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1 Abstract

This project aims to efficiently solve the Travelling Salesman Problem (TSP) on the GPU. A short
survey of three popular heuristic algorithms (2-Opt local search, Ant Colony Optimization, and
Simulated annealing) is made. 2-Opt was chosen to be parallelized and implemented in CUDA.
The 2 opt algorithm uses ”climbers” that start with an initial solution, and improves it until a
local optimum has been found. The GPU implementation exploits both degrees of parallelism by
assigning one climber to each block and using threads to generate improved solutions. The code is
publicly available at https://github.com/henni3/BA-project.
The solution is compared with another 2-Opt implementation on the GPU by O’Neil et al. [21]
where one climber is assigned one thread, only using the outer parallelism. The project’s solution
was also evaluated on the accuracy, based on climbers and utilization of the hardware GPUmeasured
against the big throughput.
Compared to the implementation by O’Neil et al., this project achieved up to 27 times speed up on
a 100-city data set with 1000 climbers but falls off for greater numbers of climbers. The accuracy
of the solutions was also within < 5% of the optimal solution for 1000 climbers, indicating that a
greater number of climbers for some data sets might not be necessary.
Our implementation does not reach the big throughput of the GPU of 1555 GB/s for smaller data
sets with < 100 cites, but for bigger data sets, the implementation exceeds the big throughput, since
the majority of memory accesses happen to faster L2 cache. This shows that the implementation
fully utilizes the GPU.

2 Introduction

The traveling salesman problem (TSP) is a well-known combinatorial problem, where a salesman
must visit a set of n cities {c1, ..., cn} [16], starting from one city, and then visiting each city one,
returning to the starting city, creating a path. This path is known as a Hamiltonian path [33].
The goal of TSP is to create a Hamiltonian path, that minimizes the length of the path. To be able
to solve this, it is required that each city pair has a distance, denoted d(ci, cj) for the cities i and
j. This project works with the symmetric TSP, meaning that

d(ci, cj) = d(cj , ci)

The problem can now be formalized, to finding a Hamilton path π, such that it minimizes the
following equation

n−1X

i=1

d(cπ(i), cπ(i+1)) + d(cπ(n), cπ(1))

where cπ(i), refers to ith city on the path.
The reason the symmetric TSP is worked on is that it simplifies the problem instance and makes
each easier to reason about, while still having many applications, such as X-ray crystallography.
Symmetric TSP is NP-hard, meaning no algorithm for finding optimal in polynomial time has been
found. One way to find the optimal solutions is to find every possible path, and then take the path
with minimum length. This would require n! permutations and is infeasible to compute for any
meaningful problem sizes.
Therefore meta-heuristic algorithms are popular to solve TSP [25]. These algorithms usually find
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approximations of the optimal solution or local optimums of the solutions. Some popular ones are
the local search approach, such as the 2-Opt algorithm [6], the evolutionary approach such as Ant
Colony Optimization (ACO) [24], and others inspired by real-life processes, like Simulated Anneal-
ing(SA) [30].
These algorithms start with some initial solutions and work towards optimizing them. The 2 opt
algorithm uses an iterative hill climber (IHC) approach, where it iteratively finds a change, by
swapping two edges, that improves the solution until no further improvements can be found. At
this point, a local optimum has been found. Random restarts are then used to circumvent being
stuck in a local optimum
Evolutionary algorithms like ACO use a population-based approach instead. ACO is inspired by
how ants find a good path to food, by leaving pheromones. The shortest path gets more pheromones,
which creates a positive feedback loop. ACO starts with an initial population of ants, which finds a
path, where each edge is traveled according to some probability, based on the amount of pheromones
and the length of cost of the edge. When each ant has found a path, the pheromones are updated
based on the length of the paths found, and new ants repeat the process.
SA uses an annealing process, where a temperature parameter controls how likely the algorithm is
to explore changes that decrease the quality of the solution. This makes it possible to get out of
local optimums, to potentially find the global optimum.

For these algorithms, computing and evaluating changes requires many computations, and can
get very computationally expensive. Most of the computations can be done independently, however,
e.g. a restart in the 2-opt algorithm, does not depend on any other restarts. Furthermore, the
interchange evaluations are also independent. For ACO, each ant can create a path independently,
for each iteration. This indicates that a lot of the work is parallel.
For this reason, this project will solve TSP on GPU, since the GPU is ideal for problems with a lot
of parallelisms, and low communication. This is due to its thousands of cores, compared to the low
counts of the CPU.
In this project, the 2-Opt algorithm has been implemented on the GPU, due to its parallel structure.
The implementation was firs written in the parallel language Futhark, but because of limitations,
was then written in the language CUDA. A distance matrix that fits in L2 memory is created, and
each climber is mapped to one block. In the block, each thread evaluates 2-opt changes.
The implementation is compared to another 2-Opt on GPU version by O’Neil et al, where each
thread handles one climber, and the distance matrix fits in shared memory. [21].
From this, the following is found

• For a smaller number of climbers (≤ 10.000), our version achieves up 27 times speedup

• A small number of climbers is needed to find a solution with < 5% of the optimal cost for
most data sets

• Putting the distance matrix in shared memory, only achieves 1.11 times speed up compared
to L2 memory, but limits the problem size to 100 cities

Since our implementation is memory bound, it was also measured how well it utilized the hardware
GPU, compared to the big throughput, measured in GB/s. It was found that for smaller data sets
< 100cities, the GPU is not fully utilized, however for bigger data sets > 100, the throughput
exceeds the big throughput. This happens since the majority of data accesses happen to distance
matrix that fits in L2 memory, which is faster than global memory.
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The project is structured the following way.

• section 3 surveys and explains the heuristic algorithms, some GPU implementations of differ-
ent algorithms, and why the 2-Opt algorithm was chosen.

• section 4 is a user guide for the code base and repository

• section 5 describes how the sequential implementation of 2-Opt was parallelized and imple-
mented in Futhark

• section 6 explains how the algorithm was implemented in CUDA

• section 7 evaluates the sequential versions of the heuristic algorithms, evaluates our imple-
mentation, and compares it to the implementation by O’Neil et al. [21]

3 Related works

This section will go over three popular approximation algorithms for solving TSP. The algorithms
that will be described and analyzed are the 2-Opt local search algorithm, Ant Colony Optimization,
and simulated annealing.
Then there is a discussion of why the 2-Opt-algorithm was chosen to implement parallelly on the
GPU.
Finally a description of other GPU implementations of heuristic algorithms is made.

3.1 2-Opt local search algorithm

The 2 opt local search algorithm is also known as a local search strategy, that implements the
iterative hill climbing strategy (IHC)

IHC is a local search strategy that takes an initial solution to a problem and then does incre-
mental change to try and improve the solution. This is like starting at the base of a hill, and then
gradually climbing to the top, hence the name. This only guarantees a locally optimal solution,
without finding a global solution. To get a better chance of finding the optimal solution, random
restarts are made.

The 2-Opt-move algorithm is one of the simplest optimization methods for TSP proposed by
Croes [6]. The 2 opt algorithm starts by creating an initial tour as a solution. It then finds
some interchange of 2 edges of the tour such that the cost of the tour decreases. The interchange
is evaluated by interchanging the edges e(i, i + 1) e(j, j + 1)such that the new edges are e(i, j),
(i + 1, j + 1). All edges between i and j, are then reversed, to accommodate this change. E.g the
path [1, 2, 3, 4, 5, 6, 7, 1] when i = 3 and j = 6 would become [1, 2, 6, 5, 4, 3, 7, 1] This interchange is
shown in the figures 1 and 2.
If this swap results in a better tour, the incremental change is kept and the solution is updated.
Otherwise, the change is discarded and a new interchange will be found.
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Figure 1: Before swapping

Figure 2: After swapping

To find this interchange, all interchanges are evaluated in a double for-loop. Then only the best
interchange is applied to the solution before a new one is found.
To not be stuck in a local optimum a strategy of random restarts is used. Here multiple random
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initial solutions are created, such that each finds a local optimum. By having enough random initial
tours, it is probable that one of these local optima is the real optimal solution or a local optimum
close to the global.

3.1.1 Algorithm

Since this project implements the 2-Opt local search algorithm, A detailed pseudo-code has been
provided.

1 // tour , i s the array that ho lds the c i t i e s in a random order
2 //( s t a r t i n g and ending in the same c i t y )
3 //distM , i s the d i s t anc e matrix between the c i t i e s
4 f indCheapestCost ( distM , c i t i e s , c l imber s ){
5 i n t [ ] bestTour = i n i t i a l i z eT o u r ( ) ;
6 i n t bestCost = i n f i n i t e
7 f o r ( i n t c = 0 ; c < c l imber s ; c++){
8 i n t [ ] tour = createTour ( c i t i e s ) ;
9 i n t minChange = −1;
10 whi l e (minChange < 0){
11 minChange = 0 ;
12 // 2 opt move
13 f o r ( i n t i = 0 ; i < ( c i t i e s − 2 ) ; i++) {
14 f o r ( i n t j = i +2; j < c i t i e s ; j++){
15 change = distM [ tour [ i ] ] [ tour [ j ] ] +
16 distM [ tour [ i +1 ] ] [ tour [ j +1] ] −
17 ( distM [ tour [ i ] ] [ tour [ i +1] ] +
18 distM [ tour [ j ] ] [ tour [ j +1 ] ] ) ;
19 i f ( change < minChange ){
20 minChange = change ;
21 min i = i ;
22 min j = j ;
23 }
24 }
25 }
26 // swap
27 i f (minChange < 0){
28 min i = min i + 1 ;
29 whi l e ( min i < min j ){
30 to = tour [ min j ] ;
31 tour [ min j ] = tour [ min i ] ;
32 tour [ min i ] = to ;
33 min i ++;
34 min j −−;
35 }
36 }
37 }
38 i n t co s t = 0 ;
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39 f o r ( k = 0 ; k < c i t i e s ; k++){
40 co s t += distM [ tour [ k ] ] [ tour [ k +1 ] ] ;
41 }
42 i f ( co s t < bestCost ){
43 bestTour = tour ;
44 bestCost = cos t ;
45 }
46 }
47 return ( bestCost , bestTour ) ;
48 }

The algorithm evaluates one climber at a time. When one climber has found a solution providing
a local optimum, it compares with the previous best-known solution. If the newfound solution was
better, the solution and lowest cost are updated. The solutions are evaluated on the length of their
tour. The main work of the algorithm is the double for loop which has a run time of O(cities2).
this is then repeated for m iterations, where m is a number of improvements that need to be made
before a local optimum is found. Lastly, all this work is done for each worker giving a run time of
O(m · climbers · cities2).
This is quite the workload, however, a lot of it can be parallelized and computed by the GPU, this
will be discussed further in the project.

3.2 Ant Colony Optimization

3.2.1 General description

Anthill Colony Optimization (ACO) is a popular approximation algorithm used to solve TSP. The
algorithm is inspired by ants in the real world, where ants create optimal paths from their colony
to a food source. This happens because ants leave a trail of pheromones when traversing a path.
Therefore when an ant with a shorter route returns from the food, the pheromones on the path are
reinforced faster than the other paths. This then gets more ants to follow the short path, reinforcing
it for future ants. The pheromones evaporate over time, so only the more traversed path over time
is taken by the ants. [9]

This method can be translated to TSP with all possible paths as the search space for the ants.
Each ant starts at a city and then creates a Hamilton cycle, by going from city i to city j, according
to a transition formula, until a path is created. When tours consisting of all cities have been found
by the ants, the pheromones are on the edges are updated. The update is based on the total length
of a tour, where a shorter tour will result in a stronger pheromone update.
The probability that an ant transitions from one city to another will be dependent on the pheromone
on the edge and heuristic information. The heuristic information for the TSP problem will be
inversely proportional to the cost, such that edges with lower costs will give better probabilities.
This makes the ants more likely to traverse edges which results in a lower cost.
There is no specific rule for when the algorithm should converge and multiple strategies can be
implemented. One simple and popular choice is to run a specific number of iterations and then
evaluate what the best path is [24].
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3.2.2 The transition probability formula

A general strategy for computing the probability of an ant choosing an edge is [29]

|ταi,j |ηβi,j |P
z∈Ai

ταi,zη
β
i,z

Where

• τi,j is the pheromones on edge e(i,j)

• ηi,j is the heuristic information on edge e(i,j)

• α is a factor determining the strength of the pheromone

• β is a factor determining the strength of the heuristic information

• Ai is the set of all nodes that can be reached from edge i and is not visited by the ant yet

3.2.3 Pheromone update formula

There exist different strategies to update the pheromones. Two popular strategies are :

• The Min-Max Ant system, where only the ant that found the best path updates the pheromones.
The pheromones on a path can also not decrease below a τmin or above a τmax.

• The Ant System rank where all pheromones are evaporated by a factor with variable ρ and
then every ant leaves a quantity of pheromone Q divided by the length of the tour the ant
found Q

Lentghant

The Ant system Rank version is the version that will be used in this project. The pheromones
update for edge (i,j) can be written as the formula

τ
′
i,j = ρ · τi,j +∆τi,j

Where ∆τi,j is the total amount of pheromones laid by all ants that traversed this edge and can be
expressed as

∆τi,j =

MaxantsX

a=1

∆τai,j

and

∆τai,j =

(
Q

Lengtha
if ant k travels on edge (i,j)

0 otherwise

Where

• Q: is the chosen amount of pheromones laid by an ant

• ρ is the evaporation factor

• Maxants is the number of ants traversing paths
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• ∆τai,j is the pheromone change on edge (i,j) by ant a

• ∆τi,j is the total change of pheromones by all ants

the parameters Q, α, β, ρ, and the number of ants are chosen before running and should be optimized
for the specific problem.

3.2.4 Parameters in ACO

The parameters have a big influence on the performance of the solution. If the pheromone factor
alpha is too big, the solution might converge too quickly. This leads to not enough solutions being
searched, making it unlikely to find an optimal solution.
The same argument can be made for the evaporation factor ρ, since if the pheromones on the
edges evaporate too quickly, the ants quickly disregard them. The amount of pheromones Q and
the heuristic factor β also influence the quality of the algorithm, since the β parameter control
the scope of the search space, by the heuristic information. An article from Bullnheimer et.al [4]
suggests that α should be lower than β because the heuristic information should have a greater
influence. α should not be too low, because otherwise, the feedback loop from the pheromones is
not exploited. It is found that the Q factor is not too important as long as it is not too low.
Studies suggest that the number of ants should be close to the number of cities and start in random
different positions [24].

These parameters are very important for the quality of the solution and should be optimized
for each problem they are used for. Parameter tuning is a big part of the ACO algorithm to find
good solutions and should be done for the specific problem.

3.2.5 Algorithm

To compare the ACO algorithm with 2-Opt local search, a simple solution based on the work of
[20] was created in c. The algorithm will only be described in pseudocode, as it is not studied much
further in this project.

1 ACO( i n t ants , s t r i n g dataSet , i n t i t e r a t i o n s ) {
2
3 i n t ∗∗ DistMatrix = createDi s tMatr ix ( dataSet ) ;
4 Q = 100 . 0 ;
5 alpha = 1 . 0 ;
6 beta = 5 . 0 ;
7 rho = 0 . 5 ;
8 i n t ∗∗ s ta r tPaths = i n t i a l i z eAn t s ( ants , DistMatrix , lengthOfTour ) ;
9 double ∗∗ Pheromones = in i t ph e r o ( lengthofTour )
10 i n t BestCost = f indBestPath ( ants , d i stMatr ix , lengthOfTour )
11 f o r ( i n t i = 0 ; i < i t e r a t i o n s ; i++
12 UpdateAnts ( s tartPaths , lengthOfTour , Pheromones , d i s tMatr ix )
13 UpdatePheromones (Pheromones , s tartPaths , DistMatrix , lengthOfTour )
14 i n t newCost = f indBestPath ( startPaths , DistMatrix , lengthOfTour ) ; :
15 i f ( newCost < BestCost ) {
16 BestCost = NewCost
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17 }
18 return BestCost0
19 }

The parameters are chosen in accordance with the findings of Wei in the article ”Parameters Analysis
for Basic Ant Colony Optimization Algorithm in TSP” [32]

3.3 Simulated Annealing

3.3.1 General description

Simulated annealing is another popular optimization heuristic method to solve optimization prob-
lems like TSP. Simulated annealing is stochastic, and uses a temperature factor, to generate random
moves, to avoid getting stuck in a local optima. The method was introduced by Kirkpatrick et al
[19], who was inspired by the annealing process of metallurgy. Annealing consists of heating material
to high temperatures to change the properties of the metal.

3.3.2 Algorithm description

Simulated annealing builds on the annealing idea by having a temperature parameter (T), that
starts high and gradually cools over time. At higher temperatures, there is a bigger probability to
accept changes, which worsens the quality of the solution. At lower temperatures, only changes
that improve the quality of the solution are likely to be made. The acceptance of changes that
leads to a deterioration of quality, is done, to avoid being stuck in a local optima. Each change
is called a transition to a neighboring solution. The neighborhood solution can be obtained with
multiple strategies, a simple one for TSP problems is doing a 2-Opt swap, as described in 3.1. If
the change results in a better solution, it is always accepted. If the change worsens the quality of
the solution, it is accepted with a probability, that depends on the temperature and the cost of the
change. The probability is based on the Metropolis criterion [7] The state transition probability
can be expressed by the formula [9]

P (s′) =

(
1 if f(s′) < f(s)

e(−
(f(s′)−f(s))

T

Where

• s’ is the new solution obtained by generating the neighboring solution

• s is the original solution, from which the neighboring solution was made

• f(s) is the objective function, that evaluates the quality of a solution

• T is the value of the temperature, at the given transition.

To evaluate this probability, usually, a value p is assigned to the transition probability p = P (s′) ,
and then another value c is randomly generated such that 0 < c < 1. The solution s′ is accepted if

c < p
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After each transition, the temperature is cooled, determined by a cooling schedule. Many different
cooling schedules exist such as logarithmic, linear, exponential, and more [23]. The exponential
schedule is widely used and decreases the temperature T with a factor α 0 < α < 1 expressed as

T (t) = T0α
t

where

• T(t) is Temperature at time or iteration t

• T0 is the starting temperature

• αt is a cooling factor to the power of the iteration

Since every other parameter but the temperature is predetermined, and only temperature
changes, the choice of cooling schedule is critical.[23].

The algorithm terminates when a condition is met. The condition is usually a low enough
temperature is reached, or a desired number of iterations is done.

3.3.3 Simulated Annealing and TSP

To relate this to the TSP problem, the simulated annealing method starts with an initial solution.
The initial solution will be a random permutation of cities of a data set, representing a path. The
neighboring solutions will be generated, by making 2-Opt moves. The path will be evaluated with
a fitness function f(path) which is the cost of the path. After a neighboring solution has been
generated it is accepted according to the metropolis criterion. Then the temperature is decreased
according to a cooling schedule.
A pseudocode for simulated annealing in tsp is shown below. T

1 Simulated annea l ing ( double T 0 , double alpha , char∗ data s e t )
2 i n t [ ] path = createRandomPath ( da ta s e t )
3 double T = T 0
4 whi le (T < stop cond ) {
5 i n t Ci ty i = rand ( C i t i e s )
6 i n t c i t y j = rand ( C i t i e s )
7 i f ( i != j ) {
8 new path = 2OptSwap( path , i , j )
9 }
10 i f ( f ( path ) > f ( new path ) {
11 path = new path
12 }
13 e l s e {
14 double p = exp(−( f ( new path ) − f ( path ) )/T)
15 double c = rand (0 , 1 )
16 i f ( c < p) {
17 path = new path
18 }
19 }
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20 T = T ∗ pow( alpha , t )
21 }

3.3.4 Discussion of simulated annealing

Simulated annealing is very reliant on good choices for starting temperature, and cooling schedule.
If the problem has many local optima, a high temperature, and a slower cooling schedule will be
needed, to ensure a global optimum is found. This however affects running time and will converge
very slowly. However, if the starting temperature is too low or the cooling schedule cools too much,
the algorithm can quickly be stuck in a local optimum. The temperature and cooling schedule
should be explored and chosen for the specific problem being evaluated.

3.4 Choice of a heuristic algorithm for the GPU

For our project, we have chosen to parallelize the 2-Opt local search, with random restarts for the
GPU. The parallelization of the sequential code will be explained in section 5. This choice will be
explained in the following subsections.

3.4.1 Fitness for GPU

The 2-Opt local search algorithm with random restarts is a good candidate for the GPU since
each climber with a random initial solution can be computed independently of other climbers, and
therefore also parallelly. Furthermore, each swap can also be computed independently, before a
swap is made. The selection of the best swap cannot be done independently but can be parallelized
differently. This is discussed more in detail in section 5 5.

For the Ant Colony Optimization (ACO) each ant is able to compute a path independently since
it only depends on the pheromone table of the previous iteration. After each iteration, however,
the pheromone table needs to be updated, which requires communication. ACO also requires much
more space as a pheromone matrix is required in addition to a distance matrix and tour list for
each ant. The pheromone matrix has the same space requirement as the distance matrix for TSP
problems and scales quadratically with problem sizes.
SA however does not show good promise for parallelization, as only one neighbouring solution is
generated and evaluated at a time. The while loop is dependent on the previous iteration and
each transition needs to be taken with some probability dependent on the current temperature and
fitness of the change.

3.4.2 Parameters

Since both ACO and 2-Opt Local search, shows promise for parallelization, the biggest factor for
choosing the 2-Opt local search algorithm, with random restarts, is that it does not depend on
parameters that need to be optimized for specific problems. Both the Ant Colony Optimization
(ACO) and simulated annealing algorithm relies heavily on good choices for the parameters to give
good results. 2-Opt local search is, therefore, better suited for general problems, since no parame-
ters needed to be determined. The 2-Opt local search also always finds a local optimum, while ACO
or SA might terminate before finding one, depending on the stopping criteria. Since both ACO
and SA can be stopped with a number of iterations, they might stop, before finding any optimum,
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resulting in a bad-quality solution.

3.4.3 Results of testing sequential versions

Sequential versions of the algorithms were made, to compare how quickly they converge to a solu-
tion, and the quality of the solution. The SA and ACO parameters were chosen based on findings
from [24] [32] but were not tested further. The tests can be seen and are described in 7.3
The tests showed that 2-Opt quickly found a local optimum, and was the only one to find the global
optimum. Neither SA nor ACO found the global optimum, and the solutions computed by them
were worse than the first local optimum found by the 2-Opt.

For these reasons, the 2-Opt local search algorithm has been chosen to be implemented on the
GPU.

3.5 Other GPU implemenations

A rich body of work is aimed to solve TSP using approximation heuristics on the GPU. Molly
A. O’Neil, Dan Tamir and Martin Buscher [21] created a CUDA implementation, where they use
2-Opt iterative hill climbing to solve traveling salesman problems with < 100 cities. They assign
one climber to one thread to get a high degree of parallelism and minimize the need for synchro-
nization. To handle load imbalance a worklist is used and threads terminate when the worklist is
empty. They report good accuracy, where for four out of five data sets with 100 cities, the optimal
solution was found. They report a speed-up of up to 62 times compared to a multi-threaded CPU
solution.

Bai et. al. [3] proposes an Ant Hill colony implementation, of the Min-Max variation, for the
GPU with multiple colonies. Each colony is mapped to a block, with its own pheromone matrix.
All the colonies share a distance matrix. Each ant is mapped to one thread and finds a tour. A
reduction is made to find the best tour, and the evaporation of pheromones in the pheromone ma-
trix is done in parallel. Then, pheromones are deposited, where each thread deposits pheromones
on the edges. The solution reports up to 32x speedup compared to a CPU solution of ACO, and
the solutions found are close to the optimal solutions.

Wei et.al [31] proposes a Simulated Annealing implemented on the GPU. Here each block gets
an initial solution and starts the annealing process. The parameters are user-defined and are the
same as the one that was found to work for the sequential version analyzed. Each thread then finds
a neighboring solution and evaluates whether or not they are feasible, according to the metropolis
criterion. The GPU solution reported up to 14.8 times bigger speed compared to the sequential
version and could find up 25% better solutions

These papers do not compare their GPU version directly to another GPU version, only to the
CPU version of the same algorithm. In this project, we will compare our solution, with the solution
made by O’Niel et. al, since both projects use the same approximation algorithm.
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The projects defers in how the algorithms are implemented on the GPU. O’Neil et.al maps each
climber to one thread and needs to have many climbers to fully satisfy the hardware GPU. The
distance matrix is put in shared memory, giving fast access, but limiting the problem sizes.
Our solution maps each climber to a block and uses the threads inside each block to parallelize the
local search of a climber, resulting in fewer climbers needed to satisfy the hardware GPU.
Our findings show that for most problems a small number of climbers is needed to find a good
solution. It is also found that putting the distance matrix in shared memory results in an 11%
speed increase, which indicates that it might not be advisable since it limits the problems that can
be computed. Because most problem instances distance matrix fits in the L2 cache, which is faster
to access than global memory, it results in fast enough execution.
The other GPU implementations were not compared, since the codebases were not publicly available,
making it infeasible to compare meaningfully in this project.

4 User guide

This section consists of the following

• section 4.1 introduces the structure of the Github repository

• section 4.2 gives an overview of the project files and gives a short explanation of each file.

• section 4.3 describes how to compile and run the programs.

4.1 Structure of Github repository

The GitHub is publicly available https://github.com/henni3/BA-project, and the repository
has the following directory tree

BA-project

CUDA

TexasUni

CUDA_tests

Data

Futhark

Seqventielt

Seq_test

• The CUDA directory contains the CUDA implementation of the 2-Opt algorithm, together
with publicly available code from O’Neil et.al [21] [21]. It also contains the performance data
from the performance tests on our version

• The Data directory, contains all the data sets acquired from the TSBLIB95 library [15]

• The Futhark directory contains the Futhark implementation of the 2-Opt algorithm

• The Seqventielt directory, contains the sequential implementations of the 2-Opt, ACO, and
SA algorithms
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4.2 File descriptions

In the following lists, there will be an overview and a short explanation of the project files.

4.2.1 Sequential project files

• makefile - compiles the sequential code implementations of TSP-ACO.c, TSP-SA.c, and
TSP-seqRand.c

• tsp.data.h - provides functionality for reading TSP data sets

• TSP-ACO.c - contains the sequential implementation of Ant Colony Optimization

• TSP-SA.c- contains the sequential implementation of Simulated Annealing

• TSP-seq.c - contains the sequential implementation of 2-Opt local search without restarts

• TSP-seqRand.c contains the sequential implementation of 2-Opt local search with random
restarts

4.2.2 Futhark project file

• TSP.fut - main program

4.2.3 CUDA project files

• makefile - compiles all the files

• tsp-main.cu - main program

• tsp-run-program.cu - sample program

• tsp-testing-main.cu - testing program (on different climbers)

• tsp-gb-test.cu - testing program (on GB/s)

• tsp-main-helper.cu.h - helper functions to the main programs

• tsp-kernels.cu.h - kernel functions from where version 1, 2, 3 and 4 are executed

• tsp-ker-helper.cu.h - kernel helper functions

• dataCollector.cu.h - collects and transforms the data input

• constants.cu.h - contributes with useful constants and functions

• hostSkel.cu.h - contributes with functions such as scan, segmented scan, and transpose

• pbbKernels.cu.h - contributes with kernel functions
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4.3 Compile and run the programs

4.3.1 Sequential programs

To compile the code run

make a l l // compi les a l l the v e r s i o n s
make tsp ACO // compi le s the ACO implementation
make sim ann // compi le s the SA implmenetation
make t sp opt // compi le s the 2−Opt implementation
make c l ean // removes the execu tab l e s

To run the codes, different arguments need to be given. To run the ACO code

. / aco < . ./Data/ datase t . tsp> <number o f ants> < number o f i t e r a t i o n s>

to run the SA code

. / sa < . ./Data/ datase t . tsp>

and to run the 2-Opt code

./2 opt < . ./Data/ datase t . tsp> <number o f c l imbers>

4.3.2 Futhark program

To run the Futhark program, insert

futhark cuda TSP. fu t

into the terminal to compile the program. Then insert

. /TSP −t /dev/ s t d e r r −r 10 < . . / Data/ be r l i n 52 . txt

this will print the time 10 times and the final number (ending with i32) will be the best cost of the
tour computed. When loading the dataset berlin52.txt it will automatically run with 100 climbers.

4.3.3 CUDA programs

There are four different main programs that have four different purposes.
To run a sample program insert

make pre pro && ./ pre pro

to terminal. This program will run on the dataset KroA100.tsp with 75000 climbers.

To run the program on different datasets, different numbers of climbers, and on different ver-
sions (1: the Original Version, 2: 100 Cities Version, 3: Calculated I and J Version, see more in
section 6.3), insert

make tsp && ./ tsp . . / Data/ swi s s42 . tsp 1000 1

to terminal. swiss42.tsp can be exchanged to another dataset. 1000 can be modified to another
number of climbers and 1 can be either version 1, 2 or 3.

To test the program on a dataset with different numbers of climbers insert
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make t e s t && ./ t e s t . . / Data/KroA100 . tsp 10 100000

to the terminal. This will run on the dataset kroA100.tsp with 10 climbers, then 100 climbers,
then 1000 climbers, then 10000 climbers, and lastly 100000 climbers. So the minimum number of
climbers (the first number) will run and then be multiplied by 10 and run, up to the maximum
number of climbers (the second number). The dataset can be changed and the minimum and max-
imum number of climbers can be modified as long as it is a positive number and the minimum is
smaller than the maximum.

To test the program on GB/s insert

make t e s t gb && ./ t e s t gb 10000 . . / Data/KroA100 . tsp . . / Data/ swi s s42 . tsp

in terminal. 10000 is the number of maximum climbers, where the program will on maximum climbers
10 ,

maximum climbers
9 ..maximum climbers

1 climbers for each of the datasets that are listed.

4.3.4 O’Niel et. al solution: TSP GPU11

To run the O’Niel et. al solution [5] insert

make te s t−tsp11 && ./ te s t−tsp11 . . / . . / Data/kroA100 . tsp 10000

in to the terminal. This will compile and run the program on the dataset kroA100.tsp with 10000
climbers. Both the dataset and the number of climbers can be modified.

5 Parallel program and Futhark Implementation

This section introduces

• section 5.1 gives a short overview of Futhark and important constructs.

• section 5.2 provides an analysis of the sequential code of the 2-Opt algorithm and explains
how to transform the program into a parallel program. The parallel program is implemented
in the Futhark language.

• section 5.3 introduces the limitations of writing the parallel program in Futhark.

5.1 Futhark and important methods

Futhark is a programming language made to write code that compiles efficient parallel code. Futhark
is a purely functional language, meaning all parallelism is made by constructs such as maps, reduces,
and scans. There are multiple papers that use Futhark to make solutions for the GPU[22][27][14]

5.1.1 Description of map

One of the most important, and most basic constructs is the map. The map is a second-order
operator which takes the arguments: a unary function F and an array of elements [x1, ..., xn]. It
produces an array of the same length as the input array, by applying the function on each array.
map can be written with type and semantics:

map : (α → β) → [α] → [β]
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mapF [x1, ..., xn] = [fx1, ...., Fxn] (1)

This is parallel as each element is computed independently of the other elements.

5.1.2 Description of reduce

The second important construct is the reduce second-order operator. It takes as an argument a
binary and associative operator ⊙, the neutral element of ⊙, e, and an array of elements. Reduce
applies the operator on all the elements successively, resulting in a single element
reduce can be written with semantics and type:

reduce : (α → α → α) → [α] → α

reduce : ⊙e[x1, ..., xn] = e⊙ x1⊙, ...⊙ xn

Reduce is parallel since it applies the reduce as a reduction tree, where each thread can reduce 2
elements each, and store the result. The new array is then reduced in the same manner, resulting
in log(n) parallel operations. This is also the reason why ⊙ must be associative, otherwise, the
parallel execution could give a different result than the sequential execution.

Figure 3: Parallel reduction tree, figure from Elemar Júnior [17]

5.2 From sequential to parallel

In the pseudo-code for the sequential implementation of the 2-Opt algorithm, see section 3.1.1,
there are six loops in the program where all of the work is done. It is desirable to flatten as many
loops as possible and in the following sections, each loop will be discussed. All the pseudo-code, in
this section, for the parallel implementation is based on the Futhark language.
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5.2.1 Outer most for loop in parallel

To begin determining which parts of the sequential pseudo code in section 3.1.1 can run in parallel
the outermost for loop is analyzed first. This for loop has the following sequential pseudo code:
Sequential pseudo code of the outermost for loop

1 bestTour = i n i t i a l i z eT o u r ; bestCost = i n f i n i t e ;
2 . . f o r ( i n t c = 0 ; c < c l imber s ; c++){
3 tour = createTour ;
4 . . . //compute l o c a l bes t tour
5 //compute co s t
6 co s t = 0 ;
7 f o r ( k = 0 ; k < c i t i e s ; k++){
8 co s t = cos t + distM [ tour [ k ] ] [ tour [ k +1 ] ] ;
9 }
10 // s t o r e the bes t co s t and tour
11 i f ( co s t < bestCost ){
12 bestTour = tour ; bestCost = cos t ;
13 }} re turn ( bestCost , bestTour ) ;

In the pseudo-code, there are cross-iteration dependencies. The dependency is for the variable cost
in the inner for loop, line 7-9. cost is written in iteration i-1 and read in iteration i. This is a
read-after-write (RAW) hazard which is equivalent to a true dependency. Since the inner loop that
computes cost is basically a sum function it is possible to eliminate the dependency. Now that
there are no cross-iteration dependencies the outermost for loop can safely execute in parallel. The
pseudo-code for the parallel implementation is:
Parallel pseudo code of the outermost for loop

1 . . l e t a l lLoca lBes tCos t = map(\ c l imber −>
2 l e t loca lTour = mkRandomTour
3 . . . −−compute l o c a l bes t tour
4 in co s t loca lBestTour distM
5 ) ( i o t a numClimbers )
6 in reduce costComparator maxInt a l lLoca lBes tCos t

The outer for loop is transformed to run in parallel with a map and reduce function. The map

function will compute all the local best cost of each climber in parallel and the reduce function will
find the best cost of all the climbers and return this. Note that in the Futhark version, it is only
the best cost that is returned.
For each climber, a random tour is computed and the local best tour is found. Then the cost of the
local best tour is computed and this is done by transforming the for loop in line 7 of the sequential
code above to a map and reduce function to avoid data dependencies. The cost function is:

1 l e t co s t [ n ] [m] ( tour : [ n ] i 32 ) ( distM : [m] i 32 ) : i 32 =
2 map (\ i −> distM [ tour [ i ] ∗ (n−1) + tour [ i +1] ]
3 ) ( i o t a (n−1)) |> reduce (+) 0

Note here that the addition (+) operator is both associative and commutative so it works well for
the reduce function provided by Futhark.
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To compute the best cost of all the climbers an if-statement is used in the sequential implemen-
tation, see line 11 in the sequential pseudo code above. Instead of the if-statement inside the
for loop all the local best cost from each climber is stored into an array allLocalBestCost and a
reduce function is used to find the best cost. The reduce function has the comparative operator:

1 l e t costComparator ( co s t1 : i 32 ) ( co s t2 : i 32 ) : i 32 =
2 i f co s t1 < cos t2 then cos t1 e l s e co s t2

This compare operator, costComparator, is associative

changeComparator cos t1 ( changeComparator cos t2 cos t3 ) =
changeComparator ( changeComparator cos t1 cos t2 ) cos t3

and commutative

changeComparator cos t1 cos t2 = changeComparator cos t2 cos t1

It can therefore be used by the Futhark reduce function [8].

5.2.2 Outer while loop and swap

Inside the outermost for loop, discussed in section 5.2.1, there is a while loop that computes the
local best tour and it has the following sequential pseudo code:
Sequential pseudo code of the while loop

1 . . tour = createTour ( c i t i e s ) ;
2 whi l e (minChange < 0){
3 minChange = 0 ;
4 f o r ( . . ) { f o r ( . . ) { change=distM [ tour [ i ] ] [ tour [ j ] ] + . . . //2 opt move
5 i f ( change < minChange ){minChange = change ; . . . } } }
6 i f (minChange < 0){ // swap
7 min i = min i + 1 ;
8 whi l e ( min i < min j ){
9 to = tour [ min j ] ; tour [ min j ] = tour [ min i ] ;
10 tour [ min i ] = to ; min i ++; min j −−; }}} . . .

The while loop starting from line 2 can not be executed in parallel for two reasons. The first reason
is that it is a convergence loop, that checks the previous iteration to see if a local optimum is found
and it is therefore not possible to determine how many iterations the loop will execute. The second
reason is that there are two cross-iteration dependencies in the while loop. The two variables that
can cause cross-iteration dependency are minChange and the tour array. There is a possibility that
they both will be updated during each iteration of the textttwhile loop and if iteration i+1 reads
before iteration i write then there will be a read-after-write hazard, which a true dependency, that
cannot be circumvented.
The while loop must therefore be implemented sequentially in the Futhark implementation.

Swap
Once the program has computed which change has the best impact on the tour (in the two opt
move code section) the program proceeds to make these changes. This is done in the swap section
of the code, lines 6-10 in the pseudo-code of the while loop above. To transform the sequential
computation done in the if-statement to parallel code a map function is used. The map function

19



will in parallel swap all the elements between the indexes minI and j in the tour array to produce
a tour route that has a better cost than before swapping.
In the following pseudo-code of the swap code the map function will know the indexes minI, j, the
tour array and the tourSize value before executing.

1 map(\ ind −>
2 i f ind < minI | | ind > j then
3 tour [ ind ]
4 e l s e
5 tour [ j − ( ind − minI ) ]
6 ) ( i o t a t ou rS i z e )

5.2.3 Nested inner for loops in parallel

In the section above, section 5.2.2, the outer while loop is discussed. Inside this loop, there is a
nested for loop that computes the 2-opt-move by finding the change with the greatest impact for
the current tour. The sequential implementation of the 2-opt-move is demonstrated in the following
pseudo-code:
Sequential pseudo code of the nested inner for loops

1 . . . // 2 opt move
2 f o r ( i n t i = 0 ; i < ( c i t i e s − 2 ) ; i++) {
3 f o r ( i n t j = i +2; j < c i t i e s ; j++){
4 change = distM [ tour [ i ] ] [ tour [ j ] ] + distM [ tour [ i +1 ] ] [ tour [ j +1] ] −
5 ( distM [ tour [ i ] ] [ tour [ i +1] ] + distM [ tour [ j ] ] [ tour [ j +1 ] ] ) ;
6 i f ( change < minChange ){
7 minChange = change ; min i = i ; min j = j ; } } } . . .

There is a cross-iteration dependency in the nested for loops for the variable minChange. However,
since this dependency is a write-after-read hazard it is possible to store each change into an array
and then after the execution of the for loops use a reduce function to determine which change

should be written to minChange. This way the if-statement with the cross-iteration dependency
is eliminated. All the other dependencies are inside the same iteration and will not cause cross
iteration dependencies.
It is therefore possible to transform the nested for loops to run in parallel and this is shown in the
following pseudo-code:
Parallel pseudo code of the nested inner for loops

1 l e t changeArr = map (\ ind −>
2 l e t i = I a r r [ ind ]
3 l e t iC i ty = tour [ i ]
4 l e t jC i ty = tour [ Jarr [ ind ] + i + 2 ]
5 . . .
6 in ( ( d i s t [ iC i ty ∗ c i t i e s + jC i ty ] + . . . )
7 ) ( i o t a t o t I t e r )
8 in reduce changeComparator (maxInt , maxInt , maxInt ) changeArr

The changeComparator operator has the following function
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1 l e t changeComparator ( t1 : ( i32 , i32 , i 32 ) ) ( t2 : ( i32 , i32 , i 32 ) ) :
2 ( i32 , i32 , i 32 ) =
3 i f t1 . 0 < t2 . 0 then t1
4 e l s e
5 i f t1 . 0 == t2 . 0 then
6 i f t1 . 1 < t2 . 1 then t1
7 e l s e
8 i f t1 . 1 == t2 . 1 then
9 i f t1 . 2 < t2 . 2 then t1
10 e l s e t2
11 e l s e t2
12 e l s e t2

where it takes two 3-tuples and compares which has the minimum value in lexical order.
This compare operator, changeComparator, is associative

changeComparator ( change1 , i1 , j 1 ) ( changeComparator ( change2 , i2 , j 2 )
( change3 , i3 , j 3 ) ) =

changeComparator ( changeComparator ( change1 , i1 , j 1 ) ( change2 , i2 , j 2 ) )
( change3 , i3 , j 3 )

and commutative

changeComparator ( change1 , i1 , j 1 ) ( change2 , i2 , j 2 ) =
changeComparator ( change2 , i2 , j 2 ) ( change1 , i1 , j 1 )

and can therefore be used by the Futhark reduce function [8].

To transform the nested inner for loops to run in parallel they must be flattened. This is done by
computing and storing the i values and the j values produced by each iteration of the outer nested
for loop and the inner nested for loop, respectively.
The i values produced by the outer nested for loop are:

iproduced : [0, 1, 2, .., cities− 4, cities− 3]

The j values produced by the inner nested for loop are:

jproduced : [[2, 3, .., cities− 1], [3, 4, .., cities− 1], .., [cities− 2, cities− 1], [cities− 1]]

However two-dimensional irregular arrays are not flat-data and must therefore be flattened by the
use of a shape array and a data array [8].
The flat data representation for the i and j array’s must have the form

i : [0, 0, 0, 0, .., 0, 1, 1, 1, .., 1, 2, 2, 2.., 2, .., cities− 4, cities− 4, cities− 3]

j : [0, 1, 2, .., cities− 3, 0, 1, 2, .., cities− 4, .., 0, 1, 0]

Note that the values in the j array are different from the values in the jproduced array as they are
just a stepping stone to compute the correct j values later on in the program.
In the flat data representation, the i and j arrays must have the same size, totIter, which is the
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total number of iterations of the nested for loops. Tot iter is the number of swaps that needs to
be evaluated and is computed with the formula:

totIter =
(cities− 1)× (cities− 2

2

To compute the i and j arrays, a flag array must be computed. The flag array can be computed
based on a shape array and a data array. With the computed flag array, flagArr, the i array can
be computed with the following Futhark command:

1 I a r r = scan (+) 0 i32 f l agAr r |> map (\x −> x−1)

and the j array can be computed with the following Futhark command:

1 Jarr = segmented scan (+) 0 i32 (map bool . i 32
2 ( f l agAr r :> [ t o t I t e r ] i 32 )
3 ) ( r e p l i c a t e t o t I t e r 1 i 32 )
4 |> map (\x −> x−1)

The work inside the flatten nested inner for loops can be done by collecting the i and j values
from the global i and j arrays to perform the calculations of change.

5.2.4 Random Restarts

To randomize a tour for each climber produce code to generate a random number. This code is of
mediocre quality, but it is good enough to generate random indexes so that an initial tour route
can be swapped randomly. Therefore this way of generating random numbers is the one used in the
Futhark implementation.

5.3 Limitations of Futhark Implementation

There was a limitation to the Futhark language during the development time, where it did not allow
the implementation to run on a dataset with more than about 200 cities. Due to this limitation, a
CUDA implementation was created instead, see more in section 6. Since then this limitation has
been removed and the Futhark implementation can now run on data sets with a large number of
cities. However, there is still exists a bug in the implementation as it does not terminate when
running on 1.000.000 climbers on a dataset with 200 cities or more.

6 CUDA Implementation

The sequential implementation of the 2-Opt algorithm has been analyzed and transformed into a
working parallel implementation in the Futhark language, see section 5. However, there were lim-
itations to the Futhark language when implementing the program that did not allow the program
to run on data sets with more than 200 cities (this limitation no longer exists). To be able to run
an implementation of the 2-Opt algorithm on more than 200 cities a parallel CUDA implementa-
tion was created. The CUDA implementation is based on the Futhark implementation. How to
transform the Futhark implementation into a working implementation in CUDA, is discussed in the
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following sections.

This section introduces

• section 6.1 gives a short introduction to the GPU architecture and CUDA

• section 6.2 gives a short introduction for memory management

• section 6.3 describes the translation from the Futhark implementation to the CUDA imple-
mentation

• section 6.4 gives a short description of an implementation where the distance matrix is assumed
to fit in shared memory.

• section 6.5 gives a high-level explanation of a way to optimize the CUDA implementation

• section 8.2 introduces some limitations of the CUDA implementation.

6.1 Short introduction to the GPU architecture and CUDA

A parallel program will have a mix of sequential parts and parallel parts and will have to run on
the CPU and the GPU to maximize its performance. The CPU is designed to execute a sequence
of operations, called a thread, as fast as possible. It can only execute a few threads in parallel.
The CPU has therefore largely devoted its transistors to data caching and flow control, see the
distribution of the CPU in figure 4. The GPU on the other hand is designed to execute thousands
of threads in parallel. Each thread will have a slower performance but overall will achieve greater
throughput. As the GPU is designed for highly parallel computations its transistors are largely
devoted to data processing, see the distribution of the GPU in figure 4 [1].

Figure 4: Distribution of transistors [2]

A way to program an implementation for the GPU is to use CUDA which is a general-purpose
parallel computing platform and programming model. CUDA allows a programmer to define C++
functions, called kernels, which are invoked by the host CPU. The architecture of a NVIDIA GPU
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(which CUDA runs on) has a scale-able array of multi-threaded Streaming Multiprocessors (SMs).
So when a kernel is called it will execute a grid of thread blocks where each thread block is distributed
to an available SM. Each thread block may contain up to 1024 threads on current GPUs and
a SM allows each thread of a thread block to be executed concurrently and for multiple thread
blocks to be executed concurrently. Each thread and block has a unique id that is useful for when
programming[1].

6.2 Memory management

The memory hierarchy of a CUDA-capable GPU is shown in figure 5

Figure 5: Memory hierarchy in GPUs [11]

All SM’s have registers, L1/shared memory and read-only memory. The registers are assigned to
threads individually by the compiler. These registers are private to a thread so other threads can
not access them. The L1 cache/shared memory is a fast on-chip scratchpad memory. The shared
memory can be shared by all the threads of a CUDA block. The read-only memory is read-only
to the kernel code and can consist of an instruction cache, constant memory, texture memory, and
read only (RO) cache.
The L2 cache and global memory are shared across all SM’s. They are larger memories, but they
are slower than the fast on-chip memory such as shared memory [10].
Global memory can be accessed both by the host (CPU) and the device (GPU). This way the
CPU and GPU can transfer data between each other. The global memory can also be accessed by
multiple kernels, this allows kernels to communicate with each other. Storing and loading to global
memory is important for the execution of a kernel. These transactions are slow and it is desirable to
perform as few transactions as possible. If consecutive threads access consecutive memory accesses,
this can be done in one memory transaction and is called coalescing [12]. If the threads access
nonconsecutive memory, up to 32 transactions need to be for one access. Coalescing will be used
as much as possible in the CUDA implementation described in the following sections.
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Figure 6: Coalesced and non Coalesced access depicted. Figure is from Keskin et.al paper ”Real-
Time FFT Computation Using GPGPU for OFDM-Based Systems”[18]

6.3 First version: The original

Three CUDA implementations are developed, all based on the Futhark implementation. The first
version, which is called the original version, is the direct transformation from the Futhark imple-
mentation to the CUDA implementation. The second version, which is discussed in section 6.4, and
the third version, discussed in section6.5 are optimized implementations of the first version.
This section will introduce how to transform the Futhark implementation into a CUDA implemen-
tation.
The pseudo-code for the Futhark implementation is:
Pseudo code of the Futhark implementation

1 l e t f indCheapestCost [m] ( c i t i e s : i 32 ) ( numClimbers : i 64 )
2 ( distM : [m] i 32 ) : i 32 =
3 l e t t o t I t e r = ( ( c i t i e s −1)∗( c i t i e s −2))/2 −−Compute t o t a l i t e r a t i o n s
4 l e t f l agAr r = flagArrayGen c i t i e s −−Compute f l a g array
5 l e t I a r r = scan (+) 0 i32 f l agAr r |> map (\x −> x−1) −−Compute i array
6 l e t Jarr = segmented scan (+) 0 i32 f l agAr r ( r e p l i c a t e t o t I t e r 1 i 32 )
7 |> map (\x −> x−1) −−Compute j array
8 l e t a l lLoca lBes tCos t = map(\ c l imber −>
9 l e t loca lTour = mkRandomTour o f f s e t c i t i e s −−Compute random tour
10 −−Compute l o c a l bes t tour with 2−opt−move
11 l e t loca lBestTour = twoOptAlg distM tour I a r r Jarr c i t i e s t o t I t e r
12 in co s t loca lBestTour distM −−Compute co s t o f bes t tour and s t o r e i t
13 ) ( i o t a numClimbers )
14 in reduce costComparator maxInt a l lLoca lBes tCos t −−Co l l e c t the o v e r a l l bes t tour

The number of cities (cities), the number of climbers (numClimbers), and the distance matrix
(distM) that hold the distance between all the cities is known before the function findCheap-

estCost is executed. In the following sections, different parts of the pseudo-code for the Futhark
implementation will be transformed into a CUDA implementation.
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6.3.1 Initialize

Compute i and j values
In order to execute the 2-Opt algorithm in the map function, line 8-14 in the Futhark pseudo code,
there are values that need to be initialized first. totIter, line 3, is the number of total iterations of
the nested inner for loops in the sequential pseudo code that computes the 2-Opt moves. This is
implemented the same way in the CUDA code as in Futhark. The flag array, i array, and j array,
line 4-7, are implemented quite similarly to the Futhark implementation. Kernels have been made
that do efficient implementations of data-parallel operators such as the inclusive scan operator and
the inclusive segmented scan operator that are used to compute the i and j arrays. The only way
the CUDA implementation of the i and j arrays diverge from the Futhark implementation is that
the arrays are combined into one array with the following zip kernel:

1 g l o b a l void z ip ( i n t ∗ array1 , i n t ∗ array2 , i n t s i z e ){
2 i n t g l b i d = blockIdx . x ∗ blockDim . x + threadIdx . x ;
3 i f ( g l b i d < s i z e ){ array1 [ g l b i d ] = ( array1 [ g l b i d ] << 16) | array2 [ g l b i d ] ; } }

The i value is stored in the first 16 bits of an integer and the corresponding j value is stored in the
last 16 bits of an integer. This is done to minimize the number of reads from global memory.

Compute block size
Another value that is initialized before the program executes the 2-Opt algorithm is the size of the
CUDA blocks. This is computed by the host. The following code snippet is the implementation of
determining the block size.

1 . . . i f ( t o t I t e r > 512){ b l o c k s i z e = 1024;}
2 e l s e i f ( t o t I t e r > 256){ b l o c k s i z e = 512 ;}
3 e l s e i f ( t o t I t e r > 128){ b l o c k s i z e = 256 ;}
4 e l s e i f ( t o t I t e r > 64){ b l o c k s i z e = 128 ;}
5 e l s e i f ( t o t I t e r > 32){ b l o c k s i z e = 64 ;}
6 e l s e { b l o c k s i z e = 32 ;} . . .

The size is based on totIter. It must maximum be 1024, as CUDA blocks currently support up
to 1024 threads per block, and it must be divisible by 2, as it is used to determine the number of
iterations in the reduce functions.

6.3.2 map function

There are multiple options of how to implement the map function, line 8-13 of the Futhark pseudo
code, where the 2-Opt algorithm is executed. The Futhark program is implemented by executing a
climber per thread. However, to achieve a higher degree of parallelism the CUDA implementation
executes a climber per block. This way multiple threads can compute the work of the 2-Opt
algorithm in parallel inside a block, exploiting the inner parallelism. This way both degrees of
parallelism are exploited. The outer parallelism is exploited by assigning climbers on grid level, and
the inner by using block_size threads to evaluate the 2-opt moves.

6.3.3 Random tour

The random tour in line 9 of the Futhark pseudo code above is computed in the map function by
each climber. In the CUDA implementation, the random tours are computed and stored into a
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tourMatrix on global memory before executing the map function. Each tour has the size cities+1,
as a tour starts and ends in the same city, and the matrix has the size cities+1 × numClimbers.
The reason to compute and store the randomized tours before the map function is to exploit a higher
degree of parallelism.
Following is the pseudo code for the randomized tour kernel:

1 g l o b a l void createToursColumnWise ( tourMatrix , c i t i e s , c l imber s ){
2 g l o i d = threadIdx . x + blockIdx . x ∗ blockDim . x ;
3 i f ( g l o i d < c l imber s ){
4 f o r ( i n t i = 0 ; i < c i t i e s ; i++){tourMatrix [ c l imber s ∗ i + g l o i d ] = i ;}
5 tourMatrix [ c l imber s ∗ c i t i e s + g l o i d ] = 0 ; //same s t a r t and end c i t y
6 rand = g l o i d + blockIdx . x ; //random seed
7 f o r ( i n t i = 1 ; i < c i t i e s ; i++){ // randomize tour
8 rand = (MULT ∗ rand + ADD) & MASK; to = rand % c i t i e s ;
9 temp = tourMatrix [ c l imber s ∗ i + g l o i d ] ;
10 tourMatrix [ c l imber s ∗ i + g l o i d ] = tourMatrix [ c l imber s ∗ to + g l o i d ] ;
11 tourMatrix [ c l imber s ∗ to + g l o i d ] = temp ;}}}

The kernel will allocate each thread to compute a randomized tour for each climber. Each thread
will create an initial tour and write column-wise to the tourMatrix, lines 4-5, securing coalesced
storing to global memory. Then the tour will be randomized, by each thread, with a simple ran-
domization algorithm that creates random indexes and swaps these elements, lines 6-11.
Once the kernel has computed the randomized tours the host will call a transpose kernel, to trans-
pose the tourMatrix. This is done so that each climber in the map function will achieve coalesced
access when loading its randomized tour from global memory.

6.3.4 The 2-opt-move kernel

The local best tour computed for each climber uses the 2-opt-move algorithm. In the Futhark
pseudo code, these computations are done by the function called twoOptAlg, line 11. In the CUDA
implementation, these computations are done by a kernel called twoOptKer. The kernel will run a
climber per block and in every block, the threads will work together to compute the best tour for
the climber.

Shared memory
To optimize memory management, the randomized tour array, the minChange variable, and an
array to store the best changes found by each thread, tempRes, will be stored in shared memory.
The shared memory is set inside the kernel with the following code:

1 . . . extern sha r ed unsigned char totShared [ ] ;
2 v o l a t i l e ChangeTuple∗ tempRes = ( v o l a t i l e ChangeTuple∗)& totShared ;
3 v o l a t i l e ChangeTuple∗ minChange = tempRes + b l o c k s i z e ;
4 v o l a t i l e unsigned shor t ∗ tour =
5 ( v o l a t i l e unsigned shor t ∗ ) (minChange + 1 ) ; . . .

Before the kernel is called, the host will determine the size of the shared memory with the following
code:
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1 . . . s i z e t sharedMemSize = ( c i t i e s +1) ∗ s i z e o f ( unsigned shor t ) + b l o c k s i z e ∗
2 s i z e o f ( ChangeTuple ) + s i z e o f ( ChangeTuple ) ; . . .

Once the shared memory is set up, the randomized tour for this climber is read from the tourMatrix
in global memory to shared memory. This is done in the following code snippet:

1 . . . f o r ( i n t t = idx ; t < c i t i e s +1; t += b l o c k s i z e ){
2 tour [ t ] = g l o t ou r s [ b lockIdx . x ∗ ( c i t i e s +1) + t ] ; }

Note that the kernel reads a chunk with the size block_size (if cities+1 is larger than block_size)
from global memory to ensure threads have coalesced memory accesses. Whenever it is possible to
read and write from the global memory in chunks of block_sizethis technique is used for this kernel.

Sequential while loop
The program proceeds to initialize variables needed in the sequential while loop of the program.
This while loop is discussed further in section 5.2.2. The sequential while loop is implemented
with barriers to ensure safe reads and writes to memory. These barriers are provided by the CUDA
environment and are called __syncthreads().

Flattened nested for loops
The flattened nested for loops inside the sequential while loop, discussed further in section 5.2.3,
are implemented similar to the Futhark implementation.
The following pseudo-code is the CUDA implementation of the flattened nested for loops:

1 . . . f o r ( i n t ind = idx ; ind < t o t I t e r ; ind += b l o c k s i z e ){
2 i n t num = g l o i s [ ind ] ; i = num >> 16 ;
3 j = (num & 0 x f f f f ) + i + 2 ; ip1 = i +1; jp1 = j +1;
4 change =
5 g l o d i s t [ tour [ i ]∗ c i t i e s+tour [ j ] ] + g l o d i s t [ tour [ ip1 ]∗ c i t i e s+tour [ jp1 ] ] −
6 ( g l o d i s t [ tour [ i ]∗ c i t i e s+tour [ ip1 ] ] + g l o d i s t [ tour [ j ]∗ c i t i e s+tour [ jp1 ] ] ) ;
7 ChangeTuple currentChange = ChangeTuple ( change , i , j ) ;
8 localMinChange = minInd : : apply ( localMinChange , currentChange ) ; } . . .

A difference between the Futhark and CUDA implementation is how of the i and j elements are
accessed. In the Futhark implementation these are stored in two arrays, which causes two reads
from global memory per i and j pair. In the CUDA implementation, this is optimized by storing
the i and j elements into one array, glo_is, causing only one read to global memory per i and j

element. Another difference between the parallel implementations is that the Futhark implemen-
tation will compute and store change into an array that has size totIter and then reduce it. In
the CUDA implementation, block_size number of threads will compute a new change where each
thread might do several evaluations, if totIter is greater than block_size. For each iteration,
the thread must check if the change computed is better than the previous iteration, line 7-8 in the
pseudo-code above.

Reduce
After the execution of the flattened nested for loop each thread will write its best computed change

to shared memory in the array tempRes. Then a reduce function is used to find the overall best
local change. The following code snippet is of the reduce device kernel:

1 d e v i c e void reduceLocalMinChange ( i n t b l o ck s i z e , v o l a t i l e ChangeTuple∗ tempRes ){
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2 i n t idx = threadIdx . x ;
3 f o r ( i n t s i z e = b l o c k s i z e >> 1 ; s i z e > 0 ; s i z e >>= 1 ){
4 i f ( idx < s i z e ){
5 tempRes [ idx ] = minInd : : apply ( tempRes [ idx ] , tempRes [ idx + s i z e ] ) ; }
6 sync th reads ( ) ; } }

minInd corresponds to the Futhark operator changeComparator, see more in section 5.2.3. This
reduce function compares the elements by having half of the threads in a block (in the first iter-
ation) compare two elements of tempRes and write back the best one to tempRes. Next iteration
1
4 of the threads will compare two elements and write back the best one. This will continue until
every element has been compared and the best is stored in tempRes[0]. Note that tempRes has to
have the same size as block_size, so if there are not enough elements to fill out tempRes, it must
be padded with neutral elements.
All other reduce device kernels in the twoOptKer kernel reduces in the same way.

Swap
When the overall best local change is found the tour can be swapped and the CUDA implemen-
tation of swapping is very similar to the Futhark implementation. See Futharks implementation in
section 5.2.2. There is no data dependencies since only CitiesToChange

2 threads are used to reverse
the elements, and only that specific thread accesses the same memory location.

Cost
Once the best tour for a climber is computed the cost of that tour must be determined. This is
done with a sum reduce function similar to the Futhark implementation of a sum reduce function.
See the Futhark implementation in section 5.2.1.

6.3.5 Outer Reduce

The final reduce function, line 14 of the Futhark pseudo-code at the beginning of section 6.3, finds
the tour with the best cost. This is a simple reduce compare function that determines the minimum
of two values.
The way this reduce function is implemented in CUDA is by reducing across multiple blocks. Each
block will reduce on block_size ×2 elements so that all the threads will compare two elements
during the first iteration. This way there are no idle threads during the first iteration as there are
with the other reduce functions implemented in the CUDA implementation.
This implementation is inspired by NVIDIA presentation on Optimizing Parallel Reduction in
CUDA [13].

6.4 Second version: The 100 cities

The second version is called the 100 cities version. It is more limited than the original version as
it can only run datasets with up to 100 cities, because of the limited size of shared memory. This
version is created to check the potential speedup and can be compared with the solution made by to
O’Niel et. al’s. Both the O’Niel et. al solution and the 100 cities version store the distance matrix
(distM) into shared memory for quicker memory access. The distance matrix holds the distance
between all the cities. Since the shared memory capacity is limited the information from a dataset

29



with more than 100 cities can not fit into it. Even though the 100 cities version showed some
speed-up compared to the original version, the speed-up was not big enough to have the limitation
of only running smaller datasets.

6.5 Third version: The calculated

The third version is called the calculated version. It is very similar to the original version, however,
the main difference is the way it computes the i and j values. In the original version the i and
j values are computed during initialization where they are written to global memory, see more in
section 6.3.1. They are then used in the flattened nested loops where the values are read from global
memory, see more in section 6.3.4, subsection ”Flattened nested for loops”. The writes and reads
to global memory are expensive and therefore it would be desirable to eliminate these accesses by
having each thread compute the i and j values when they need them during the flattened nested
loops, instead of reading them.
By analyzing the patterns of how the i and j values are produced in each iteration of the sequential
nested for loops, see the pseudo-code of the sequential nested for loops below:

1 f o r ( i n t i = 0 ; i < ( c i t i e s − 2 ) ; i++) {
2 f o r ( i n t j = i +2; j < c i t i e s ; j ++){ . . .}}

it was possible to construct a mathematical expression that can compute the correct i and j values
for a given thread. This is explained in depth in appendix A.
Following is a summary of the mathematical expression created:
The formula to compute the value i by a thread with a threadID:

ncurr = ⌊−1 +
p
1− (4× 1× (−(2× (totIter − threadId))))

2× 1
+ 0.9999⌋

i = (cities− 2)− ncurr

The formula to compute the value j by a thread a threadID:

j = i+ 2 + (threadId− (totIter − ncurr × (ncurr + 1)

2
))

These formulas are inserted into the program of the calculated version and can be seen in the fol-
lowing code snippet

1 . . . f o r ( i n t ind = idx ; ind < t o t I t e r ; ind += b l o c k s i z e ){
2 d = 1−(4∗(−2∗( t o t I t e r −ind ) ) ) ;
3 tmp = ((−1+( sq r t ( ( f l o a t ) d ) ) )/2 )+0 .9999 ;
4 curr = ( i n t ) tmp ;
5 i = ( c i t i e s −2) − curr ;
6 j = ( i +2) + ( ind−( t o t I t e r −(( curr ∗( curr +1) )/2 ) ) ) ;
7 . . . } . . .

Line 2 computes the discriminant of the quadratic formula used to compute the value i. Line 3
computes the quadratic formula and adds 0.9999. Line 4 takes the floor and now ncurr is computed.
Line 5 computes the value i. Line 6 computes the value j.
.
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7 Evaluation

To evaluate our solution it was tested on different public data sets from the TSPLIB95 library [15]
with varying numbers of cities.
All the data sets are represented as complete graphs, and the data is either in the form of Euclidean
2D points, or pre-constructed matrices.
The data sets which have been tested, have known optimal solutions, which makes it easy to cal-
culate how accurate our solution is.

This section starts by comparing our sequential versions, of the 2-Opt local search, Ant Colony
Optimization, and Simulated Annealing algorithms.
Since the 2-Opt version was chosen to be implemented in CUDA, the accuracy of the solutions is
evaluated depending on the number of climbers. It is measured in how close to the optimal solution,
the solutions generated are.

After this, we will see compare our solution with the publicly available solution made by Molly
A. O’Neil, Dan Tamir, and Martin Buscher, and described in the paper ”A parallel GPU version of
the Traveling Salesman Problem” [21] and will from now on be referenced as [O’Neil et al.].

The section ends with an evaluation of how well our solution uses the hardware GPU, by mea-
suring the throughput in GB/s. This approach is chosen since our solution is memory bound, i.e.
each operation has low arithmetic density. It is then evaluated on how well it uses the hardware
GPU based on the big memory throughput of the GPU

To be able to repeat the tests and for testing the correctness of the solution, we have chosen a
specific seed for the random number generator. Repeated testing would give the same result, even
though the algorithm should be randomized. To revert this change seed for the random number
generator should be changed to be some sort of randomized number (such as the time of day).

7.1 Hardware description

The GPU used for all testing is an NVIDIA A100 PCIe 40 GB [28]. The GPU has the following
relevant specifications:

• Release year: 2020

• Memory Size: 40 GB

• Top Bandwith: 1555 GB/s

• SM Count: 108

• L1 Cache: 192 KB

• L2 Cache: 40 MB

• Shared mem size = 48 KB
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7.2 Data sets

All the data sets used for testing our solution are from the TSPLIB95 library. The TSPLIB95 is
a library consisting of TSP instances and instances of problems related to TSP [26]. It is publicly
available and has known optimal solutions for most data sets. The data set and the optimal known
costs will be used to evaluate our solution and make it possible to compare with other solutions
that support these data sets, such as the solution by [O’Neil et al.].

Only TSP data sets are used from the library. Also, the solution only works with specific data
sets. These data sets are then ones that use the ”EUC 2D” weight type, which denotes Euclidean
distances in 2 dimensions, Or the MATRIX weight type, where all distances are pre-computed in a
distance matrix.
Below d a table with all the data sets used to evaluate our solution is provided. The table denotes
how many cities there are in the data set and the optimal known cost for the data set.

Data set nr. cities optimal cost
swiss42.tsp 42 1273
berlin52.tsp 52 7542
kroA100.tsp 100 21282
kroB100.tsp 100 22141
kroA200.tsp 200 29368
pr439.tsp 439 107217

Table 1: TSP data sets used for evaluation

7.3 Comparisons of sequential versions

To compare the sequential versions, implementations in c were made for each of them. The param-
eters for Ant Colony Optimization and Simulated Annealing are predetermined, but for the best
results, optimal parameters should be found for the specific data set al.l the sequential versions
were tested on the swiss42.tsp data set, since there appeared to be some memory issues for the SA
and ACO implementations, on data sets with a high number of cities.
All sequential versions report the quality of their solution, after a specific number of iterations.
For the 2-Opt implementation a solution is reported every time a local optimum is found and re-
ports how many 2-opt changes are evaluated, no parameters were needed for this algorithm.
SA annealing reports the solution after 10 neighboring solutions have been evaluated. The start-
ing temperature was chosen to be T0 = edges3, and the cooling schedule was a multiplicative
T = T0 ·αiter ACO reports the solution every 10 iterations. Since the ACO algorithm gets a specific
number of iterations, this has been chosen to be 1000. The parameters for ACO were

Q = 100.0

alpha = 1.0

beta = 5.0

rho = 0.5
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based on findings from Wei [32].

The tests gave the following results. The cost of the solution is depicted on the Y axis and the
number of iterations is on the X-axis:

Figure 7: Convergence of quality as a function of iterations for 2-opt sequential algorithm

Figure 8: Convergence of quality as a function of iterations for ACO sequential algorithm
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Figure 9: Convergence of quality as a function of iterations for SA sequential algorithm

From this, it can see that the 2-Opt algorithm quickly finds a local optimum, and finds the
best quality solution after 625 2-opt evaluations. It should be noted that iterations are each 2-opt
considered, not only those taken.
The ACO solutions start with a very bad solution and do not converge quickly. After 400 iterations,
no improvements seem to be found. It should be noted, that ACO is likely to perform much better
if optimal parameters are determined.
The SA algorithm looks like it starts by exploring the global search space by accepting changes that
worsen the quality of the solution, and ends by slowly converging to a better solution. However, it
stops before getting close to the global optimum. The SA algorithm terminates when the tempera-
ture is too low, indicating that the cooling schedule might cool too quickly since only 246 iterations
were done. This might get better results with a better choice for cooling schedule, cooling factor,
and/or start temperature.

Based on these tests, the 2-Opt algorithm shows the best promise for finding good-quality solutions,
for TSP.

7.4 Accuracy

To test the accuracy of our solution, the cost of the solution was evaluated on the number of
climbers. The cost is then compared to the known optimal cost 1. To have an acceptable solution,
we will define it as a solution that deviates less than 5% from the optimal cost. The accuracy tests
were done for three different data sets:

• berlin52.tsp: a small data set consisting of data points from 52 different cities

• KroA100.tsp: a medium data set consisting of 100 cities
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• kroA200.tsp: a big data set consisting of 200 cities

The tests were done with randomized seeds, and each every time they reported very similar results,
with some minor deviation.

7.4.1 Accuracy evaluation of Berlin25.tsp

Berlin25.tsp data set was evaluated on a range of 1-200 climbers. After this, a solution with optimal
cost was found.

Climber Lowest cost computed Accuracy (%)
1 8401 89.7750268
2 8401 89.7750268
5 8118 92.9046563
10 7713 97.7829638
20 7542 100
50 7542 100
100 7542 100
200 7542 100

Figure 10: accuarcy evaluated as a function of climbers for the ber52 data set

A search with only one climber resulted in a solution where the cost deviated ca. 10% from the
optimal solution. This shows that the sub-optimal solution found by only one climber was not close
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enough to our acceptance rate, but not too far off either.

The next interesting number of climbers is 10, as a solution with 97% accuracy was found. This
shows that the number of climbers needed to reach an acceptable solution is quite small, for this
data set.

A solution that yields the optimal cost, is found at 20 climbers. After this, the cost does no
longer change. This shows that is only necessary to spawn 20 blocks for the GPU, to solve this data
set. This indicates that these small problems do not use the GPU fully. This will be explained in
greater detail in the ”Measuring throughput” section 7.7.1.
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7.4.2 Accuracy evaluation of kroA100.tsp

Climber Lowest cost computed Accuracy
1 22805 93.32164
10 22236 95.70966
100 21601 98.5232165
1000 21450 99.2167832
10000 21292 99.953034
20000 21292 99.953034
50000 21292 99.953034
75000 21282 100
100000 21282 100
125000 21282 100

Figure 11: accuarcy evaluated as a function of climbers for the kroA100 data set

The kroA100.tsp data set was tested with a bigger range of 1 - 125000 climbers, as this bigger data
set required a greater number of climbers to find the optimal solution.

However, the sub-optimal solutions found are in general quite close to the optimal solution as we
can see by the solution obtained by 1 climber, which gets a 93% accuracy. This increases steadily
and we get within our acceptance rate on 1000 climbers where we have a 99.21% accuracy.
From here the increase to 10.000 climbers gives 99.9 % accuracy and this does not change until
the number of climbers increases to 75.000 where the optimal solution is found together with the
optimal cost.

This shows that we can obtain an acceptable solution with a relatively small number of climbers.
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7.5 Accuracy evaluation of kroA200.tsp

For the ”big” kroA200.tsp data set we tested from 1, 100, 1000 - 10.000.000 climbers.

Climber Lowest cost computed Accuracy
1 46062 63.7575442
100 31119 94.3732125
1000 30346 96.77717
10000 30200 97.2450331
50000 29974 97.9782478
100000 29974 97.9782478
500000 29850 98.3852596
1000000 29850 98.3852596
1500000 29689 98.9187915
5000000 29665 98.9988202
10000000 29665 98.9988202

Figure 12: accuarcy evaluated as a function of climbers for the kroA200 data set

for this data set, 97% accuracy is reached after 10.000 climbers and only increases marginally
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from here. The optimal solution was not obtained with our solution on this data set. After
10.000.000 climbers we achieved an accuracy of 98.99 % percent, so a solution within the accep-
tance range was found. If a lot of different seeds were used, the optimal solution might be found

7.6 Comparison with [O’Neil et al.]

We compare our solution with the [O’Neil et al.] [21] solution since both use the same algorithm,
but different approaches. The two solutions were compared with respect to the run time since both
implementations find a solution within the acceptance rate. Both solutions are tested on the same
GPU, NVIDIA A100 PCIe 40 GB 7.1. The TSP data sets which were tested were kroA100.tsp and
Berlin52.tsp The reason only 2 data sets are used for testing, is because of the limitations of the
solution by [O’Neil et al.]. The solution by [O’Neil et al.] can only handle data sets with ≤ 100
cities since the distance matrix must fit in shared memory. Furthermore, the solution by [O’Neil
et al.] requires a specific ”weight type” of their data sets (EUC2D), so data sets with explicit sizes
cannot be used.

7.6.1 run time

We have measured the run time in milliseconds (ms) for both our solution and [O’Neil et al.]
solution.

The solution measured the run time of the three different versions of our solution:

• The original version, where both I and J arrays and the distance matrix reside in global
memory.

• 100cities where the distance matrix and I and J array fit in shared memory, such that temporal
locality is better used since the distance matrix is accessed frequently the shared memory has
lower latency than global (

• and the calculated I and J where we calculate the values for I and J instead of keeping them
in global memory.

The result of the tests were:

Table 2: Test results for the kroA100.tsp data sets
Time in milisecs 300.000 climbers 200.000 climbers 100.000 climbers 50.000 climbers 10.000 climbers 1.000 climbers
TSP - Texas 546 337 144 144 143 136
TSP - Original 1187 792 396 198 40 5
TSP - 100 cities 1070 714 357 179 36 4
TSP - calculated i and j 1150 765 382 191 39 5

Table 3: Test results for the ber52.tsp data set
Time in milisecs 100.000 climbers 50.000 climbers 10.000 climbers 1.000 climbers
TSP - Texas 18 17 17 17
TSP - Original 117 59 12 2
TSP - 100 cities 108 54 11 2
TSP - calculated i and j 118 59 12 2
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From our test run of the data sets, the following can be seen. Our solution are faster for smaller
numbers of climbers, while the [O’Neil et al.] solution is faster for a greater number of climbers.
This can be explained by the design of our solution as mentioned in 6.3.2. The [O’Neil et al.]
solution only uses the outer level of parallelism, resulting in no need for communication between
threads, except for comparisons of results. This results in the [O’Neil et al.] performing better
when many blocks are spawned, as no minimal communication between threads is necessary. .
This however also means that their solution needs a lot of climbers to satisfy the GPU. Instead,
our solution maps one climber to one block, increasing the degree of parallelism up to a factor of
1024 (maximum block size). This however requires communication, and synchronization between
threads is required, which results in some overhead run time.

7.6.2 Discussion of results

The comparison of the solution will start by evaluating the results for 1.000 climbers and 10.000
climbers on the kroA100.tsp data set. Here our solution runs 136/5 ≈ 27.2 faster than the solution
by [O’Neil et al.] and even on 10.000 climbers, we are 143/40 ≈ 3.5 times faster. However, on the
bigger data sets the [O’Neil et al.] solution is about 1150

546 ≈ 2.1 times faster.

However, two things should be considered. Firstly the accuracy of the solution is very good al-
ready at 1000 climbers. As discussed in the previous section, the accuracy for this at 1000 climbers
data set is within < 0.1% of the optimal solution. Meaning an acceptable solution is found very
fast for 1000 climbers.

Secondly, the [O’Neil et al.] solution also seems to have an undiscovered bug. When testing
with a very high number of climbers, the [O’Neil et al.] solution reports a path whose cost is less
than the known optimal solution. Costs marked with red in the result tables denote a cost less than
the optimal known cost.

7.6.3 Speedup of optimizations

The speedup of our optimizations is observed here. The shared memory optimization gives a
speedup of 792

714 ≈ 1.11 which means it is 11% faster than the original version. This speedup is not
enough to warrant the trade-off of not handling data sets with more than 100 cities.

The calculated i and j versions result in a 792
765 ≈ 1.03 so 3% speedup. It is not a big speed-up

but introduces no limitations, therefore this optimization will be kept.
Both of these optimizations are memory optimizations, and since speedup is achieved, it indicates
that our solution is memory bound.

7.7 Performance on GPU

This section reports the bandwidth of our solution (GB/s) and compares it with the big bandwidth
of the hardware, in order to demonstrate how well the GPU hardware is utilized.
To evaluate this, we measure how much throughput our solution achieves for different data sets,
and compare it with the big throughput of the hardware GPU. The GPU (NVIDIA A100 PCIe
40GB) has a maximum throughput of 1.555 GB/S [28].
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7.7.1 Measuring throughput

To measure the throughput of our solution, the number of global memory accesses is analyzed and
multiplied by how many bytes are accessed. This results in the number of bytes handled by the
GPU, and0 it then divided by the running time. The time is measured in microseconds. The result
is then converted to GB/s by:

#byte · 1.0e−9Gigabyte/byte

#microseconds · 1.0e−6second/microsecond

Which can be simplified to
#byte · 1.0e−3

#microseconds

Only the work of the 2 opt algorithm is measured, since this is the work we want to evaluate.
Profiling our solution shows that > 98% of the running time is used on the kernel responsible for
the algorithm. The kernel that is measured is the ”calculated ” version 6.5 and in the kernel, there
are the following global memory accesses.

1. When copying the initial tour from global memory to shared memory”

2. accessing distances from the distance matrix, when computing the change of a swap

3. calculating the cost of a tour created by the climber

4. copying the tour back to global memory

The number of bytes accessed is annotated in the code and can be seen in appendix B

Copying the tour from and back to global memory only happens once in the algorithm and only
scales with the number of cities in the tour. Computing the cost of the tour only happens once,
and scales on the number of cities as well. Accessing the distance matrix however scales with two
factors, how many cities are in the tour and how many while loop iterations are needed before a
local optimum is found. The first factor is easily computed, as this is just how many ”iterations”
there are in the flattened array multiplied by how many memory accesses are done. However, the
second factor is indeterminable, since it is a convergence loop and changes from the data set to the
data set.
Therefore a new kernel is created to count the number of while iterations necessary for each block,
and then sum up all the while iterations with an efficient reduce kernel.

7.7.2 Results

The throughput was tested for six different data sets

• swiss42.tsp : 42 cities

• berlin52.tsp : 52 cities

• kroA100.tsp : 100 cities

• kroB100.tsp : 100 cities
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• kroA200.tsp : 200 cities

• pr439.tsp : 439 cities

All tests are done over 100 tests on the GPU, where the average time was taken. The throughput
has been plotted as a function of the number of climbers for the data sets. Each data set have
been evaluated for 1-1000, 1-5000, and 1-10000 climbers. All the graphs depict the climbers on the
X-axis and the throughput on the Y-axis. The orange line represents the big throughput of the
hardware GPU.

7.7.3 swiss42.tsp

Figure 13: Throughput of swiss42 as function of climbers for 1-1000 climbers
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7.7.4 Throughput on berlin52.tsp

Figure 14: Throughput of ber52 as a function of climbers for 1-1000 climbers

7.7.5 Throughput on kroA100.tsp

Figure 15: Throughput of kroA100 as a function of climbers for 1-1000 climbers
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7.7.6 Throughput on kroB100.tsp

Figure 16: Throughput of kroB100 as a function of climbers for 1-1000 climbers

7.7.7 Throughput on kroA200.tsp

Figure 17: Throughput of kroA200 as a function of climbers for 1-1000 climbers
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7.7.8 Throughput on pr439.tsp

Figure 18: Throughput of pr439 as a function of climbers for 1-1000 climbers

7.7.9 Throughput on all data sets

Figure 19: Throughput of all datasets for 1-1000 climbers
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Figure 20: Throughput of all datasets for 1-5000 climbers

Figure 21: Throughput of all datasets for 1-10000 climbers
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7.7.10 Discussuion of results

Throughout all the data sets it can be seen that the throughput increases when the number of
climbers increases. Furthermore that the smaller data sets do not reach the big throughput of 1555
GB/s, but only get about 30% or 40% for the swiss42.tsp and berlin52.tsp data sets respectively.
However the bigger data sets like pr439.tsp and kroA200.tsp gets a throughput that exceeds the
big throughput. They both reach about 160% or 1.6 times the big throughput.

The reason the bigger data sets can exceed the big throughput is due to the vast majority of
memory accesses are to the distance matrix that resides in global memory. Because the distance
matrix for the biggest data set (pr439.tsp) consists of 4392 entries, the uses 4392· = 770.884 bytes
of space. This is only 770.884

106 = 0.77MB of the space available in the L2 cache. This means that
the distance matrix is able to reside in the 40 MB L2 cache, which is faster to access than global
memory.
The reason that only the bigger data sets get a throughput that reaches (or exceeds) the big
throughput, is that the number of while iterations for each climber, to find a local optimum is too
small, for data sets with fewer cities. For the swiss42.tsp and berlin52.tsp data sets, each climber
made 29 or 43 while loop iterations respectively. The kroA200 and pr439 did 150 and 236. The
maximum throughput seems to be around 150 iterations of the while loop 22.

Figure 22: While iterations impact on performance
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Table 4: Test results for 1000 climbers
average whileiters GB/s

Swiss42 29 399.94
berlin52 43 596.84
kroA100 92 1592.35
kroB100 92 1584.71
kroA200 147 2487.95
pr439 264 2521.72

Another factor is that fewer accesses to global memory are made in each iteration for the smaller
data sets, as this scales quadratically with the number of cities. Therefore the smaller data sets
cannot exploit the temporal locality of the distance matrix to a high enough degree to reach the
big throughput of the GPU.

8 Further Work

For future work on this project, the following would be interesting to look into:

8.1 Optimizing tour generation

The randomized tour kernel, see section 6.3.3, can be optimized by randomizing the tours on a local
initial tour for each thread. Once the thread has randomized it on its local memory it will write it
column-wise to the matrix (to achieve coalesced access to device memory). This way the threads
will not randomize on the device memory, but on the local memory.

8.2 Handle more types of data sets

The CUDA implementation can only compute data sets of complete undirected graphs. It is there-
fore a limitation of the implementation that it can not compute data sets of directed graphs or
incomplete graphs.
Furthermore, special cases of data like geographical data are not handled and support for these
could be implemented.

8.3 Compare with other heuristic algorithms

There exist many more heuristic algorithms than the ones discussed in this project [he]. It would
be interesting to analyze and compare algorithms such as:

• Genetic algorithms

• Particle swarm algorithm

• Tabu search

• artificial bee colony

• gradient based
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8.4 Comparisons with other GPU versions

Our solutions should be compared to other GPU versions like GPU versions of ACO [3] and SA
[31], to compare the quality of the solutions. This would also enable comparisons of data sets with
more than 100 cities.

9 Conclusion

In this project, the TSP problem has been solved with a 2-Opt local search algorithm, implemented
on GPU. A short survey of heuristic algorithms popular for solving TSP was done, and the 2-Opt
local search algorithm was chosen, due to it not relying on parameters, and its potential for paral-
lelization.
The algorithm was implemented in CUDA where each block was assigned one climber, such that
both the outer parallelism of the grid and the inner parallelism of a block were exploited.
The implementation was compared with a similar implementation, that from O’Neil et al. [21], who
assigned one thread to one climber, exploiting only the outer parallelism. The comparison showed
that for a smaller number of climbers, our version had a significant speed-up of up to 27 times for
1000 climbers, but is slower for a greater number of climbers. However, it was evaluated that for
most data sets no more than 1000 climbers were required to get a solution with a cost in the range
of > 95% of the optimal cost, for most data sets.

To evaluate how well the solution used the hardware GPU, the throughput was measured. It
was found that smaller data sets could not satisfy the GPU, with respect to the big throughput of
the GPU, while data sets >= 1000cities exceeded the big throughput since that distance matrix was
accessed more. The big throughput could be exceeded since the distance matrix fit in L2 memory,
which is faster than global memory.
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A Explanation of how to calculate the i and j values

In the original parallel version the i and j values are computed during initialization and written to
device memory, see more in section 6.3.1. During the flatten nested loops the values are read from
device memory, see more in section 6.3.4, subsection ”Flattened nested for loops”. This is expensive
and therefore it would be desirable for each thread to compute the i and j values when they are
needed in the flattened nested loops. This turned out to be possible and will be demonstrated by
working with an example of 10 cities.

The following pseudo code is of the sequential nested for loops:

1 . . . f o r ( i n t i = 0 ; i < ( c i t i e s − 2 ) ; i++) {
2 f o r ( i n t j = i +2; j < c i t i e s ; j++){
3 change = distM [ tour [ i ] ] [ tour [ j ] ] + distM [ tour [ i +1 ] ] [ tour [ j +1] ] −
4 ( distM [ tour [ i ] ] [ tour [ i +1] ] + distM [ tour [ j ] ] [ tour [ j +1 ] ] ) ;
5 i f ( change < minChange ){
6 minChange = change ; min i = i ; min j = j ; } } } . . .

By looking at the sequential pseudo code above and inserting cities = 10 the outer loop iterates
cities − 2 = 8 times and the inner loop iterates 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36 times. The
total iterations are therefore 36 times and is the sum of cities− 2. For future calculations the total
iterations, totIter, can be computed with the sum formula:

totIter =
(cities− 2) ∗ (cities− 1)

2

The values of i and j for the 36 iterations are listed below. Each subarray is a new iteration of the
outer loop and therefore there are 8 subarrays.

i : [[0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2], [3, 3, 3, 3, 3], [4, 4, 4, 4], [5, 5, 5], [6, 6], [7]]

j : [[2, 3, 4, 5, 6, 7, 8, 9], [3, 4, 5, 6, 7, 8, 9], [4, 5, 6, 7, 8, 9], [5, 6, 7, 8, 9], [6, 7, 8, 9], [7, 8, 9], [8, 9], [9]]

id : 0 1 2 3 4 5 6 ........................................................ 21.........25............................................35

The id’s that are listed above represents the thread ids in a block larger than 36 threads. This
means that thread id 5 computes i = 0 and j = 7 and thread id 21 computes i = 3 and j = 5.
For the different threads to compute the correct i and j values each thread needs to first calculate
which of the outer loop iterations it is part of, i.e. which subarray it is part of. In this case with
cities = 10 thread id 0 to 7 are part of the first iteration of the outer loop and therefore the first
subarray. Thread id 8 to 14 are part of the second iteration of the outer loop and second subarray.
Thread id 15 to 20 are part of the third and so on.
Each subarray is increasing one in size compared to its subarray to the right. With this pattern in
the subarrays it is possible to use the sum formula to compute which subarray a thread is part of.

nX

i=1

i =
n× (n+ 1)

2

In the example of finding the correct i and j values for thread id 21 it is needed to know how many
iterations by the inner loop are still to be executed. This gives the formula:

restIter = totIter − id = 36− 21 = 15
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restIter is used to calculate which subarray thread id 21 is part of by using the summation formula
and finding which value n summed gives restIter.

n× (n+ 1)

2
= restIter = 15

n× (n+ 1) = (15× 2)

n× (n+ 1)− (15× 2) = 0

n2 + n− (15× 2) = 0

The expression now has the form of a quadratic equation, a × x2 + b × x + c = 0, and in the

quadratic formula x is isolated with the formula x =
−b±

√
b2−(4ac)

2a , therefore n can be isolated with
this formula:

n =
−1±

p
1− (4× 1× (−(2× 15)))

2× 1

n = (−6, 5)

The positive value 5 is the number of iterations that still needs to be executed by the outer loop
and is also the 5th subarray (reading right to left) which thread id 21 is part of:

Figure 23: Numbering the subarrays

Therefore it will only be the positive number of the quadratic formula that will be used.
The goal is now to get all the thread id’s (id 21 to id 25) that are part of the 5th last iteration
of the outer loop to compute the number 5 by using quadratic formula that is used above. When
thread id 25 uses the quadratic formula the result is:

npos =
−1 +

p
1− (4× 1× (−(2× (totIter − id))))

2× 1

npos =
−1 +

p
1− (4× 1× (−(2× (36− 25))))

2× 1

npos = 4.2170
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Since this is less than 5 there will be added 0.9999 to npos and then the floor function will be applied
in order to get the result 5 in this case. The formula to compute which iteration of the outer loop
a thread id is part of ncurr is therefore:

ncurr = ⌊−1 +
p

1− (4× 1× (−(2× (totIter − id))))

2× 1
+ 0.9999⌋

To verify the formula ncurr the formula is computed with thread id 21 and thread id 25, which
should result in 5, and thread id 6 which should result in 8. See figure 23 to verify.
Thread id 21:

ncurr = ⌊−1 +
p
1− (4× 1× (−(2× (36− 21))))

2× 1
+ 0.9999⌋ = 5

Thread id 25:

ncurr = ⌊−1 +
p
1− (4× 1× (−(2× (36− 25))))

2× 1
+ 0.9999⌋ = 5

Thread id 6:

ncurr = ⌊−1 +
p
1− (4× 1× (−(2× (36− 6))))

2× 1
+ 0.9999⌋ = 8

The calculations are correct.

Now that each thread can calculate which subarray is it part of the value i can be determined. As
previously stated there are cities − 2 = 8 iterations in total of the outer loop, for cities = 10. By
subtracting this number with ncurr, the value i is computed.

i = (cities− 2)− ncurr

To verify, the value i is computed by thread id 21, thread id 25 and thread id 6.
Thread id 21:

i = (cities− 2)− ncurr = (10− 2)− 5 = 3

Thread id 25:
i = (cities− 2)− ncurr = (10− 2)− 5 = 3

Thread id 6:
i = (cities− 2)− ncurr = (10− 2)− 8 = 0

When comparing the results with figure 23, where it is shown which i value belongs to which thread
id, it is possible to verify that the results i are correct.

Now that each thread can calculate the correct i value, it also has to calculate the correct j

value. The j value is computed based on the i value. When looking above at the sequential pseudo
code for the nested for loops the first iteration of the inner loop will be j = i+2. This means that
the first thread of each subarray in figure 23 can easily compute j = i + 2. As an example in the
figure thread id 21, which is the first thread in subarray no. 5, can compute j = i+2 = 3+ 2 = 5.
However the second thread in a subarray will compute j = i+ 2 + 1, the third j = i+ 2 + 2 and
so on. Thread id 25 in figure 23 will have to compute j = i+ 2 + 4 = 3 + 2 + 4 = 9.
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In order to compute the j value the first thread id of each subarray must be computed. By sub-
tracting the first thread id in a subarray from the current thread id it is possible to compute the
number of iterations by the inner loop, iter, there are between the first thread and the current
thread. When the number iter is found it can be added to the formula to find j:

j = i+ 2 + iter

The first thread id, fti, is computed based on the current subarray that the thread is part of, ncurr,
with the summation formula:

fti = totIter − ncurr × (ncurr + 1)

2

As an example, for thread id 25 it is expected that fti = 21.

fti = totIter − ncurr × (ncurr + 1)

2
= 36− 5× (5 + 1)

2
= 21

This is correct. Now that it is possible to calculate the first thread id in each subarray, the value
iter can be computed by subtracting the current thread id with the first thread id.

iter = threadId− fti

By inserting the information for thread id 25 iter will be:

iter = 25− 21 = 4

Now the value j can be computed for thread 25:

j = i+ 2 + iter = 3 + 2 + 5 = 9

When comparing to figure 23 it correct.

Following is a summary of the formulas created:
The formula to compute totIer:

totIter =
(cities− 2) ∗ (cities− 1)

2

The formula to compute the value i:

ncurr = ⌊−1 +
p
1− (4× 1× (−(2× (totIter − threadId))))

2× 1
+ 0.9999⌋

i = (cities− 2)− ncurr

The formula to compute the value j:

j = i+ 2 + (threadId− (totIter − ncurr × (ncurr + 1)

2
))

These formulas are inserted into the program of the calculated version and can be seen in the fol-
lowing codesnippet, which is from the tsp-kernels.cu.h file, function twoOptKerCalculated().
Line 4 computes the discriminant of the quadratic formula used to compute the value i. Line 5
computes the quadratic formula and adds 0.9999. Line 6 takes the floor and now ncurr is computed.
Line 7 computes the value i. Line 8 computes the value j.
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1 // 2 opt move − c a l c u l a t ed ve r s i on
2 f l o a t tmp ;
3 f o r ( i n t ind = idx ; ind < t o t I t e r ; ind += b l o c k s i z e ){
4 d = 1−(4∗(−2∗( t o t I t e r −ind ) ) ) ;
5 tmp = ((−1+( sq r t ( ( f l o a t ) d ) ) )/2 )+0 .9999 ;
6 curr = ( i n t ) tmp ;
7 i = ( c i t i e s −2) − curr ;
8 j = ( i +2) + ( ind−( t o t I t e r −(( curr ∗( curr +1) )/2 ) ) ) ;
9 ip1 = i +1;
10 jp1 = j +1;
11 change = g l o d i s t [ tour [ i ]∗ c i t i e s+tour [ j ] ] +
12 g l o d i s t [ tour [ ip1 ]∗ c i t i e s+tour [ jp1 ] ] −
13 ( g l o d i s t [ tour [ i ]∗ c i t i e s+tour [ ip1 ] ] +
14 g l o d i s t [ tour [ j ]∗ c i t i e s+tour [ jp1 ] ] ) ;
15
16 //Each thread s h a l l hold the bes t l o c a l change found
17 ChangeTuple check = ChangeTuple ( change , ( unsigned shor t ) i , ( unsigned shor t ) j ) ;
18 localMinChange = minInd : : apply ( localMinChange , check ) ;
19 }

B Code for counting memory accesses

Copying from global memory

1 .
2 .
3 .
4 // copy g l o b a l tour to shared memory
5 f o r ( i n t t = idx ; t < c i t i e s +1; t += b l o c k s i z e ){
6 tour [ t ] = g l o t ou r s [ b lockIdx . x ∗ ( c i t i e s +1) + t ] ;
7 // c i t i e s + 1 ∗ 2 by t e s
8 }

Finding best change using global memory

1 .
2 .
3 .
4 whi l e (minChange [ 0 ] . change < 0){
5 .
6 .
7 f o r ( i n t ind = idx ; ind < t o t I t e r ; ind += b l o c k s i z e ){
8 .
9 .
10 .
11 change = g l o d i s t [ tour [ i ]∗ c i t i e s+tour [ j ] ] +
12 g l o d i s t [ tour [ ip1 ]∗ c i t i e s+tour [ jp1 ] ] −

57



13 ( g l o d i s t [ tour [ i ]∗ c i t i e s+tour [ ip1 ] ] +
14 g l o d i s t [ tour [ j ]∗ c i t i e s+tour [ jp1 ] ] ) ;
15 // 4 ∗ 4 bytes
16 .
17 .
18 .

calculating cost of tour

1 .
2 .
3 .
4 i n t idx = threadIdx . x ;
5 i n t b l o c k s i z e = blockDim . x ;
6 i n t sum = 0 ;
7 i n t g l o i , g l o i p 1 ;
8 f o r ( i n t i = idx ; i < c i t i e s ; i += b l o c k s i z e ){
9 g l o i = l o t ou r [ i ] ;
10 g l o i p 1 = l o t ou r [ i +1] ;
11 sum += g l o d i s t [ g l o i ∗ c i t i e s + g l o i p 1 ] ;
12 }
13 .
14 .
15 .

copying back to global memory

1 // copy best l o c a l tour from shared memory to g l oba l memory
2 f o r ( i n t t = idx ; t < c i t i e s +1; t += b l o c k s i z e ){
3 g l o t ou r s [ b lockIdx . x ∗ ( c i t i e s +1) + t ] = tour [ t ] ;
4 }
5 // 4 ∗ c i t i e s+1 bytes
6
7 //Writing l o c a l optimum r e s u l t s to g l oba l memory
8 i f ( idx == 0){
9 g l o r e s u l t [ b lockIdx . x ∗ 2 ] = l o c a l o p t c o s t ;
10 g l o r e s u l t [ b lockIdx . x ∗ 2+1] = blockIdx . x ;
11 counter [ b lockIdx . x ] = wh i l e b l o ck [ 0 ] ;
12 // counter [ b lockIdx . x ∗ 2 + 1 ] = blockIdx . x ;
13 // p r i n t f ( ”number o f whi l e i t e r s in block %d i s : %d \n ” , b lockIdx . x , wh i l e b l o c
14 }
15 // 4 ∗ 2
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