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Dynamically typed array languages such as Python, APL, and Matlab lift scalar operations to arrays and
replicate scalars to fit applications. We present a mechanism for automatically inferring map and repli-
cate operations in a statically-typed language in a way that resembles the programming experience of a
dynamically-typed language while preserving the static typing guarantees. Our type system—which supports
parametric polymorphism, higher-order functions, and top-level let-generalization—makes use of integer
linear programming in order to find the minimum number of operations needed to elaborate to a well-typed
program. We argue that the inference system provides useful and unsurprising guarantees to the programmer.
We demonstrate important theoretical properties of the mechanism and report on the implementation of the
mechanism in the statically-typed array programming language Futhark.
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1 Introduction
Dynamically typed programming languages, such as Python or JavaScript, are frequently lauded
for their ease-of-use, conciseness, and flexibility. Programmers using these languages often prefer
to keep details implicit, in particular if the details can be determined uniquely from the context;
however, even though the resulting code may be more ergonomic/compelling, bugs and ambiguities
may be “swept under the carpet” if the programmer isn’t careful. Static type systems can detect
and prevent such bugs at compile-time, but often come with a notational cost: programmers are
burdened by adding type annotations. A static type system with full type inference gives the best
of both worlds—programmers have the same static guarantees but do not have to write any type
annotations.
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Unfortunately, static type systems sacrifice flexibility, and many aspects of dynamic programming
languages are difficult to model in static type systems. The implicit lifting of scalar operators across
array operands in dynamic array languages like NumPy is one such aspect. For example, if xs and
ys are vectors of equal length, one can write xs + ys for their element-wise addition. Further, when
mixing arrays of different rank, NumPy performs broadcasting—which we refer to as replication—
and implicitly adds extra dimensions to the smaller-rank array (by replicating its elements) to
match the shape of the larger one.

Languages which allow functions to operate on arguments of any rank in this manner are rank
polymorphic.1 Rank polymorphism originated in mathematical notation for linear algebra and
was first introduced as a programming construct in APL [Hui and Kromberg 2020]. Most rank
polymorphic languages are dynamically typed; while work exists on expressing rank polymorphism
in statically typed languages [Gibbons 2017; Slepak et al. 2014; Šinkarovs et al. 2023], the resulting
type systems are typically either complicated or leave out features such as parametric polymorphism
or higher-order functions, which are difficult to integrate with rank polymorphism.

We investigate a form of rank polymorphism in which functions on their own do not have rank-
polymorphic types, but function applications can have map and rep operations—which are used for
function lifting and argument replication (i.e., broadcasting), respectively—inserted implicitly by
the compiler as part of the type inference elaboration process. While such an elaboration is less
expressive than having rank polymorphism as a first-class construct in the type system, we argue
that it is sufficient for the majority of cases. Our approach also has the interesting property that
rank polymorphism can be seen as a purely syntactical mechanism for leaving some operations
implicit (namely, map and rep) at call sites, meaning that the program can also be expressed and
understood in a fully explicit manner simply by inserting these operations. This is not the case for
most rank-polymorphic languages.

Implicit programming constructs have a long history in several programming languages [Jeffery
2020]. Most notably, implicits have been used to express type classes in the Scala programming
language [Odersky et al. 2017; Oliveira et al. 2010]. In programming languages with implicit
constructs, the compiler transforms a program where some information is missing (in our case
map and rep) and elaborates the program into one where those implicit constructs have been made
explicit. That is, the compiler translates a program with implicit constructs into one with explicit
constructs. In some cases, the compiler may have to reject the input program: perhaps too much
has been left implicit and the elaboration has become ambiguous.

An implicit programming construct is useful when it fits with the mental model of a programmer
and thus allows the programmer to omit certain details without any unexpected surprises. For
example, a Hindley-Milner type system is useful because if a program is well-typed we can (a) make
an inferred type explicit and the program is still well-typed and (b) remove an explicit type
annotation and the system can still infer the now omitted type. We would like similar properties
for our system with implicit map and rep operations.
In this paper, we propose Automap, a technique that enables implicit map and rep operations

to be inferred by a polymorphic type system, using integer linear programming to express and
solve the implicit constraints during inference. We present an elaboration algorithm that makes
implicit map and rep operations explicit and formalize the elaboration with three languages: a
source language where map and rep may be left implicit, an internal language where every function
application is annotated with an annotation that represents the number of map and rep operations
needed at that site, and, finally, a target language where every map and rep is explicit. We define a

1Not to be confused with the entirely unrelated, but confusingly similarly named, notion of higher-rank polymorphism,
which is about nesting type variable quantifiers.
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standard dynamic semantics for the target language. We define the meaning of a source program
via translation to the internal language and then to the target language; however, we allow only
source programs for which there is a unique way in which map and rep constructs are inserted and
we describe how to detect programs where elaboration is ambiguous. We also demonstrate that we
accept all programs that would be supported under a type system that does not support Automap.
We implement Automap as an extension of Futhark [Henriksen et al. 2017], a statically-typed

functional data-parallel array language. Futhark’s constraint-based type system supports parametric
polymorphism, higher-order functions, and top-level let-generalization; it deviates from classic
Hindley-Milner in that it does not support local let-generalization (which would significantly
complicate the type system with minimal benefit to the programmer [Vytiniotis et al. 2011, 2010]).

We show that Automap is useful by removing “administrative” map operations from a collection
of real-world benchmarks, where we judge it improves the readability of the code. Even with
Automap confined to judicious use (i.e., maps are only removed when it improves readability), we
are able to remove 54% of all map operations. We found Automap particularly useful for expressing
mathematical code; for example, in expressions that implement matrix/vector computations.
While the type inference uses integer linear programming, which in theory has exponential

complexity, we empirically show that most of the integer linear programs (ILPs) are small and,
moreover, the full Automap technique imposes a modest average type checking overhead of 2.5 × .

In summary, the contributions of the paper are:

• (Motivation) We motivate the need for Automap with several real-world Futhark programs.
• (Type System and Elaboration) We present a simple type system for a core language
reminiscent of Futhark where maps and reps may be omitted and are inferred through
a constraint-based elaboration process. We define the meaning of programs through the
elaboration into a target language where all maps and reps are made explicit.
• (Meta-Theory) We show that the elaboration satisfies several important properties, in-
cludingWell-Typedness, Determinism, Disambiguation, Forwards Consistency, and
Backwards Consistency as explained in the following section.
• (Implementation) We implement Automap as an extension of the Futhark compiler using
integer linear programming.
• (Evaluation) We evaluate the usefulness of Automap on a collection of real-world Futhark
programs. Specifically, we empirically show that (i) Automap is effective (i.e., we can omit
map and rep operations to make programs more concise and readable), (ii) type inference with
linear constraint solving is practically feasible, and (iii) Automap is able to unambiguously
capture those map operations that programmers want to leave implicit.

The paper is organized as follows: Section 2 motivates the need for implicit maps and replicates in
Futhark. In Section 3 through Section 7, we present a formalization of the mechanism, in terms of an
Automap elaboration into a well-defined target language. Section 8 discusses the implementation
of the constraint-based type system, in particular its interaction with other desirable type system
features. Section 9 evaluates the usefulness of Automap on a collection of real-world Futhark
programs. Finally, Section 10 discusses future work, Section 11 presents related work, and Section 12
concludes.

2 Motivation
This section explores how data-parallel programming problems are expressed with combinations
of map and other parallel operations. We illustrate that being explicit about every map operation
can be tedious and show how Automap can address this via automatic inference of map and rep
operations. The examples use Futhark notation, but the programming model and syntax is quite
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similar to other languages in the Haskell or Standard ML tradition. In particular, we consider
multidimensional arrays to be simply arrays of arrays, similarly to lists, and for the type of arrays
with elements of type 𝜏 , we write [ ]𝜏 . When we map across an array, we traverse only the outermost
dimension. To operate along inner dimensions, we nest maps. This differs from languages such as
APL, where an array is modeled as a separate shape vector and value vector, and map-like operations
apply directly to the elements of the value vector [Hui and Kromberg 2020; Iverson 1962].

2.1 Idea
Consider adding two vectors element-wise. In Futhark, we would use map2 to map across two
arrays simultaneously (map2 is similar to Haskell’s zipWith):

map2 (+) [1,2,3] [4,5,6]

This is awkward for longer expressions. While we can define a helper function vecadd = map2
(+), it would be better if we could simply write [1,2,3] + [4,5,6], using infix notation here
purely as a syntactical convenience. Since the function (+) has type int → int → int, while
the operands have type [ ]int, this application is not well-typed. However, it is not difficult to see
that if we lift (+) to operate on arrays instead of scalars, the application becomes well-typed—and
such lifting is exactly what map𝑁 does, where 𝑁 denotes the arity of the function.2 To operate on
multidimensional arrays, map𝑁 can be nested, such as in map2 (map2 (+)) for matrix addition.
A type checker could inspect every function application and decide, based on the rank of the
operands, how much to lift the function. However, simply inserting map when needed is not
sufficient to support desirable programming patterns. In particular, we also want to mix scalar and
array operands:

[3,4,5] + 1

Given a function rep : 𝜏 → [ ]𝜏 that replicates its argument an unspecified number of times,3 the
above expression can be rewritten as

[3,4,5] + rep 1

and then further as

map2 (+) [3,4,5] (rep 1)

Automap should perform the above rewriting automatically; essentially, Automap is an algorithm
for inserting map𝑁 and rep operations in order to make the program type correct. While Automap
is fundamentally just a syntactical convenience, the impact on readability can be quite dramatic, as
we will see in the following section and in Section 9. In particular, expressions that are transcriptions
of mathematical formulae involving vectors and matrices will otherwise be littered with map and
rep operations; for example, if A is a three-dimensional tensor and c is scalar, it is clearer to write
A * c instead of map (map (map (*c))) A.

2.2 Examples
Consider the following definition of linear interpolation:

def lerp v w t = v + (w - v) * t

Because there are no type ascriptions, it would be valid to infer any rank for the parameter types,
inserting map and rep as needed. How should Automap pick between them? A good strategy (and
one that usually aligns with programmer intent and is easy to communicate to the programmer) is
2In practice, the Futhark built-in library supports map𝑁 for 2 ≤ 𝑁 ≤ 9 and are trivially defined in terms of zip and map.
3The issue of how many elements should be replicated will be discussed briefly in Section 8.
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to always pick the solution that inserts the fewest operations; the size of a solution is equal to the
number of inserted map and rep operations. If multiple solutions with the minimum possible size
exist, the program is ambiguous and should be rejected. One useful property of this strategy is that
a size zero solution is necessarily unique, and so ambiguous cases can always be addressed by the
user by manually inserting maps and reps in the source program. We enshrine this strategy as the
first rule of Automap:

Rule 1: minimize the number of inserted maps and reps.

The second rule of the Automap strategy follows from the fact that it is never necessary to both
map and rep a single application since there are only two possible ways that there can be a rank
mismatch: either the argument is under-dimensioned (in which case one or more reps are required)
or over-dimensioned (in which case one or more maps are required).

Rule 2: a single application may have implicit maps or reps but never both.

Note that Rule 1 does not imply Rule 2 (i.e., there are programs where the minimal solution
violates Rule 2). Not only do these rules eliminate a lot of potential ambiguity, but they are easy to
communicate to the programmer and for them to understand—an important quality in any implicit
programming system.
Returning to the linear interpolation example, following this strategy, we infer

lerp : float -> float -> float -> float (i.e., no implicit map or rep operations are
inferred). Despite the function itself being scalar, rank polymorphic applications are well-typed
through Automap:

Source Application Elaborated Application
lerp vs ws t −→ map3 lerp vs ws (rep t)
lerp vs ws ts −→ map3 lerp vs ws ts
lerp v w ts −→ map3 lerp (rep v) (rep w) ts

where v, w, t have type float and vs, ws, ts have type []float (i.e., are vectors).
As a more complicated example, consider a program check for determining whether a square

matrix 𝐴 is an X-matrix, meaning it has nonzero elements on its diagonals and zero elements
elsewhere. With explicit maps, an implementation could be:

def outerprod f x y = map (\x' -> map (f x') y) x

def bidd A = outerprod (==) (indices A) (indices A)

def xmat A = map2 (map2 (||)) (bidd A) (reverse (bidd A))

def check A = map2 (map2 (==)) (xmat A) (map (map (!=0)) A) |> flatten |> and

The indices function accepts an array of size 𝑛 and produces the array [0, . . . , 𝑛 − 1], flatten
eliminates the outer dimension, and the function and takes a vector of booleans and returns true
if all elements are true. The code is somewhat noisy; using map𝑁 eight times. Blindly removing all
maps (and changing to infix notation), we obtain:

def outerprod f x y = (\x' -> f x' y) x

def bidd A = outerprod (==) (indices A) (indices A)

def xmat A = bidd A || reverse (bidd A)

def check A = xmat A == (A!=0) |> flatten |> and

By the minimal solution strategy, we infer the type of outerprod to be the binary application
function, which is not what we intended. As a fix, we put back a single map:
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def outerprod f x y = map (\x' -> f x' y) x

Also, the body of the check function is ambiguous, with the following solutions:
(1) map2 (map2 (==)) (xmat (rep A)) (rep (rep (A!=0))) |> flatten |> and
(2) map2 (map2 (==)) (xmat A) (rep (map2 (!=) A (rep 0))) |> flatten |> and

In the first solution, we infer A to be a scalar and in the second to be a vector. Both of these solutions
are minimal, but neither of them is actually what we want: we intended A to be a matrix! In this
case, we can address the ambiguity by adding a type annotation on the parameter:4

def check (A: [][]i32) = xmat A == (A!=0) |> flatten |> and

The additional type constraint ensures that only a single Automap elaboration is well-typed. The
inferred reps can be simplified away during elaboration, as we will discuss in Section 8.

2.3 Desired Properties
We consider five requirements that the design of Automap should satisfy. Additionally, these
requirements ensure a reasonable mental model for programmers. We base the requirements on
how type inference works in most programming languages:
• (Well-Typedness) If the program, with explicit and implicit map and rep operations, is
well-typed, then the fully elaborated program with only explicit operations is well-typed.
• (Determinism) For any program, the elaboration is unambiguous or the program is rejected.5
• (Disambiguation) If a program is ambiguous, the ambiguity can be resolved by explicit
insertion of map and rep operations.
• (Forwards Consistency) If the programmer inserts an otherwise inferred map or rep opera-
tion then the resulting program is unambiguous and its elaboration is semantically equivalent
to the elaboration of the original program.
• (Backwards Consistency) If the programmer removes an explicit map or rep operation then
the resulting program is either ambiguous or unambiguous and its elaboration is semantically
equivalent to the elaboration of the original program.

The (Well-Typedness) and (Determinism) properties are self-explanatory. The (Disambigua-
tion) property is important because it means that a programmer can always resolve an ambiguous
situation by being more explicit. Programmers are familiar with this situation from programming
languages with partial type inference where some type annotations may be needed to guide the type
checker. Bi-directional type checkers typically require some type annotations, but even languages
like Haskell may require type annotations to resolve specific type class instances. The (Forwards
Consistency) and (Backwards Consistency) properties are bit more involved, but they essen-
tially state that the system is well-behaved when we add inferred or remove explicit map or rep
operations. The idea is inspired by type annotations in languages with complete type inference
like Standard ML [Milner 1997]. For (Forwards Consistency), if Standard ML has inferred that
an expression has a specific type then we as programmers can annotate that specific type and the
newly annotated program still type checks. Similarly, for (Backwards Consistency), if a Standard
ML program has a type annotation and it type checks then we can remove that type annotation and
the updated program still type checks. Automap should have analogous properties for inserting
inferred or removing explicit maps replicates, modulo ambiguity.

4Note that Automap never requires type annotations and check could also be disambiguated by inserting a map operation.
5A naïve elaboration could reject all programs. We show that this is not the case for Automap.
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3 Formalization
3.1 Overview
In the following sections, we formalize the Automap mechanism for a polymorphic higher-order
array language based on a small subset of Futhark. The language is simplistic—it features top-level
polymorphic function definitions and a few basic operations on arrays including a built-in map
construct and a rep construct for modeling arrays containing one replicated value. We further
subdivide the language into three different but highly similar languages: (i) the source language,
(ii) the internal language, and (iii) the target language. The idea is that the programmer writes
programs in the source language; the source language is subsequently transformed into the internal
language—which features annotations to keep track of implicit maps and reps—during type checking.
Finally, the internal language is elaborated into the target language, which corresponds directly
to the source language program except with all map and rep operations explicit. Aside from the
differences shown in Table 1, the three languages are identical and will be fully specified in the
next section, but we’ll first give an overview of each.

Table 1. The differences between the source, internal, and target languages. The “Example” row shows how

the source expression inc [1, 2, 3] is transformed into the internal language and then from the internal

language into the target language; inc is an illustrative scalar function that increments its argument by 1.

Source language Internal language Target language
Implicit map and reps ✓ ✓ ✗
Explicit map and reps ✓ ✓ ✓
△ (𝑀,𝑅) annots. ✗ ✓ ✗
Example inc [1, 2, 3] inc [1, 2, 3] △ (𝑀,𝑅) map inc [1, 2, 3]

Source Language. The source language features implicit map and rep constructs. This means that
inserting map and rep constructs is always optional. For example, in the “Example” row of Table 1,
the source expression has an implicit map. Note that explicit maps and reps are allowed in source
expressions as well (and are necessary to address ambiguity).

Internal Language. The internal language allows for so-called flexible function applications, which
are annotated with rank variables that specify the implicit maps and reps. To be more precise, all
applications are annotated with objects of the form △ (𝑀,𝑅);𝑀 is a rank variable that represents
the number of implicit maps and 𝑅 is a rank variable that represents the number of implicit reps. A
constraint-based inference algorithm finds values for all the𝑀s and 𝑅s in the △ (𝑀,𝑅) objects of
an internal language program, after which it is straightforward to translate an internal language
program into a well-typed target program by simply inserting the number of map and rep constructs
that the solved-for 𝑀s and 𝑅s dictate. In the “Example” row of Table 1, the source expression
inc [1, 2, 3] is transformed to the internal expression inc [1, 2, 3] △ (𝑀,𝑅) by annotating it with
an △ (𝑀,𝑅) object.

Target Language. In the target language—unlike in the source and internal languages—all map
and rep constructs must be explicit. In the “Example” row of Table 1, the target expression
map inc [1, 2, 3] is obtained from the internal expression inc [1, 2, 3] △ (𝑀,𝑅) by using the us-
ing the inference algorithm to find the solution 𝑀 ↦→ 1, 𝑅 ↦→ 0 and then transforming into the
corresponding target expression map inc [1, 2, 3]—one map and no reps.
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The mechanism we propose will infer map and rep constructs only at application sites, which in
practice covers most needs. However, one may consider extending the mechanism to insert map
and rep constructs also for other constructs such as immediate values and references to variables,
which may be beneficial for elaborating programs with branches that have different ranks. In such
cases, we leave it up to the programmer to make use of the polymorphic identity function for
having Automap infer additional map and rep constructs.

3.2 Preliminaries and Language Grammars
In the following we shall assume a denumerably infinite set 𝑉r of rank variables, ranged over by 𝑄 ,
𝑀 , and 𝑅, a denumerably infinite set𝑉t of type variables, ranged over by 𝛼 and 𝛽 , and a denumerably
infinite set 𝑉p of program variables, ranged over by 𝑥 , 𝑦, 𝑧, and 𝑓 .

𝑆⊘ ::= [ ] dimension
| 𝑆⊘ 𝑆⊘ concatenation
| • empty shape

𝜏⊘ ::= int integers
| 𝜏⊘ → 𝜏⊘ functions
| 𝑆⊘ 𝜏⊘ arrays
| 𝛼 (𝛼 ∈ 𝑉t) type variable

𝑆 ::= 𝑆⊘ shapes without rank vars
| [ ]𝑄 (𝑄 ∈ 𝑉r) rank power
| 𝑆 𝑆 concatenation

𝜏 ::= 𝜏⊘ types without rank vars
| 𝜏 → 𝜏 functions
| 𝑆 𝜏 arrays

𝜎 ::= 𝜏 type
| ∀𝛼 . 𝜎 quantified type

Fig. 1. Grammar for closed shapes (𝑆⊘), shapes (𝑆), closed types (𝜏⊘), types (𝜏), and type schemes (𝜎).

Figure 1 shows the grammars for shapes, types, and type schemes. Notice that we distinguish
between closed shapes (𝑆⊘), that is, shapes that do not contain rank variables, and shapes that may
contain rank variables (𝑆). Similarly, we distinguish between closed types (𝜏⊘) that do not contain
rank variables and types (𝜏) that may contain rank variables. We also write frv(𝑋 ) and ftv(𝑋 ) to
denote the free rank variables and the free type variables of the object 𝑋 , respectively. We define
equality on shapes and types as the smallest equivalence relation over these sets that includes • as
an identity element for shape concatenation (thus, for any shape 𝑆 , we have 𝑆 • = • 𝑆 = 𝑆 .)

The rank power shape [ ]𝑄—where 𝑄 is a rank variable—should be intuitively understood to be a
sequence of 𝑄 [ ]s. Correspondingly, when 𝑛 is a nonnegative integer, [ ]𝑛 is sugar for a sequence of
𝑛 [ ]s. That is, [ ]0 = •, and [ ](𝑛+1) = [ ]𝑛[ ].

When 𝜎 = ∀𝛼 . 𝜏 , we consider 𝛼 to be bound in 𝜏 and we consider type schemes to be equal up
to renaming of bound type variables. We write ∀𝛼1, . . . , 𝛼𝑘 . 𝜎 as sugar for ∀𝛼1 . · · · ∀𝛼𝑘 . 𝜎 . We
shall also sometimes write ®𝑋 (𝑛) to denote a sequence of 𝑛 objects 𝑋1, ..., 𝑋𝑛 and we may sometimes
just write ®𝑋 if the length of the sequence is clear from the context.

Figure 2 shows the grammar for the source, internal, and target languages. Syntactically, all three
languages are identical except that applications in the internal language are annotated with rank
specifications (show in blue in the figure). The application 𝑒 𝑒 △ (𝑀,𝑅) is annotated with the rank
variables𝑀 and 𝑅. After the Automap system determines integral values for the rank variables𝑀
and 𝑅, they will be substituted for integral ranks to obtain an expression of the form 𝑒 𝑒 △ (𝑛, 𝑛).

For values of the form 𝜆𝑥 . 𝑒 and programs of the form def 𝑓 𝑥 = 𝑒 ; 𝑝 , the program variable 𝑥 is
considered bound in 𝑒 and the program variable 𝑓 is considered bound in 𝑝 (function definitions may
not be recursive). We assume that partial applications of map and rep are implicitly eta-converted.
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𝑣 ::= 𝑛 (𝑛 ∈ Z) constant integer
| 𝜆𝑥. 𝑒 function
| [𝑣, . . . , 𝑣] array
| rep 𝑣 replicated array

𝑝 ::= def 𝑓 𝑥 = 𝑒 ; 𝑝 definition
| 𝑒 expression

𝑒 ::= 𝑣 value
| 𝑥 (𝑥 ∈ 𝑉p) program variable
| [𝑒, . . . , 𝑒] arrays
| map 𝑒 𝑒 map
| rep 𝑒 rep
| 𝑒 𝑒 △ (𝑀,𝑅) (annotated) application

Fig. 2. Grammar for values (𝑣), expressions (𝑒), and programs (𝑝). In the internal language, applications are

annotated with rank specifications (shown in blue).

For instance, we write map 𝑒 to mean 𝜆𝑥. map 𝑒 𝑥 , if map 𝑒 appears alone. For 𝑛 ∈ N, we also write
map𝑛 𝑒 and rep𝑛 𝑒 as syntactic sugar for a map nest and a rep nest, respectively:

map0 𝑒 = 𝑒, rep0 𝑒 = 𝑒,

map𝑛+1 𝑒 = map (map𝑛 𝑒), rep𝑛+1 𝑒 = rep (rep𝑛 𝑒).
For the precise semantics that we give in the following section, replicated arrays have unbounded

size, which is modeled by representing a replicated array by a single construct rep 𝑣 , which is an
array that has the value 𝑣 at every index.

A rank substitution (𝑠r) maps rank variables to nonnegative integers, a type substitution (𝑠t) maps
type variables to types, and a value substitution (𝑠v) maps program variables to values. The effect of
applying a substitution 𝑠 (of any kind) to an object 𝑋 , written 𝑠 (𝑋 ), is to replace (simultaneously)
all free (i.e., non-bound) occurrences of variables in 𝑋 with corresponding values in 𝑠 (extended
to be the identity outside of its domain, written dom(𝑠)). When 𝑠 and 𝑡 are substitutions and 𝑋
is some object, we write (𝑡 ◦ 𝑠) (𝑋 ) to mean 𝑡 (𝑠 (𝑋 )). Also, we use the notation 𝑠 |𝐷 to denote the
substitution 𝑠 restricted to the domain 𝐷 .

4 Target Language
We now present the target language. Recall that the only difference between the source language
and the target language is that the target language does not feature implicit map and rep constructs.
Instead, all map and rep constructs are explicit. By virtue of this, the target language is simpler and
can be assigned a dynamic semantics—the semantics of the source language are only indirectly
defined by first converting into the internal language during type checking and then subsequently
into the target language by solving for the rank variables in the △ (𝑀,𝑅) application annotations.
For these reasons, we present the target language first.
Specifically, we define a type system for the language as well as a dynamic semantics and we

demonstrate a type safety property that says that “well-typed expressions do not get stuck”. Note
that the target language does not track array sizes statically (this is handled by other work [Bailly
et al. 2023; Henriksen and Elsman 2021]) but it does track array ranks. Essentially, the type safety
property guarantees that function application always involves applying a function to an argument
and that operations that require array arguments indeed are passed arrays at runtime.
Environments (Γ) map program variables to type schemes and we write Γ, 𝑥 : 𝜎 to specify that

the environment that extends Γ to map 𝑥 to 𝜎 , assuming 𝑥 ∉ dom(Γ). In this section, we shall often
write 𝜏 to mean 𝜏⊘ , as all types are closed with respect to rank variables and environments shall
implicitly contain only closed type schemes (i.e., type schemes containing closed types). We say that
a type scheme 𝜎 = ∀®𝛼.𝜏 ′ generalizes a type 𝜏 , written 𝜎 ≥ 𝜏 , if there exists a type substitution 𝑠t
such that dom(𝑠t) = { ®𝛼} and 𝑠t (𝜏 ′) = 𝜏 .
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⊢ 𝑣 : 𝜏

⊢ 𝑛 : int
SV-Int

∀𝑖 ∈ {1, . . . , 𝑛} . ⊢ 𝑣𝑖 : 𝜏

⊢ [𝑣1, . . . , 𝑣𝑛] : [ ]𝜏
SV-Array

⊢ 𝑣 : 𝜏

⊢ rep 𝑣 : [ ]𝜏
SV-Rep

𝑥 : 𝜏 ⊢ 𝑒 : 𝜏 ′

⊢ 𝜆𝑥.𝑒 : 𝜏 → 𝜏 ′
SV-Fun

Γ ⊢ 𝑒 : 𝜎

Γ, 𝑥 : 𝜎 ⊢ 𝑥 : 𝜎
S-Var

Γ ⊢ 𝑒 : 𝜎 𝜎 ≥ 𝜏
Γ ⊢ 𝑒 : 𝜏

S-Inst
∀𝑖 ∈ {1, . . . , 𝑛} . Γ ⊢ 𝑒𝑖 : 𝜏

Γ ⊢ [𝑒1, . . . , 𝑒𝑛] : [ ]𝜏
S-Array

⊢ 𝑣 : 𝜏

Γ ⊢ 𝑣 : 𝜏
S-Val

Γ, 𝑥 : 𝜏 ⊢ 𝑒 : 𝜏 ′

Γ ⊢ 𝜆𝑥 . 𝑒 : 𝜏 → 𝜏 ′
S-Fun

Γ ⊢ 𝑒1 : 𝜏1 → 𝜏2 Γ ⊢ 𝑒2 : 𝜏1
Γ ⊢ 𝑒1 𝑒2 : 𝜏2

S-App

Γ ⊢ 𝑒1 : 𝜏1 → 𝜏2 Γ ⊢ 𝑒2 : [ ]𝜏1

Γ ⊢ map 𝑒1 𝑒2 : [ ]𝜏2
S-Map

Γ ⊢ 𝑒 : 𝜏

Γ ⊢ rep 𝑒 : [ ]𝜏
S-Rep

Γ ⊢ 𝑝 : 𝜎

Γ, 𝑥 : 𝜏 ⊢ 𝑒 : 𝜏 ′ { ®𝛼} ∩ ftv(Γ, 𝜎 ′) = ∅ Γ, 𝑓 : ∀®𝛼.𝜏 → 𝜏 ′ ⊢ 𝑝 : 𝜎 ′

Γ ⊢ def 𝑓 𝑥 = 𝑒 ; 𝑝 : 𝜎 ′
S-Def

Fig. 3. Target language typing rules.

Figure 3 gives typing rules for the target language. The typing rules allow inferences among
sentences of the form Γ ⊢ 𝑝 : 𝜎 , which says that under Γ, 𝑝 has type scheme 𝜎 . Note that an
expression is also a program and that we do not show the implicit rule for typing a program that is
an expression. The typing rules are closed under type substitution:

Proposition 4.1 (Typing Closed Under Type Substitution). If Γ ⊢ 𝑝 : 𝜎 then 𝑠t (Γ) ⊢ 𝑝 : 𝑠t (𝜎),
for any type substitution 𝑠t.

Proof Sketch. By induction over the typing derivation (see the supplementary mate-
rial [Schenck 2024] for a complete proof). The S-Inst case requires exploiting the fact that 𝜎 ≤ 𝜏
relation is closed under substitution. The S-Def case requires the renaming of the bound variables
{ ®𝛼} to a new set { ®𝛼 ′} to ensure that { ®𝛼 ′} ∩ ftv(𝑠t (Γ), 𝑠t (𝜎 ′)) = ∅. The remainder of the cases follow
straightforwardly by the inductive hypothesis. □

The dynamic semantics is specified as a small-step contextual semantics and the soundness result
is demonstrated using well-known techniques [Morrisett 1995; Wright and Felleisen 1994]. We
define the notions of contexts (𝐾 ) and redexes (𝑟 ) according to the grammars in Figure 4 below.
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𝐾 ::= ⟨·⟩ | 𝐾 𝑒 | 𝑣 𝐾 | [𝑣, . . . , 𝑣, 𝐾, 𝑒, . . . , 𝑒] Contexts
| rep 𝐾 | map 𝐾 𝑒 | map 𝑣 𝐾

𝑟 ::= (𝜆𝑥 .𝑒) 𝑣 | map (𝜆𝑥.𝑒) [𝑣1, · · · , 𝑣𝑛] Redexes
| map (𝜆𝑥.𝑒) (rep 𝑣)
| def 𝑓 𝑥 = 𝑒 ; 𝑝 Program redex

Fig. 4. Context and redex grammars for the target language.

When 𝐾 is a context and 𝑒 is some expression, we write 𝐾 ⟨𝑒⟩ to denote the expression obtained by
filling the hole in the context 𝐾 with the expression 𝑒 . Also, when 𝑝 is a program, we write 𝐾 ⟨𝑝⟩ to
denote the program obtained by filling the hole in the context 𝐾 with the program 𝑝 . A redex may
either be a program or an expression (also considered a program). In particular, during evaluation,
top-level functions are first substituted into the program expression before any proper evaluation
occurs. Reduction rules for programs (and expressions) are defined as:

def 𝑓 𝑥 = 𝑒 ; 𝑝 { 𝑝 [𝜆𝑥 .𝑒/𝑓 ]
(𝜆𝑥.𝑒) 𝑣 { 𝑒 [𝑣/𝑥]

map (𝜆𝑥 .𝑒) [𝑣1, · · · , 𝑣𝑛] { [𝑒 [𝑣1/𝑥], · · · , 𝑒 [𝑣𝑛/𝑥]]
map (𝜆𝑥 .𝑒) (rep 𝑣) { rep (𝑒 [𝑣/𝑥])

𝐾 ⟨𝑝⟩ { 𝐾 ⟨𝑝′⟩ if 𝑝 { 𝑝′ and 𝐾 ≠ ⟨·⟩

Fig. 5. Reduction rules for the target language.

The proofs for the following propositions are standard, so we relegate full proofs to the sup-
plementary material [Schenck 2024] and only include proof sketches here. With redexes in hand,
we can now express a property saying that any well-typed program 𝑝 can be decomposed into an
evaluation context and a redex:

Proposition 4.2 (Uniqe Decomposition). If Γ ⊢ 𝑝 : 𝜎 then either 𝑝 is a value or there exists a
type scheme 𝜎 ′, a unique expression 𝑒 , and a unique context 𝐾 such that 𝑝 = 𝐾 ⟨𝑒⟩ and Γ ⊢ 𝑒 : 𝜎 ′ and
𝑒 is a redex.

Proof Sketch. By induction over the typing derivation. All the cases are fairly straightforward
(and follow by the inductive hypothesis). The C-App case requires casing on whether or not 𝑒1 and
𝑒2 are values. □

Another central property of the type system is that it is closed under value substitution:

Proposition 4.3 (Typing Closed Under Value Substitution). If Γ, 𝑥 : 𝜎 ′ ⊢ 𝑝 : 𝜎 and ⊢ 𝑣 : 𝜎 ′
then Γ ⊢ 𝑝 [𝑣/𝑥] : 𝜎 .
Proof Sketch. By straightforward induction over the typing derivation. □

The following two properties state progress and preservation, which together express type safety
for the target language.

Proposition 4.4 (Progress). If ⊢ 𝑝 : 𝜎 then either 𝑝 is a value or there exists 𝑝′ such that 𝑝 { 𝑝′.

Proof Sketch. Follows by Proposition 4.2. □

Proposition 4.5 (Preservation). If ⊢ 𝑝 : 𝜎 and 𝑝 { 𝑝′ then ⊢ 𝑝′ : 𝜎 .
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Proof Sketch. By induction over the typing derivation, using Propositions 4.2 and 4.3. □

5 Internal Language
When the source language is transformed into the internal language during type checking, con-
straints involving rank variables are generated at each function application site. The rank variables
specific to a given application are what populate the △ (𝑀,𝑅) annotations in the internal language
and constraints involving 𝑀 and 𝑅 are emitted during type checking. We now precisely define
constraints and the internal type system.

5.1 Constraints
A constraint is a relation defined by the grammar in Figure 6. Constraints are generated by the type
rules in Figure 7 and capture relationships that must hold between types or rank variables—either
equality between types (𝜏1 � 𝜏2) or that one of two rank variables 𝑀 , 𝑅 must be assigned zero
(𝑀 ∨· 𝑅).

𝑐 ::= 𝜏1 � 𝜏2 type equality
| 𝑀 ∨· 𝑅 zero-rank disjunction

𝐶 ::= ∅ | {𝑐, . . . } set of constraints

Fig. 6. Grammar of constraints and constraint sets.

More formally, the constraint 𝜏1 � 𝜏2 is satisfiable by a substitution 𝑠 if 𝑠 (𝜏1) = 𝑠 (𝜏2) and both 𝑠 (𝜏1)
and 𝑠 (𝜏2) are closed (i.e., don’t contain any rank variables). The zero-rank disjunction constraint
𝑀 ∨· 𝑅 is satisfiable by a substitution 𝑠 if 𝑠 (𝑀) = 0 or 𝑠 (𝑅) = 0. Intuitively, the purpose of the
zero-rank disjunction constraint is to enforce Rule 2 of Section 2.2—namely that each application
can have either implicit maps or implicit reps, but not both.

For a set of constraints𝐶 , the substitution 𝑠 is a satisfier of𝐶 if every constraint in𝐶 is satisfiable
by 𝑠 . Constraint sets also have a notion of equivalence; two constraint sets 𝐶 , 𝐶′ are equivalent,
written 𝐶 ≃ 𝐶′, if a substitution 𝑠 is a satisfier of 𝐶 if and only if it is a satisfier of 𝐶′.

5.2 Internal Type System
Figure 7 shows the typing rules for constraint-based judgments; the judgment Γ ⊢ 𝑒 :𝑆 𝜎 ∥ 𝐶 says
that under environment Γ, 𝑒 has scheme 𝜎 with frame 𝑆 when the constraints in𝐶 are satisfied. If a
frame is the empty shape (•) it may be omitted from the judgment; Γ ⊢ 𝑒 : 𝜎 ∥ 𝐶 is syntactic
sugar for Γ ⊢ 𝑒 :• 𝜎 ∥ 𝐶 . Frames are the extra leading dimensions on a result type generated by
preceding maps; in the relation Γ ⊢ 𝑒 :𝑆 𝜎 ∥ 𝐶 , frames function to syntactically separate these
leading dimensions from the scheme 𝜎 , but you can think of the expression 𝑒 as having type 𝑆𝜎 .
Tracking frames separately from the rest of a type is important not only for some of the proofs of
the propositions that follow, but is also critical for the implementation (see Section 8.2).

The𝑀,𝑅 fresh premise of the C-App introduces two globally fresh rank variables𝑀 and 𝑅 which
correspond to the number of implicit maps and reps of the application, respectively. The 𝑀 ∨· 𝑅
constraint encodes that one of 𝑀 or 𝑅 must be zero since a flexible function application allows
either implicit reps or an implicit maps, but not both (i.e., it enforces Rule 2 of Section 2.2). The
constraint [ ]𝑀 𝑆1 𝜏1 � [ ]𝑅 𝑆2 𝜏3 encodes type equality between the parameter of the function (on
the LHS) and the argument (on the RHS). The important bits are the tacked on shapes—[ ]𝑀 on the
LHS and [ ]𝑅 on the RHS. An under-dimensioned parameter is “lifted” to the correct rank via [ ]𝑀

(corresponding to𝑀 implicit maps), and an under-dimensioned argument has [ ]𝑅 extra dimensions
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Γ ⊢ 𝑒 :𝑆 𝜎 ∥ 𝐶

⊢ 𝑛 : int ∥ ∅
C-Int

Γ ⊢ 𝑒 : 𝜎 ∥ ∅ 𝜎 ≥ 𝜏
Γ ⊢ 𝑒 : 𝜏 ∥ ∅

C-Inst
Γ, 𝑥 : 𝜎 ⊢ 𝑥 : 𝜎 ∥ ∅

C-Var

∀𝑘 ∈ {1, . . . , 𝑛} . Γ ⊢ 𝑒𝑘 :𝑆𝑘 𝜏𝑘 ∥ 𝐶𝑘

Γ ⊢ [𝑒1, 𝑒2, . . . , 𝑒𝑛] : [ ]𝑆1𝜏1 ∥ {𝑆1𝜏1 � 𝑆𝑘𝜏𝑘 | 𝑘 ∈ {2, . . . , 𝑛}} ∪𝐶1 ∪ · · · ∪𝐶𝑛

C-Array

Γ ⊢ 𝑒1 :𝑆1 𝜏1 → 𝜏2 ∥ 𝐶1 Γ ⊢ 𝑒2 :𝑆2 𝜏3 ∥ 𝐶2
𝑀,𝑅 fresh 𝐶 = {𝑀 ∨· 𝑅, [ ]𝑀 𝑆1 𝜏1 � [ ]𝑅 𝑆2 𝜏3}

Γ ⊢ 𝑒1 𝑒2 △ (𝑀,𝑅) :
[ ]

𝑀
𝑆1
𝜏2 ∥ 𝐶 ∪𝐶1 ∪𝐶2

C-App
Γ, 𝑥 : 𝜏1 ⊢ 𝑒 :𝑆 𝜏2 ∥ 𝐶

Γ ⊢ 𝜆𝑥. 𝑒 : 𝜏1 → 𝑆 𝜏2 ∥ 𝐶
C-Fun

Γ ⊢ 𝑒1 :𝑆1 𝜏1 → 𝜏2 ∥ 𝐶1 Γ ⊢ 𝑒2 :𝑆2 𝜏3 ∥ 𝐶2

Γ ⊢ map 𝑒1 𝑒2 :[ ]𝑆1 𝜏2 ∥ {[ ]𝑆1𝜏1 � 𝑆2𝜏3} ∪𝐶1 ∪𝐶2
C-Map

Γ ⊢ 𝑒 :𝑆 𝜏 ∥ 𝐶
Γ ⊢ rep 𝑒 : [ ]𝑆𝜏 ∥ 𝐶

C-Rep

Γ ⊢ 𝑝 : 𝜎

Γ, 𝑥 : 𝜏 ⊢ 𝑒 : 𝜏 ′ ∥ 𝐶 𝑠 satisfies 𝐶 { ®𝛼} ∩ ftv(𝑠 (Γ), 𝜎 ′) = ∅
𝑠 (Γ), 𝑓 : ∀®𝛼.𝑠 (𝜏) → 𝑠 (𝜏 ′) ⊢ 𝑝 : 𝜎 ′

𝑠 (Γ) ⊢ def 𝑓 𝑥 = 𝑠 (𝑒) ; 𝑝 : 𝜎 ′
C-Def

Fig. 7. Constraint-based typing rules.

tacked on (corresponding to 𝑅 implicit reps). Notice that the resulting frame is [ ]𝑀𝑆1; each implicit
map of the current application (the number of which is given by𝑀) increases the dimensionality of
the frame (and hence the application). 𝑆1 consists of any dimensions added by maps of the function
𝑒1. (E.g., (𝜆𝑥 . 𝜆𝑦. 𝑥 +𝑦) [1, 2, 3] has a function type with frame [ ] because an implicit map is required
to lift + over the vector.)

The C-Map rule can be thought of as a specialization of the C-App rule where 𝑅 = 0 and𝑀 = 1.
The C-Def rule, which types programs, does not return constraint sets. Constraint sets are solved
individually for each top-level body. Splitting constraint sets up at the granularity of top-level
definitions ensures that map and rep elaboration is solely a function of the body of each top-level
definition, rather than of the program as a whole. As with the source language, we do not show the
implicit rule for typing a program that is an expression.
As an example of how a source language expression is transformed into an internal language

expression using the rules of Figure 7, consider the the source language expression inc [1, 2, 3]
introduced in Table 1. Via C-Var, C-Array, and C-App we have

inc : int→ int ⊢ inc [1, 2, 3] △ (𝑀,𝑅) :
[ ]

𝑀 int ∥ {𝑀 ∨· 𝑅, [ ]𝑀 int � [ ]𝑅 [ ] int}

6 Rank Analysis
Finding a satisfier 𝑠 of a constraint set 𝐶 can always be done in two phases: first, a compatible
rank substitution 𝑠r is found by first relaxing the constraint sets generated during type checking
into rank-based constraints and then solving them using integer linear programming; the rank
substitution is then used to eliminate all rank variables in 𝐶 . We call this process rank analysis.
Finally, a satisfying type substitution 𝑠t is found for 𝑠r (𝐶); the satisfier 𝑠 can then be formed by the
composition 𝑠 = 𝑠t ◦ 𝑠r.
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6.1 Rank
The rank of a shape or of a type, written | · |, is defined in Figure 8 and denotes the dimensionality
of the shape or type. Because a shape 𝑆 or a type 𝜏 may contain (rank and type) variables, |𝑆 | and

|[ ]𝑄 | = 𝑄 |𝑆 𝜏 | = |𝑆 | + |𝜏 |
|[ ]| = 1 |𝛼 | = 𝛼
|𝑆1 𝑆2 | = |𝑆1 | + |𝑆2 | |𝜏1 → 𝜏2 | = 0
| • | = 0 |int| = 0

Fig. 8. Definition of rank; 𝛼 is the associated rank variable of 𝛼 .

|𝜏 | will be linear sums of integers and rank variables. For each type variable, an associated rank
variable that represents the rank of the given type variable is introduced. Associated rank variables
are distinguished by an overline: 𝑉|t | := {𝛼 | 𝛼 ∈ 𝑉t} is the set of associated rank variables for
type variables. As an example, the rank of [ ]𝑛int is given by |[ ]𝑛int| = |[ ]𝑛 | + |int| = 𝑛 + 0 = 𝑛.
Another example—this time including a rank and a type variable—is |[ ]𝑀𝛼 | = 𝑀 + 𝛼 .

6.2 Rank Constraints
This section introduces a rank-based relaxation of a constraint set 𝐶 , used to solve for the rank
variables in 𝐶 . The type equality constraint of Figure 6 can be relaxed to rank equality constraints
via application of | · |, which only enforce the ranks of the types either side of the � to be equal;
Figure 9 shows the constraint grammar extended with rank equality constraints.

𝑐 ::= . . .

| |𝜏1 | � |𝜏2 | rank equality

Fig. 9. Constraint grammar extended with the rank equality constraint.

The rank constraint |𝜏1 | � |𝜏2 | is satisfied by a rank substitution 𝑠r if 𝑠r ( |𝜏1 |) = 𝑠r ( |𝜏2 |) and neither
𝑠r ( |𝜏1 |) nor 𝑠r ( |𝜏2 |) contain any rank variables (i.e., they’re both closed). We also extend | · | to work
over constraints:

|𝜏1 � 𝜏2 | = |𝜏1 | � |𝜏2 |,
|𝑀 ∨· 𝑅 | = 𝑀 ∨· 𝑅.

Intuitively, | · | is the identity operation on zero-rank disjunction constraints (𝑀 ∨· 𝑅) because
these constraints are already over rank variables. Finally, if 𝐶 is a set of constraints, |𝐶 | is the
corresponding set of corresponding rank constraints: |𝐶 | = {|𝑐 | | 𝑐 ∈ 𝐶}.

As an example, consider the constraint set𝐶 = {𝑀 ∨· 𝑅, [ ]𝑀 int � [ ]𝑅 [ ]int} from the typing of
inc [1, 2, 3] △ (𝑀,𝑅) just before Section 6 on the previous page. The corresponding rank constraint
set is given by |𝐶 | = {𝑀 ∨· 𝑅, |[ ]𝑀 int � [ ]𝑅 [ ]int|} = {𝑀 ∨· 𝑅,𝑀 � 𝑅 + 1}, which is satisfied by
𝑠r = [𝑀 ↦→ 1, 𝑅 ↦→ 0]. This solution indicates that there is an implicit map (because𝑀 is assigned a
value of 1) and aligns with the target language elaboration shown in Table 1.
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6.3 Size and Ambiguity
There may be many different rank substitutions that can satisfy a rank constraint set |𝐶 |. To stratify
them, we quantify them via a notion of size. The size of a rank substitution 𝑠r relative to a rank
constraint set |𝐶 | is defined as

size(𝑠r, |𝐶 |) =
∑︁

𝑄∈frv( |𝐶 | )
𝑠r (𝑄).

Note that size(𝑠r, |𝐶 |) doesn’t count the rank of any associated rank variables for type variables
(i.e., variables of the form 𝛼) because frv( |𝐶 |) doesn’t include associated rank variables. Since all
the rank variables in |𝐶 | originate from flexible function-application annotations (i.e. △ (𝑀,𝑅,)),
size(𝑠r, |𝐶 |) expresses the total number of maps and reps that 𝑠r assigns. The intent here is that
smaller sized solutions are preferable—in accordance with Rule 1—and the size function provides a
means of ranking solutions.
With a notion of size, we can be more specific about the ambiguity of a rank constraint set.

We say that |𝐶 | is ambiguous at size 𝑘 if there exist satisfying rank substitutions 𝑠r, 𝑠′r , of |𝐶 | with
size(𝑠r, |𝐶 |) = size(𝑠′r, |𝐶 |) = 𝑘 and 𝑠r ≠ 𝑠′r . Otherwise, we say that |𝐶 | is unambiguous at size 𝑘 ; if
|𝐶 | is unambiguous at size 𝑘 , it has at most one satisfier with size 𝑘 .
For an example, consider the constraint set {𝑀 ∨· 𝑅, [ ]𝑀𝛼 � [ ]𝑅 [ ][ ]int}. The corresponding

rank constraint set is given by {𝑀 ∨· 𝑅,𝑀 + 𝛼 � 𝑅 + 2}; one possible satisfier with size 1 is 𝑠r =
[𝑀 ↦→ 1, 𝑅 ↦→ 0, 𝛼 ↦→ 1], but another is 𝑠r = [𝑀 ↦→ 0, 𝑅 ↦→ 1, 𝛼 ↦→ 3] and hence |𝐶 | is ambiguous
at size 1. On the other hand, |𝐶 | is unambiguous at size 0 and 𝑠r = [𝑀 ↦→ 0, 𝑅 ↦→ 0, 𝛼 ↦→ 2] is a
satisfier. (All size 0 solutions are always unique since they correspond to no implicit maps and reps).

6.4 Rank Constraint Set Solving using Integer Linear Programming
To find a satisfying rank substitution 𝑠r for a rank constraint set |𝐶 |, we construct an integer
linear program (ILP) from the constraints of |𝐶 |. The rank variables of |𝐶 | constitute unknown
non-negative integral variables in the ILP and the constraints themselves are linearized and then
added as constraints to the ILP. The ILP is constructed such that any solution of the ILP (i.e., a
mapping from rank variables to integer ranks) constitutes a satisfying substitution 𝑠r of |𝐶 |. Table 2
shows how rank constraints are converted into constraints of the ILP.

Table 2. Mapping of rank constraints to ILP constraints.𝑈 is a constant upper bound on𝑀 and 𝑅.

Rank constraint ILP constraint
|𝜏1 | � |𝜏2 | |𝜏1 | = |𝜏2 |

𝑀 ∨· 𝑅
𝑀 ≤ 𝑈 · 𝑏𝑀
𝑅 ≤ 𝑈 · 𝑏𝑅
𝑏𝑀 + 𝑏𝑅 ≤ 1

Rank equality constraints (|𝜏1 | � |𝜏2 |) are already linear and added to the ILP directly (with �
simply replaced by standard equality). Recall that shape rank disjunction constraints (𝑀 ∨· 𝑅) are
satisfied by a rank substiution 𝑠r when 𝑠r (𝑀) = 0 or 𝑠r (𝑅) = 0. To encode this constraint in the
ILP, binary variables 𝑏𝑀 and 𝑏𝑅 are introduced where𝑀 = 0 if 𝑏𝑀 = 0 and, analogously, 𝑅 = 0 if
𝑏𝑅 = 0. The relationship between 𝑏𝑀 and𝑀 is enforced by the constraint𝑀 ≤ 𝑈 · 𝑏𝑀 where𝑈 is a
constant global upper bound on all rank variables (and analogously for 𝑏𝑅 and 𝑅). The constraint
𝑏𝑀 + 𝑏𝑅 ≤ 1 then enforces that one of 𝑏𝑀 , 𝑏𝑅 is 0 and hence that either𝑀 or 𝑅 is 0.

In correspondence with our desire to insert the minimal number of maps and reps necessary
(Rule 1), the objective of the ILP is to minimize the sum of all the rank variables in flexible function
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application annotations (△ (𝑀,𝑅)) of an expression; this corresponds to minimizing size(𝑠r, |𝐶 |)
where 𝑠r is the solution of the ILP. To illustrate, Figure 10 shows how the rank ILP is generated for
the expression sum (length 𝑥𝑠𝑠), where 𝑥𝑠𝑠 is a matrix.

Γ ⊢ length : [ ]𝛼 → int ∥ ∅
Γ ⊢ 𝑥𝑠𝑠 : [ ] [ ]int ∥ ∅ 𝐶1 = {𝑀1 ∨· 𝑅1, [ ]𝑀1 [ ]𝛼 � [ ]𝑅1 [ ] [ ]int}

Γ ⊢ length 𝑥𝑠𝑠 △ (𝑀1, 𝑅1 ) :
[ ]𝑀1 int ∥ 𝐶1

C-App

Γ ⊢ sum : [ ]int→ int ∥ ∅ 𝐶2 = {𝑀2 ∨· 𝑅2, [ ]𝑀2 [ ]int � [ ]𝑅2 [ ]𝑀1int}
Γ ⊢ sum (length 𝑥𝑠𝑠 ) △ (𝑀2, 𝑅2 ) :

[ ]𝑀2 [ ]𝑀1 int ∥ 𝐶2 ∪𝐶1
C-App

(a) Typing derivation for sum (length 𝑥𝑠𝑠) . It is assumed that sum :
[ ]int→ int ∈ Γ, length : ∀𝛼. [ ]𝛼 → int ∈ Γ, and 𝑥𝑠𝑠 : [ ][ ]int ∈ Γ;
the derivations for these terms (i.e., applications of C-Var and C-Inst)

have been omitted for brevity.

|𝐶2 ∪𝐶1 | =


𝑀1 ∨· 𝑅1,
𝑀1 + 1 + 𝛼 � 𝑅1 + 2,
𝑀2 ∨· 𝑅2,
𝑀2 + 1 � 𝑅2 +𝑀1


(b) The associated rank constraint set of 𝐶2 ∪𝐶1 from Figure 10a.

minimize 𝑅1 +𝑀1 + 𝑅2 +𝑀2
subject to

𝑀1 ≤ 𝑈 · 𝑏𝑀1

𝑅1 ≤ 𝑈 · 𝑏𝑅1

𝑏𝑀1 + 𝑏𝑅1 ≤ 1
𝑀1 + 1 + 𝛼 = 𝑅1 + 2

𝑀2 ≤ 𝑈 · 𝑏𝑀2

𝑅2 ≤ 𝑈 · 𝑏𝑅2

𝑏𝑀2 + 𝑏𝑅2 ≤ 1
𝑀2 + 1 = 𝑅2 +𝑀1

(c) The ILP corresponding to |𝐶2 ∪𝐶1 |
in Figure 10b. All variables are ad-

ditionally constrained to be non-

negative; these constraints are omit-

ted for brevity.

Fig. 10. ILP generation for sum (length 𝑥𝑠𝑠). One solution sets 𝑏𝑀1 ↦→ 1, 𝑀1 ↦→ 1 and all other variables

to 0, corresponding to the elaboration sum (map length 𝑥𝑠𝑠). This expression is ambiguous—the other size 1

solution sets 𝛼 ↦→ 1, 𝑏𝑅2 ↦→ 1, 𝑅2 ↦→ 1 and all other variables to 0, corresponding to the elaborated expression

sum (rep (length 𝑥𝑠𝑠)). The 𝛼 assignment can be understood as the minimal rank of the type that a satisfying

type substitution 𝑠t of 𝑠r (𝐶) must assign to 𝛼 ; in the first elaboration, 𝑠t (𝛼) = int, in the second, 𝑠t (𝛼) = [ ]int.

A rank constraint set |𝐶 | is ambiguous at size 𝑘 where 𝑘 is the minimal solution size if and only
if its corresponding ILP has multiple solutions; ambiguity of the constraint set at the minimal size
can therefore be detected by enumerating two distinct solutions to the ILP with the same minimal
size; this can be accomplished by adding constraints to enforce a second solution to be distinct
from the first but with the same size.

6.5 Constraint Set Solving
Our constraint solving algorithm Solve is shown in Figure 11 and uses rank analysis and conven-
tional type unification to find a satisfier 𝑠 of a constraint set 𝐶 . If Solve(𝐶) succeeds, it returns a
substitution 𝑠 such that 𝑠 satisfies 𝐶 and hence illustrates how to realize the C-Def rule of Figure 7
into a practical type system (by providing a means of finding the satisfier 𝑠 in its premises). Note
that Unify on line 11 of the procedure is standard structural type unification as in [Milner 1978],
except it ignores the now-trivial zero-rank disjunction constraints (which only contain integers,
not rank variables, after 𝑠r is applied).

Given a constraint set 𝐶 and a satisfying rank substitution 𝑠r of |𝐶 |, the constraint set 𝑠r (𝐶) is a
closure of 𝐶 ; that is, all of its rank variables have been instantiated with integral ranks. Hence, the
constraint set 𝑠r (𝐶) on line 10 of the Solve procedure is closed.

If𝐶 is satisfiable, so must be 𝑠r (𝐶) and a satisfying type substitution 𝑠t can be found via standard
syntactic type unification. This means that the substitution 𝑠t ◦𝑠r—where 𝑠t is returned by Unify—is
a satisfier of the original constraint set 𝐶 . Propositions 6.1 and 6.2 show that every satisfier of 𝐶
can be found in this manner; their full proofs can be found in the supplementary material [Schenck
2024].
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Procedure Solve
input :A constraint set 𝐶 .
output :A satisfying substitution 𝑠 .

1 |𝐶 | ← construct the associated rank constraint set from 𝐶; // Section 6.2

2 𝐼 ← construct the corresponding ILP from |𝐶 |; // Section 6.4

3 𝑠r ← solve 𝐼 using an ILP solver;
4 if 𝑠r then
5 𝐼 ′ ← add constraints to 𝐼 to ban solution 𝑠r and enforce a size of size(𝑠r, |𝐶 |);
6 𝑠′r ← solve 𝐼 ′ using an ILP solver;
7 if 𝑠′r then
8 return ⊥; // |𝐶 | is ambiguous; fail

9 else
10 return Unify(𝑠r (𝐶)) ◦ 𝑠r
11 else
12 return ⊥

Fig. 11. Our algorithm for constraint solving.

Proposition 6.1. If 𝑠 satisfies𝐶 , there exists a rank substitution 𝑠r that satisfies |𝐶 | and there exists
a closed type substitution 𝑠t such that 𝑠 |ftv(𝐶 )∪frv(𝐶 ) = 𝑠t ◦ 𝑠r.

Proof Sketch. Follows by constructing a rank substitution 𝑠r defined by 𝑠r (𝑄) = 𝑠 (𝑄) and
𝑠r (𝛼) = |𝑠 (𝛼) |⊘ (where | · |⊘ works like | · | except it assigns type variables the rank 0 and expects a
closed argument) and a type substitution 𝑠t = 𝑠 |ftv(𝐶 ) . □

Proposition 6.2. If 𝐶 is satisfiable and 𝑠r satisfies |𝐶 | then there is a closed type substitution 𝑠t
such that the substitution 𝑠 = 𝑠t ◦ 𝑠r satisfies 𝐶 .

Proof Sketch. Since 𝐶 is satisfiable, a satisfier 𝑠 for it exists; 𝑠t is constructed using both 𝑠r
and 𝑠 and is defined as 𝑠t (𝛼) = [ ]𝑠r (𝛼 )basetype(𝑠 (𝛼)) where basetype(𝑆𝜏) = basetype(𝜏) and is the
identity otherwise (that is, basetype strips all array dimensions). □

Note that Propositions 6.1 and 6.2 only hold because our language does not track sizes. In a more
general setting with sizes, given a satisfiable constraint set𝐶 and a rank substitution 𝑠r that satisfies
|𝐶 |, 𝑠r (𝐶) may not be satisfiable due to size mismatches.

7 Transformation to the Target Language
C-Def dispatches the constraint sets of each top-level definition and applies a satisfying substitution
to each top-level body. This replaces the rank variables of the flexible function applications (△ (𝑀,𝑅))
in each top-level body with integral ranks . Hence, each internal program typed via the C-Def
judgment is closed and only contains integral ranks at the flexible function annotation sites.
The job of the AM transformation is to elaborate these integral annotations (△ (𝑛M, 𝑛R))—

corresponding to implicit numbers of maps and reps—into explicit maps and reps. That is, AM
converts programs from the internal language into the target language. It is defined in Figure 12.

Recall that the 𝑅 ∨· 𝑀 constraint in C-App forces one of𝑀 , 𝑅 to be 0; hence at least 𝑛M or 𝑛R in
the above must be 0 and the expansion of 𝑒1 𝑒2 △ (𝑛M, 𝑛R) will result in either a map or a rep (or
neither) but never both (in accordance with Rule 2 of Section 2.2).
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AM(𝑛) = 𝑛

AM(𝑣) = 𝑣

AM(𝑥) = 𝑥

AM(𝜆𝑥. 𝑒) = 𝜆𝑥 .AM(𝑒)

AM( [𝑒1, . . . , 𝑒𝑚]) = [AM(𝑒1), . . . ,AM(𝑒𝑚)]
AM(𝑒1 𝑒2 △ (𝑛M, 𝑛R)) = map𝑛M AM(𝑒1) (rep𝑛R AM(𝑒2))
AM(map 𝑒1 𝑒2) = map AM(𝑒1) AM(𝑒2)
AM(rep 𝑒) = rep AM(𝑒)
AM(def 𝑓 𝑥 = 𝑒 ; 𝑝) = def 𝑓 𝑥 = AM(𝑒) ; AM(𝑝)

Fig. 12. The AM transformation from the internal language to the target language; note that 𝑛M, 𝑛R ∈ N.

Returning to the example from Table 1 (inc [1, 2, 3] △ (𝑀,𝑅)), in Section 6.2 we found that
the rank substitution 𝑠r = [𝑀 ↦→ 1, 𝑅 ↦→ 0] satisfied its rank constraint set; this solution is also
minimal and would be the same one returned by the Solve algorithm.6 The substitution is applied
to the expression to obtain inc [1, 2, 3] △ (1, 0), which is the form the expression would take in the
conclusion of the C-Def rule. To now convert the internal expression inc [1, 2, 3] △ (1, 0) to the
target language, we simply apply the AM transformation:

AM(inc [1, 2, 3] △ (1, 0)) = map1 AM(inc) (rep0 AM( [1, 2, 3]))
= map inc [1, 2, 3] .

7.1 Well-Typedness
Proposition 7.2 shows the Well-Typedness property from Section 2.3. That is, if 𝑝 is a well-typed
program in the internal language then AM(𝑝) is a well-typed program in the target language. First,
an equivalent property is needed for expressions.

Proposition 7.1 (Well-Typedness for Expressions). If Γ ⊢ 𝑒 :𝑆 𝜎 ∥ 𝐶 and 𝑠 is a satisfier of
𝐶 , then 𝑠 (Γ) ⊢ AM(𝑠 (𝑒)) : 𝑠 (𝑆 𝜎)

Proof Sketch. Follows by induction on over the typing derivation. The core part of the proof
is the C-App case (i.e., for expressions of the form 𝑒1 𝑒2 △ (𝑀,𝑅)), where we exploit the fact that
𝑠 is a satisfier of 𝐶 and hence can conclude that either 𝑀 = 0 or 𝑅 = 0 and case on each of these
possibilities. □

Proposition 7.2 (Well-Typedness). If Γ ⊢ 𝑝 : 𝜎 then Γ ⊢ AM(𝑝) : 𝜎 .

Proof Sketch. Straightforward induction over the typing derivation, using Proposition 7.1. □

The supplementary material [Schenck 2024] features full proofs for the above propositions.

7.2 Backwards Consistency
In this section, we show that rank analysis correctly reconstructs a removed explicit map or rep from
an expression.7 To talk about specific maps or rep in a program, we introduce internal language
contexts with the following grammar:

K ::= ⟨·⟩ | K 𝑒 △ (𝑀,𝑅) | 𝑒 K △ (𝑀,𝑅) | [𝑒, . . . , 𝑒,K, 𝑒, . . . , 𝑒]
| rep K | map K 𝑒 | map 𝑒 K

Fig. 13. Internal language contexts grammar.

6Since the constraint set doesn’t feature any type variables, the Unify call in Figure 11 will return an empty substitution
and hence the satisfier for the constraint set is simply the substitution 𝑠 = 𝑠r.
7The Forwards Consistency property is shown similarly.
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If 𝑒 is an explicit map or rep in some context K , the relation K⟨𝑒⟩ ≺rem K⟨𝑒′⟩ says that K⟨𝑒′⟩
is a semantically equivalent expression to K⟨𝑒⟩ with the map or rep removed and replaced by a
flexible function application, shown in Figure 14 below.

K⟨𝑒⟩ ≺rem K⟨𝑒′⟩

𝑀,𝑅 fresh
K⟨map 𝑒1 𝑒2⟩ ≺rem K⟨𝑒1 𝑒2 △ (𝑀,𝑅)⟩

Rem-Map
𝑀,𝑅 fresh

K⟨rep 𝑒⟩ ≺rem K⟨(𝜆𝑥 . 𝑥) 𝑒 △ (𝑀,𝑅)⟩
Rem-Rep

Fig. 14. The removal relation.

The following proposition says that we can remove a map or a rep from a well-typed expression,
replace it with a flexible function application, and obtain a well-typed expression. Additionally,
it says that the constraint sets returned in typing the two expressions are in correspondence in
the sense that a rank substitution that appropriately assigns the newly-introduced rank variables
(in the flexible function application that replaced the map or rep) can be applied to make the two
constraint sets equivalent.

Proposition 7.3 (Removal Well-Typedness). If K⟨𝑒⟩ ≺rem K⟨𝑒′⟩ and Γ ⊢ K⟨𝑒⟩ :𝑆 𝜎 ∥ 𝐶
then there exists 𝑆 ′, 𝜎 ′, and 𝐶′ such that
(a) Γ ⊢ K⟨𝑒′⟩ :𝑆 ′ 𝜎 ′ ∥ 𝐶′.
(b) If 𝑠r satisfies |𝐶 |, then there exists 𝑠′r such that 𝑠r ◦ 𝑠′r satisfies |𝐶′ |.
(c) 𝐶 ≃ 𝑠′r (𝐶′).

Proof Sketch. By induction over K . The meat of the proof is the case where K = ⟨·⟩, which
proceeds by casing on the removal relation (Rem-Map or Rem-Rep). For both cases, part (a) follows
by applying C-App appropriately, (b) by constructing 𝑠′r to assign the introduced rank variables
from the new flexible function application to correctly reconstruct either the removed map or rep,
and (c) by the fact that the introduced rank disjunction constraints (𝑀 ∨· 𝑅) become trivial after
application of 𝑠′r (wherein they reduce to either 1 ∨· 0 or 0 ∨· 1). The remaining cases for K follow
by straightforward application of the inductive hypothesis. □

Proposition 7.4 formally states the Backwards Consistency property of Section 2.3— namely
that when a map or rep is removed and the resulting program is unambiguous, then the elaboration
of that program is equivalent to the original program with the explicit map or rep.

Proposition 7.4 (Backwards Consistency). If K⟨𝑒⟩ ≺rem K⟨𝑒′⟩, Γ ⊢ K⟨𝑒⟩ :𝑆 𝜎 ∥ 𝐶 , and 𝑠r
is unambiguous at size 𝑘 for |𝐶 |, then there exists 𝑆 ′, 𝜎 ′, 𝐶′, 𝑠′r such that Γ ⊢ K⟨𝑒′⟩ :𝑆 ′ 𝜎 ′ ∥ 𝐶′ and,
if 𝑠′r is unambiguous at size 𝑘 + 1 for |𝐶′ |, then AM(𝑠r (K⟨𝑒⟩)) = AM(𝑠′r (K⟨𝑒′⟩)).

Proof Sketch. By induction over K ; the K = ⟨·⟩ case is the most interesting and we proceed
by casing on the removal relation. In each case, we exploit the unambiguity of 𝑠′r to conclude that
𝑠′r = 𝑠r ◦ 𝑠′r where 𝑠r is as constructed in the relevant cases of the proof of Proposition 7.3, from
which we obtain the required equality by the definition of AM. □

8 Implementation
We have implemented Automap in a compiler for the functional array language Futhark. The
implementation consists of four phases, shown in Figure 15 below.
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Constraint gen. ILP solving Residual solving Elaboration

Fig. 15. The four phases of Automap in the implementation.

8.1 Constraint Generation
This part of the implementation largely follows the structure given in Section 5: each top-level
definition is type checked individually, application nodes are annotated with the equivalent of the
△ (𝑀,𝑅,) annotations in Section 5,8 and constraints are collected.

8.2 ILP Solving
The implementation mostly follows Section 6.5, utilizing the GNU Linear Programming Kit9 to
solve the ILPs. One notable difference from Section 6.5 is that the ILP is modified to avoid counting
induced reps, which are reps that are required as a consequence of previous maps. For example,
map (𝜆𝑦. 𝑥𝑠 ∗ 𝑦) 𝑦𝑠 (noting the existent map is an explicit one) can be elaborated as

map (𝜆𝑦. map (∗) 𝑥𝑠 (rep 𝑦)) 𝑦𝑠 or map (𝜆𝑦. map (∗) 𝑥𝑠 𝑦) (rep 𝑦𝑠)
where 𝑥𝑠 and 𝑦𝑠 are vectors. In the first example, the rep is induced by the inner map. In the second,
the rep is required because of the outer map, which is explicit and hence the rep is non-induced.
Both of these elaborations are associated with size 2 rank substitutions and hence the type checker
would reject map (𝜆𝑦. 𝑥𝑠 ∗ 𝑦) 𝑦𝑠 as ambiguous. However, induced reps can always be removed by
rep fusion; that is, pushing the rep down the map nest. Doing so for the first example yields

map (𝜆𝑦. map (𝜆𝑥 . 𝑥 ∗ 𝑦) 𝑥𝑠) 𝑦𝑠
which has size 1 and is the only elaboration of map (𝜆𝑦. 𝑥𝑠 ∗ 𝑦) 𝑦𝑠 with size 1 and hence is unam-
biguous. Disambiguation by rep fusion in this manner tends to also better align with programmer
intent by virtue of corresponding with a smaller solution. Because frames are the concatenation of
all previous map shapes in a series of applications, at each application, the number of non-induced
reps can be recovered by subtracting the rank of the current frame from the total number of
reps. More precisely, if 𝑒1 is a function with frame 𝑆1, then the non-induced reps for the flexible
function application 𝑒1 𝑒2 △ (𝑀,𝑅) is given by max(0, |𝑅 | − |𝑆1 |). In this scheme, each application
contributes𝑀 +max(0, |𝑅 | − |𝑆1 |) to the ILP’s objective; the linearization of max(0, |𝑅 | − |𝑆1 |) adds
a few additional constraints and two additional ILP variables. We found only counting non-induced
reps in the ILP objective to greatly diminish the frequency of ambiguity in practice (although it
raises issues in other cases, see Section 10).
To check for ambiguity, we discriminate on the binary variables used to enforce the 𝑀 ∨· 𝑅

constraints; see section 10.3 for more details.

8.3 Residual Solving
The interaction of Automap with other nonstandard type system features is challenging. In partic-
ular, Futhark supports size-dependent types, where array sizes are tracked in the type system [Bailly
et al. 2023], and functions can impose size constraints. For example, zip requires that the input
arrays have the same length. Automap is completely oblivious to size types, and Section 9 contains
an example where the elaborated program is ill-typed when considering sizes.
8Actually, in the implementation, applications are annotated with triples of the form △(𝑀,𝑅, 𝑆 ) where the third component
is the frame, which circumvents the problem that the Futhark compiler does not have the facility to track the frame at the
type level.
9https://www.gnu.org/software/glpk/glpk.html
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def main [nK][nX]

(kx: [nK]f32) (ky: [nK]f32) (kz: [nK]f32)

(x: [nX]f32) (y: [nX]f32) (z: [nX]f32)

(phiR: [nK]f32) (phiI: [nK]f32)

: ([nX]f32, [nX]f32) =

let phiM = map2 (\r i -> r*r + i*i) phiR phiI

let as = map3 (\x_e y_e z_e ->

map (2*pi*)

(map3 (\kx_e ky_e kz_e ->

kx_e*x_e + ky_e*y_e + kz_e*z_e)

kx ky kz))

x y z

let qr = map (\a -> sum(map2 (*) phiM (map cos a))) as

let qi = map (\a -> sum(map2 (*) phiM (map sin a))) as

in (qr, qi)

(a) mri-q with explicit maps.

def main [nK][nX]

(kx: [nK]f32) (ky: [nK]f32) (kz: [nK]f32)

(x: [nX]f32) (y: [nX]f32) (z: [nX]f32)

(phiR: [nK]f32) (phiI: [nK]f32)

: ([nX]f32, [nX]f32) =

let phiM = phiR*phiR + phiI*phiI

let as = 2*pi*(kx*transpose (rep x)

+ ky*transpose (rep y)

+ kz*transpose (rep z))

let qr = sum (cos as * phiM)

let qi = sum (sin as * phiM)

in (qr, qi)

(b) mri-q with implicit maps.

Fig. 16. Two versions of the mri-q benchmark from the Parboil benchmark suite, implemented in Futhark.

On the left, the original version with explicit maps, and on the right the version with Automap.

Concretely, we first infer ground types via the first two phases of Figure 15, where the specific
sizes of arrays are not tracked, but only their rank. Then, in the residual solving phase, we perform
size-type inference on the resulting elaborated program as in [Bailly et al. 2023], using theAutomap-
inferred types as a starting point. This stratification is largely for simplicity, as the size-dependent
type system has features that are difficult to integrate in our constraint language. For example,
when if branches return arrays of differing size, a new “existential size” is implicitly created and
used to assign a type to the expression. However, such a size mismatch can only be detected after
the array ranks are known. It is perhaps possible to encode this situation as a form of conditional
rule in the vein of [Vytiniotis et al. 2011], but we did not find it necessary in order to obtain a useful
system.

8.4 Elaboration
In the final phase, flexible function applications are elaborated into maps and reps. The phase oper-
ates similarly to the AM transformation of Section 7 except only non-induced reps are elaborated
due to rep fusion.

9 Evaluation
We evaluate the practical merits of Automap on a collection of Futhark programs ported from the
benchmark suites Parboil [Stratton et al. 2012], PBBS [Anderson et al. 2022], FinPar [Andreetta
et al. 2016], Accelerate [Chakravarty et al. 2011], and Rodinia [Che et al. 2009]. This collection
comprises 8600 source lines of code spread across 67 files. We investigate the following questions:
(1) How many maps do we eliminate through Automap?
(2) Why have the remaining maps not been eliminated?
(3) How much does Automap slow down type checking?

The reason we focus on map and not rep is that implicit maps are far more common, and implicit
reps tend to occur as a consequence of an implicit map in the same application. The results are
quantified in Figure 18.

In principle, we could expect that any expression map 𝑓 𝑥 could be replaced with 𝑓 𝑥 , as Automap
allows the map to be implicit. In practice, this can lead to an ambiguous or ill-typed program. Even
when it does not, the smallest Automap solution might be semantically different. Consider a term
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Fig. 17. Proportion of ILP problems that have less

than some given number of constraints. Note that

almost all problems contain at most 1024 constraints.

Number of programs: 67
Change in lines of code: 8623⇒ 8517
Change in maps: 467⇒ 213
Largest ILP size: 28104 constraints
Median ILP size: 18 constraints
Mean ILP size: 121 constraints
Mean type checking slowdown: 2.50×

Fig. 18. Changes in various metrics resulting from

the addition of Automap to the language and type

checker. There is no change to application run-time

performance.

such as
map (𝜆𝑥. map (∗𝑥) 𝑦𝑠) 𝑥𝑠

corresponding to an outer product of the vectors 𝑥𝑠 and 𝑦𝑠 producing a matrix. Removing the
innermost map produces

map (𝜆𝑥. 𝑥 ∗ 𝑦𝑠) 𝑥𝑠
which Automap handles as expected, but further removing the outer map leads to

(𝜆𝑥. 𝑥 ∗ 𝑦𝑠) 𝑥𝑠 𝑦𝑠 = 𝑥𝑠 ∗ 𝑦𝑠
which is elaborated by Automap to map (∗) 𝑥𝑠 𝑦𝑠 , yielding a vector. Further, this program also
requires that 𝑥𝑠 and 𝑦𝑠 have the same size, which was not the case in the original expression—
meaning it may no longer be well-typed under size-dependent typing (Section 8.3).

Even when Automap elaboration is unambiguous, removing maps can decrease readability. This
is of course a subjective judgment, but we have only removed maps when we judge that this results
in an increase in readability. Unsurprisingly, this is often the case for linear algebra expressions.

Figure 16 shows an example based on the mri-q benchmark from Parboil. The original program
is shown in Figure 16a, with a total of ten instances of map, somewhat cluttering the program. The
modified program on Figure 16b contains no explicit maps, and particularly the computation of qr
and qi is much more concise. This program implements a single mathematical formula, and so
represents a “best case” scenario for Automap.

9.1 Quantifying maps
The unmodified benchmarks contain 467 applications of the map function and its variants map2 up
to map5. After manual rewrites to take advantage of Automap where appropriate, 213 applications
are left, corresponding to a 54% reduction.

Futhark supports higher-order functions, and so programmers may define map variants that are
not included in the above count. However, this is not a common programming style in the Futhark
benchmark suite, and so we consider our count to be accurate.

The programming style in the benchmark suite already uses type annotations for most top level
functions, and we did not find it necessary to add any annotations in order to resolve ambiguities.10

9.2 Impact on Type Checking
Our Automap-enabled type checker is unoptimized, but still shows the practicality of our approach.
For most programs, a little over half of the total time spent on type checking is taken up by rank
10Type annotations refine the constraints in the ILP and can thereby eliminate additional solutions/disambiguate expressions.
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analysis; specifically on constructing and solving ILP problems. Compared to the unmodified type
checker, we see less than a 3× slowdown on most programs. The outlier is myocyte, which is about
13 × slower. This program contains a dense 437 line function with many arithmetic operations.
As each application gives rise to six ILP variables and associated constraints, Automap produces
an ILP program with 28104 constraints, which is slow to solve. This could be optimized by not
generating constraints for applications whose implicit maps and reps can be determined locally at
the application site (as is commonly the case with arithmetic operations). The distribution of ILP
sizes for the entire benchmark suite is shown in Figure 17.

9.3 Programmer Experience
In practice we found Automap to be unsurprising: if a program is unambiguous, it generally
elaborated as we expected. Since real programs tend to sufficiently constrain rank polymorphic
function applications to be unambiguous, ambiguity in practice is relatively rare.
It should also be emphasized that the system is both transparent and flexible: any program

can always be elaborated into a version with all maps and reps explicit so programmers can
always validate that a program elaborates as they intended. Programmers can also use Automap to
whatever degree they wish by omitting all maps/reps (up to ambiguity), only some, or none.

Handling ambiguity in elaboration systems like Automap is straightforward: signal an error
and report each possible elaboration. When there are no solutions to the ILP (a consequence of an
ill-typed program), the debugging work flow is reminiscent of debugging in any ML-style language
with type inference; instead of just inserting type annotations (i.e., making implicit type annotations
explicit) to narrow down the location of the bug, maps and reps are also inserted to make these
constructs explicit as well.

10 Future Work
10.1 Higher-Order Functions
While Automap works in the presence of higher-order functions, their use sometimes results in
ambiguity. As an example, suppose we have a polymorphic function pipe : 𝛼 → (𝛼 → 𝛽) → 𝛽

(the prefix form of |>) and a function f : int→ int, the term pipe (indices 𝐴) f is ambiguous,
with the following elaborations:

(1) map pipe (indices 𝐴) (rep f) (2) pipe (indices 𝐴) (rep f)
These elaborations have the same size, due to not counting induced reps (Section 8.2). Piping is a
common pattern, so better interaction with Automap is desirable—possibly by refining the cost
function to count induced reps in those cases where the result is otherwise ambiguous.

10.2 Solving Constraints Locally
As mentioned in Section 9.2, there are also opportunities to reduce the size of the ILP program by
eliding constraints for applications that can be locally solved.

10.3 Efficient Ambiguity Checking
To detect ambiguity we add constraints to the ILP to ban an initial solution and look for a second
of the same size. If {𝑀0, 𝑅0, . . . , 𝑀𝑛, 𝑅𝑛} are the rank variables of an ILP and 𝑠r and 𝑠′r are two
solutions of the ILP, we require that

∑
𝑄∈{𝑀0,𝑅0,...,𝑀𝑛,𝑅𝑛 }

��𝑠r (𝑄) − 𝑠′r (𝑄)�� ≥ 1. This constraint can be
linearlized [Tsai et al. 2008], but requires introducing new variables and constraints to the ILP.

Alternatively, rather than discriminating on the rank variables themselves, the binary variables
𝑏𝑅 , 𝑏𝑀 used to encode the 𝑀 ∨· 𝑅 constraint (see section 6.4) may be discriminated on instead:∑

𝑄∈{𝑀0,𝑅0,...,𝑀𝑛,𝑅𝑛 }
��𝑠r (𝑏𝑄 ) − 𝑠′r (𝑏𝑄 )�� ≥ 1. This constraint can be linearized without introducing any
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new variables nor constraints (by exploiting the fact that 𝑏𝑄 is binary) because it’s equivalent to∑︁
𝑄∈{𝑀0,𝑅0,...,𝑀𝑛,𝑅𝑛 }

𝑠r (𝑏𝑄 )=0

𝑠′r (𝑏𝑄 ) +
∑︁

𝑄∈{𝑀0,𝑅0,...,𝑀𝑛,𝑅𝑛 }
𝑠r (𝑏𝑄 )=1

1 − 𝑠′r (𝑏𝑄 ) ≥ 1.

We conjecture that any rank constraint set |𝐶 | that is ambiguous at size 𝑘 (where 𝑘

is minimal) must have two distinct solutions 𝑠r and 𝑠′r (both with size 𝑘) such that∑
𝑄∈{𝑀0,𝑅0,...,𝑀𝑛,𝑅𝑛 }

��𝑠r (𝑏𝑄 ) − 𝑠′r (𝑏𝑄 )�� ≥ 1 if each 𝑏𝑄 is additionally constrained with 𝑏𝑄 ≤ 𝑄 , but
we’ve been unable to find a proof (nor counter-example).

Another unexplored avenue to detect ambiguity is to eschew adding constraints to the ILP to ban
solutions altogether. Instead, the ILP solver itself can be modified to further explore the solution
space after finding an initial solution [Danna et al. 2007; Danna and Woodruff 2009].

11 Related Work
11.1 Data Parallelism
NumPy [Harris et al. 2020] is likely the most popular rank-polymorphic programming system in
current use, and Automap largely targets the same kinds of applications as NumPy. One important
difference is that NumPy’s implicit rank-polymorphic behavior cannot be manually or systemat-
ically elaborated—while guiding principles exist,11 each NumPy function has complete freedom
to inspect the ranks and shapes of array arguments and make arbitrary control flow decisions.
In contrast, anything expressible with Automap can always be rewritten with explicit maps and
reps at application sites, without any change in run-time performance. As a minor difference,
NumPy also allows broadcasting where a unit dimension is implicitly expanded as needed to make
otherwise rank-compatible operands have the same size.

Originating from Iverson’s scalar multiple [Iverson 1962], APL only allows broadcasting (or more
properly, scalar extension [Hui and Kromberg 2020]) of scalar elements, and does not for example
allow a vector to be added to a matrix, which is allowed in Automap and NumPy. Whereas APL is
traditionally a dynamically-typed language, approaches exist to infer scalar extensions and map
nests statically [Elsman and Dybdal 2014; Guibas and Wyatt 1978]. The limitation to scalars also
exist in work by Thatte [Thatte 1991], which uses subtyping for inferring coercions for adjusting
function applications to match call sites, although Thatte does support higher order functions.
Single Assignment C is perhaps the most well-developed statically typed rank-polymorphic

language, although it does not support parametric polymorphism or higher-order functions. It does
however support a particularly flexible form of rank polymorphism, including rank specialization,
which provides a powerful form of control flow [Šinkarovs et al. 2023; Šinkarovs and Scholz 2022].
Also related to this work is the work on Remora [Slepak et al. 2014], which allows for expressing
many aspects of APL, including rank-polymorphism, but in an explicitly typed context. In the
context of Remora, work has been proposed for using constraint solving for type checking rank-
polymorphic programs [Slepak et al. 2018]. Gibbons has shown how to encode rank polymorphism
in Glasgow Haskell through the use of Naperian functors [Gibbons 2017], which also supports
richer structures than just arrays. One limitation of Gibbons’ approach is that the functorial map
operation always operates the full shape, whilst the present work allows only some dimensions of
a multidimensional array to be mapped. The encoding also requires a very rich type system.

11https://numpy.org/doc/stable/user/basics.broadcasting.html
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11.2 Type Systems and Type Inference
The Hindley-Damas-Milner type system [Damas 1984; Hindley 1969; Milner 1978] has long been
used as the theoretical foundation for a class of programming languages with polymorphic types
and complete type inference, including for the OCaml and Haskell programming languages. Over
the years, many extensions to the HM system have been proposed—notably HM(X) which is a
general framework where HM is parameterized by constraints [Odersky et al. 1999]. The original
HM type system supports local let-generalization, which means that polymorphic types are inferred
not only for top-level functions, but for every let-binding. However, local let-generalization leads
to a number of problems, most famously that it is unsound in the presence of mutable reference
cells [Garrigue 2004]. The trouble with local let-generalization has led a number of papers to propose
that “let should not be generalized” [Vytiniotis et al. 2011, 2010]. While local let-generalization
causes many difficulties, a study of the Haskell ecosystem found that local let-generalization is
rarely used, and when used, the programs are often straightforward to refactor. In this paper, and
in Futhark in general, generalization is only supported at the top-level.

There is a large body of related work on constraint-based type systems [Foster et al. 2002; Jones
1994; Sulzmann and Hudak 2000], including work on implementing type classes [Peterson and
Jones 1993]. Whereas Automap is based on a constraint-based type system, constraints are local to
function definitions, which simplifies the type system significantly compared to other work.

11.3 Implicit Program Constructs
Implicit program constructs, like Automap, are found in several programming languages. Implicit
parameters are known from Haskell [Lewis et al. 2000] and Scala [Odersky et al. 2017] where in the
latter they are used to support type classes [Odersky et al. 2017; Oliveira et al. 2010]. A large-scale
study of real-world Scala code found that implicit parameters are widely showing that programmers
want to use implicit constructs to make their code shorter and more concise [Křikava et al. 2019].
An overview of implicit programming constructs is provided by Jeffery’s PhD thesis.

12 Conclusions
We have presented an extension of an ML-style type system that supports a limited form of
rank polymorphism, while still retaining support for parametric polymorphism (with top-level
let-generalization) and higher-order functions. The type inference algorithm is based on generating
and solving an ILP problem. We have formally shown soundness and other properties of the system.
Through an evaluation based on 8600 lines of code, we have demonstrated that the type system
results in a significant reduction in the amount of explicit maps, arguably a significant increase in
readability of parallel expressions, and that the ILP problems can be solved in reasonable time.

Data-Availability Statement
An artifact of our Automap prototype in Futhark that reproduces the benchmarking results of
Section 9 is available on Zenodo [Schenck et al. 2024].
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