
Compiling a functional array language with non-semantic
memory information

Philip Munksgaard
philip@munksgaard.me
University of Copenhagen

Denmark

Cosmin Oancea
cosmin.oancea@diku.dk
University of Copenhagen

Denmark

Troels Henriksen
athas@sigkill.dk

University of Copenhagen
Denmark

ABSTRACT

We present a technique for introducing a notion of memory in the
compiler representation for a parallel functional array language, in
a way that allows for transformation and optimization of memory
access patterns and uses, while preserving value-based semantics.

Functional languages expose no notion of memory to the user.
There is no explicit allocation or deallocation of memory, nor any
mapping from arrays to memory locations. Instead, the compiler
must infer when and where to perform allocations as well as how
values should be represented in memory. Because this affects per-
formance, an optimizing compiler will need freedom to express
various memory optimizations. Typically this is done by lowering
the functional language to an imperative intermediate representa-
tion with a direct notion of memory, losing the ability to use high-
level functional reasoning while performing said optimizations. We
present a compiler representation where memory information is
non-semantic, in the sense that it does not affect the program result,
but only the operational details.

We start by defining a simple functional language without mem-
ory, Fun, and give it static and dynamic semantics. Next, we define
an extended language, FunMem, which is Fun with non-semantic
memory information in the form of lmads and an allocation state-
ment. We give the extended language static and dynamic semantics
and we provide an algorithm for transforming a Fun program into
FunMem. We likewise introduce a simple imperative language Imp,
which we use to illustrate how one might translate FunMem into
lower-level code. Finally, we show an example of a useful trans-
formation in FunMem, memory expansion, which is used to hoist
allocations from parallel GPU kernels.

ACM Reference Format:

Philip Munksgaard, Cosmin Oancea, and Troels Henriksen. 2022. Compiling
a functional array language with non-semantic memory information. In
Symposium on Implementation and Application of Functional Languages (IFL
2022), August 31-September 2, 2022, Copenhagen, Denmark. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3587216.3587218

1 INTRODUCTION

Functional array languages enable easy manipulation of multi-
dimensional arrays, for example by means of (i) second-order array

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9831-2/22/08.
https://doi.org/10.1145/3587216.3587218

combinators, such as map, reduce and scan, that take arrays as in-
puts and produce new arrays as output; and (ii) change-of-layout
operations, such as slicing, transposition or reshaping, that create
new arrays by re-ordering or selecting a subset of existing arrays,
but without changing their values. Such languages are promising
for high level programming of parallel computers, such as GPUs.

Generating efficient array code depends on the compiler’s abil-
ity to make good choices for how arrays should be allocated and
represented in memory. For example:

(1) destination-passing style [13] has been used to avoid unnec-
essary copying of the array result of higher-order functions,

(2) functional representations of arrays, such as pull arrays [1],
model fusion of parallel loops by means of function compo-
sition, thus potentially replacing accesses to memory with
much cheaper accesses to registers, and

(3) region inference [14] clusters objects together whose life
times are lexically bounded in order to optimize (de)allocations
and to guarantee the absence of memory leaks.

Most related approaches, e.g., (1-2), use code transformations
that indirectly optimize memory, but do not directly support a no-
tion of memory in the intermediate representation (IR). Instead,
memory is typically introduced when switching to an imperative
representation. For example, destination-passing style cannot per-
fectly accommodate arbitrarily nested parallel operations, and op-
erations that cannot be fused may require manifesting results of
change-of-layout operations in memory, which is sub-optimal.

Region inference [14] (3) does propose a non-semantic1 memory
extension of the IR, but solely for tracking the lifetime of objects in
order to ensure their efficient allocation and deallocation, not for
expressing object layout or eliminating unnecessary copying.

This paper presents an extension of a functional IR with a non-
semantic notion of memory that (i) enables efficient lowering of the
memory-agnostic IR and (ii) is amenable to further optimizations.
This IR is a simplified form of the one used in the compiler for
Futhark [4]; a functional array language.

Our IR supports allocation of memory blocks, and, more im-
portantly, arrays are statically associated with a memory block𝑚
together with an index function 𝐿 that dictates the memory layout
of its elements: e.g., for a 𝑘-dimensional array, the element at index
[𝑖1, . . . , 𝑖𝑘] will be laid out at the flat memory offset 𝐿(𝑖1, . . . , 𝑖𝑘) in
𝑚. This representation has the advantage that, e.g., transposing or
slicing an array just requires computing a new index function at
compile time, with no additional allocation/manifestation required.

We use linear-memory access descriptors [5, 10], lmads, as the
representation for the index function. An lmad consists of a global

1In this context non-semantic means that deleting the memory annotations in the IR
results in a valid, semantically-equivalent program.

https://doi.org/10.1145/3587216.3587218
https://doi.org/10.1145/3587216.3587218

IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark Philip Munksgaard, Cosmin Oancea, and Troels Henriksen

offset together with the number of elements and a total stride2 for
each dimension of the array. The lmad-based representation:

• has negligible runtime overhead, i.e., only requires carrying
around and performing computations on a couple of integers
per dimension,
• is closed under affine index transformations,3
• represents sets of quasi-affine indices, and as such is amenable
to further index-based analyses.

Our discussion is through two toy languages—Fun being mem-
ory agnostic and FunMem being an extension of Fun with memory
information—and we present type rules and big step operational
semantics for each, as well as an algorithm that translates a Fun pro-
gram to a FunMem program. In principle, this algorithm can avoid
memory manifestation for an array produced by any sequence of
affine layout transformations, even when returned from if expres-
sions. Although we do not prove the correctness of this algorithm,
we do state the properties that must hold for the transformation to
be correct. We also show a simple imperative language Imp, which
we use to illustrate how a compiler might translate FunMem into
low-level code, by giving a translation from FunMem to Imp.

We demonstrate that FunMem is a suitable IR for optimizations
by presenting an algorithm formemory expansion in section 5. Since
dynamic allocation is not efficiently supported from inside GPU
kernels, memory expansion hoists inner allocations out of kernels
by creating a single large memory block allocated in advance, which
is then divided among the threads in non-overlapping (but possi-
bly interleaved) chunks. We show that memory expansion can be
expressed for FunMem in a simple and elegant way that ensures
spatial locality on GPUs (i.e., coalesced access to global memory).

Contrary to Fun, FunMem does not guarantee that parallelism
is correct by construction4. However, it allows the compiler to
perform optimizations that are not expressible in Fun, such as

• re-using memory across arrays whose life spans do not
overlap—think register allocation on arrays, or
• allowing parallel algorithms to both read and write its input
arrays in-place, as showcased in [9].5

These transformations are briefly discussed in section 6 and have
been demonstrated to result in significant speedups [9], but are
otherwise out of scope for this paper.

In summary, the main contributions of this paper are:

(1) specifying the static and dynamic semantics of FunMem,
(2) presenting the translation from Fun to FunMem, and stating

the properties that guarantee the translation correctness,
(3) demonstrating the memory expansion transformation on

FunMem, which is essential for efficient execution on GPUs.

2The total stride is given by the distance in flat memory between two consecutive
elements in that dimensions.
3Non-affine transformations can be represented by a list of lmads that are “composed”
in order to generate the mapping of an element, but commonly, one lmad suffices.
4In the sense that it is not verifiable by the type checking rules. Parallelism correct-
ness, i.e. data-race freedom, is still certified by the correctness of individual code
transformations.
5Verifying the parallel semantics in this setting can be as difficult as proving the
parallelism of arbitrary loops, which is infeasible for conventional type systems.

2 THE FUN LANGUAGE

We start by defining a tiny purely functional size-dependently typed
core language, corresponding to a subset of the IR used in the
Futhark compiler. We concern ourselves solely with expressions;
not function definitions as a whole. This is insufficient to express
real programs, but sufficient to describe our approach. The language
can be thought of as a first-order monomorphic functional language
with parallel loops.

The grammar is shown in fig. 1. We assume a denumerably
infinite set of program variables, ranged over by 𝑥,𝑦, 𝑧. We will also
use superscripts and subscripts to distinguish distinct variables. We
write 𝛼 where 𝛼 is some syntactical metavariable for a sequence of
𝛼s whenever we do not need to address individual terms. We write
𝐹𝑉 (𝛼) for the free variables of 𝛼 .

All variable bindings are of the form (𝑥 : 𝜏); variables can be
either integers or multi-dimensional arrays of integers, with ex-
plicit sizes for each dimension. A statement (𝑠) is a binding of an
expression (𝑒) with some variable bindings (called the pattern). A
body (𝑏) is a sequence of statements terminated by a result.

Expressions only occur in statements, meaning that the lan-
guage is in administrative normal form [11], which for our purposes
strongly resembles SSA. Expressions can be either scalar expres-
sions or expressions operating on and creating arrays, and most
of them are straightforward. Slices are of the form offset : size.
kernel-expressions denote parallel execution of a body, where

kernel 𝑥 ≤ 𝑦 do 𝑏

executes 𝑏 𝑦 times in parallel, where in each thread 𝑥 is bound to
the thread-id, between 1 and 𝑦 (both inclusive). Each invocation of
𝑏 produces the corresponding element of the final array. A kernel-
expression returns only one array, although the language could
easily be extended to allow for multiple return values.

We also define the derived forms

iota 𝑥 ≡ kernel 𝑥𝑖 ≤ 𝑥 do in (𝑥𝑖)
copy 𝑥 ≡ kernel 𝑦1 ≤ 𝑧1 · · · kernel (𝑦𝑛 ≤ 𝑧𝑛) do

in (𝑥 [𝑦1, . . . , 𝑦𝑛])

where 𝑧1 . . . 𝑧𝑛 are the 𝑛 dimensions of 𝑥 .

2.1 Type Rules

The type rules for Fun are shown in fig. 3 and mostly standard. The
most interesting part is that whenever an array variable is bound,
the sizes of that array must be in scope; possibly by being bound
within the same pattern. Note that in T-If, we use 𝐹𝑉 (𝑝) to mean
free variables in the types of each pattern, specifically array sizes,
not the bound names themselves.

The judgement Γ ⊢ 𝑠 states that 𝑠 is a well-typed statement in
context Γ. We write • for empty contexts and in general for empty
sequences. The judgement Γ ⊢ 𝑝 ← 𝑏 states that the body 𝑏 can
be type-checked in context Γ, and its results bound to the bindings
𝑝 . The base case uses a substitution 𝑆 to require that any arrays
returned also have their sizes similarly returned.

The judgement ⊢ 𝑏 : (𝑟, . . . , 𝑟) states that 𝑏 is a well-typed pro-
gram, meaning it is a body with no free variables that returns arrays
of the indicated constant sizes. The restriction is merely to keep the
rules simple, and would not be present in a real implementation.

Compiling a functional array language with non-semantic memory information IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark

𝜏 ::= Types

| int integer
| [𝑥] · · · [𝑥] array

𝑣 ::= Values

| 𝑘 integer
| [𝑣, . . . , 𝑣] array

𝑝 ::= (𝑥 : 𝜏) Binding

𝑠 ::= let 𝑝 · · · 𝑝 = 𝑒 Statement

𝑏 ::= Body

| 𝑠 𝑏 statement
| in (𝑥, · · · , 𝑥) result

𝑠𝑒 ::= Scalar expression

| 𝑘 integer const
| 𝑥 variable
| 𝑠𝑒 ⊕ 𝑠𝑒 operator

𝑒 ::= Expressions

| 𝑠𝑒 scalar expression
| 𝑥 [𝑥, . . . , 𝑥] index
| 𝑥 [𝑥 : 𝑥, . . . , 𝑥 : 𝑥] slice
| transpose 𝑥 transpose
| if 𝑥 then 𝑏 else 𝑏 conditional
| kernel 𝑥 ≤ 𝑦 do 𝑏 parallel loop

𝑟 ::= [𝑘] · · · [𝑘] Program result type

Figure 1: Syntactic objects for Fun.

let (𝑧𝑠𝑖𝑧𝑒 : int) (𝑧𝑎𝑟𝑟 : [𝑧𝑠𝑖𝑧𝑒]) =
if 𝑧𝑐𝑜𝑛𝑑
then let (𝑥 : [𝑥𝑠𝑖𝑧𝑒]) = iota 𝑥𝑠𝑖𝑧𝑒

in (𝑥𝑠𝑖𝑧𝑒 , 𝑥)
else let (𝑥 : [𝑦𝑠𝑖𝑧𝑒]) = iota 𝑦𝑠𝑖𝑧𝑒

in (𝑦𝑠𝑖𝑧𝑒 , 𝑦)

Figure 2: Example of Fun statement. 𝑥𝑠𝑖𝑧𝑒 , ,𝑦𝑠𝑖𝑧𝑒 and 𝑧𝑐𝑜𝑛𝑑
are assumed to have been previously defined. Note how the

branches of the if return not just the array value, but also

the size needed for the pattern of the if binding itself.

2.2 Operational semantics

The operational semantics for Fun are shown in fig. 4, and constitute
a standard value-based semantics. Note that evaluation can “get
stuck” for out-of-bounds indexing. Arrays are 1-indexed. We rely
on some auxiliary functions for indexing, slicing and transposing
arrays, which are defined in fig. 5. The functions “index” and and
“slice” perform indexing and slicing of arrays, while “tr” transposes
an array. The “nest” function is used in section 3.3.1 to unflatten a

one-dimensional array. For instance

nest([1, 2, 3, 4], [2] [2]) = [[1, 2], [3, 4]] .

For brevity, we write 𝐸 (𝛼) to denote substituting every variable in
the syntactic construct 𝛼 with its value from 𝐸, but also to evalu-
ate any arithmetic operations now applied to constants, following
conventional arithmetic rules.

3 THE FUNMEM LANGUAGE

FunMem is an extension of Fun with a new type mem, a new expres-
sion form alloc, and a change to the syntax of variable bindings
such that arrays denote their memory block and index function.
The syntax is shown in fig. 6

In FunMem, kernel creates a new array in memory—we call
these fresh arrays. We have complete freedom to decide the index
function of fresh arrays, by specifying the desired index function
in the pattern. Other expressions, such as transpose or slicing,
produce derived arrays. These arrays are index space transforma-
tions of a prior array, and their index functions are derived from
the index function of the prior array. The intuition here is that such
transformations are free at runtime, which is only possible if the
change-of-indexing can be implemented entirely at compile time.
An example of a FunMem expression can be seen in fig. 7.

Note that this representation allows multiple arrays to concur-
rently co-exist in the same memory block. This is a crucial feature
of the representation, but it is only safe if uses or lifetimes of the
two arrays do not overlap. Although our type rules themselves do
not verify this, we will return to this issue in section 3.3.1.

3.1 LMADs in FunMem

A 𝑞-dimensional array must be associated with a 𝑞-dimensional
LMAD, describing the offset as well as the stride and number of
elements of each dimension. Application of an LMAD

𝐿 = 𝑠𝑒 + {(𝑥𝑒𝑙𝑒𝑚𝑠
1 : 𝑥𝑠𝑡𝑟𝑖𝑑𝑒1), . . . , (𝑥𝑒𝑙𝑒𝑚𝑠

𝑞 : 𝑥𝑠𝑡𝑟𝑖𝑑𝑒𝑞)}

is defined as:

𝐿(𝑦1, . . . , 𝑦𝑞) = 𝑠𝑒 +
∑︁

1≤𝑖≤𝑞
𝑦𝑖 · 𝑥𝑠𝑡𝑟𝑖𝑑𝑒𝑖 (1)

Further, the function slice𝑓 (𝐿, [𝑦1 : 𝑧1, . . . , 𝑦𝑞 : 𝑧𝑞]) defines
slicing of a 𝑞-dimensional LMAD 𝐿 with 𝑞 offset:size pairs:

slice𝑓 (𝐿, [𝑦1 : 𝑧1, . . . , 𝑦𝑞 : 𝑧𝑞]) =
(𝑠𝑒 +∑𝑞

𝑖
𝑦𝑖𝑥

𝑠𝑡𝑟𝑖𝑑𝑒
𝑖

) + {(𝑧1 : 𝑥𝑠𝑡𝑟𝑖𝑑𝑒1), . . . , (𝑧𝑞 : 𝑥𝑠𝑡𝑟𝑖𝑑𝑒𝑞)} (2)

Similarly, index𝑓 (𝐿, 𝑘) fixes the outermost dimension of a𝑞-dimensional
LMAD, producing a 𝑞 − 1-dimensional LMAD:

index𝑓 (𝐿, 𝑘) =
(𝑠𝑒 + 𝑘 · 𝑥𝑠𝑡𝑟𝑖𝑑𝑒1) + {(𝑥𝑒𝑙𝑒𝑚𝑠

2 : 𝑥𝑠𝑡𝑟𝑖𝑑𝑒2), . . . , (𝑥𝑒𝑙𝑒𝑚𝑠
𝑞 : 𝑥𝑠𝑡𝑟𝑖𝑑𝑒𝑞)}

(3)
The domain dom(𝐿) of an LMAD 𝐿 constitutes all valid indexes,

while the image img(𝐿) constitutes all addresses reachable by ap-
plying it to an in-bounds index. An LMAD can be 0-dimensional,
representing the offset at which a single scalar value is stored. These
do not occur in our type system, as we do not store scalars in mem-
ory, but occur in our operational semantics when defining array
indexing.

IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark Philip Munksgaard, Cosmin Oancea, and Troels Henriksen

Γ ⊢ 𝑠𝑒 : int

Γ ⊢ 𝑘 : int
[T-Const]

(𝑥 : int) ∈ Γ
Γ ⊢ 𝑥 : int

[T-Var]
Γ ⊢ 𝑠𝑒1 : int Γ ⊢ 𝑠𝑒2 : int

Γ ⊢ 𝑠𝑒1 ⊕ 𝑠𝑒2 : int
[T-Op]

Γ ⊢ 𝑠

Γ ⊢ 𝑠𝑒 : int
Γ ⊢ let (𝑥 : int) = 𝑠𝑒

[T-Scalar]
(𝑦 : [𝑧1, . . . , 𝑧𝑛]) ∈ Γ ∀𝑛1𝑖 .(𝑦𝑖 : int) ∈ Γ

Γ ⊢ let (𝑥 : int) = 𝑦 [𝑦1, . . . , 𝑦𝑛]
[T-Index]

(𝑥 : int) ∈ Γ Γ ⊢ 𝑝 ← 𝑏1 Γ ⊢ 𝑝 ← 𝑏2 ∀𝑦 ∈ 𝐹𝑉 (𝑝) .(𝑦 : int) ∈ Γ, 𝑝
Γ ⊢ let 𝑝 = if 𝑥 then 𝑏1 else 𝑏2

[T-If]

(𝑥𝑎𝑟𝑟 : [𝑥1] [𝑥2]) ∈ Γ
Γ ⊢ let (𝑦𝑎𝑟𝑟 : [𝑥2] [𝑥1]) = transpose 𝑥𝑎𝑟𝑟

[T-Transpose]

∀2𝑛
1 𝑖 .(𝑦𝑖 : 𝑖𝑛𝑡) ∈ Γ (𝑥𝑎𝑟𝑟 : [𝑥1] · · · [𝑥𝑛]) ∈ Γ

Γ ⊢ let (𝑧𝑎𝑟𝑟 : [𝑦2] · · · [𝑦2𝑛]) = 𝑥𝑎𝑟𝑟 [𝑦1 : 𝑦2, . . . , 𝑦2𝑛−1 : 𝑦2𝑛]
[T-Slice]

(𝑦 : 𝑖𝑛𝑡) ∈ Γ Γ, (𝑥 : int) ⊢ (𝑧 : 𝜏) ← 𝑏 ∀𝑦′ ∈ 𝐹𝑉 (𝜏) .(𝑦′ : int) ∈ Γ
Γ ⊢ let (𝑧 : [𝑦]𝜏) = kernel 𝑥 ≤ 𝑦 do 𝑏

[T-Kernel]

Γ ⊢ 𝑝 ← 𝑏

𝑆 = {𝑦1 ↦→ 𝑥1, . . . , 𝑦𝑛 ↦→ 𝑥𝑛}
(𝑥1 : 𝑆 (𝜏1)) ∈ Γ · · · (𝑥𝑛 : 𝑆 (𝜏𝑛)) ∈ Γ

Γ ⊢ (𝑦1 : 𝜏1) · · · (𝑦𝑛 : 𝜏𝑛) ← in (𝑥1, · · · , 𝑥𝑛)
[T-Result]

Γ ⊢ let 𝑝𝑠 = 𝑒 Γ, 𝑝𝑠 ⊢ 𝑝 ← 𝑏

Γ ⊢ 𝑝 ← let 𝑝𝑠 = 𝑒 𝑏
[T-Stm]

⊢ 𝑏 : (𝑟, . . . , 𝑟)

• ⊢ (𝑥1 : [𝑘1,1] · · · [𝑘1,𝑚1]) · · · (𝑥𝑛 : [𝑘𝑛,1] · · · [𝑘𝑛,𝑚𝑛
]) ← 𝑏

⊢ 𝑏 : ([𝑘1,1] · · · [𝑘1,𝑚1], . . . , [𝑘𝑛,1] · · · [𝑘𝑛,𝑚𝑛
]) [T-Prog]

Figure 3: Fun type rules.

In FunMem, LMADs can use variables in scope. In the operational
semantics wewill also use LMAD values that are assumed to contain
only integer constants, not variables or expressions.

As an abbreviation we define R(𝑥1, . . . , 𝑥𝑛) as an index function
for arrays of shape [𝑥1] · · · [𝑥𝑛] in row-major order with zero offset.

3.2 Type rules

The type rules for FunMem are shown in fig. 8. The rules are struc-
tured similarly to the ones for Fun. The central judgement Γ ⊢ 𝑠
states the well-typedness of statement 𝑠 in a type context Γ. Note
how T-Mem-Kernel lets us pick any index function for the result,
as long as it supports an array of the proper shape.

The judgement Γ ⊢ 𝑝 ← 𝑏 states that in a context Γ, the body
𝑏 produces results matching the pattern 𝑝 . As with Fun, we use a
substitution 𝑆 but this time in addition to array sizes, it requires
that any arrays returned also have all their supporting information
(sizes, memory blocks, variables used in index functions) returned.

The judgement Γ ⊢ 𝐿 : [𝑥1] · · · [𝑥𝑛] states that in a context Γ,
𝐿 is a well-typed index function for an array of type [𝑥1] · · · [𝑥𝑛].
Similarly, the judgement Γ ⊢ 𝜏 states that the context Γ, 𝜏 is well-
typed, meaning for arrays that the memory block is bound in Γ and
that the lmad is well-typed.

The judgement ⊢ 𝑏 : (𝑟, . . . , 𝑟) states that 𝑏 is a well-typed pro-
gram returning arrays of the sizes indicated.

The type system is by design unsound, and FunMem programs
that are well-typed can still “go wrong”. In particular, we allow
programs that perform essentially imperative in-place updates by
modifying memory blocks that are in use by other arrays, as well
as expressing data races by letting distinct iterations of a kernel
expression write to the same memory locations. The reasoning
behind this rather unusual design will be discussed in section 3.4.

3.3 Operational semantics

A FunMem program can be evaluated in two different ways: using
a value-based semantics equivalent to the one for Fun, as well as a

Compiling a functional array language with non-semantic memory information IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark

𝐸 ⊢ 𝑒 ⇓ (𝑣, . . . , 𝑣)

𝐸 (𝑥) ≠ 0 𝐸 ⊢ 𝑏1 ⇓ (𝑣1, . . . , 𝑣𝑛)
𝐸 ⊢ if 𝑥 then 𝑏1 else 𝑏2 ⇓ (𝑣1, . . . , 𝑣𝑛)

[E-If-True]
𝐸 (𝑥) = 0 𝐸 ⊢ 𝑏2 ⇓ (𝑣1, . . . , 𝑣𝑛)

𝐸 ⊢ if 𝑥 then 𝑏1 else 𝑏2 ⇓ (𝑣1, . . . , 𝑣𝑛)
[E-If-False]

𝑣 = conventional evaluation of 𝑠𝑒
𝐸 ⊢ 𝑠𝑒 ⇓ (𝑣) [E-Scalar]

𝑣 = index(𝐸 (𝑥), 𝐸 (𝑦1), . . . , 𝐸 (𝑦𝑛))
𝐸 ⊢ 𝑥 [𝑦1, . . . , 𝑦𝑛] ⇓ (𝑣)

[E-Index]

𝑣 = tr(𝐸 (𝑥))
𝐸 ⊢ transpose 𝑥 ⇓ (𝑣) [E-Transpose]

𝑣 = slice(𝐸 (𝑥), 𝐸 (𝑦1) : 𝐸 (𝑦2), . . . , 𝐸 (𝑦2𝑛−1) : 𝐸 (𝑦2𝑛))
𝐸 ⊢ 𝑥 [𝑦1 : 𝑦2, . . . , 𝑦2𝑛−1 : 𝑦2𝑛] ⇓ (𝑣)

[E-Slice]

𝑚 = 𝐸 (𝑦)
𝐸, 𝑥 ↦→ 1 ⊢ 𝑏 ⇓ (𝑣1)

.

.

.

𝐸, 𝑥 ↦→𝑚 ⊢ 𝑏 ⇓ (𝑣𝑚)
𝐸 ⊢ kernel 𝑥 ≤ 𝑦 do 𝑏 ⇓ ([𝑣1, . . . , 𝑣𝑚])

[E-Kernel]

𝐸 ⊢ 𝑏 ⇓ (𝑣, . . . , 𝑣)

𝐸 ⊢ 𝑒 ⇓ (𝑣𝑒1 , . . . , 𝑣
𝑒
𝑛) 𝐸, 𝑥1 ↦→ 𝑣𝑒1 , . . . , 𝑥𝑛 ↦→ 𝑣𝑒𝑛 ⊢ 𝑏 ⇓ (𝑣𝑏1 , . . . , 𝑣

𝑏
𝑚)

𝐸 ⊢ let (𝑥1 : 𝜏1) · · · (𝑥𝑛 : 𝜏𝑛) = 𝑒 𝑏 ⇓ (𝑣𝑏1 , . . . , 𝑣
𝑏
𝑚)

[E-Let]
𝐸 (𝑥𝑖) = 𝑣𝑖 for 0 < 𝑖 ≤ 𝑛

𝐸 ⊢ in (𝑥1, . . . , 𝑥𝑛) ⇓ (𝑣1, . . . , 𝑣𝑛)
[E-In]

Figure 4: Big-step operational semantics for Fun. We make use of some auxiliary functions from fig. 5.

index(𝑣, •) = 𝑣

index([𝑣1, . . . , 𝑣𝑚], 𝑘1, . . . , 𝑘𝑛) = index(𝑣𝑘1 , 𝑘2, . . . , 𝑘𝑛)
slice(𝑣, •) = 𝑣

slice([𝑣1, . . . , 𝑣𝑚], 𝑘1, 𝑘2, 𝑘3 . . . , 𝑘2𝑛) = [slice(𝑣𝑘1 , 𝑘3, . . . , 𝑘2𝑛), . . . , slice(𝑣𝑘1+𝑘2 , 𝑘3, . . . , 𝑘2𝑛)]
tr([[𝑣1,1, . . . , 𝑣1,𝑛], . . . , [𝑣𝑚,1, . . . , 𝑣𝑚,𝑛]]) = [[𝑣1,1, . . . , 𝑣𝑚,1], . . . , [𝑣1,𝑛, . . . , 𝑣𝑚,𝑛]]
nest(𝑣, •) = 𝑣

nest([𝑣1, . . . , 𝑣𝑚], [𝑘1] · · · [𝑘𝑛]) = [nest([𝑣1, . . . , 𝑣𝑘𝑛], [𝑘1] · · · [𝑘𝑛−1]), . . . , nest([𝑣𝑚−𝑘𝑛 , . . . , 𝑣𝑚], [𝑘1] · · · [𝑘𝑛−1])]

Figure 5: Auxiliary functions for transforming values.

heap-based semantics that is close to how it would be implemented
on a machine. A FunMem program is valid only if its interpretation
under these two semantics coincides; a notion we will make precise
in section 3.3.1.

The value-based semantics is based on reducing the FunMem pro-
gram to Fun and then applying the rules from fig. 4. Intuitively, this
is done by turning all memory blocks into integers, all allocations
into dummy integer literals, and replacing array memory informa-
tion with the corresponding array type. The pertinent rewrite rules
are shown on fig. 9.

The heap-based semantics, shown in fig. 10, is more compli-
cated. We make use of a fairly standard heap abstraction, which
we denote 𝐻 , that maps heap labels ℓ to memory blocks, which
are one-dimensional arrays of integers. We write 𝐻 [ℓ, 𝑖] to look up
the value at offset 𝑖 in the block with label ℓ , and 𝐻 [ℓ, 𝑖] ↦→ 𝑘 to
construct the heap 𝐻 with the value at offset 𝑖 in block ℓ changed

to 𝑘 . The alloc statement is used to create new labels and add the
corresponding mapping to the heap.

The central judgement is

𝐸;𝐻 ⊢ 𝑠 ⇓ 𝐸′;𝐻 ′; ⟨R,W⟩

which denotes the evaluation of a statement 𝑠 in a value environ-
ment 𝐸, and heap 𝐻 , yielding an extended value environment 𝐸′
and modified heap 𝐻 ′, as well as a trace of memory accesses. The
trace consists of two sets of pairs of heap labels and offsets: a read-
set R and a write-setW. The trace is not semantically significant,
but is used as a side condition in the rule E-Mem-Kernel to avoid
data races, by saying that a location written in one iteration may
not be used in any way by another. This is intended to allow an
implementation to execute the iterations of a kernel construct con-
currently. Given the read and write sets of 𝑘 iterations, we define

IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark Philip Munksgaard, Cosmin Oancea, and Troels Henriksen

𝜏 ::= Types

| int integer
| [𝑥] · · · [𝑥]@𝑥 → 𝐿 array
| mem memory block

𝑣 ::= Values

| 𝑘 integer
| ℓ label
| (ℓ, 𝐿) label and lmad
| [𝑣, . . . , 𝑣] array

𝑒 ::= Expressions

| ... Any Fun expression
| alloc 𝑠𝑒 allocation

𝐿 ::= 𝑠𝑒 + {(𝑥 : 𝑥) · · · (𝑥 : 𝑥)} LMAD

𝑟 ::= [𝑥] · · · [𝑥] Program result type

𝐻 ::= ℓ ↦→ [𝑘, . . . , 𝑘], 𝐻 | • Heap

Figure 6: Syntactic objects for FunMem. Most of the grammar

is unchanged from Fun, but we require different information

in bindings (𝜏), and we add an alloc expression.

let (𝑧𝑠𝑖𝑧𝑒 : int)
(𝑧𝑚𝑒𝑚 : mem) (𝑧𝑎𝑟𝑟 : [𝑧𝑠𝑖𝑧𝑒]@𝑧𝑚𝑒𝑚 → R(𝑧𝑠𝑖𝑧𝑒)) =

if 𝑧𝑐𝑜𝑛𝑑
then let (𝑥𝑚𝑒𝑚 : mem) = alloc 𝑥𝑠𝑖𝑧𝑒

let (𝑥 : [𝑥𝑠𝑖𝑧𝑒]@𝑥𝑚𝑒𝑚 → R(𝑥𝑠𝑖𝑧𝑒)) = iota 𝑥𝑠𝑖𝑧𝑒
in (𝑥𝑠𝑖𝑧𝑒 , 𝑥𝑚𝑒𝑚, 𝑥)

else let (𝑦𝑚𝑒𝑚 : mem) = alloc 𝑦𝑠𝑖𝑧𝑒
let (𝑥 : [𝑦𝑠𝑖𝑧𝑒]@𝑦𝑚𝑒𝑚 → R(𝑦𝑠𝑖𝑧𝑒)) = iota 𝑦𝑠𝑖𝑧𝑒
in (𝑦𝑠𝑖𝑧𝑒 , 𝑦𝑚𝑒𝑚, 𝑦)

Figure 7: The example from fig. 2 expanded with FunMem

memory information. The branches of the if now also return

the memory blocks used for their results.

freedom from data races as follows.
racefree(R1, . . . ,R𝑘 ,W1, . . . ,W𝑘) =
∀𝑖 (W𝑖 ∩

⋃
𝑗≠𝑖 (R 𝑗 ∪W𝑗)) = ∅

(4)

Intuitively, this states that the locations written by iteration 𝑖 must
be distinct from the locations read or written by any other iteration.
Note that a location is not the same as a memory block—it is fine
for two kernel iterations to write to the same memory block, as
long as it is to different offsets within the block.

The only construct that modifies a heap object is kernel, which
is where arrays are created. The only construct that reads from the
heap is indexing. Arrays are represented as a pair of a heap label
and an index function containing only constants.

We use yet another auxiliary function, shown in eq. (5) below,
that defines how to copy a value to a specified destination, given as
heap label and index function, yielding a new heap. If the value to

copy is an integer 𝑘 , then the destination index function must be
0-ary, consisting of only an offset. When copying an array, our type
rules ensure that the source and destination index functionwill have
domains of the same size, and we can simply copy element-wise.

memcopy(𝐻,𝑘, ℓ, 𝐿) = (𝐻 [ℓ, 𝐿()] ↦→ 𝑘, ∅, {(ℓ, 𝐿())})
memcopy(𝐻, (ℓ𝑠𝑟𝑐 , 𝐿𝑠𝑟𝑐), ℓ𝑑𝑠𝑡 , 𝐿𝑑𝑠𝑡) = (𝐻 ′,R,W)
where 𝐻 ′ = 𝐻 [ℓ𝑑𝑠𝑡 , 𝑖] ↦→ 𝑘𝑖

𝑘𝑖 =

{
𝐻 [ℓ𝑠𝑟𝑐 , 𝑗] ∃ 𝑗 ∈ dom(𝐿𝑠𝑟𝑐) ⇒ 𝑖 = 𝐿𝑑𝑠𝑡 (𝑗)
𝐻 [ℓ𝑑𝑠𝑡 , 𝑖] otherwise

R = {(ℓ𝑠𝑟𝑐 , 𝑝) | 𝑝 ∈ img(ℓ𝑠𝑟𝑐)}
W = {(ℓ𝑑𝑠𝑡 , 𝑝) | 𝑝 ∈ img(ℓ𝑑𝑠𝑡)}

(5)

3.3.1 Validity. A FunMem program is valid if it produces the same
result under value-based and heap-based semantics. Using the defi-
nition of nest from fig. 5, we get the following definition:

Definition 3.1 (Validity). Let 𝑏𝑚𝑒𝑚 be a FunMem program

𝑠 in (𝑥𝑚𝑒𝑚
1 , 𝑥𝑣𝑎𝑙1 , . . . , 𝑥𝑚𝑒𝑚

𝑛 , 𝑥𝑣𝑎𝑙𝑛)
and 𝑏 be the corresponding Fun program given by

𝑏𝑚𝑒𝑚 ⇒𝑢𝑛𝑚𝑒𝑚 𝑏

Then 𝑏𝑚𝑒𝑚 is valid if

⊢ 𝑏𝑚𝑒𝑚 : ([𝑘1,1] · · · [𝑘1,𝑚1], . . . , [𝑘𝑛,1] · · · [𝑘𝑛,𝑚𝑛
])

and
⊢ 𝑏𝑚𝑒𝑚 ⇓ (ℓ1, (ℓ1, 𝐿1), . . . , ℓ𝑛, (ℓ𝑛, 𝐿𝑛));𝐻

and
⊢ 𝑏 ⇓ (0, 𝑣1, . . . , 0, 𝑣𝑛)

such that for all 1 ≤ 𝑖 ≤ 𝑛

nest(𝐻 (ℓ𝑖), [𝑘𝑖,1] · · · [𝑘𝑖,𝑚𝑖
]) = 𝑣𝑖 .

Any transformation on a FunMem program, as well as the initial
creation of a FunMem program from a Fun program that we discuss
below, must preserve validity. While we do not present proofs
that this is the case for our presented transformations, validity-
preservation could be shown using conventional proof techniques.

3.4 The tradeoffs in FunMem

FunMem is rich enough to express observable side effects, but as
we desire purely functional semantics, we defined the notion of
validity in section 3.3.1. FunMem also allows us to express nonde-
terministic programs through data races, which is avoided through
the complicated side conditions in fig. 10. Why do we not use a
type system to rule out these undesirable programs, for example
by using a mechanism similar to separation logic to split the heap
when type-checking kernel constructs?

The reasoning behind FunMem’s design is that it is intended as
an internal representation in a research compiler, not as a formalism
or calculus. While fully verified compilers such as CompCert [7]
or CakeML [6] exist, implementing fully verified compiler passes
remains very time-consuming. Our design prioritizes ease of trans-
formation over ease of verification. Therefore, while we have tried
to make it precise which properties must hold for a program (valid-
ity and absence of data races), so it can be argued whether a specific

Compiling a functional array language with non-semantic memory information IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark

Γ ⊢ 𝑠

Γ ⊢ 𝑠𝑒 : int
Γ ⊢ let (𝑥 : int) = 𝑠𝑒

[T-Mem-Scalar]
Γ ⊢ 𝑠𝑒 : int

Γ ⊢ let (𝑥 : mem) = alloc 𝑠𝑒
[T-Mem-Alloc]

(𝑦 : [𝑧1, . . . , 𝑧𝑛]@𝑦𝑚𝑒𝑚 → 𝐿) ∈ Γ ∀𝑛1𝑖 .(𝑦𝑖 : int) ∈ Γ
Γ ⊢ let (𝑥 : int) = 𝑦 [𝑦1, . . . , 𝑦𝑛]

[T-Mem-Index]

(𝑥 : int) ∈ Γ Γ ⊢ 𝑝 ← 𝑏1 Γ ⊢ 𝑝 ← 𝑏2 ∀(𝑦 : 𝜏) ∈ 𝑝.Γ, 𝑝 ⊢ 𝜏
Γ ⊢ let 𝑝 = if 𝑥 then 𝑏1 else 𝑏2

[T-Mem-If]

(𝑥𝑎𝑟𝑟 : [𝑥1] [𝑥2]@𝑥𝑚𝑒𝑚 → 𝑠𝑒 + {(𝑥1 : 𝑥𝑠,1) (𝑥2 : 𝑥𝑠,2)}) ∈ Γ
Γ ⊢ let (𝑦𝑎𝑟𝑟 : [𝑥2] [𝑥1]@𝑥𝑚𝑒𝑚 → 𝑠𝑒 + {(𝑥2 : 𝑥𝑠,2) (𝑥1 : 𝑥𝑠,1)}) = transpose 𝑥𝑎𝑟𝑟

[T-Mem-Transpose]

(𝑥𝑎𝑟𝑟 : [𝑥1] · · · [𝑥𝑛]@𝑥𝑚𝑒𝑚 → 𝐿𝑥) ∈ Γ 𝐿𝑧 = slice𝑓 (𝐿𝑥 , [𝑦1 : 𝑦2, . . . , 𝑦2𝑛−1 : 𝑦2𝑛])
Γ ⊢ let (𝑧𝑎𝑟𝑟 : [𝑦1] · · · [𝑦2𝑛−1]@𝑥𝑚𝑒𝑚 → 𝐿𝑧) = 𝑥𝑎𝑟𝑟 [𝑦1 : 𝑦2, . . . , 𝑦2𝑛−1 : 𝑦2𝑛]

[T-Mem-Slice]

(𝑦 : 𝑖𝑛𝑡) ∈ Γ Γ, (𝑥 : int) ⊢ (𝑧 : 𝜏) ← 𝑏 Γ ⊢ [𝑦]𝜏
Γ ⊢ let (𝑧 : [𝑦]𝜏) = kernel 𝑥 ≤ 𝑦 do 𝑏

[T-Mem-Kernel]

Γ ⊢ 𝑝 ← 𝑏

𝑆 = {𝑦1 ↦→ 𝑥1, . . . , 𝑦𝑛 ↦→ 𝑥𝑛}
(𝑥1 : 𝑆 (𝜏1)) ∈ Γ · · · (𝑥𝑛 : 𝑆 (𝜏𝑛)) ∈ Γ

Γ ⊢ (𝑦1 : 𝜏1) · · · (𝑦𝑛 : 𝜏𝑛) ← in (𝑥1, · · · , 𝑥𝑛)
[T-Mem-Result]

Γ ⊢ let 𝑝𝑠 = 𝑒 Γ, 𝑝𝑠 ⊢ 𝑝 ← 𝑏

Γ ⊢ 𝑝 ← let 𝑝𝑠 = 𝑒 𝑏
[T-Mem-Stm]

Γ ⊢ 𝐿 : [𝑥1] · · · [𝑥𝑛]

𝐿 = 𝑠𝑒𝑜 + {(𝑥1 : 𝑦1) · · · (𝑥𝑛 : 𝑦𝑛)} ∀𝑧 ∈ FV(𝐿).(𝑧 : int) ∈ Γ
Γ ⊢ 𝐿 : [𝑥1] · · · [𝑥𝑛]

[T-Mem-LMAD]

Γ ⊢ 𝜏

Γ ⊢ int [T-Mem-Int]
(𝑥𝑚𝑒𝑚 : mem) ∈ Γ Γ ⊢ 𝐿𝑥 : [𝑥1] · · · [𝑥𝑛]

Γ ⊢ [𝑥1] · · · [𝑥𝑛]@𝑥𝑚𝑒𝑚 → 𝐿𝑥
[T-Mem-Array]

⊢ 𝑏 : (𝑟, . . . , 𝑟)

• ⊢ 𝑝𝑚𝑒𝑚
1 𝑝𝑣𝑎𝑙1 · · · 𝑝𝑚𝑒𝑚

𝑛 𝑝𝑣𝑎𝑙𝑛 ← 𝑏

∀𝑖 .𝑝𝑚𝑒𝑚
𝑖

= (𝑥𝑚𝑒𝑚
𝑖

: mem)
∀𝑖 .𝑝𝑣𝑎𝑙

𝑖
= (𝑥𝑣𝑎𝑙

𝑖
: [𝑘𝑖,1] · · · [𝑘𝑖,𝑚𝑖

]@𝑥𝑚𝑒𝑚
𝑖

→ R(𝑘𝑖,1, . . . , 𝑘𝑖,𝑚𝑖
))

⊢ 𝑏 : ([𝑘1,1] · · · [𝑘1,𝑚1], . . . , [𝑘𝑛,1] · · · [𝑘𝑛,𝑚𝑛
]) [T-Mem-Prog]

Figure 8: FunMem type rules. We use the definition of slice𝑓 from eq. (2). The rules for checking bodies and scalar expressions

the same as for Fun and are found in fig. 3.

FunMem program is correct or not, a proof of this is not embedded
in the program itself.

3.5 Transforming Fun to FunMem

Procedures TransformProgram, TransformStms and Transform-
Stm show the rules for transforming a Fun program to a FunMem
program. TransformProgram is the main entry-point, but works

mainly by calling TransformStms and making sure that the results
are in row-major order. TransformStms is equally simple, repeat-
edly calling TransformStm on each statement and updating the
type environment in-between. TransformStm works by pattern
matching on the expression and pattern inside the given statement,
acting accordingly. Scalar expressions and indexing requires no pro-
cessing. For slicing and transposes, we need to lookup the memory

IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark Philip Munksgaard, Cosmin Oancea, and Troels Henriksen

mem ⇒unmem int

[𝑥]@𝑥𝑚𝑒𝑚 → 𝐿 ⇒unmem [𝑥]
alloc 𝑠𝑒 ⇒unmem 0

Figure 9: Turning a FunMem program into a Fun program.

location and index function of the array being sliced or transposed
so we can add the necessary information in the result pattern.

For kernel expressions, we first transform the inner bodies.
Then we create a fresh variable for the memory block of the result
and create the allocation statement. We then construct a row-major
index function and finally combine it all in the pattern 𝑝′.

The case for if is the most complicated, as we need to return the
supporting information of any arrays in the return values. We start
by transforming the statements inside each body. Then, for each
pair of values being returned from the branches and the pattern
being matched with, we do the following: First we lookup the re-
sult types, then extract supporting information using the Support
procedure, as defined in procedure Support. The Support function
also creates a fresh variable for the scalar expression denoting the
lmad offset, and a statement binding it. We append these state-
ments to the transformed list of statements for each body. Then,
for each supporting variable, we create a corresponding variable
for the outer pattern and a substitution, which we apply to get the
transformed type of the pattern.

Note that we return all supporting information, even though it
might not be necessary. For instance, the size of the arrays returned
in two branches of an if-statement could be invariant to the branch,
meaning that the branches always return arrays of the same size.
However, we defer the removal of such redundant return values to
a fairly straight-forward simplifier in a later pass.

Procedure TransformProgram(𝑝𝑟𝑔)
input :A well-typed Fun program 𝑝𝑟𝑔 = 𝑠 in (𝑥).
output :A FunMem program corresponding to 𝑝𝑟𝑔.

𝑠′, Γ←− TransformStms(𝑠, •);
𝑟𝑒𝑠 ←− •;
foreach 𝑥𝑖 in 𝑥 do

[𝑧]@𝑚𝑒𝑚 → 𝐿 ←− 𝑙𝑜𝑜𝑘𝑢𝑝 (𝑥𝑖 , Γ);
𝑚𝑒𝑚′, 𝑦 ←− 𝑓 𝑟𝑒𝑠ℎ ;
𝑠𝑎𝑙𝑙𝑜𝑐 ←− let (𝑚𝑒𝑚′ : mem) = alloc (∏ 𝑧);
𝑠𝑙𝑖𝑛 ←− let (𝑦 : [𝑧]@𝑚𝑒𝑚′ → R(𝑧)) = copy 𝑥𝑖 ;
Append 𝑠𝑎𝑙𝑙𝑜𝑐 𝑠𝑙𝑖𝑛 to 𝑠′;
Append 𝑦 to 𝑟𝑒𝑠;

return 𝑠′ in 𝑟𝑒𝑠

4 THE IMP LANGUAGE

Imp is a simple imperative language with a parallel loop construct,
and is used to show that translating FunMem to imperative code is
straightforward.

Figure 11 shows the grammar for Imp, wherein we reuse the
scalar expressions from Fun. It supports two types: int and mem,

Procedure TransformStms(𝑠 , Γ)
input :A sequence of Fun statements 𝑠 and the

corresponding type environment Γ.
output :The transformed FunMem statements 𝑠′ with

inserted memory and the corresponding type
environment Γ′.

𝑠′ ←− •;
Γ′ ←− Γ;
foreach 𝑠 in 𝑠 do

𝑡 ←− TransformStm(𝑠, Γ′);
foreach let 𝑝 = 𝑒 in 𝑡 do

Append 𝑝 to Γ′;

Append 𝑡 to 𝑠′;
return 𝑠′

the latter of which is a single-dimensional integer array that must
be allocated before use. Variables can be declared and assigned.
Finally, conditionals are supported in the form of if, while kernel
constitutes a parallel loop where each thread gets a thread identifier
𝑥 . The type rules for Imp are trivial and uninteresting, so we will
elide them here. An example of a program is shown in fig. 13.

Figure 12 shows the dynamic semantics for Imp. The rules are
fairly conventional. We have a mutable environment 𝐸 that maps
variable names to values, and a heap 𝐻 that maps labels to memory
blocks. The evaluation judgement

𝐻 ;𝐸 ⊢ 𝑠 → 𝐻 ′;𝐸′

is read “evaluation of statement 𝑠 with heap 𝐻 and environment 𝐸
produces a new heap 𝐻 ′ and environment 𝐸′.

The actual rules are straightforward. The alloc statement cre-
ates a new label and adds a corresponding fresh block to the heap.

Procedure FunMemToImp translates a FunMem program to Imp,
which is somewhat tedious but fairly straightforward. The most
significant detail is that we must apply index functions symbolically
to translate accesses of the multidimensional arrays of FunMem
into the single-dimensional arrays of Imp, which can be seen in e.g.
the case for array indexing.

5 MEMORY EXPANSION

Memory expansion (MemoryExpand) is a technique for hoisting
allocations out of kernels. This is critical for compilation targeted
at GPUs, since GPU kernels cannot efficiently allocate memory. Al-
though neither Fun nor FunMem prohibit allocations inside kernel
expressions, generation of working GPU code must use memory
expansion to hoist out such allocations. This is accomplished by:

(1) allocating shared memory blocks big enough to accommo-
date the sum of memory requirements of all threads—i.e., of
all (parallel) iterations of the kernel body, and

(2) modifying the index functions of the arrays created inside the
kernel body to refer to the shared blocks, in a way that satis-
fies the property that any two threads use non-overlapping
partitions of the shared block.

For simplicity of exposition we treat here only the case when the
size of the inner allocation is the same for all threads, i.e., invariant

Compiling a functional array language with non-semantic memory information IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark

𝐸;𝐻 ⊢ 𝑠 ⇓ 𝐸;𝐻 ; ⟨R,W⟩

𝐸 (𝑠𝑒) =𝑚 ℓ 𝑓 𝑟𝑒𝑠ℎ 𝐸′ = 𝐸,𝑦 ↦→ ℓ 𝐻 ′ = 𝐻, ℓ ↦→ [

𝑚︷ ︸︸ ︷
0, . . . , 0]

𝐸;𝐻 ⊢ let (𝑦 : mem) = alloc 𝑠𝑒 ⇓ 𝐸′;𝐻 ′; ⟨∅, ∅⟩
[E-Mem-Alloc]

𝐸 (𝑥) = (ℓ𝑥 , 𝐿𝑥) 𝐸′ = 𝐸, 𝑧 ↦→ (ℓ𝑥 , slice𝑓 (𝐿𝑥 , [𝐸 (𝑦1) : 𝐸 (𝑦2), . . . , 𝐸 (𝑦2𝑛−1) : 𝐸 (𝑦2𝑛)]))
𝐸;𝐻 ⊢ let (𝑧 : 𝜏) = 𝑥 [𝑦1 : 𝑦2, . . . , 𝑦2𝑛−1 : 𝑦2𝑛] ⇓ 𝐸′;𝐻 ′; ⟨∅, ∅⟩

[E-Mem-Slice]

𝐸 (𝑥) = (ℓ𝑥 , 𝐿𝑥) 𝑘 = 𝐿𝑥 (𝐸 (𝑦1), . . . , 𝐸 (𝑦𝑛)) 𝐸′ = 𝐸, 𝑧 ↦→ 𝐻 [ℓ𝑥 , 𝑘] R = {(ℓ𝑥 , 𝑘)}
𝐸;𝐻 ⊢ let (𝑧 : int) = 𝑥 [𝑦1, . . . , 𝑦𝑛] ⇓ 𝐸′;𝐻 ′; ⟨R, ∅⟩

[E-Mem-Index]

𝐸 (𝑥) = (ℓ𝑥 , 𝑘0 + {(𝑘1 : 𝑘2) (𝑘3 : 𝑘4)}) 𝐸′ = 𝐸, 𝑧 ↦→ (ℓ𝑥 , 𝑘0 + {(𝑘3 : 𝑘4) (𝑘1 : 𝑘2)})
𝐸;𝐻 ⊢ let (𝑦𝑎𝑟𝑟 : 𝜏) = transpose 𝑥𝑎𝑟𝑟 ⇓ 𝐸′;𝐻 ; ⟨∅, ∅⟩

[E-Mem-Transpose]

𝐸, 𝑥 ↦→ 1;𝐻0 ⊢ 𝑏 ⇓ 𝐸1;𝐻1; ⟨R1,W1⟩
(𝐻 ′1, R

′
1,W

′
1) = memcopy(𝐻1, 𝐸1 (𝑧𝑟𝑒𝑠), 𝑧𝑚𝑒𝑚, index𝑓 (𝐿𝑧 , 1))

.

.

.

𝐸, 𝑥 ↦→ 𝑘 ;𝐻 ′
𝑘−1 ⊢ 𝑏 ⇓ 𝐸𝑘 ;𝐻𝑘 ; ⟨R𝑘 ,W𝑘 ⟩

(𝐻 ′
𝑘
, R′

𝑘
,W′

𝑘
) = memcopy(𝐻𝑘 , 𝐸𝑘 (𝑧𝑟𝑒𝑠), 𝑧𝑚𝑒𝑚, index𝑓 (𝐿𝑧 , 𝑘))

𝐸 (𝑦) = 𝑘 racefree(R1 ∪ R′1, . . . ,R𝑘 ∪ R
′
𝑘
,W1 ∪W′1 , . . . ,W𝑘 ∪W′𝑘) 𝐸′ = 𝐸, 𝑧 ↦→ (𝐸 (𝑧𝑚𝑒𝑚), 𝐸 (𝐿𝑧))

𝐸;𝐻0 ⊢ let (𝑧 : [𝑧𝑑1] · · · [𝑧
𝑑
𝑛]@𝑧𝑚𝑒𝑚 → 𝐿𝑧) = kernel 𝑥 ≤ 𝑦 do 𝑠 in (𝑧𝑟𝑒𝑠) ⇓ 𝐸′;𝐻 ′𝑘 ; ⟨

𝑖≤𝑘⋃
𝑖=1
R𝑖 ∪ R′𝑖 ,

𝑖≤𝑘⋃
𝑖=1
W𝑖 ∪W′𝑖 ⟩

[E-Mem-Kernel]

𝐸 (𝑥) ≠ 0 𝐸;𝐻 ⊢ 𝑠 ⇓ 𝐸𝑠 ;𝐻𝑠 ; ⟨R𝑠 ,W𝑠 ⟩ 𝐸′ = 𝐸, 𝑥1 ↦→ 𝐸𝑠 (𝑦1), . . . , 𝑥𝑛 ↦→ 𝐸𝑠 (𝑦𝑛)

𝐸;𝐻 ⊢ let (𝑥1 : 𝜏1) · · · (𝑥𝑛 : 𝜏𝑛) = if 𝑥 then 𝑠 in (𝑦1, . . . , 𝑦𝑛) else 𝑏2 ⇓ 𝐸′;𝐻𝑠 ; ⟨R𝑠 ,W𝑠 ⟩
[E-Mem-If-T]

𝐸 (𝑥) = 0 𝐸;𝐻 ⊢ 𝑠 ⇓ 𝐸𝑠 ;𝐻𝑠 ; ⟨R𝑠 ,W𝑠 ⟩ 𝐸′ = 𝐸, 𝑥1 ↦→ 𝐸𝑠 (𝑦1), . . . , 𝑥𝑛 ↦→ 𝐸𝑠 (𝑦𝑛)

𝐸;𝐻 ⊢ let (𝑥1 : 𝜏1) · · · (𝑥𝑛 : 𝜏𝑛) = if 𝑥 then 𝑏1 else 𝑠 in (𝑦1, . . . , 𝑦𝑛) ⇓ 𝐸′;𝐻𝑠 ; ⟨R𝑠 ,W𝑠 ⟩
[E-Mem-If-F]

𝐸;𝐻 ⊢ 𝑠 ⇓ 𝐸;𝐻 ; ⟨R,W⟩

𝐸;𝐻 ⊢ let 𝑝1 = 𝑒1 ⇓ 𝐸1;𝐻1; ⟨R1,W1⟩ · · · 𝐸𝑛−1;𝐻𝑛−1 ⊢ let 𝑝𝑛 = 𝑒𝑛 ⇓ 𝐸𝑛 ;𝐻𝑛 ; ⟨R𝑛,W𝑛⟩

𝐸;𝐻 ⊢ let 𝑝1 = 𝑒1 · · · let 𝑝𝑛 = 𝑒𝑛 ⇓ 𝐸𝑛 ;𝐻𝑛 ; ⟨
𝑖≤𝑛⋃
𝑖=1
R𝑖 ,

𝑖≤𝑛⋃
𝑖=1
W𝑖 ⟩

[E-Stms]

⊢ 𝑏 ⇓ (𝑣, . . . , 𝑣);𝐻

•; • ⊢ 𝑠 ⇓ 𝐸;𝐻 ; ⟨R,W⟩
⊢ 𝑠 in (𝑥1, . . . , 𝑥𝑛) ⇓ (𝐸 (𝑥1), . . . , 𝐸 (𝑥𝑛));𝐻

[E-Mem-Prog]

Figure 10: Heap-based big-step operational semantics rules for FunMem. The boxed parts serve to detect data races, but are

not otherwise significant for the evaluation result. We use the definition of slice𝑓 from eq. (3) and racefree from eq. (4). For

space reasons we elide the rules for scalar expressions, as they are conventional.

IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark Philip Munksgaard, Cosmin Oancea, and Troels Henriksen

Procedure TransformStm(𝑠 ,Γ)
input :A Fun statement 𝑠 : let 𝑝 = 𝑒 and a FunMem type

environment Γ.
output :FunMem statements 𝑠′ corresponding to 𝑠 with

inserted memory annotations and memory
allocations if necessary.

case 𝑒 ≡ 𝑠𝑒 or 𝑒 ≡ 𝑥 [𝑦1, . . . , 𝑦𝑛] do
return 𝑠

case 𝑝 ≡ (𝑧 : [𝑧1] · · · [𝑧𝑛]) and
𝑒 ≡ 𝑥 [𝑦1 : 𝑦𝑛+1, . . . , 𝑦𝑛 : 𝑦𝑛+𝑛] do
[𝑥1] · · · [𝑥𝑛]@𝑥𝑚𝑒𝑚 → 𝐿𝑥 ≡ 𝑙𝑜𝑜𝑘𝑢𝑝 (𝑥, Γ);
𝐿𝑦 ←− 𝑠𝑙𝑖𝑐𝑒 (𝐿𝑥 , [𝑦1 : 𝑦𝑛+1, . . . , 𝑦𝑛 : 𝑦𝑛+𝑛]);
return let (𝑧 : [𝑧1] · · · [𝑧𝑛]@𝑥𝑚𝑒𝑚 → 𝐿𝑦) = 𝑒

case 𝑝 ≡ (𝑦 : [𝑛] [𝑚]) and 𝑒 ≡ transpose 𝑥 do

[𝑚] [𝑛]@𝑥𝑚𝑒𝑚 → 𝑠𝑒 + {(𝑚 : 𝑠𝑚) (𝑛 : 𝑠𝑛)} ←−
𝑙𝑜𝑜𝑘𝑢𝑝 (𝑥, Γ);
return

let (𝑦 : [𝑛] [𝑚]@𝑥𝑚𝑒𝑚 → 𝑠𝑒 + {(𝑛 : 𝑠𝑛) (𝑚 : 𝑠𝑚)}) = 𝑒

case 𝑒 ≡ kernel 𝑖 ≤ 𝑥 do 𝑠′ in (𝑥𝑟𝑒𝑠) and
𝑝 ≡ (𝑦 : [𝑧1] · · · [𝑧𝑛]) do

𝑠𝑖𝑛𝑛𝑒𝑟 , Γ′ ←− TransformStms(𝑠′, Γ);
𝑦𝑚𝑒𝑚 ←− 𝑓 𝑟𝑒𝑠ℎ;
𝑠𝑎𝑙𝑙𝑜𝑐 ←− let (𝑦𝑚𝑒𝑚 : mem) = alloc (∏𝑛

𝑖=1 𝑧𝑖);
𝐿𝑦 ←− R(𝑧1, . . . , 𝑧𝑛);
𝑝′ ←− (𝑦 : [𝑧1] · · · [𝑧𝑛]@𝑦𝑚𝑒𝑚 → 𝐿𝑦);
return 𝑠𝑎𝑙𝑙𝑜𝑐 let 𝑝

′ = kernel 𝑖 ≤ 𝑥 do 𝑠𝑖𝑛𝑛𝑒𝑟 in (𝑥𝑟𝑒𝑠)
case 𝑒 = if 𝑐 then 𝑠𝑡ℎ𝑒𝑛 in (𝑥) else 𝑠𝑒𝑙𝑠𝑒 in (𝑦) do

𝑠′
𝑡ℎ𝑒𝑛

, Γ𝑡ℎ𝑒𝑛 ←− TransformStms(𝑠𝑡ℎ𝑒𝑛, Γ);
𝑠′
𝑒𝑙𝑠𝑒

, Γ𝑒𝑙𝑠𝑒 ←− TransformStms(𝑠𝑒𝑙𝑠𝑒 , Γ);
𝑝𝑟𝑒𝑠 , 𝑥𝑟𝑒𝑠 , 𝑦𝑟𝑒𝑠 ←− •, •, •;
foreach 𝑥𝑖 , 𝑦𝑖 , (𝑧𝑖 : 𝜏𝑧) in 𝑥,𝑦, 𝑝 do

𝜏𝑥 ←− 𝑙𝑜𝑜𝑘𝑢𝑝 (𝑥𝑖 , Γ𝑡ℎ𝑒𝑛);
𝜏𝑦 ←− 𝑙𝑜𝑜𝑘𝑢𝑝 (𝑦𝑖 , Γ𝑒𝑙𝑠𝑒);
(𝑠𝑥 ;𝑥𝑠𝑢𝑝𝑝) ←− Support(𝜏𝑥);
(𝑠𝑦 ;𝑦𝑠𝑢𝑝𝑝) ←− Support(𝜏𝑦);
Append 𝑠𝑥 , 𝑠𝑦 to 𝑠′

𝑡ℎ𝑒𝑛
, 𝑠′
𝑒𝑙𝑠𝑒

respectively;
𝑆, 𝑝′

𝑖
←− •, •;

foreach 𝑥 ′ in 𝑥𝑠𝑢𝑝𝑝 do

𝑥𝑟𝑒𝑠 ←− 𝑓 𝑟𝑒𝑠ℎ;
Append 𝑥 ′ ↦→ 𝑥𝑟𝑒𝑠 to 𝑆 ;
Append (𝑥𝑟𝑒𝑠 : int) to 𝑝′

𝑖
;

Append (𝑧𝑖 : 𝑆 (𝜏𝑥)) to 𝑝′𝑖 ;
Append 𝑝′

𝑖
, 𝑥𝑠𝑢𝑝𝑝 , 𝑦𝑠𝑢𝑝𝑝 to 𝑝𝑟𝑒𝑠 , 𝑥𝑟𝑒𝑠 , 𝑦𝑟𝑒𝑠

respectively
return

let 𝑝𝑟𝑒𝑠 = if 𝑐 then 𝑠′
𝑡ℎ𝑒𝑛

in 𝑥𝑟𝑒𝑠 else 𝑠′𝑒𝑙𝑠𝑒 in 𝑦𝑟𝑒𝑠

to the kernel, although the implementation in the Futhark compiler
also supports certain cases of kernel-variant allocation sizes.

The procedure MemoryExpand performs memory expansion
on a FunMem program. It assumes that allocations and kernel-
invariant computations have been hoisted as much as possible. The

Procedure Support(𝜏)
input :A FunMem type 𝜏
output :The supporting information of 𝜏 , and a statement

binding the offset scalar expression to a variable, if
there is one.

case 𝜏 ≡ int do
return (•; •)

case

𝜏 = [𝑥1] · · · [𝑥𝑛]@𝑥𝑚𝑒𝑚 → 𝑠𝑒+{(𝑥1 : 𝑥𝑛+1) · · · (𝑥𝑛 : 𝑥2𝑛)}
do

𝑦 ←− 𝑓 𝑟𝑒𝑠ℎ;
return (let 𝑦 = 𝑠𝑒 ;𝑥𝑚𝑒𝑚, 𝑦, 𝑥1, . . . , 𝑥2𝑛)

𝜏 ::= Types

| int integer
| mem memory

𝑠 ::= Statements

| skip no-op
| 𝑠; 𝑠 sequencing
| var 𝑥 : 𝜏 declaration
| 𝑥 ← 𝑠𝑒 assignment
| 𝑥 ← alloc 𝑠𝑒 allocation
| 𝑥 ← 𝑥 [𝑠𝑒] read
| 𝑥 [𝑠𝑒] ← 𝑠𝑒 write
| if 𝑥 then 𝑠 else 𝑠 fi conditional
| kernel 𝑥 ≤ 𝑠𝑒 do 𝑠 done parallel loop

Figure 11: Grammar for Imp, a tiny imperative, structured,

and statement-oriented language. Reuses the scalar expres-

sions from the functional representation.

Procedure Copy(𝑝𝑥 , 𝑥𝑖𝑑𝑥 , 𝑝𝑦)

input :A pattern 𝑝𝑥 , an index 𝑥𝑖𝑑𝑥 , and a pattern 𝑝𝑦 .
output : Imp statement copying from 𝑝𝑦 to 𝑝𝑥 [𝑥𝑖𝑑𝑥].
𝑝𝑥 ≡ (𝑥 : [𝑧1] · · · [𝑧𝑛]@𝑥𝑚𝑒𝑚 → 𝐿𝑥) ;
case 𝑝𝑦 ≡ (𝑦 : [𝑧2] · · · [𝑧𝑛]@𝑦𝑚𝑒𝑚 → 𝐿𝑦) do

return

kernel 𝑧𝑖𝑑𝑥2 ≤ 𝑧2 do · · · kernel 𝑧𝑖𝑑𝑥𝑛 ≤ 𝑧𝑛 do

𝑥𝑚𝑒𝑚 [𝐿𝑥 (𝑥𝑖𝑑𝑥 , 𝑧𝑖𝑑𝑥2 , . . . , 𝑧𝑖𝑑𝑥𝑛)] ←−
𝑦𝑚𝑒𝑚 [𝐿𝑦 (𝑧𝑖𝑑𝑥2 , . . . , 𝑧𝑖𝑑𝑥𝑛)]

done . . . done
case 𝑝𝑦 ≡ (𝑦 : int) do

return 𝑥𝑚𝑒𝑚 [𝐿𝑥 (𝑥𝑖𝑑𝑥)] ← 𝑦

procedure repeatedly pattern matches the first statement 𝑠 of a
kernel body with an allocation of a memory block 𝑧, which is not
used by the result of the kernel body. If the match succeeds, the
procedure first creates a fresh variable 𝑧′ to hold the allocation of
the hoisted variable. Then, all array types referencing 𝑧 inside the
kernel-body are replaced with array types referencing 𝑧′, by means
of a (new) index function that exhibits a kernel-variant offset, i.e.,

Compiling a functional array language with non-semantic memory information IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark

𝐻 ;𝐸 ⊢ 𝑠 → 𝐻 ;𝐸

𝐻 ;𝐸 ⊢ var 𝑥 : int→ 𝐻 ;𝐸, 𝑥 ↦→ 0
[E-Imp-Dec-Int]

𝐻 ;𝐸 ⊢ var 𝑥 : mem→ 𝐻 ;𝐸, 𝑥 ↦→ ⊥ [E-Imp-Dec-Mem]

𝐻 ;𝐸 ⊢ 𝑥 ← 𝑠𝑒 → 𝐻 ;𝐸, 𝑥 ↦→ 𝐸 (𝑠𝑒) [E-Imp-Assign-Int]
𝐻 ;𝐸 ⊢ 𝑥 ← 𝑦 → 𝐻 ;𝐸, 𝑥 ↦→ 𝐸 (𝑦) [E-Imp-Assign-Mem]

𝐻 ;𝐸 ⊢ 𝑥 ← 𝑦 [𝑠𝑒] → 𝐻 ;𝐸, 𝑥 ↦→ 𝐻 [𝐸 (𝑦), 𝐸 (𝑠𝑒)] [E-Imp-Read]
𝐻 ;𝐸 ⊢ 𝑥 [𝑠𝑒𝑖] ← 𝑠𝑒 𝑗 → 𝐻 [𝐸 (𝑥), 𝐸 (𝑠𝑒𝑖)] ↦→ 𝐸 (𝑠𝑒 𝑗);𝐸

[E-Imp-Write]

𝐸 (𝑠𝑒) =𝑚 ℓ fresh 𝐻 ′ = 𝐻, ℓ ↦→ [

𝑚︷ ︸︸ ︷
0, . . . , 0]

𝐻 ;𝐸 ⊢ 𝑥 ← alloc 𝑠𝑒 → 𝐻 ′;𝐸, 𝑥 ↦→ ℓ
[E-Imp-Alloc]

𝐻1;𝐸1 ⊢ 𝑠1 → 𝐻2;𝐸2 𝐻2;𝐸2 ⊢ 𝑠2 → 𝐻3;𝐸3
𝐻1;𝐸1 ⊢ 𝑠1; 𝑠2 → 𝐻3;𝐸3

[E-Imp-Seq]

𝐸 (𝑥) ≠ 0 𝐻 ;𝐸 ⊢ 𝑠1 → 𝐻 ′, 𝐸′

𝐻 ;𝐸 ⊢ if 𝑥 then 𝑠1 else 𝑠2 fi→ 𝐻 ′;𝐸′
[E-Imp-If-True]

𝐸 (𝑥) = 0 𝐻 ;𝐸 ⊢ 𝑠2 → 𝐻 ′;𝐸′

𝐻 ;𝐸 ⊢ if 𝑥 then 𝑠1 else 𝑠2 fi→ 𝐻 ′;𝐸′
[E-Imp-If-False]

𝐻 ;𝐸 ⊢ skip→ 𝐻 ;𝐸
[E-Imp-Skip]

𝐸 (𝑠𝑒) = 𝑘

𝐻 ;𝐸, 𝑥 ↦→ 1 ⊢ 𝑠 → 𝐻 ′1;𝐸′1 · · · 𝐻 ′
𝑘−1;𝐸, 𝑥 ↦→ 𝑘 ⊢ 𝑠 → 𝐻 ′

𝑘
;𝐸′

𝑘

𝐻 ;𝐸 ⊢ kernel 𝑥 ≤ 𝑠𝑒 do 𝑠 done→ 𝐻 ′
𝑘

;𝐸
[E-Imp-Kernel]

Figure 12: Big-step operational semantics rules for Imp. The heap structure is the same as for FunMem.

var 𝑧𝑠𝑖𝑧𝑒 : int; var 𝑧𝑚𝑒𝑚 : mem;
if 𝑧𝑐𝑜𝑛𝑑
𝑡ℎ𝑒𝑛 var 𝑥𝑚𝑒𝑚 : mem; 𝑥𝑚𝑒𝑚 ← alloc 𝑥𝑠𝑖𝑧𝑒 ;

kernel 𝑖 ≤ 𝑥𝑠𝑖𝑧𝑒 do 𝑥𝑚𝑒𝑚 [𝑖] ← 𝑖 done;
𝑧𝑠𝑖𝑧𝑒 ← 𝑥𝑠𝑖𝑧𝑒 ; 𝑧𝑚𝑒𝑚 ← 𝑥𝑚𝑒𝑚

else var 𝑦𝑚𝑒𝑚 : mem; 𝑦𝑚𝑒𝑚 ← alloc 𝑦𝑠𝑖𝑧𝑒 ;
kernel 𝑖 ≤ 𝑦𝑠𝑖𝑧𝑒 do 𝑦𝑚𝑒𝑚 [𝑖] ← 𝑖 done;
𝑧𝑠𝑖𝑧𝑒 ← 𝑦𝑠𝑖𝑧𝑒 ; 𝑧𝑚𝑒𝑚 ← 𝑦𝑚𝑒𝑚

fi

Figure 13: The example from fig. 7 transformed to Imp.

which depends on the thread number. Finally, 𝑠 is replaced with
two new statements: the allocation of 𝑧′ and the kernel-statement
with the updated body.

The modification of the index function shown in procedure Mem-
oryExpand essentially corresponds to expanding the original array
with an outer dimension whose length is equal to the number of
kernel threads 𝑦, and to position the local array of thread 𝑥 to the
index 𝑥 of the expanded array. This leads to good spatial locality
for CPU-based systems—consecutive accesses of the same thread
are localized—but is very inefficient for GPU execution because
it would result in fully-uncoalesced accesses to global memory,
i.e., consecutive threads would access the memory with a stride
equal to the array size. For GPU execution, the strategy is to insert
the expanded dimension innermost (i.e., maintaining the array in
transposed form), which is accomplished with the index function:

𝑠𝑒′ + 𝑥 + {(𝑥1 : 𝑥𝑛+1 · 𝑦) · · · (𝑥𝑛 : 𝑥2𝑛 · 𝑦)}

The buffers for each iteration are now interleaved, but the form of
the lmads ensure that the reads and writes from each thread do not
overlap. This procedure shows how an lmad-based representation
lends itself well to high-level analysis and optimization.

6 REMARKS ON IMPLEMENTATION

The Fun and FunMem languages presented above are simplified
forms of the IR used in the Futhark compiler. The real IRs contain
more constructs—in particularmore index transformations than just
transpose, and more ways to construct fresh arrays than kernel.
However, the core concepts, particularly the use of lmads and the
way the necessary supporting information is passed around, is iden-
tical. The Futhark implementation also supports functions, which
are implemented by adding memory blocks and lmad information
as parameters to functions.

The compiler uses type rules similar to those in fig. 8 to sanity-
check the result of compiler passes. This has proven very useful
for catching compiler bugs that might otherwise result in memory
corruption at run time. As discussed in section 3.4, these rules do
not rule out all memory errors, and there have certainly been cases
where a faulty optimization silently caused miscompilation.

We have also used lmads for two other optimizations:
Memory block merging, which uses the same memory block

for multiple arrays, as long as their lifetimes do not overlap. This
can reduce memory footprint in cases where dynamic memory
allocation is not practical, such as within GPU kernels.

Memory short circuiting, discussed in detail in [9], which
identifies arrays that will eventually be copied to some specific
location (e.g. due to being concatenated with some other array),
and modifies the memory block and index function of the original
array such that it is constructed in-place. The “copy” can then be

IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark Philip Munksgaard, Cosmin Oancea, and Troels Henriksen

Procedure FunMemToImp(𝑠, Γ)
input :A FunMem statement 𝑠 ≡ let 𝑝 = 𝑒 and a FunMem

type environment Γ containing all patterns in the
entire program.

output :An Imp statement.

case 𝑠 ≡ let (𝑥 : 𝜏) = 𝑥 [𝑥1 : 𝑥2, . . . , 𝑥𝑛−1 : 𝑥𝑛] do
return skip

case 𝑠 ≡ let (𝑥 : 𝜏) = transpose 𝑥 do

return skip

case 𝑠 ≡ let (𝑥 : int) = 𝑠𝑒 do
return var 𝑥 : int;𝑥 ← 𝑠𝑒

case 𝑠 ≡ let (𝑥 : mem) = alloc 𝑠𝑒 do
return var 𝑥 : mem;𝑥 ← alloc 𝑠𝑒

case 𝑠 ≡ let (𝑥 : int) = 𝑦 [𝑥1, . . . , 𝑥𝑛] do
Γ(𝑦) ≡ . . .@𝑦𝑚𝑒𝑚 → 𝐿𝑦 ;
return var 𝑥 : int;𝑥 ← 𝑦𝑚𝑒𝑚 [𝐿𝑦 (𝑥1, . . . , 𝑥𝑛)]

case 𝑠 ≡ let 𝑝 = if 𝑦 then 𝑏1 else 𝑏2 do

𝑏1 ≡ 𝑠𝑡1 · · · 𝑠
𝑡
𝑛 in 𝑥𝑡 ;

𝑏2 ≡ 𝑠 𝑓1 · · · 𝑠
𝑓
𝑛 in 𝑥 𝑓 ;

∀(𝑥𝑖 : 𝜏𝑖) ∈ 𝑝 : 𝜏𝑖 = int ∨ 𝜏𝑖 = mem.(𝑥𝑖 , 𝜏𝑖 , 𝑥𝑡𝑖 , 𝑥
𝑓

𝑖
) ≡

(𝑥 ′1, 𝜏
′
1, 𝑥

𝑡 ′
1 , 𝑥

𝑓 ′

1), . . . , (𝑥
′
𝑚, 𝜏 ′𝑚, 𝑥𝑡

′
𝑚, 𝑥

𝑓 ′
𝑚) ;

return var 𝑥 ′1 : 𝜏 ′1; · · · ; var 𝑥 ′𝑚 : 𝜏 ′𝑚 ;
if 𝑦 then

FunMemToImp(𝑠𝑡1); · · · ; FunMemToImp(𝑠𝑡𝑛);
𝑥 ′1 ← 𝑥𝑡

′
1 ; · · · ;𝑥 ′𝑚 ← 𝑥𝑡

′
𝑚

else
FunMemToImp(𝑠 𝑓1); · · · ; FunMemToImp(𝑠 𝑓𝑛);
𝑥 ′1 ← 𝑥

𝑓 ′

1 ; · · · ;𝑥 ′𝑚 ← 𝑥
𝑓 ′
𝑚

fi
case 𝑠 ≡ let 𝑝 = kernel 𝑦𝑖 ≤ 𝑦𝑛 do 𝑏 do

𝑏 ≡ 𝑠1 · · · 𝑠𝑚 in (𝑥);
Γ(𝑥) ≡ 𝜏 ;
return kernel 𝑦𝑖 ≤ 𝑦𝑛 do

FunMemToImp(𝑠1); · · · ; FunMemToImp(𝑠𝑚);
Copy(𝑝,𝑦𝑖 , (𝑥 : 𝜏))

done

implemented as a no-op. This is also used to eliminate the implicit
copy at the end of kernel bodies that produce arrays.

7 RELATEDWORK

Most compilers for functional languages will eventually lower the
program being compiled to a representation that makes memory
allocation, typically coinciding with a general lowering of the ab-
straction level, such as by translating the program to an imperative
form. In our approach, the memory information is an “extension”
of an underlying functional language, which maintains purely func-
tional semantics. A similar idea can be found in Destination-Passing
Style [8, 13] or region-based memory management [15], although
with the key difference that we support non-lexical lifetimes of
memory blocks, as well as using index functions to describe object
layout. See also the work discussed in section 1.

Procedure MemoryExpand(𝑝𝑟𝑔)
input :A FunMem program 𝑝𝑟𝑔 where all memory

annotations have been hoisted as much as possible.
output :A FunMem program where allocations at the top of

kernel calls have been expanded out.

while 𝑝𝑟𝑔 contains a statement
𝑠 ≡ let 𝑝 = kernel 𝑥 ≤ 𝑦 do let 𝑧 = alloc 𝑠𝑒 𝑏
such that 𝑥 ∉ FV(𝑠𝑒) and 𝑧 is only used in patterns do
𝑧′ ←− 𝑓 𝑟𝑒𝑠ℎ;
𝑏′ ←− 𝑏 with all 𝜏 of the form
[𝑥1] · · · [𝑥𝑛]@𝑧 → 𝑠𝑒′ + {(𝑥1 : 𝑥𝑛+1) · · · (𝑥𝑛 : 𝑥2𝑛)}
replaced with
[𝑥1] · · · [𝑥𝑛]@𝑧′ →
𝑥 · 𝑠𝑒 + 𝑠𝑒′ + {(𝑥1 : 𝑥𝑛+1) · · · (𝑥𝑛 : 𝑥2𝑛)}

Replace 𝑠 with 𝑠′ =
let 𝑧′ = alloc (𝑠𝑒 · 𝑦)
let 𝑝 = kernel 𝑥 ≤ 𝑦 do 𝑏′

Previous work on dope vectors in ALGOL 60 [12] and APL [3]
used dynamic structures similar to lmads, but as actual metadata
carried around at runtime, and with less expressive power. For
instance, they cannot express the difference between row-major
and column-major layouts.

The functional array language Single Assignment C (SaC) is
similar to Futhark, and also uses a memory management strategy
similar to ours [2], in particular distinguishing conceptual array
values from the memory blocks used to store them, and using
reference counting for the latter. One significant difference is that
SaC’s scheme uses a notion of “sub-allocations” to reference parts of
memory blocks, while we use index functions, which also provides
a mechanism for describing array layouts.

8 CONCLUSIONS

We have shown how to extend a functional language with a notion
of memory that is rich enough to express layout and allocation op-
timizations. The memory annotations are non-semantic, although
we have not provided an algorithm for verifying memory safety.

We have used this design in a compiler for the Futhark pro-
gramming language, where it has proven effective for several years.
In the compiler, the idea of extending a language with memory
information is applied to several otherwise distinct intermediate
representations, corresponding to the representations the compiler
uses for its different compilation pipelines—sequential code, multi-
core code, GPU code, and so on.

One restriction of our approach is that we assume memory ca-
pacity requirements are easy to compute in advance, and object
layouts can be described in a simple and systematic manner, in our
case with LMADs. This is certainly the case for arrays, but may not
be applicable to more complex recursive structures.

Although we have demonstrated our ideas on a purely functional
language, they do not depend on purity and would still work in the
presence of side effects.

Compiling a functional array language with non-semantic memory information IFL 2022, August 31-September 2, 2022, Copenhagen, Denmark

REFERENCES

[1] Koen Claessen, Mary Sheeran, and Bo Joel Svensson. 2012. Expressive array
constructs in an embedded GPU kernel programming language. In Proceedings of
the 7th workshop on Declarative aspects and applications of multicore programming.
21–30.

[2] Clemens Grelck and Kai Trojahner. 2004. Implicit Memory Management for SaC.
In Implementation and Application of Functional Languages, 16th International
Workshop, IFL’04, Clemens Grelck and Frank Huch (Eds.). University of Kiel,
Institute of Computer Science and Applied Mathematics, 335–348. greltrojifl04.
pdf Technical Report 0408.

[3] Leo J Guibas and Douglas K Wyatt. 1978. Compilation and delayed evaluation in
APL. In Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages. 1–8.

[4] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and Cos-
min E. Oancea. 2017. Futhark: Purely Functional GPU-programming with
Nested Parallelism and In-place Array Updates. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (Barcelona, Spain) (PLDI 2017). ACM, New York, NY, USA, 556–571.
https://doi.org/10.1145/3062341.3062354

[5] Jay Hoeflinger, Yunheung Paek, and Kwang Yi. 2001. Unified Interprocedural
Parallelism Detection. International Journal of Parallel Programming 29(2) (2001),
185–215.

[6] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014.
CakeML: A Verified Implementation of ML. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego,
California, USA) (POPL ’14). Association for Computing Machinery, New York,
NY, USA, 179–191. https://doi.org/10.1145/2535838.2535841

[7] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister,
and Christian Ferdinand. 2016. CompCert-a formally verified optimizing compiler.

In ERTS 2016: Embedded Real Time Software and Systems, 8th European Congress.
[8] Zhitao Lin and Christophe Dubach. 2022. From Functional to Imperative: Combin-

ing Destination-Passing Style and Views. In Proceedings of the 8th ACM SIGPLAN
International Workshop on Libraries, Languages and Compilers for Array Program-
ming (San Diego, CA, USA) (ARRAY 2022). Association for Computing Machinery,
New York, NY, USA, 25–36. https://doi.org/10.1145/3520306.3534502

[9] Philip Munksgaard, Troels Henriksen, Ponnuswamy Sadayappan, and Cosmin
Oancea. 2022. Memory Optimizations in an Array Language. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage
and Analysis (Dallas, Texas) (SC ’22). IEEE Press, Article 31, 15 pages.

[10] Yunheung Paek, Jay Hoeflinger, and David Padua. 2002. Efficient and Precise
Array Access Analysis. ACMTransactions on Programming Languages and Systems
24(1) (2002), 65–109.

[11] Amr Sabry and Matthias Felleisen. 1992. Reasoning About Programs in
Continuation-passing Style. SIGPLAN Lisp Pointers V, 1 (Jan. 1992), 288–298.

[12] Kirk Sattley. 1961. Allocation of storage for arrays in ALGOL 60. Commun. ACM
4, 1 (1961), 60–65.

[13] Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton Jones, andDimitrios Vytiniotis.
2017. Destination-Passing Style for EfficientMemoryManagement. In Proceedings
of the 6th ACM SIGPLAN International Workshop on Functional High-Performance
Computing (Oxford, UK) (FHPC 2017). Association for Computing Machinery,
New York, NY, USA, 12–23. https://doi.org/10.1145/3122948.3122949

[14] Mads Tofte and Lars Birkedal. 1998. A region inference algorithm. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 20, 4 (1998), 724–767.

[15] Mads Tofte and Jean-Pierre Talpin. 1994. Implementation of the Typed Call-
by-Value _-Calculus Using a Stack of Regions. In Proceedings of the 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Portland,
Oregon, USA) (POPL ’94). Association for Computing Machinery, New York, NY,
USA, 188–201. https://doi.org/10.1145/174675.177855

greltrojifl04.pdf
greltrojifl04.pdf
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/3520306.3534502
https://doi.org/10.1145/3122948.3122949
https://doi.org/10.1145/174675.177855

	Abstract
	1 Introduction
	2 The Fun language
	2.1 Type Rules
	2.2 Operational semantics

	3 The FunMem language
	3.1 LMADs in FunMem
	3.2 Type rules
	3.3 Operational semantics
	3.4 The tradeoffs in FunMem
	3.5 Transforming Fun to FunMem

	4 The Imp language
	5 Memory Expansion
	6 Remarks on implementation
	7 Related work
	8 Conclusions
	References

