the product AM will be
approximately 0 if the SPAI algorithm has successfully converged

We can split the minimisation up into a sum of Euclidean norms, like this

min
M

∣∣AM − I ∣∣2F =

n

∑
k=1

∣∣AM − Iek∣∣22 (13)

=

n

∑
k=1

∣∣Amk − ek∣∣22 (14)

where mk and ek denotes the k’th column of respectively M and I. Since each summand in (14)
represents a least squares problem for every column mk of M , we can solve them independently from
each other. This property gives the algorithm a great advantage by being inherently parallel.
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4.2 Computing the sparsity structure J and I

We want to nd a set J of indices, that represents the current entries we are allowed to update in M .
This is dened by the initial sparsity pattern chosen for M . Computing an ecient sparsity pattern,
will help us avoid entries, which will only contribute little to M approaching an approximation of
A−1.
Let J be the set of indices j, where mk has nonzero entries and denote the length of this set by n2.

J = j ∶mkj ≠ 0⟫ (15)

n2 = ∣J ∣ (16)

We denote the reduced vector mkJ  by m̂k. Now, because of the sparsity, the reduced system
A.,J  will properly have a lot of zero rows, which is irrelevant for the solution. We eliminate these
by letting I, be the set if indices i where Ai,J  is not identically zero

I =

⎧⎪⎪⎨⎪⎪⎩
i ∶ ∑

j∈J

∣aij ∣ ≠ 0

⎫⎪⎪⎬⎪⎪⎭
(17)

n1 = ∣I ∣ (18)

The resulting submatrix AI,J , will be denoted by Â.

⎛
⎜⎜⎜
⎝

× 0 0 0
0 × 0 ×

0 0 0 ×

0 × 0 0

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

0
×

0
×

⎞
⎟⎟⎟
⎠

⇒

⎛
⎜⎜⎜
⎝

0 0
× ×

0 ×

× 0

⎞
⎟⎟⎟
⎠

( ×

×
) ⇒

⎛
⎜
⎝

× ×

0 ×

× 0

⎞
⎟
⎠

( ×

×
)

A mk A.,J  m̂k Â m̂k

Figure 5: J is the indices of the blue columns and I is the indices of the red rows. J = 1,3 and I

= 1,2,3

We can then reduce the minimisation problem (14) to

min
m̂k

∣∣Âm̂k − êk∣∣2 (19)

with the denitions and sizes

Âk ∶= AI,J  ∈ Rn1×n2 , m̂k ∶=mkJ  ∈ Rn2 , and êk ∶= ekI ∈ Rn1 . (20)

The dimensions of this least squares problem is very small, since A and M er both very sparse
matrices.

4.3 Applying the Householder QR decomposition

For a the nonsingular matrix A, the submatrix Â must have full rank [6], and thus we can apply the
QR decomposition

Â = Q( R

0
) , (21)

where

Q ∈ R
n1×n2 and R ∈ R

n2×n2 . (22)

We will base our solutions of the minimisation problems on the QR decomposition via Householder
reections, which is an On3 algorithm. See the section concerning QR decomposition with House-
holder reections under theoretical prerequisites for further explaining of QR decomposition with
Householder reections.
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4.4 Computing the nonzero entries of m̂k

We compute the nonzero entries of m̂k by

m̂k = R−1ĉ, (23)

where

ĉ = QT êk (24)

We solve this for each k = 1, ..., n and set mkJ  = m̂k. This way we have updated the entries of M
to be closer to an approximate inverse, which minimises the frobenius norm ∣∣AM − I ∣∣F .

4.5 Improving upon M by updating the sparsity structure

Now we have updated M once, but the goal is to keep improving upon M to obtain an even more
precise inverse. We keep iterating and thus improving M until the tolerance is met. To do so, we
will augment the sparsity structure and reduce the current error. We will explain this by showing
how to update a single column mk.

We calculate the residual vector r of mk.

r = Amk − ek (25)

If the vector r only contains zeros, then mk is already the k’th column of A−1 and thus cannot be
improved upon.

For the sake of explanation, we assume that r ≠ 0 and therefore we must augment the set of
indices J to reduce the norm of the residual r. We want to reduce the norm, because the smaller
the norm, the closer the approximation.

We denote by L the set of indices, for which r has nonzero entries. Since A and mk are sparse,
most entries of r will be zero.

L = l ∶ rl ≠ 0⟫ ∪ k⟫ (26)

For every l ∈ L we can dene a set Nl, which consists of the nonzero indices of the l’th row in A

Nl = j ∶ alj ≠ 0⟫ (27)

The column indices are the potential new candidates to be added to J , since the other would vanish
by multiplying with zero, when computing the matrix-vector product. We will denote these new
candidates as

J̃ = ⋃
l∈L

Nl (28)

⎛
⎜⎜⎜
⎝

0
r1
0
r3

⎞
⎟⎟⎟
⎠

⇒ L = 1,3⟫ ⇒

⎛
⎜⎜⎜
⎝

× × 0 ×

0 × × 0
× 0 0 ×

0 × 0 0

⎞
⎟⎟⎟
⎠

⇒ (0 × × 0
0 × 0 0

) ⇒ J̃ = 1,2⟫

r A AL, ∶

Figure 6: Example of how to nd the set J̃ from the set L
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Now we will select the j indices, that will lead to the most protable reduction in ∣∣r∣∣2, by solving
for each j ∈ J the minimisation problem

min
µj

∣∣r + µjAej ∣∣2 (29)

The solution to this minimisation problem is

µj = −
rTAej

∣∣Aej ∣∣22
(30)

In order to see which µj would result in the smallest norm of the residual, we calculate the new
residuals we would achieve if we added the candidate j to J . So for the new residual rnew = r+µjAej
we compute the 2-norm ρj for each j.

ρ2j = ∣∣rnew∣∣22 −
rTAej2
∣∣Aej ∣∣22

(31)

When implementing the SPAI algorithm we have created a parameter for the limit of new indices
to be added to the current J in each update step. The algorithm will take this number of indices
with the smallest values of ρj and union with J . By choosing a large s we ensure fewer iterations
until the algorithm converges, but choosing a too large s will result in larger subproblems, that are
computationally inecient. It follows, that there must be at least one index j ∈ J̃ that will result in
a smaller residual or else we would have reached the tolerance and found the inverse.

Now J ∪J̃ contains the column indices of all the nonzero entries of AL, . and J ∩J̃ = ∅. We will use
this unionised set to solve the least squares problem again and hence obtain a better approximation
of mk.

With our new column indices J̃ we can compute the corresponding row indices Ĩ. Ĩ is the in-
dices of the rows, which corresponds to the nonzero rows of A., J̃  not contained in I yet. We
denote by ñ1 and ñ1 the length of the sets Ĩ and J̃ , respectively. We then have to solve the LS
problem for the larger submatrix

Ã = AI ∪ Ĩ,J ∪ J̃  (32)

of size n1 + ñ1 × n2 + ñ2. To solve this, we will use the QR decomposition of Ã, but there is no need
to compute the full QR decomposition again. This will be discussed in the next section concerning
the update of the QR decomposition.

As long as the norm of the residual is larger than the tolerance provided by the user or the maximal
amount of ll-ins has been reached, the update step is repeated until one of the criteria are met. The
algorithm will have computed the k’th column of A−1 or an approximation as close as the parameters
and input would let us. In pseudocode section we present the full SPAI algorithm as pseudocode.

4.6 Updating the QR decomposition

An expensive step in the algorithm is computing the QR decomposition for each iteration of the
while-loop, since augmenting the sparsity structure will lead to expanding least squares problems. So
instead of performing a new decomposition, it is possible to update the one we already computed. We
want to use the available QR decomposition for Â to update the QR decomposition for AI∪Ĩ,J ∪J̃ .

First, we compute Ã with rows from the union of I and Ĩ and the columns from the union of
J and J̃ .
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

◻ ◻ × × ◻ ×

◻ ◻ × × ◻ ×

△ △ 0 0 △ 0
◻ ◻ × × ◻ ×

◻ ◻ × × ◻ ×

△ △ 0 0 △ 0
◻ ◻ × × ◻ ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

PrĀPc
→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

× × × ◻ ◻ ◻

× × × ◻ ◻ ◻

× × × ◻ ◻ ◻

× × × ◻ ◻ ◻

× × × ◻ ◻ ◻

0 0 0 △ △ △

0 0 0 △ △ △

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

AI ∪ Ĩ,J ∪ J̃  Ã

Figure 7: With row and column permutations Pr and Pc, the resulting matrix Ã will contain a zero
block, Â that is denoted by the ×’s, AI, J̃  that is denoted by ◻’s and AĨ, J̃  that is denoted by
△’s. J̃ is presented with the blue columns and Ĩ is presented the red rows.

Ã = AI ∪ Ĩ,J ∪ J̃  = ( Â AI, J̃ 
0 AĨ, J̃  ) (33)

Our Ã can be rewritten as

Ã = ( Q

Iñ1

)( R Ă

0 AĨ, J̃  ) (34)

where we denote Ă = QTAI, J̃ . This Ă can be split in QT
1
AI, J̃ , which has size n2 × n2 and

QT
2
AI, J̃ , which has size ñ1 + n1 − n2 × n2. Simultaneously, R is being split from it’s zeros in the

bottom. This is how we obtain B1 and B2.

Ã = ( Q

Iñ1

)
⎛
⎜⎜
⎝

R Ă0 ∶ n2,0 ∶ n2
0 Ăn2 + 1 ∶ n1,0 ∶ ñ2
0 AĨ, J̃ 

⎞
⎟⎟
⎠
= ( Q

Iñ1

)( R B1

0 B2

) (35)

B1 is an n2 ×n2 matrix and B2 is an ñ1 +n1 −n2 × ñ2 matrix. As it can be seen above, we only need
to compute the QR decomposition of B2. We let

B2 = QB ( RB

0
) , (36)

QB has dimensions ñ1 + n1 − n2 × ñ1 + n1 − n2 and RB has dimensions ñ1 + n1 − n2 × ñ2. Then we
obtain

Ã = ( Q

Iñ1

)( Iñ1

QB
)⎛⎜
⎝

R B1

0 RB

0 0

⎞
⎟
⎠

(37)

from which we can compute QB and RB.

We solve the augmented least squares problem

min
J∪J̃

∣∣ÃM̃ − ẽ∣∣2, (38)

where ẽ = PreI ∪ Ĩ and M̃ = P T
c MJ ∪ J̃ . Finally, we recover the solution in the correct order

with a nal column permutation MJ ∪ J̃  = PcM̃ .

By performing the QR decomposition on the smaller matrix B2, instead of computing the full QR
decomposition of Ã, we reduce the computational cost.
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4.7 Pseudocode

Inspired by the SPAI algorithm by Grote and Huckle [1], we have written our own pseudocode, which
explains some of the steps of the algorithm more explicitly.

We have based our pseudocode for the substeps of the QR update on algorithm 5 from Sedlacek’s
dissertation Sparse Approximate Inverses for Preconditioning, Smoothing, and Regularization [3].
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Algorithm 2: SPAI Algorithm

Input : A: a CSC matrix, tolerance: tolerance , maxIteration: constraint for the maximal
number of iterations, s: number of most protable indices

Output: M: the inverse of A
for every column m̂k of M do

1) Find initial sparsity J of m̂k

2) Compute the row indices I of the corresponding nonzero entries of AI,J 
3) Create Â = AI,J 
4) Do QR decomposition of Â

5) Compute the solution mk for the least squares problem

5.1) Compute ĉ = QT êk

5.2) Compute R−1

5.3) Compute m̂k = R−1ĉ

6) Compute residual
while residual > tolerance do

7) Let L be the set of indices, where rl ≠ 0

8) Set J̃ to all new column indices of A that appear in all L rows, but not in J yet

9) For each j in J̃ compute: ρ2j = ∣∣rnew∣∣22 −
rTAej⌞

2

∣∣Aej ∣∣22

10) Find the indices J̃ corresponding to the smallest s elements of ρ2

11) Determine the new indices Ĩ

12) Make I ∪ Ĩ and J ∪ J̃

13) Update the QR decomposition

13.1) Create AI, J̃  and AĨ, J̃ 

13.2) Compute Ă = QTAI, J̃ 

13.3) Compute B1 = Ă0 ∶ n2,0 ∶ ñ2

13.4) Compute B2 = (Ăn2 + 1 ∶ n1,0 ∶ ñ2
AĨ, J̃  )

13.5) Do QR decomposition of B2

13.6) Compute Q and R from

AI ∪ Ĩ,J ∪ J̃  = ( Q

Iñ1

)( In2

QB
)⎛⎜
⎝

R B1

0 RB

0 0

⎞
⎟
⎠

13.7) Solve the augmented LS problem for m̂k

14) Compute new residual

15) Set I = I ∪ Ĩ and J = J ∪ J̃ and A′
= AI,J 

end while

16) Set mkJ  = m̂k

end for
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4.8 Numerical example

We have made a numerical example that we have traced by hand in order to check the algorithmic
accuracy. We have traced the algorithm on the nonsingular 4 × 4 matrix

A =

⎛
⎜⎜⎜
⎝

10 10 0 14
0 10 2 0
13 0 0 1
0 5 0 0

⎞
⎟⎟⎟
⎠

(39)

and used the parameters: tolerance = 0.01, maxIterations = 1 and s = 1. We will show the tracing
by hand for column 0 for one iteration. First we dene

M = I4 =

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

(40)

For column 0, we nd J and I and with J and I we compute Â = AI,J . The blue columns
denote the columns with indices in J and the red rows denote the rows with indices in I.

J = 0⟫, n2 = 1 (41)

I = 0,2⟫, n1 = 2 (42)

⎛
⎜⎜⎜
⎝

10 10 0 14
0 10 2 0
13 0 0 1
0 5 0 0

⎞
⎟⎟⎟
⎠

⇒

⎛
⎜⎜⎜
⎝

10
0
13
0

⎞
⎟⎟⎟
⎠

⇒ ( 10
13

)
A A.,J  Â

(43)

We then compute the QR decomposition of Â.

Q = (−0.609711 −0.792624
−0.792624 0.609711

) , R = (−16.401220
0

) (44)

We then nd the solution m̂k to the least squares problem

m̂k = R−1ĉk = −0.060971 0.609711 = 0.037175 (45)

Then we compute the residual and the norm of the residual

r = A.,J m̂k − ek =

⎛
⎜⎜⎜
⎝

10
0
13
0

⎞
⎟⎟⎟
⎠
0.037175 −

⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
=

⎛
⎜⎜⎜
⎝

−0.62853
0

0.483275
0

⎞
⎟⎟⎟
⎠

(46)

∥r∥ = 0.792624 (47)

Since the norm of the residual 0.792624 > 0.01, we go into the while-loop. Let L be the set of indices,
where rl ≠ 0, so since r0 = −0.62853 and r2 = 0.483275

L = 0,2⟫ (48)

Then we set J̃ to all new column indices of A that appear in all L rows, but not in J yet. The
yellow rows denoted the L rows and the blue columns denote the nonzero J̃ columns.

⎛
⎜⎜⎜
⎝

10 10 0 14
0 10 2 0
13 0 0 1
0 5 0 0

⎞
⎟⎟⎟
⎠

⇒ (10 10 0 14
13 0 0 1

)
A AL, ∶

(49)
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J̃ = 0,1,3⟫ − 0⟫ = 1,3⟫ (50)

For each j in J̃ we solve the minimisation problem by computing ρ2j .

ρ21 = ∣∣rnew∣∣22 −
rTAe12
∣∣Ae1∣∣22

(51)

= 0.7926242 −

⎛
⎜⎜⎜
⎝
−0.62853 0 0.483275 0

⎛
⎜⎜⎜
⎝

10
10
0
5

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠

2

152
(52)

= 0.7926242 −
−6.28532

152
(53)

= 0.452830 (54)

ρ23 = ∣∣rnew∣∣22 −
rTAe32
∣∣Ae3∣∣22

(55)

= 0.7926242 −

⎛
⎜⎜⎜
⎝
−0.62853 0 0.483275 0

⎛
⎜⎜⎜
⎝

14
0
1
0

⎞
⎟⎟⎟
⎠

⎞
⎟⎟⎟
⎠

2

14.042
(56)

= 0.7926242 −
−8.3122672

14.042
(57)

= 0.277523 (58)

Then we nd the indices J̃ corresponding to the smallest s = 1 element of ρ2. Since 0.277523 ≜

0.452830 we choose the index 3. We compute the union of J and J̃ in order to nd Ĩ. Ĩ is the
indices of the rows, which corresponds to the nonzero rows of A.,J ∪ J̃  not contained in I yet.

J̃ = 3⟫, ñ2 = 1

J ∪ J̃ = 0,3⟫, n2union = 2

Ĩ = 0,2⟫ − 0,2⟫,= ⟫ ñ1 = 0

I ∪ Ĩ = 0,2⟫, n1union = 2

(59)

The blue columns denote the columns with indices in J ∪ J̃ and the red rows denote the rows with
indices in Ĩ (which there are none of).

⎛
⎜⎜⎜
⎝

10 10 0 14
0 10 2 0
13 0 0 1
0 5 0 0

⎞
⎟⎟⎟
⎠

⇒

⎛
⎜⎜⎜
⎝

10 14
0 0
13 1
0 0

⎞
⎟⎟⎟
⎠

A A.,J ∪ J̃ 

(60)

Now it is time to update the QR decomposition. We create AI, J̃  and AĨ, J̃ . The blue columns
are J̃ the red rows are respectivelly I and Ĩ. The purple entries are the overlap.

⎛
⎜⎜⎜
⎝

10 10 0 14
0 10 2 0
13 0 0 1
0 5 0 0

⎞
⎟⎟⎟
⎠

⇒ ( 14
1

)
A AI, J̃ 

(61)
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⎛
⎜⎜⎜
⎝

10 10 0 14
0 10 2 0
13 0 0 1
0 5 0 0

⎞
⎟⎟⎟
⎠

⇒ 

A AĨ, J̃ 

(62)

We compute

Ă = QTAI, J̃  = (−0.609711 −0.792624
−0.792624 0.609711

)( 14
1

) = ( −9.328573
−10.487024

) (63)

And then we create B1 = Ă0 ∶ 1,0 ∶ 1.

B1 = −9.328573 (64)

We create B2 = Ă1 + 1 ∶ 2,0 ∶ 1 above AĨ, J̃ . AĨ, J̃  is empty in this case.

B2 = −10.487024 (65)

Then we do the QR decomposition of B2

QB = 1 , RB = −10.487024 (66)

We make the new Q and R

Q = (Q
I2
)(I1

QB
) = (−0.609711 −0.792624

−0.792624 0.609711
)(1 0

0 1
) = (−0.609711 −0.792624

−0.792624 0.609711
) (67)

R =

⎛
⎜
⎝

R B1

0 RB

0 0

⎞
⎟
⎠
= (−16.401220 −9.328573

0 −10.487024
) (68)

And then we solve the augmented least squares problem for m̂k

m̂k = R−1ĉ = (−0.060971 0.054236
0 −0.095356

)(−0.0609711
−0.792624

) = (−0.005814
0.075581

) (69)

We compute the new residual

r = A.,J ∪ J̃ m̂k − ek =

⎛
⎜⎜⎜
⎝

10 14
0 0
13 1
0 0

⎞
⎟⎟⎟
⎠
(−0.005814
0.075581

) −

⎛
⎜⎜⎜
⎝

1
0
0
0

⎞
⎟⎟⎟
⎠
=

⎛
⎜⎜⎜
⎝

0
0
0
0

⎞
⎟⎟⎟
⎠

(70)

∥r∥ = 0 (71)

With the norm of the residual being 0 and thus smaller than the tolerance, there is no need to perform
more iterations. We have reached the optimal solution for column 0 and M∶,0 is approximately
A−1∶,0.
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5 Implementation

The previous section was devoted to the theoretical development and presentation of the SPAI al-
gorithm. In this section we will focus on the implementation of the SPAI preconditioner in both a
sequential and parallel environment. We will show code snippets of relevant parts of the code. We
are aware that some of the code snippets are a bit long, but from our thousands of lines of code, we
have deemed these lines the most important.

5.1 Sequential implementation in Python

We have implemented the SPAI algorithm sequentially in Python. The implementation works as a
prototype for our nal implementation in CUDA. We implemented the prototype as the rst thing,
as a concrete way of understanding the algorithm in depth.

5.1.1 Structure

The structure of the implementation follows the pseudocode rigorously. We dened a function
SPAI(A, tol, max iter, s), which takes the inputs: A CSC matrix, a tolerance, a constraint
for the maximal number of iterations and the number of most protable indices. The inputs can be
dened by the user, when calling the function.

5.1.2 Choices and shortcomings

Checking if A is nonsingular

Before we begin the steps of the algorithm, we have to check if A is nonsingular. If A is singular,
it cannot be inverted and there is no point in nding the approximate inverse. We compute the
determinant and check if it is nonzero, meaning that A is nonsingular and thus invertible. A turned
out primarily to be singular if the matrix was both very small and very sparse, making the chance
of zero rows or columns large.

M is set to an identity CSC matrix

We chose that the initial sparsity pattern for M should be the identity matrix, inspired by Grote
and Huckle’s implementation [1]. We used the scipy.sparse library to create an identity matrix in
the CSC format [12].

Dense submatrices for the QR decomposition

The input of our function is a sparse matrix A and we perform most of the steps of our algorithm
on A in the sparse format. However, QR decomposition is not implemented in Python for sparse
matrices. We densify the subproblems used for the QR decomposition. The rst QR decomposition
is performed for each column of M on the submatrix Â. Therefore we densify Â.

1 # 13) Do QR decomposition of AHat

2 Q, R = np.linalg.qr(AHat.todense (), mode="complete")

Listing 1: QR composition of Â

The second QR decomposition is performed inside the while-loop on the matrix B2, that we create
by stacking the lower part of Ă and AĨ, J̃ . We densify the submatrix AĨ, J̃  in order to use it
in B2.

1 # 13.4) Compute B2 = ABreve(n2 + 1 : n1, 0 : n2Tilde) above AITildeJTilde

2 B_2 = np.vstack (( ABreve[n2:n1 ,:], AITildeJTilde.todense ())

3

4 # 13.5) Do QR decomposition of B2

5 Q_B , R_B = np.linalg.qr(B_2 , mode="complete")

Listing 2: Computing B2 and performing the QR decomposition of B2
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Permutation matrices

When we want to sort matrices or vectors, we use permutation matrices. We create the row permu-
tation matrix from the unionised set of I and Ĩ and the column permutation from the unionised set
of J and J̃ . We use the permutation matrices to sort Q and R, so they are in the correct order for
the next iteration of the for-loop.

1 Q = Pr * Q

2 R_1 = R_1 * Pc

Listing 3: Permuting Q and R

Singular matrix R

In order to solve the least squares problem for mk, we need to compute the inverse of R. This cannot
be done if R is singular. A singular matrix has a determinant equal to zero and thus is not invertible.
When running the SPAI function on a sparse matrix A smaller than 40 × 40, R turns out to be
singular sometimes. With R not being invertible, we cannot solve the LS problem for that column
and the approximation of the inverse will not be close to the actual inverse of that column.

1 # 5) Compute the solution m_k for the least sqaures problem

2 # 5.1) Compute cHat = Q^T * eHat_k

3 e_k = np.matrix ([0]*M.shape [1]).T

4 e_k[k] = 1

5

6 eHat_k = e_k[I]

7 cHat_k = Q.T * eHat_k

8

9 # 5.2) Compute the inverse of R

10 invR_1 = np.linalg.inv(R_1)

11

12 # 5.3) Compute mHat_k = R^-1 * cHat

13 mHat_k = invR_1 * cHat_k [0:n2 ,:]

14

15 m_k[J] = mHat_k

Listing 4: Solving the LS problem

However, this turned out to be a rare issue after checking if A was nonsingular and thus only running
the algorithm on nonsingular A matrices.

Smallest indices

Right now the part of our implementation, which should nd the s indices with the smallest ρ2 values
and only add those to J̃ , does not work. Our implementation adds all potential candidates to J̃ .
We want to ideally only choose the indices, that leads to the most protable reduction of the residual
and that is the indices with the smallest ρ2 value. So adding all indices, will potentially lead to more
computations without much improvement. The missing implementation of the smallest indices will
lead to more work, but not worse accuracy.

5.2 Sequential implementation in C

After implementing the prototype in Python, we implemented the SPAI algorithm sequentially in C
with the use of cuBLAS library functions. Therefore, all the code is written in cu.h CUDA header
les. In the following subsections we will present the functions we have created in order to implement
the algorithm and discuss our choices and shortcomings.

5.2.1 The sequentialSpai function

We have implemented the algorithm as a function CSC* sequentialSpai(CSC* A, float tolerance,

int maxIteration, int s) that takes the inputs: A CSC matrix, a tolerance, a constraint for the
maximal number of iterations and the number of most protable indices and returns a CSC matrix.
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The structure of the implementation follows the steps from our pseudocode. We have implemented
functions that deals with repeated parts of the algorithm, such as computing the QR decomposition
and the least squares problem. We have also implemented a function for updating the QR decom-
position and thus performing the 7 substeps of that process. All the subfunctions returns 0 if they
were successful and 1 if not, making it more manageable when testing. Here is the structure of the
main function sequentialSPAI, which can be found in the le sequentialSpai.cu.h:

Algorithm 3: Structure of sequential CUDA implementation

Input : A: a CSC matrix, tolerance: tolerance , maxIteration: constraint for the maximal
number of iterations, s: number of most protable indices

Output: M: the inverse of A
for every column m̂k of M do

1) Find initial sparsity J of m̂k

2) Compute the row indices I of the corresponding nonzero entries of AI,J 
3) Create Â = AI,J 
4) Do QR decomposition of Â
qrBatched(cHandle, &AHat, n1, n2, &Q, &R)

5) Compute the solution mk for the least squares problem
LSProblem(cHandle, A, Q, R, &mHat k, residual, I, J, n1, n2, k,

&residualNorm)

6) Compute residual
while residual ≜ tolerance do

7) Let L be the set of indices, where rl ≠ 0
8) Set J̃ to all new column indices of A that appear in all L rows, but not in J yet
for each j in J̃ do

9) Compute ρ2j
end for

10) Find the indices J̃ corresponding to the smallest s elements of ρ2

11) Determine the new indices Ĩ
12) Make I ∪ Ĩ and J ∪ J̃

13) Update the QR decomposition
updateQR(cHandle, A, &AHat, &Q, &R, &I, &J, ITilde, JTilde, IUnion,

JUnion, n1, n2, n1Tilde, n2Tilde, n1Union, n2Union, &mHat k, residual,

&residualNorm, k)

14) Compute the residual
15) Set I = I ∪ Ĩ and J = J ∪ J̃ and A′

= AI,J 
end while

16) Set mkJ  = m̂k

updateKthColumnCSC(M, mHat k, k, J, n2)

end for

Before the for-loop begins, we perform three important steps: The rst step of the sequential SPAI
function is, similarly to python implementation, checking if A is nonsingular. We do so, by perform-
ing a LU factorisation with a CuSolver library function and checking if it succeeds. We have done
so with the function checkSingularity in the le singular.cu.h, which returns 1 if A is singular
and 0 otherwise. This is very time consuming for large matrices, so when we test the run time of
the implementations, we exclude this part as it is not a part of the algorithm itself. For future
optimisations, we would implement a cheaper way of checking if A is singular.

We then initialise cuBLAS, which is calling the cuBLAS library function later in the code. We
use the same cuBLAS handle for all computations and destroy it in the very end.

Then we initialise M , which is our output matrix and in the end approximate inverse of A. We
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have chosen to set M to the identity matrix. One could choose the initial sparsity of M many dier-
ent ways, but we have been inspired by the Grote and Huckle [1] who sets M to the identity.

Then we initialise the for-loop and for each iteration of it, we perform the steps described in the
structure of the function. Right before the while-loop, we compute the residual, which is used as one
of the stopping condition for the while-loop. When the while-loop terminates, either by the tolerance
being met or the max number iterations being reached, we update the k’th column in M with m̂k.
We do so with the function updateKthColumnCSC. Then we move on to the next column of M .

5.2.2 The CSC format

The purpose of the Sparse Approximate Inverse algorithm is to nd the approximate inverse of a
sparse matrix. Thus we had to create a format for sparse matrices. We implemented the CSC stor-
age format, which was explained in the background section. We chose to make the storage format
column-major, since we operate on columns in M , meaning we get coalesced memory access.

In the le csc.cu.h we made a struct representing a sparse matrix called CSC, which will be used
throughout the rest of the implementation.

1 typedef struct CSC {

2 int m;

3 int n;

4 int countNonZero;

5 int* offset;

6 float* flatData;

7 int* flatRowIndex;

8 } CSC;

We made functions for:

• Creating a CSC from a dense matrix

• Creating a CSC identity matrix

• Creating a CSC consisting of random oats

• Updating the k’th column of a CSC

• Making a CSC into a dense matrix

• Multiplying two CSC’s

• Printing a CSC

• Freeing a CSC

These functions will be widely used in the implementation and especially in the testing of the code.

5.2.3 The qrBatched function: Computing the QR decomposition

An important part of nding the approximate inverse with the SPAI algorithm is performing the QR
decomposition. As explained in the theoretical prerequisites for SPAI, we compute the QR decom-
position with Householder reections. We created a function for computing the QR decomposition
called qrBatched. In the sequential version the batchsize is simply 1. The function is used to initially
compute the QR decomposition of Â and later called inside updateQR to compute the QR decompo-
sition of B2. The example explained here is for the Â case.
Here is the structure of the function in the le qrBatched.cu.h:
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Algorithm 4: Structure of qrBatched function

Input : cHandle:the cuBLAS handle, AHat: an array of pointers to batch matrices, n1:
the max number of rows of the matrices, n2: the max number of columns of the
matrices, Q: an array of pointers to batch Q matrices, R: an array of pointers to
batch R matrices

Output: int 0 for success or int 1 for failure
Create input and output arrays
Malloc space and copy data for AHat and tau
Run QR decomposition from cuBLAS
cublasSgeqrfBatched(cHandle, n1, n2, d PointerAHat, lda, d PointerTau, &info,

BATCHSIZE);

Copy AHat and tau back to host
Copy R from AHat
Make Q with Algorithm 1

We use the cuBLAS library function cublasSgeqrfBatched[10]. We use the batched cuBLAS func-
tion in the sequential version in order to make the transition to the parallel version easier to imple-
ment.

Our d PointerAHat is an array of pointers to matrices with dimensions m × n. TauArray is an
array of pointers to vectors of dimension of at least max 1,minm,n.

In order to use AHat and tau from the device memory, we create d AHat and d tau and allo-
cate space for them. We copy the data for AHat from the host to the device. Since the cuBLAS
function takes a array of pointers to AHat, we created a kernel that creates an array of pointers
d PointerAHat, which points to the start of each submatrix in d AHat.

1 __global__ void AHatDeviceToDevicePointerKernel(float ** d_AHat , float*

h_AHat , int batch , int n1 , int n2) {

2 int tid = blockIdx.x * blockDim.x + threadIdx.x;

3 if (tid < BATCHSIZE) {

4 d_AHat[tid] = &h_AHat[tid * n1 * n2];

5 }

6 }

7 ...

8 AHatDeviceToDevicePointerKernel <<< 1, BATCHSIZE >>> (d_PointerAHat , d_AHat

, BATCHSIZE , n1, n2);

Listing 5: The device to device pointer kernel for used for Â

The same principle is implemented for tau. After using the cuBLAS function, we copy AHat and tau
back to host.

The R is stored in the upper triangular part of AHat and is easily extracted with for-loops. The Q

matrix is represented as a product of elementary reections and is stored in the lower part of AHat.
The Q is computed with algorithm 1 [13].

The cuBLAS documentation states: ”This function is intended to be used for matrices of small
sizes, where the launch overhead is a signicant factor” [10]. Even though the input of the algorithm
is a potentially very large matrix, because of the sparsity, we will perform the QR decomposition on
small subproblems.

5.2.4 The LSproblem function: Solving the least squares problem

Another essential part of the algorithm is the solution to the least squares problem. In the pseudocode
we have denoted that step as number 5), with substeps 1-3. We have created a function LSproblem
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that computed those three steps. The LSproblem-function is called both in the initial part of the
algorithm and in the while-loop. Here is the structure of the function in the le LSproblem.cu.h:

Algorithm 5: Structure of LSProblem function

Input : cHandle: the cuBLAS handle, A: the original CSC matrix, Q: the Q matrix from
the QR factorization of AHat, R: the R matrix from the QR factorization,
mHat k: the solution of the least squares problem, residual: the residual vector of
the least squares problem, I: indices of the rows of AHat, J: indices of the columns
of AHat, n1: the number of rows of AHat, n2: the number of columns of AHat, k:
the index of the column of mHat, residualNorm: the norm of the residual vector

Output: int 0 for success or int 1 for failure
5.1) Compute ĉ = QT êk
5.2) Compute R−1

invBatched(cHandle, &R, n2, &invR)

5.3) Compute m̂k = R−1ĉ

The function mostly consists of matrix-vector multiplication done with for-loops. Here is an example
of how we compute ĉ = QT êk.

1 float* cHat = (float *) malloc(n2 * sizeof(float));

2 for (int j = 0; j < n2; j++) {

3 cHat[j] = 0.0;

4 for (int i = 0; i < n1; i++) {

5 cHat[j] += Q[i * n1 + j] * e_k[i];

6 }

7 }

Listing 6: Sequential computation of ĉ

In order to compute the inverse of R, we have implemented a function invBatched, which performs
the inversion and returns it on the address of invR.

5.2.5 The invBatched function: Computing the inverse of R

In order to solve the LS problem, we have to compute the inverse of R. Here is the structure of the
invBatched function:

Algorithm 6: Structure of invBatched function

Input : cHandle:the cuBLAS handle, A: an array of pointers to batch matrices, n: the max
number of rows and columns of the matrices, invA: an array of pointers to batch
inverse matrices

Output: int 0 for success or int 1 for failure
Create input and output arrays
Malloc space and copy data for A
Malloc space for invA, pivot array and info
Run batched LU factorization from cuBLAS
cublasSgetrfBatched(cHandle, n, d PointerA, lda, d PivotArray, d info,

BATCHSIZE);

Run batched inversion from cuBLAS
cublasSgetriBatched(cHandle, n, d PointerA, lda, d PivotArray, d PointerAInv,

ldc, d info, BATCHSIZE)

Copy result back to host
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We use the cuBLAS library function cublasSgetriBatched [10] to compute the inverse. A and AInv
are arrays of pointers to matrices stored in column-major format with dimensions n × n. Similarly
to qrBatched, we have to create d A and d AInv and malloc space for them in order to use A and
AInv from the device memory. Because the batched cublasSgetriBatched-function takes A and
AInv as arrays of pointers, we transform them from device to device pointers. We have created a
helper kernel for this process:

1 __global__ void deviceToDevicePointerKernel(float ** d_PointerA , float* d_A ,

int batch , int n) {

2 int tid = blockIdx.x * blockDim.x + threadIdx.x;

3 if (tid < BATCHSIZE) {

4 d_PointerA[tid] = &d_A[tid * n * n];

5 }

6 }

7 ...

8 deviceToDevicePointerKernel <<< 1, BATCHSIZE >>> (d_PointerA , d_A ,

BATCHSIZE , n);

Listing 7: Kernel for copying the start of a device array to a device pointer array

The cuBLAS inversion function only works on upper triangular matrices. Thus we have to transform
the input matrix to upper triangular form by computing the LU factorisation. We do so with the
cublasSgetrfBatched [10] function from cuBLAS. After doing both the LU factorisation and the
inversion, we copy d AInv back to the host, so we can use it in the rest of the implementation that
runs on the CPU. Ideally, we would want to avoid using the LU decomposition, since the matrix
is already on upper triangular form. The LU decomposition, however, does changes to the upper
triangular matrix, that are necessary for the inversion function to compute the correct inverse.

5.2.6 The updateQR function: Updating the QR decomposition

Updating the QR decomposition is an important step in the algorithm. Instead of computing the full
QR decomposition of the enlarged subproblem AI ∪ Ĩ,J ∪ J̃  each time, we only compute new Q

and R matrices for a certain part and augment it with the old Q and R. We do so in order to save a
potential huge amount of computationally eort. The updating of Q and R takes multiple steps and
thus we have created a function for doing so. The structure of the function follows step 13.1-13.7 in
the pseudocode. Here is the structure of the function in the le udpateQR.cu.h:
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Algorithm 7: Structure of updateQR function

Input : cHandle: the cuBLAS handle, A: the original CSC matrix, AHat: the submatrix of
size n1 x n2, Q: the Q matrix, R: the R matrix, I: the row indices of AHat, J: the
column indices of AHat, ITilde: the row indices to potentially add to AHat,
JTilde: the column indices to potentially add to AHat, IUnion: the union of I and
ITilde, JUnion: the union of J and JTilde, n1: the length of I, n2: the length of J,
n1Tilde: the length of ITilde, n2Tilde: the length of JTilde, n1Union: the length
of IUnion, n2Union: the length of JUnion, m kOut: the output of the LS problem,
residual: the residual vector, residualNorm: the norm of the residual vector, k: the
current iteration

Output: int 0 for success or int 1 for failure
13.1) Create AI, J̃  and AĨ, J̃ 
createPermutationMatrices(IUnion, JUnion, n1Union, n2Union, Pr, Pc)

13.2) Compute Ă = QTAI, J̃ 
13.3) Compute B1 = Ă0 ∶ n2,0 ∶ n2
13.4) Compute B2 = Ăn2 + 1 ∶ n1,0 ∶ ñ2 above AĨ, J̃ 
13.5) Do QR decomposition of B2

qrBatched(cHandle, &B2, n1Union - n2, n2Tilde, &B2Q, &B2R))

13.6) Compute Q and R

13.7) Solve the augmented LS problem for m̂k

LSProblem(cHandle, A, unsortedQ, unsortedR, m kOut, residual, IUnion, JUnion,

n1Union, n2Union, k, residualNorm)

To begin with we create AI, J̃  and AĨ, J̃ . We use our function CSCToDense to create the dense
submatrices with the given indices. Then we create the row and column permutation matrices with
the function createPermutationMatrices from the le permutation.cu.h.

We then compute Ă and slice the matrix in order to obtain B1 and the upper part of B2. B2 is
created by stacking Ăn2 + 1 ∶ n1,0 ∶ ñ2 on top of AĨ, J̃  with for-loops. We then perform the QR
decomposition on B2 using our qrBatched function. We compute the new Q and R from

AI ∪ Ĩ,J ∪ J̃  = ( Q

Iñ1

)( In2

QB
)⎛⎜
⎝

R B1

0 RB

0 0

⎞
⎟
⎠

The resulting Q and R are unsorted, meaning that the row and columns are not permuted. We solve
the LS problem with the unsorted Q and R. From this we obtain the unsorted m̂k, which we then
sort by multiplying the column permutation matrix with unsorted m̂k.

Previously we sorted Q and R in each iteration, but that was not necessary, since the solution
to the LS problem is still the correct m̂k, just in the wrong order. This means we only have to
permute m̂k and sort J . Instead of having to permute Q, R, I and J , which is two matrices and
two vectors, we only have to permute two vectors, resulting in lower time complexity.

5.3 Parallel implementation in CUDA

The nal implementation we implemented was the parallel version of the SPAI algorithm in CUDA.
The implementation follows the structure of the pseudocode. The algorithm is inherently parallel be-
cause each column of the matrix can be solved as a separate sub problem and put together in the end.
The idea is to compute the approximate inverse of each row of A stored in the respective column ofM .

We batch each subproblem. The advantage of making functions batched are the full utilisation
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of threads. When parallelising, we use a thread for each entry of a matrix, so when dealing with
small matrices, we might only use a small amount of threads. For an example a 2 × 2 matrix would
only use 4 threads and the overhead of running a kernel with 4 threads would be too large compared
to the eciency. Batching means we compute a number of subproblems at the same time. If we have
a batchsize of 4, we can compute 4 matrices of e.g. size 2 × 2, which uses 16 threads instead of the
4 for each matrix. Depending on the hardware a greater or small batchsize can be chosen, so we do
not initialise more threads than is physically present in the hardware, or use more memory, than the
device has.

5.3.1 Kernels in CUDA

In CUDA it is possible to make a type of function called a kernel, which when called, executes the
code in the function, n times in parallel by n dierent CUDA threads. In CUDA a kernel is dened
using declaration specier global . CUDA then provides functions to get the ID of the thread,
the ID of the block of threads, and the dimensions of the block. This makes us able to distinguish
between threads, and thus, it makes us able to create unique index values for arrays. Threads in
CUDA are stored in blocks of a given size. If we want to use more threads than one block have, we
need to use more blocks. Below is an example of how to dene a kernel.

1 __global__ void example(int* input1 , int* input2) {

2 int tid = blockIdx.x * BlockDim.x + threadIdx.x;

3 input1[tid] = input2[tid] + 1;

4 }

Listing 8: An example of how to dene a kernel

The kernel is then called later on by giving it the normal function arguments as well as also giving
it the number of block it has to use and how big those block are. Another CUDA function returns
the blocksize of the hardware used. We can use this to calculate how many blocks to use[9].

1 // int* A of size n, and int* b of size n

2 // Calculate the number of blocks

3 int numBlocks = (n + blocksize - 1) / blocksize;

4

5 // Run the kernel

6 example <<<numBlocks , blocksize >>> (A, B)

Listing 9: An example of how to run a kernel

Kernels in CUDA runs on graphic processing units (GPUs), which have their own memory. For the
device to be able to do any computations, we have to copy the memory of the data we want to work
on to the device. CUDA provides functions for this. If we want to to copy an array from host memory
(CPU memory) to the device memory (GPU memory), we would do the following:

1 float* d_A;

2

3 cudaMalloc ((void **) &d_A , n * sizeof(float)));

4 cudaMemcpy(d_A , h_A , n * sizeof(float), cudaMemcpyHostToDevice);

Listing 10: Allocating and copying memory to the device

In this example, we assume we have an array in CPU memory called h A of size n. We then declare a
new variable d A, in which we want to store the data from h A on device memory. Space is allocated
for d A on the device with the function cudaMalloc, and then the CUDA function cudaMemcpy is
used to copy the data from h A to d A. If we then run a kernel, that changes the values in d A and
we want to use this data on the host again, we would have to copy it back. We do this the following
way:
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1 float* h_A = (float *) malloc(n * sizeof(float));

2

3 cudaMemcpy(h_A , d_A , n * sizeof(float), cudaMemcpyDeviceToHost);

Listing 11: Allocating memory on the host and copying memory from device to host

Here we allocate memory on the host with the C function malloc. If h A already existed, we would
have to free the memory of it rst. Then we use cudaMemcpy to copy the memory from the device
to the host. The data from d A is now usable on the host in h A.

If we for an example want to add a set of batchsize number of matrices with another set of batchsize
number of matrices and save it in a third set of batchsize number of matrices, where all the matrices
have the size m × n and where the memory of the matrices are already on the device, we would do
the following:

1 // Add batch matrices kernel

2 __global__ void addBatchMatrices(float ** pointerA , float ** pointerB , float

** pointerC , int m, int n, int batchsize) {

3 int tid = blockIdx.x * blockDim.x + threadIdx.x;

4 if (tid < m * n * batchsize) {

5 int b = tid / (m * n);

6 int i = (tid % (m * n)) / n;

7 int j = (tid & (m * n)) % n;

8

9 float* A = pointerA[b];

10 float* B = pointerB[b];

11 float* C = pointerC[b];

12

13 C[i * n + j] = A[i * n + j] + B[i * n + j];

14 }

15 }

16

17 // Run the kernel

18 int numBlocks = (m * n * batchsize + blocksize - 1) / blocksize;

19 addBatchMatrices <<<numBlocks , blocksize >>> (A, B, C)

Listing 12: An example kernel of how to index

In this example, we start by getting the unique thread ID. With this we then calculate a unique set of
index values. b for the index of the matrix in the array of pointers to arrays, i for the row index and
j for the column index. We can then copy the pointer to the start of the b’th array, by dereferenc-
ing the pointer of the pointer array with b. We can then index in each of the batch matrices as normal.

If we were to write this function sequentially, we would do the following:

1 void* addBatchMatrices(float* A, float* B, float* C, int m, int n, int

batchsize) {

2 for (int b = 0; b < batchsize; b++) {

3 for (int i = 0; i < m; i++) {

4 for (int j = 0; j < n; j++) {

5 C[b * m * n + i * n + j] = A[b * m * n + i * n + j]

6 + B[b * m * n + i * n + j];

7 }

8 }

9 }

10 }

Listing 13: The corresponding sequential code

Since we have 3 nested for loops, this would run in Obatchsize ⋅m ⋅ n time, where as the parallel
version would run in O1 time, assuming we have at least batchsize ⋅m ⋅ n threads available.
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5.3.2 The parallelSpai function and the SPAI kernels

The parallelSpai function is the main function of the implementation. It’s job is to pass the right
variables from the right memory storage to the kernels and the subfunctions.

The rst thing we do is initialise the cuBLAS handle to use throughout the rest of the imple-
mentation. We then set M to be the identity matrix.

We copy the A and M matrices to the device. For this we made an extra CSC-function in csc.cu.h,
that uses cudaMalloc and cudaMemcpy to copy from the host to the device. We need all data we
are working on to be on the GPU memory. When we, in the rst step of the for-loop, allocate space
for I and J or more precisely the pointer arrays that point to the start of each I and J array for
each subproblem, use cudaMalloc. The function follows this structure:

Algorithm 8: Structure of parallelSPAI implementation

Input : A: a CSC matrix, tolerance: tolerance , maxIteration: constraint for the maximal
number of iterations, s: number of most protable indices, batchsize: number of
matrices to be processed in parallel

Output: M: the inverse of A
for i ≜ numberOfBatches do

1) Find initial sparsity J of m̂k

2) Compute the row indices I of the corresponding nonzero entries of AI,J 
Kernel: computeIandJ
3) Create Â = AI,J 
Kernel: CSCToBatchedDenseMatrices
4) Do QR decomposition of Â
Function: qrBatched
5) Compute the solution mk for the least squares problem
Kernel: LSProblem
while residual ≜ tolerance and iterations ≜ maxIterations do

7) Let L be the set of indices, where rl ≠ 0
Kernel: computeLengthOfL
8) Set J̃ to all new column indices of A that appear in all L rows, but not in J yet
Kernel: computeKeepArray
Kernel: computeN2Tilde
Kernel: computeJTilde
9) Compute ρ2j
Kernel: computeRhoSquared
10) Find the indices J̃ corresponding to the smallest s elements of ρ2

Kernel: computeSmallestIndices
11) Determine the new indices Ĩ
Kernel: computeITilde
12) Make I ∪ Ĩ and J ∪ J̃

13) Update the QR decomposition
Function: updateQR
15) Set I = I ∪ Ĩ and J = J ∪ J̃ and A′

= AI,J 
Kernel: copyIandJ

end while

16) Set mkJ  = m̂k

Kernel: updateBatchColumnsCSC
end for
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The very rst step of the pseudocode is the for-loop, but we will not implement it, since we parallelise
the algorithm instead. We loop through the batches. We start by identifying how many columns
there are in M . parallelSpai takes a batchsize, which is the number of columns we want to compute
in parallel. Since we only compute the batchsize number of columns in parallel, we compute how
many iteration we have to run through, until all the columns have been computed. We do this by
dividing the number of columns with the batchsize and round up.

To achieve parallelism, the entire implementation consists of kernels and subfunctions that call
other kernels. These kernels and subfunctions are designed to execute in parallel, allowing for e-
cient utilisation of computational resources and improved performance. Thus we have made a le
SPAIkernels.cu.h that stores the kernels used in the function parallelSpai.

We have also made some helper kernels in helperKernels.cu.h that are used multiple times
throughout the implementation. We have made a kernel to copy device data to device pointer.

1 __global__ void floatDeviceToDevicePointerKernel(float ** d_Pointer , float*

d_data , int pointerArraySize , int dataSize) {

2 int tid = blockIdx.x * blockDim.x + threadIdx.x;

3 if (tid < pointerArraySize) {

4 d_Pointer[tid] = &d_data[tid * dataSize ];

5 }

6 }

Listing 14: Kernel for copying the start of each array in the batch to a pointer array

The kernel takes the arguments; d Pointer, which is an array of pointers to the start of each matrix
in d data and then d data, which is an array of batch matrices, padded with zeros, so they have the
same size. It also takes the size of d Pointer and the size of each matrix in d data. We can then use
the d Pointer array to get the pointer to the start of the the specic matrix in the batch each thread
has to work on, as described in section about kernels in CUDA.

The rst kernel computeIAndJ performs step 1 and 2 of the pseudocode and computes I and J

as the name implies. This is not the most interesting kernel, so futher explanation of it has been
omitted.

The next step is creating Â with the kernel CSCToBatchedDenseMatrices. Looking at the sequential
code for this function:

1 float* CSCToDense(CSC* csc , int* I, int* J, int n1, int n2) {

2 float* dense = (float *) calloc(n1 * n2, sizeof(float));

3

4 for (int i = 0; i < n1; i++) {

5 for(int j = 0; j < n2; j++) {

6 for (int l = csc ->offset[J[j]]; l < csc ->offset[J[j] + 1]; l++)

{

7 if (I[i] == csc ->flatRowIndex[l]) {

8 dense[i * n2 + j] = csc ->flatData[l];

9 }

10 }

11 }

12 }

13

14 return dense;

15 }

Listing 15: Sequential implementation of setting Â

We can see, there are no inner loop dependencies, which means it is a great function to parallelise.
The loops for i and j index in the dense matrix are independent of each other, and only one l for each
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j, will have the same index value from the CSC, as the i index in I. This means, we can parallelise
the CSCToBatchedDenseMatrices on batchsize ×maxn1 ×maxn2 ×maxOset, where maxn1 is the
maximum value of n1 in the batch, maxn2 is the maximum value of n2 in the batch, and maxOset
is the max value of oset in the batch. The kernel then looks like this:

1 __global__ void CSCToBatchedDenseMatrices(CSC* d_A , float ** d_AHat , int**

d_PointerI , int** d_PointerJ , int* d_n1 , int* d_n2 , int maxn1 , int maxn2

, int maxOffset , int batchsize) {

2 int tid = blockIdx.x * blockDim.x + threadIdx.x;

3 if (tid < batchsize * maxn1 * maxn2 * maxOffset) {

4 int b = (tid / (maxn1 * maxn2 * maxOffset));

5 int i = (tid % (maxn1 * maxn2 * maxOffset)) / (maxn2 * maxOffset);

6 int j = ((tid % (maxn1 * maxn2 * maxOffset)) % (maxn2 * maxOffset))

/ maxOffset;

7 int l = ((tid % (maxn1 * maxn2 * maxOffset)) % (maxn2 * maxOffset))

% maxOffset;

8

9 int n1 = d_n1[b];

10 int n2 = d_n2[b];

11

12 int* I = d_PointerI[b];

13 int* J = d_PointerJ[b];

14 float* AHat = d_AHat[b];

15

16 if (i < n1 && j < n2) {

17 int offset = d_A ->offset[J[j]];

18 int offsetDiff = d_A ->offset[J[j] + 1] - offset;

19 if (l < offsetDiff) {

20 if (I[i] == d_A ->flatRowIndex[l + offset ]) {

21 AHat[i * maxn2 + j] += d_A ->flatData[l + offset ];

22 }

23 }

24 }

25 }

26 }

27 ...

28 numBlocks = (batchsize * maxn1 * maxn2 * A->m + BLOCKSIZE - 1) / BLOCKSIZE;

29 CSCToBatchedDenseMatrices <<<numBlocks , BLOCKSIZE >>>(d_A , d_PointerAHat ,

d_PointerI , d_PointerJ , d_n1 , d_n2 , maxn1 , maxn2 , A->m, batchsize);

Listing 16: Implementation of setting batch Â in parallel

This kernel gets unique indices for b, i, j and l calculated from the thread ID. A prevoius ker-
nel setMatrixZero sets all the indeces of d AHat to 0.0, and CSCToBatchedBatchedMatrices then
copies the values with the indices sets from I and J into d AHat after. This ensures we pad all
the matrices with zeros, if they do not have the same size, which is important for both the QR
decomposition and inverse functions from cuBLAS.
Then we perform the QR decomposition and solve the LS problem. These computations will be
discussed in the next sections.

The while-loop is initialised with the stopping conditions tolerance and maxIterations set by the
user as input to the parallelSpai function. All the computations inside the while-loop is performed
with kernels and since there are quite many, we have chosen not to highlight them. They follow the
same structure and principles as the kernels explained already and later in the next sections.

The last step of the algorithm is updating the columns of M corresponding to the subproblems
in the batch. We do so with the kernel updateBatchColumnsCSC. This function currently works on
a dense representation of M , which is not ideal. Ideally we would like to implement this function to
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work in parallel on a sparse representation of M , but this proved to be dicult and time consuming
to implement. For future optimisations, this would be xed.

5.3.3 The qrBatched function: Computing the QR decomposition of batched matrices

In the sequential version we already implemented the QR decomposition with a batched cuBLAS
function and merely sat the number of matrices in the batch to 1. In the parallel version the
number of matrices in the batch is the batchsize, which is given to parallelSpai and passed on to
qrBatched. Similarly to the sequential version, we use the cuBLAS function cublasSgeqrfBatched

[10] to compute the QR decomposition with Householder reections. In order to obtain Q from this
we use algorithm 1 [13], as we did in the sequential implementation. However, this time we will use
kernels instead of for-loops in order to make it parallel. We have used the kernels:

• copyRFromAHat

• SetQToIdentity

• makeV

• matrixMultiplication

• computeQvTimesVTransposed

• computeQminusQvvt

The matrixMultiplication kernel will be explained in the section concerning the update of the QR
decomposition.

5.3.4 The LSProblem function: Solving the least squares problem in parallel

In the parallel version, we of course also have to solve the least squares problem. We call the
LSProblem function from the parallelSpai function and the structure of the function follows step
5 and 6 in the pseudocode. See the structure here:
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Algorithm 9: Structure of LSProblem function

Input : cHandle: the cublas handle, A: the sparse matrix, d PointerQ: the pointer to the Q
matrices, d PointerR: the pointer to the R matrices, d mHat k: the pointer to the
mHat k vectors, d PointerPc: the pointer to the column permutation matrices,
d PointerResidual: the pointer to the residual vectors, d PointerI: the pointer to
the I vectors, d PointerJ: the pointer to the J vectors, d n1: the number of rows in
A, d n2: the number of columns in A, k: the index of the column to be added,
residualNorm: the norm of the residual, batchsize: the batchsize for the cublas
handle

Output: int 0 for success or int 1 for failure
5.1) Compute ĉ = QT êk
Kernel: SetCHat
5.2) Compute R−1

Function: invBatched
5.3) Compute m̂k = R−1ĉ

Kernel: computeMHat
Permute m̂k if necessary
Kernel: matrixMultiplication
6) Compute residual
Kernel: computeResidual
Kernel: computeNorm

First we compute the vector ĉ with the kernel SetCHat. In the sequential implementation we compute
ĉ with for-loops as seen below:

1 float* cHat = (float *) malloc(n2 * sizeof(float));

2 for (int j = 0; j < n2; j++) {

3 cHat[j] = 0.0;

4 for (int i = 0; i < n1; i++) {

5 cHat[j] += Q[i * n1 + j] * e_k[i];

6 }

7 }

Listing 17: Sequential implementation of computing ĉ

This function consists of two nested for loops with an inner loop dependency, and is therefore an
ideal target for both parallelisation and optimisation.

1 __global__ void setCHat(float ** d_PointerCHat , float ** d_PointerQ , int**

d_PointerI , int* d_n1 , int currentBatch , int batchsize , int maxn1) {

2 int tid = threadIdx.x + blockIdx.x * blockDim.x;

3 if (tid < maxn1 * maxn1 * batchsize) {

4 int b = tid / (maxn1 * maxn1);

5 int i = (tid % (maxn1 * maxn1)) / maxn1;

6 int j = (tid % (maxn1 * maxn1)) % maxn1;

7 int k = currentBatch * batchsize + b;

8

9 int n1 = d_n1[b];

10

11 float* d_cHat = d_PointerCHat[b];

12 float* d_Q = d_PointerQ[b];

13 int* d_I = d_PointerI[b];

14

15 if (j == 0) {

16 d_cHat[i] = 0.0;

17 }

18 __syncthreads ();
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19

20 if (i < n1) {

21 if (k == d_I[i]) {

22 d_cHat[j] = d_Q[i * maxn1 + j];

23 }

24 }

25 }

26 }

27 ...

28 setCHat <<<numBlocks , BLOCKSIZE >>>(d_PointerCHat , d_PointerQ , d_PointerI ,

d_n1 , currentBatch , batchsize , maxn1);

Listing 18: Parallel implementation of computing ĉ

We have translated these for-loops into a kernel, where each thread performs its own computation
for it’s assigned index. In the sequential version, we multiplied Q with the k’th unit vector. We
realised this is unnecessary work, since the multiplication just gives us the k’th row of Q. For the
parallel version, we skipped the step with the unit vector, and just checked whether the i’th index in
I matched with the k’th index. If it did, we copied the corresponding index in Q to the j’th index in ĉ.

In this kernel, we use the value of index b in the array d n1 twice, and for this reason we save
the variable in the kernel for faster memory access, and thus better temporal locality. Consecutive
threads also access the memory location right next to each other, when indexing in the arrays. A
given thread with index x and it’s neighbour with index x + 1, will have the same values for b and
i and then the second thread will have index j one greater than the rst thread. Since the data in
the arrays are stored in row major fashion in a at array, all threads should access data right next to
each other in memory. For further optimisation of this kernel, we could store the data in the blocks
shared memory, for even faster memory access. All our kernels should follow these principles and
could all benet from the usages of per block shared memory.

We then compute the inverse of R and use R−1 and ĉ to compute the m̂k.

5.3.5 The invBatched function: Inversion on batched matrices

When performing the inversion of R we do the same as in the sequential version and use the cuBLAS
function cublasSgetriBatched [10], but this time we actually use the batched functionality. The
number of matrices in the batch is the batchsize, which is given to parallelSpai and passed on to
invBatched.

5.3.6 The updateQR function: Updating the QR decomposition parallel

As in the sequential version, is the update of the QR decomposition an important part of the SPAI
algorithm. We have implemented the sub-steps of step 13 and also step 14 from the pseudocode in
the function updateQR. This is the structure of the function, which takes quite some arguments:
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Algorithm 10: Structure of updateQR function in CUDA

Input : cHandle: cublas handle, d A: pointer to A in device memory, d PointerQ: pointer
to Q in device memory, d PointerR: pointer to R in device memory, d PointerI:
pointer to I in device memory, d PointerJ: pointer to J in device memory,
d PointerSortedJ: pointer to sortedJ in device memory, d PointerITilde: pointer to
ITilde in device memory, d PointerJTilde: pointer to JTilde in device memory,
d PointerIUnion: pointer to IUnion in device memory, d PointerJUnion: pointer to
JUnion in device memory, d n1: pointer to n1 in device memory, d n2: pointer to
n2 in device memory, d n1Tilde: pointer to n1Tilde in device memory, d n2Tilde:
pointer to n2Tilde in device memory, d n1Union: pointer to n1Union in device
memory, d n2Union: pointer to n2Union in device memory, d mHat k: batched
mHat k in device memory, d PointerMHat k: pointer to mHat k in device
memory, d PointerResidual: pointer to residual in device memory, d residualNorm:
pointer to residualNorm in device memory, maxn1: maximum value of n1, maxn2:
maximum value of n2, maxn1Tilde: maximum value of n1Tilde, maxn2Tilde:
maximum value of n2Tilde, maxn1Union: maximum value of n1Union,
maxn2Union: maximum value of n2Union, i: current iteration, batchsize: batchsize

Output: int 0 for success or int 1 for failure
13.1) Create AI, J̃  and AĨ, J̃ 
Kernel: CSCToBatchedDenseMatrices
Function: createPermutationMatrices
13.2) Compute Ă = QTAI, J̃ 
Kernel: computeABreve
13.3) Compute B1 = Ă0 ∶ n2,0 ∶ n2
Kernel: SetB1
13.4) Compute B2 = Ăn2 + 1 ∶ n1,0 ∶ ñ2 above AĨ, J̃ 
Kernel: SetB2
13.5) Do QR decomposition of B2

Function: qrBatched
13.6) Compute Q and R

Kernel: SetFirstMatrix
Kernel: SetSecondMAtrix
Kernel: MatrixMultiplication
Kernel: SetUnsortedR
13.7) Solve the augmented LS problem for m̂k

Kernel: LSProblem
Kernel: permuteJ
14) Compute the residual
Kernel: computeResidual
Kernel: computeNorm
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In the rst step of updating the QR decomposition, we create AI, J̃  and AĨ, J̃  with the kernel
CSCToBatchedDenseMatrices already described. We do so after using the kernel
floatDeviceToDevicePointerKernel to obtain the pointer arrays, that holds the pointers that point
to the beginning of each d AIJTilde and d AITildeJTilde matrix respectively.

In this function, aswell as in many others, we use the kernel matrixMultiplication. The sequential
implementation of matrix multiplication consists of three nested for-loops.

1 // compute unsortedQ = firstMatrix * secondMatrix

2 float* unsortedQ = (float *) malloc(n1Union * n1Union * sizeof(float));

3 for (int i = 0; i < n1Union; i++) {

4 for (int j = 0; j < n1Union; j++) {

5 unsortedQ[i * n1Union + j] = 0.0;

6 for (int k = 0; k < n1Union; k++) {

7 unsortedQ[i * n1Union + j] += firstMatrix[i * n1Union + k] *

secondMatrix[k * n1Union + j];

8 }

9 }

10 }

Listing 19: Sequential implementation of matrix multiplication

Looking at the sequential code, we can identify that the innermost loop changes the values we have
to multiply for each iteration, meaning we have an innerlopp dependency. We want to save the sum
of these multiplication at the index of the i’th row and j’th column of the result matrix. Since only
the innermost loop changes, we can parallelise the two outer loops. This means we can parallelise
on the dimensions of the result matrix. The matrixMultiplication kernel looks like the following,
where we have also parallelised on the batchsize:

1 __global__ void matrixMultiplication (float ** d_PointerA , float **

d_PointerB , float ** d_PointerC , int* d_dim1 , int* d_dim2 , int* d_dim3 ,

int maxdim1 , int maxdim2 , int maxdim3 , int batchsize) {

2 int tid = blockIdx.x * blockDim.x + threadIdx.x;

3 if (tid < batchsize * maxdim1 * maxdim3) {

4 int b = tid / (maxdim1 * maxdim3);

5 int i = (tid % (maxdim1 * maxdim3)) / maxdim3;

6 int j = (tid % (maxdim1 * maxdim3)) % maxdim3;

7

8 int dim1;

9 int dim2;

10 int dim3;

11

12 if (d_dim1 == NULL) {

13 dim1 = maxdim1;

14 } else {

15 dim1 = d_dim1[b];

16 }

17

18 if (d_dim2 == NULL) {

19 dim2 = maxdim2;

20 } else {

21 dim2 = d_dim2[b];

22 }

23

24 if (d_dim3 == NULL) {

25 dim3 = maxdim3;

26 } else {

27 dim3 = d_dim3[b];

28 }

29
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30 float* d_A = d_PointerA[b];

31 float* d_B = d_PointerB[b];

32 float* d_C = d_PointerC[b];

33

34 if (i < dim1 && j < dim3) {

35 float sum = 0.0;

36 for (int k = 0; k < dim2; k++) {

37 sum += d_A[i * maxdim2 + k] * d_B[k * maxdim3 + j];

38 }

39 d_C[i * maxdim3 + j] = sum;

40 } else {

41 d_C[i * maxdim3 + j] = 0.0;

42 }

43 }

44 }

45 ...

46 numBlocks = (batchsize * maxn1Union * maxn1Union + BLOCKSIZE - 1) /

BLOCKSIZE;

47 matrixMultiplication <<<numBlocks , BLOCKSIZE >>>(d_PointerFirstMatrix ,

d_PointerSecondMatrix , d_PointerUnsortedQ , d_n1Union , d_n1Union ,

d_n1Union , maxn1Union , maxn1Union , maxn1Union , batchsize);

Listing 20: Parallel implementation of matrix multiplication

We get the unique set of the indices b, i and j, and then run a for-loop inside the kernel computing
the sum of the multiplication of the i’th row of the rst matrix, with the j’th column of the second
matrix. This value is then inserted in the result matrix at the indices [i, j].
The rest of the steps are each computed with their own kernels. All of the kernels are basically
the sequential for-loops from the C version translated into kernels in the way we have shown in the
previous sections.

5.3.7 Shortcomings of the parallel implementation

Our parallel implementation is currently not working for all matrix size and batchsizes. When
running the code on a large matrix we get the CUDA error cudaErrorMisalignedAddress or
cudaErrorIllegalAddress. We have identied, that it happens after a call to setUnsortedR. We
have done the following in our code the localise the error:

1 cudaError_t test = cudaDeviceSynchronize ();

2 printf("test1 = %d\n", test);

3

4 numBlocks = (batchsize * maxn1Union * maxn2Union + BLOCKSIZE - 1) /

BLOCKSIZE;

5 setUnsortedR <<<numBlocks , BLOCKSIZE >>>(d_PointerUnsortedR , d_PointerR ,

d_PointerB1 , d_PointerB2R , d_n1 , d_n1Union , d_n2 , d_n2Union , d_n2Tilde ,

maxn1Union , maxn2 , maxn2Tilde , maxn2Union , batchsize);

6

7 test = cudaDeviceSynchronize ();

8 printf("test2 = %d\n", test);

Listing 21: Code for nding the error(s) in our code

The CUDA function cudaDeviceSynchronize() ensures the previous kernels are done doing their
work, and it returns 0, if the kernels succeeded, and another number if there is a problem. When
running our code, we get the output:

1 test1 = 0

2 test2 = 716

or
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1 test1 = 0

2 test2 = 700

This means that the kernels we run, before the rst cudaDeviceSynchronize() succeeded in their
computation, while the kernel setUnsortedR fails. The rst error indicates that somehow the data
in the arrays have been shifted, so they are no longer aligned with how oat data should be aligned.
The second error suggests that the device encountered a load or store instruction from or to an invalid
memory address. We have done our best to ensure the kernel is correct. The kernel looks like this:

1 __global__ void setUnsortedR(float ** d_PointerUnsortedR , float ** d_PointerR

, float** d_PointerB1 , float ** d_PointerB2R , int* d_n1 , int* d_n1Union ,

int* d_n2 , int* d_n2Union , int* d_n2Tilde , int maxn1Union , int maxn2 ,

int maxn2Tilde , int maxn2Union , int batchsize) {

2 int tid = blockIdx.x * blockDim.x + threadIdx.x;

3 if (tid < batchsize * maxn1Union * maxn2Union) {

4 int b = tid / (maxn1Union * maxn2Union);

5 int i = (tid % (maxn1Union * maxn2Union)) / maxn2Union;

6 int j = (tid % (maxn1Union * maxn2Union)) % maxn2Union;

7

8 int n1 = d_n1[b];

9 int n1Union = d_n1Union[b];

10 int n2 = d_n2[b];

11 int n2Union = d_n2Union[b];

12 int n2Tilde = d_n2Tilde[b];

13

14 float* d_UnsortedR = d_PointerUnsortedR[b];

15 float* d_R = d_PointerR[b];

16 float* d_B1 = d_PointerB1[b];

17 float* d_B2R = d_PointerB2R[b];

18

19 if (i < maxn1Union && j < maxn2Union) {

20 if (i < n2 && j < n2) {

21 d_UnsortedR[i * maxn2Union + j] = d_R[i * maxn2 + j];

22 } else if (i < n2 && j < n2Union && j > n2 - 1) {

23 d_UnsortedR[i * maxn2Union + j] = d_B1[i * maxn2Tilde + j -

n2];

24 } else if (i < n2Union && j < n2Union && j > n2 - 1) {

25 d_UnsortedR[i * maxn2Union + j] = d_B2R [(i - n2) *

maxn2Tilde + j - n2];

26 } else {

27 d_UnsortedR[i * maxn2Union + j] = 0.0;

28 }

29 }

30 }

31 }

Listing 22: Code for the setUnsortedR kernel

In this kernel we update R with the values from B1 and RB. The new R has the size maxn1Union×
maxn2Union, the old R has the size maxn1 × maxn2, though we only need the values from R1,
so we only take the values from the top of R with the size maxn2 × maxn2. B1 has the size
maxn2 × maxn2Tilde and RB has the size maxn1Tilde × maxn2Tilde, where we again only need
the top of size maxn2Tilde ×maxn2Tilde. The matrices in the batches, might have dierent sizes,
but are all stored in the top left corner, with padded zeros on the left and on the bottom. The
matrices are stacked the following way to get the new R:
The indexing is split up in 4 parts:

First if statement is where we copy the old R to the new R. This is done by indexing with
the dimensions of old R. Since we want to keep the padding on the right side and on the bottom,
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Figure 8: The new R matrix constructed from the old R, B1 and RB

we index with the dimensions of the matrix in the specic batch. This copies the values from old R

without the zeros to the new R.

Second if statement is where we copy B1 to new R. As we can see on gure 8 B1 is on the
right side of old R with the same dimension on the columnn axis. With the if statement we ensure
we index correctly in new R. The rst j falling into this if statement will be the number following
the last number from the previous if statement. In B1 we index with i and j − n2, since the j is
shifted n2 times to the right in respects to B1.

Third if statement is where we copy RB to thge new R. RB has the same dimension on the
x-axis as B1 and is maxn2Tilde on the y-axis. It is placed right under B1. The if statement ensures
we index correctly in new R by only falling into this case, if i is under n2Union. If i is smaller than
n2 i would fall under the previous if statement. Since i and j are shifted by n2 to the right and down,
we subtract n2 from i and j when indexing in B1

Fourth if statement is where we to add the padding zeros. If we get to this point, there are
no more values to add, so we just add zeros to the indices.

Since we assume the function setUnsortedR works correctly, we suspect the error lies at another
point in the code. Most likely a place, where we copy data to either B1 or RB. We have yet to
identify exactly where in the code this happens.

Batchsize vs. matrix size

When testing our parallel implementation, we have gured out, that our program fails when either
the batch size or the matrix size gets too big. We suspect we start running into issues, when we have
to use more threads than, there are present in one block. When the kernels start using more blocks
than one, the computational behaviour changes. Within a kernel, it is only possible to synchronise
the threads in one block, meaning other blocks might be done with their computations of a given
step. This can lead to those blocks starting computation of the next steps. If the next step involves
reading or writing to memory, that another block on another computation step is reading or writing
to at the same time, undened behaviour might happen, and we cannot be sure what the output will
be. This is potentially getting the wrong values or accessing illegal memory.

The GPU computations and the CPU computations are asynchronous, meaning, that one of them
might jump ahead of the other in the code, if they are not explicitly instructed not to with e.g. the
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CUDA function cudaDeviceSynchronize. Since we do not use more than the default stream in
CUDA this should not be an issue for us, since kernels will wait for the execution of the previous ker-
nel to nish before starting. Even thought this is the case, an examination of this is on the todo list
of future work, to ensure our code works properly. The same is the case for asynchronous behaviour
in our kernels.

5.4 Running the implementations

The python implementation in run in the terminal either directly or trough the test.py le, if one
wants to see the time and accuracy.

1 $ python3 SPAI.py

2 $ python3 test.py

The C implementation is written in CUDA header les and the executable le testSpai.cu is run
with the help of the Makefile.

1 # compile

2 $ make compile

3

4 # run

5 $ make run

6

7 # run tests of speed

8 $ make test

9

10 # compile and run

11 $ make

The CUDA implementation is also written in CUDA header les and the executable le testSpai.cu
is run with the help of the Makefile.

1 # compile

2 $ make compile

3

4 # run

5 $ make run

6

7 # run tests of speed

8 $ make test

9

10 # compile and run

11 $ make

Both the C and the CUDA implementations are tested on DIKUs Futhark servers. The experiments
we have performed on the servers will be shown in section 6 concerning the numerical experiments.
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6 Numerical experiments

In this section, we will show the results of the numerical experiments, we have performed on our
implementations. We will compare the accuracy of our three implementations with dierent param-
eters. We will compare the run time of our implementations with the library functions from Scipy in
Python and cuSOLVER in CUDA.

We have chosen to test the implementations on randomised matrices, that we have generated from
a given size and sparsity degree. One could have made the numerical experiments more relevant by
using data from problems coming from scientic and industrial applications. Grote and Huckle use
data from problems such as imcompressible ow in a pressure driven pipe and a landing hydrofoil
airplane model [1]. This would have made the experiments more relevant for real life use.

We have run the C and CUDA experiments on the Futhark servers provided by DIKU [11].

Device name: NVIDIA A100-PCIE-40GB
Number of hardware threads: 221184
Max block size: 1024
Shared memory size: 49152

The Python experiments were executed on a desktop.

Processor: AMD Ryzen 5 5600X, 3.7 GHz
Memory: 16 GB Vengeance LPX - DDR4 3000 MHz

6.1 Measuring the accuracy

For our own working implementations we have measured the accuracy. We have calculated the error,
which we compute as the norm of identity matrix I subtracted from the result M multiplied with
the input matrix A.

Error = ∥AM − I∥ (72)

We have used the same parameters for every test and only changed the size and the sparsity of A in
order to get the most precise and also broad results. The parameters have been set to

Tolerance = 0.01, Max iterations = n − 1, Smallest indices = 1

One could have also changed these 3 parameters in order to complete a more wide experiment, but
since our current implementation only works for these arguments we have chosen not to change them.
We have tested on

Sparsity of A = 0.1,0.3,0.5⟫
Size of A = 10 × 10,100 × 100,1000 × 1000⟫

We could not test the implementations for sizes greater than 1000 × 1000 since the Python version
was killed, and the C version took so long that we did not obtain a result. The parallel version only
works for 10 × 10 matrices.

Here are our results:
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10 x 10 100 x 100 1000 x 1000

Sequential Python implementation A is singular 1.28E-13 3.21E-12

Sequential C implementation A is singular 3.28E-04 2.87E-02

Parallel CUDA implementation A is singular - -

Figure 9: Testing the accuracy with parameters: Sparsity of A = 0.1, Tolerance = 0.01, Max
iterations = n - 1 and s = 1

10 x 10 100 x 100 1000 x 1000

Sequential Python implementation 2.06E-14 5.72E-14 3.08E-12

Sequential C implementation 8.86E-10 1.35E-03 5.36E-02

Parallel CUDA implementation 3.67E-11 - -

Figure 10: Testing the accuracy with parameters: Sparsity of A = 0.3, Tolerance = 0.01, Max
iterations = n - 1 and s = 1

10 x 10 100 x 100 1000 x 1000

Sequential Python implementation 2.86E-15 2.03E-13 2.12E-12

Sequential C implementation 8.39E-11 4.44E-04 1.98E-02

Parallel CUDA implementation 3.98E-11 - -

Figure 11: Testing the accuracy with parameters: Sparsity of A = 0.5, Tolerance = 0.01, Max
iterations = n - 1 and s = 1

6.2 Measuring the run time

We want to nd the run time of the dierent implementations in order to suciently compare the
eciency of the implementations. We have calculated the time used with library functions for time
measurement. The results are presented in seconds.

Similarly to the accuracy tests, we have used the same parameters for every test and only changed
the size and the sparsity of A. The parameters have been set to

Tolerance = 0.01, Max iterations = n − 1, Smallest indices = 1

and

Sparsity of A = 0.1,0.3,0.5⟫
Size of A = 10 × 10,100 × 100,1000 × 1000,10000 × 10000⟫

We have compared our own working Python and C implementations with the Scipy function
scipy.sparse.linalg.inv(A) for nding the exact inverse of a sparse matrix.

We have also compared with the cuSOLVER function cusolverDnSgetrf function that nds the
exact inverse of triangular matrix. Since A is not triangular, we have to perform LU decomposition
of A in order to use the function to nd the inverse of the upper triangular matrix U and lower
triangular matrix L. This will of course add some extra run time for the function.

Here are our results:
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10 x 10 100 x 100 1000 x 1000 10000 x 10000

Scipy implementation A is singular 0.014879 0.735263 919.821114

Sequential Python implementation A is singular 13.778171 7391.510661 -

CuSOLVER implementation A is singular 0.002633 0.012987 3.350172

Sequential C implementation A is singular 69.074035 5023.625312 -

Figure 12: Testing the speed with parameters: Sparsity of A = 0.1, Tolerance = 0.01, Max
iterations = n - 1 and s = 1

10 x 10 100 x 100 1000 x 1000 10000 x 10000

Scipy implementation 0.002563 0.016799 0.740422 806.18316

Sequential Python implementation 0.106887 12.471273 6602.605517 -

CuSOLVER implementation 0.002086 0.002700 0.013012 3.498521

Sequential C implementation 0.018003 92.412611 5208.116394 -

Figure 13: Testing the speed with parameters: Sparsity of A = 0.3, Tolerance = 0.01, Max
iterations = n - 1 and s = 1

10 x 10 100 x 100 1000 x 1000 10000 x 10000

Scipy implementation 0.001761 0.017183 0.7267112 811.357949

Sequential Python implementation 0.078199 12.866873 7125.50547 -

CuSOLVER implementation 0.002052 0.002724 0.013023 3.951132

Sequential C implementation 0.021173 103.863722 6198.732912 -

Figure 14: Testing the speed with parameters: Sparsity of A = 0.5, Tolerance = 0.01, Max
iterations = n - 1 and s = 1

Figure 15: Testing the speed with parameters: Sparsity of A = 0.1, Tolerance = 0.01, Max
iterations = n - 1 and s = 1
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Figure 16: Testing the speed with parameters: Sparsity of A = 0.3, Tolerance = 0.01, Max
iterations = n - 1 and s = 1

Figure 17: Testing the speed with parameters: Sparsity of A = 0.5, Tolerance = 0.01, Max
iterations = n - 1 and s = 1

6.3 Testing the CUDA kernels

We conducted experiments to compare a parallel implementation running on the GPU with a se-
quential implementation running on the CPU. However, due to limitations in our parallel CUDA
implementation for large matrices, we were unable to obtain sucient test results for direct compar-
ison. Instead, we focused on individual CUDA kernels within our parallel implementation.
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We measured the run time of a CUDA kernel executed on the GPU and compared it with the
run time of the corresponding sequential code executed on the CPU. We performed the experiments
on the kernels:

• MatrixMultiplication

• SetSecondMatrix

We selected these two kernels specically because they encompass essential and frequently used func-
tionalities within our implementation. The MatrixMultiplication kernel, as its name suggests,
performs matrix multiplication, a crucial operation that is utilised multiple times throughout our
implementation. The SetSecondMatrix kernel sets the second matrix used in the matrix multiplica-
tion, which is essential for computing Q. It serves as a representative example of how we set matrices,
a task that is performed multiple times in our implementation.

Since these kernels perform computations on dense submatrices in the SPAI algorithm, we have
tested on matrices of

sparsity = 1.0 and sizes = 10 × 10,100 × 100,500 × 500,1000 × 1000,5000 × 5000⟫.

Here are the results:

matrixMultiplication 10 x 10 100 x 100 500 x 500 1000 x 1000 5000 x 5000

Sequential code 0.000011 0.006504 0.746897 4.025718 1031.439322

Kernel 0.000005 0.000004 0.000004 0.000005 0.000006

Figure 18: Run times in seconds of the kernel matrixMultiplication and the corresponding se-
quential code

SetSecondMatrix 10 x 10 100 x 100 500 x 500 1000 x 1000 5000 x 5000

Sequential code 0.000007 0.000083 0.00193 0.007267 0.173633

Kernel 0.000009 0.000011 0.000011 0.00002 0.000183

Figure 19: Run times in seconds of the kernel SetSecondMatrix and the corresponding sequential
code
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Figure 20: Testing the speed of matrixMultiplication on dense matrices

Figure 21: Testing the speed of SetSecondMatrix on dense matrices
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We conducted measurements to determine the amount of gigabytes per second (GB/s) utilised by
the kernels for various matrix sizes. Additionally, we calculated the percentage of peak performance
of the GPU that these kernels were able to achieve. The peak performance of DIKUs Futhark servers
is 1600 GB/s.

Here are the results:

matrixMultiplication 10 x 10 100 x 100 500 x 500 1000 x 1000 5000 x 5000

GB/s 0.16 20 500 1600 1600

% of peak performance 0.01% 1.25% 31.25% 100.00% 100.00%

Figure 22: GB/s used by the kernel matrixMultiplication and percentage of the peak performance

SetSecondMatrix 10 x 10 100 x 100 500 x 500 1000 x 1000 5000 x 5000

GB/s 00.09 7.27 181.82 400 1092.9

% of peak performance 0.00% 0.45% 11.36% 25.00% 68.31%

Figure 23: GB/s used by the kernel SetSecondMatrix and percentage of the peak performance

Figure 24: % of peak performance when running matrixMultiplication on GPU
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Figure 25: % of peak performance when running SetSecondMatrix on GPU
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7 Discussion

In this section we will use our results from the numerical experiments to compare the accuracy and
speed of our sequential and parallel implementations. We will compare the run time of our working
Python and C implementations with the library functions for nding the exact inverse.

7.1 Comparison of the accuracy of our implementations

The results from the numerical experiments show that the norm of AM −I is very close to zero for all
of the sizes and sparsity degrees of the matrices. This means that the resulting approximate inverses
are very close to be the exact inverse of the input matrix A.

For matrices of size 10 × 10 and sparsity degree 0.1, the matrices are singular basically all the
time. That is because there is a very large possibility of the determinant being zero due to zero rows
or columns, when the matrix is both small and very sparse.

The Python version shows the smallest error values and thus the closest approximations. How-
ever when comparing number such e.g. 2.06E-14 and 8.86E-10, we should keep in mind that these
are very small decimal numbers. For matrices of size 100 × 100 and 1000 × 1000, we observe some
more noticeable errors in the results of the C implementation. However, the values such as 5.36E-02
are still very close zero and within the set tolerance, and thus accepted.

As our parallel implementation does not successfully nd the approximate inverse for large ma-
trices have we only obtained results from a 10× 10 matrix. The results are very small decimal values
such as 3.67E-11, which are within the accepted tolerance.

7.2 Comparison of the run time of our implementations and library functions

We conducted experiments to determine the run time of our sequential implementations as well as
the functions in Scipy and cuSOLVER for nding the exact inverse. The results clearly indicate that
the library functions outperformed our own implementations in terms of speed.

Our C and Python implementations performed well, when dealing with small matrices. However,
when we tested them on matrices of size 1000 × 1000, the run time exceeded 5000 seconds, which is
approximately 1.5 hours. For matrices of size 1000 × 1000, the Python test was terminated by the
terminal, and the C version did not converge even after running for an entire day. We anticipated
that the Python version would be slow and unsuitable for large matrices, as the purpose was not
eciency, but rather serving as prototypes for subsequent implementations. The sequential C version
was also not designed for eciency, but rather as a stepping stone in the process of implementing the
parallel version. Nonetheless, optimisations could be applied to reduce the running time and enable
the implementation to handle larger matrices within an acceptable timeframe.

The results highlight that the cuSOLVER function for nding the exact inverse signicantly out-
performed our own implementations in terms of run time. For large matrices, it surpassed our
implementations by thousands of seconds. For instance, when dealing with a 1000×1000 matrix, the
C implementation took 6198 seconds, while cuSOLVER completed the calculations in a mere 0.01
second. Even for a 1000 × 1000 matrix, cuSOLVER produced a result in under 4 seconds. Scipy’s
function for nding the exact inverse also performed well, although it took slightly more time for
very large matrices e.g. it required 811 seconds for a 1000 × 1000 matrix.

In theory, implementations using the SPAI algorithm, which nds an approximate inverse, should be
faster than those nding the exact inverse for very large and sparse matrices. However, our SPAI
implementations are currently unable to produce satisfactory results for matrices that are suciently
large. The library functions in Scipy and cuSOLVER are state-of-the-art implementations constantly
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being developed to meet optimal standards. Consequently, it is dicult to compete with their run
times. The graphs clearly demonstrate the signicantly higher run times of our sequential implemen-
tations compared to the library implementations.

If our parallel version had successfully worked for large matrices, it would have likely resulted in
a signicantly faster run time for large matrices than the sequential versions.

7.3 Comparison of run time and utilisation of the GPU by the CUDA kernels

We specically chose two GPU kernels for evaluation and compared their performance against the
corresponding sequential CPU code. The test results for the numerical experiments conclusively
establish the superior performance of the parallel GPU version over the sequential CPU counterpart.

The matrixMultiplication kernel performs matrix multiplication between two matrices of dimen-
sions dim1 × dim2 and dim2 × dim3, respectively. When using for-loops, this operation consumes
signicant computational power and exhibits a time complexity of Odim1×dim2×dim3. However,
through parallelisation, we can reduce the runtime to Odim3 by traversing only the inner dimen-
sions of the matrices and computing entries concurrently using threads. This causes the theoretical
run time to be much faster.

The test results show that also the actual run time is much faster. For a small matrix the sequen-
tial version can keep up, due to the overhead of creating the kernel. However, already for a matrix of
size 100×100, the parallel version is 8 times faster. For a matrix of size 5000 x 5000 the sequential ver-
sion takes 1031 seconds, while the parallel version takes 5 microseconds. It can clearly be observed by
the graph in the numerical experiment section that the sequential code is far slower for large matrices.

The kernel SetSecondMatrix creates a matrix consisting of the identity matrix in the upper left
corner and the already computed matrix QB in the lower right corner. The sequential code uses
two for-loops to set the values in a matrix of size dim1 × dim2 and thus has the time complexity
Odim1 × dim2. In contrast, the kernel avoids any for-loops and assigns a thread to each entry of
the result matrix, enabling parallel computation with a constant time complexity of O1.

The experimental results not only conrm the theoretical improvement but also demonstrate
faster actual run times. As the matrix size increases, the superiority of the parallel version becomes
more pronounced. It is worth mentioning that for a 10 × 10 matrix, the sequential version performs
marginally better by 2 microseconds because of the overhead of kernel creation.

The experiments have tested how many gigabytes per seconds the kernels use. We have calcu-
lated the percentage-wise utilisation of the peak performance of the servers, which is 1600 GB/s.
The results show that the greater the size of the matrix, the greater the utilisation of the server. For
the kernel SetSecondMatrix we utilise 68.31% for the largest matrix. For matrixMultiplication

we already reach the peak performance for at matrix of size 1000 × 1000.

7.4 Advantages of parallelism

Parallelism on the GPU oers numerous advantages in computer science, particularly in the eld of
parallel implementations. GPUs are equipped with hundreds or even thousands of processing cores,
enabling massively parallel execution of tasks. This immense computational power surpasses tradi-
tional CPUs, making GPUs highly suitable for computationally intensive applications.

Parallel algorithms can greatly benet from GPU acceleration. By dividing algorithms into
smaller tasks that can be executed simultaneously, GPUs enable parallel execution and result in
signicant speedups compared to sequential CPU execution.

One signicant advantage of GPU parallelism is its ability to expedite data processing. GPUs excel
at parallel data handling, making them ecient in managing large datasets. This advantage proves
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invaluable in elds such as data analytics, machine learning, and scientic simulations, where the
rapid processing of substantial amounts of data is crucial.

In addition to their computational prowess, GPUs have a long-standing association with graph-
ics rendering and visualization. They were initially designed for graphics processing and excel at
rendering complex visual scenes in real-time. This makes GPUs indispensable for applications like
video games, virtual reality, computer-aided design, and scientic visualization.

Moreover, the versatility of GPUs extends beyond graphics processing. General-purpose comput-
ing on GPUs allows developers to leverage the parallel computing capabilities of GPUs for a wide
range of applications e.g. an inherently parallel algorithm such as the SPAI preconditioner. This
unlocks their potential in various scientic, engineering, and data-intensive tasks beyond traditional
graphics-related domains.

Energy eciency is another notable advantage of GPU parallelism. GPUs can achieve higher perfor-
mance per watt compared to traditional CPUs, resulting in improved energy eciency. This aspect
is particularly relevant for applications that require intensive parallel processing, as GPUs can deliver
higher performance while consuming less power.

7.5 Related works

Sparse Approximate Inverse preconditioners are under constant development and several theses has
been dedicated to developing more general and ecient algorithms for computing such.

This thesis is primarily based on the work by Grote and Huckle, whom with their article Paral-
lel Preconditioning with Sparse Approximate Inverses presented the original SPAI algorithm [1]. The
article explains the SPAI algorithm and provides the pseudocode, which inspired our pseudocode.

However, in favour of brevity details are left out of the work. The article leaves out essential
steps in the updating of the QR decomposition; the permutation of Q and R and how to apply the
Householder QR decomposition. These parts is elaborated on in our thesis, and inspiration for such
has been found in Kallischko [2] and Sedlaceks [3] works. The work of Grote and Huckle dates to 1995
and the library functions and hardware their FORTRAN implementation is run with is now outdated.

Kallischko’s dissertation Modied Sparse Approximate Inverses (MSPAI) for Parallel Preconditioning
presents a more detailed version of the SPAI algorithm and goes into depth with the updating of the
QR decomposition [2]. Our algorithm for updating the QR decomposition is inspired by Kallischko
and their use of permutation matrices to permute Q, R and m̂k for use in the next iteration. They
also expand on the explanation of the Householder QR decomposition.

However, besides explaining the SPAI algorithm more in depth, they present a modied version
of SPAI (MSPAI). MSPAI is modied in order to gain generality. They extend the idea from a
n × n matrix to rectangular m × n matrices. MSPAI also performs automatic pattern updates, and
it thus not restricted to a specic sparsity pattern. They also add information about probing in the
form of probing vector augmented with the input matrix. Besides MSPAI, they also present FSPAI,
which is a factorised variant of the algorithm that works for symmetric, positive and denite matrices.

In the dissertation Sparse Approximate Inverses for Preconditioning, Smoothing, and Regulariza-
tion Sedlacek accounts for both the SPAI, MSPAI and FSPAI algorithms and develops further on
the MSPAI and FSPAI [3]. They present a multi-step variant of the MSPAI algorithm (MMSPAI),
which is based on permutations and recursion. They also present a blocked version of the FSPAI
algorithm (BFSPAI) and nd results that indicate the eciency of block sparse approximate inverse
preconditioners.

One of the newest additions to the area of SPAI preconditioners is the HeuriSPAI algorithm presented
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by Gao, Chu and Wand in the paper HeuriSPAI: a heuristic sparse approximate inverse precondi-
tioning algorithm on GPU [8]. Compared to the dynamic SPAI preconditioning algorithm in Grote
and Huckle (1997) the proposed heuristic SPAI algorithm has two main dierences: (1) a heuristic
method is proposed to give potential candidate indices and (2) multiple while-loop conditions, that
should better maintain the sparsity level of the preconditioner [8]. They solve a problem existing
dynamic SPAI preconditioners had with encountering out-of-memory errors for large matrices and
validate the eectiveness with a highly parallel experiments of the HeuriSPAI algorithm [8].
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8 Conclusion

This thesis focuses on the Sparse Approximate Inverse (SPAI) preconditioner, a method used to
calculate an approximate inverse of large and sparse matrices. The SPAI algorithm iteratively con-
structs a sparse approximation of the inverse matrix, column by column, by minimising the norm.
Each iteration updates the given sparsity pattern, while preserving the sparsity of the original matrix.
As a result, the computational workload depends on the number of nonzero elements rather than the
size of the matrix.

The SPAI algorithm is inherently parallel, as it divides the matrix into subproblems and solves
the least squares problem independently for each column. The original SPAI preconditioner, in-
troduced by Grote and Huckle [1], lacks important algorithmic details. In this thesis, we provide
a comprehensive explanation of the SPAI algorithm, including the use of QR decomposition with
Householder reections for optimisation and permutations to ensure accuracy. Works by Kallischko
[2] and Sedlacek [3] have inspired these aspects.

Our ultimate goal was to implement a parallel version of the SPAI algorithm for GPU execution, but
for testing purposes we implemented a sequential prototype in Python to begin with. Subsequently,
we developed a sequential version in C, utilising cuBLAS library functions for QR decomposition
and inverse calculations of R, to prepare for the parallel implementation. Finally, we implemented
the parallel version using CUDA kernels, but the parallel version only works suciently for small
matrices. We veried the correctness of the kernels when implementing them by comparing against
the sequential version step by step.

We conducted experiments on randomised matrices of varying sizes and sparsity levels to measure
the accuracy and speed of our implementations. The results demonstrate the accuracy our SPAI
implementations. We compared the runtime of our Pyhton and C SPAI implementations with Scipy
and cuSOLVERs functions for exact inverse computation. The results show that library functions
exhibit superior runtimes to the sequential SPAI implementations. This was expected as our imple-
mentations were meant as prototypes and not ecient implementations for practical use.

In theory, the parallel SPAI implementation using CUDA kernels should achieve a fast run time
for large and sparse matrices. Since our implementation did not work suciently for large matrices,
we tested individual kernels. The results show that the kernels executed on the GPU exhibits supe-
rior run time to the corresponding sequential code running on the CPU. Future work could involve
optimising the implementation for large matrices and thus making it relevant for real-life applications.

We conclude, the Sparse Approximate Inverse preconditioner is an ecient algorithm for calculating
the approximate inverse of large and sparse matrices, particularly useful for Hessian matrices of large
dimensions employed in the Newton method. The inherent parallel nature of the algorithm enables
its parallel implementation on GPUs, which has by experiments on kernels demonstrated superior
runtime eciency compared to sequential CPU execution.
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