
A Comparison of OpenCL, CUDA, and HIP as
Compilation Targets for a Functional Array Language

Troels Henriksen
athas@sigkill.dk

University of Copenhagen
Copenhagen, Denmark

Abstract
This paper compares OpenCL, CUDA, and HIP as compi-
lation targets for Futhark, a functional array language. We
compare the performance of OpenCL versus CUDA, and
OpenCL versus HIP, on the code generated by the Futhark
compiler on a collection of 48 application benchmarks on
two different GPUs. Despite the generated code in most cases
being equivalent, we observe significant performance differ-
ences on the same hardware, ranging from 0.42x to 1.72x in
the most extreme cases. We identify the root causes of most
of these differences, many of which are due to relatively
superficial details such as inconsistent defaults regarding
compiler optimisation and numerical accuracy, although a
few remain mysterious.

CCS Concepts: • Computing methodologies → Paral-
lel programming languages; Massively parallel and high-
performance simulations; • General and reference→ Per-
formance.

Keywords: GPU, functional programming, parallel program-
ming, performance measurement
ACM Reference Format:
Troels Henriksen. 2024. A Comparison of OpenCL, CUDA, and
HIP as Compilation Targets for a Functional Array Language. In
Proceedings of the 1st ACM SIGPLAN International Workshop on
Functional Programming for Productivity and Performance (FProPer
’24), September 6, 2024, Milan, Italy. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3677997.3678226

1 Introduction
Graphics Processing Units (GPUs) are massively parallel
processors that are commonly used for many non-graphics
workloads, includingAI and scientific computing. As perhaps

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FProPer ’24, September 6, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-1100-8/24/09
https://doi.org/10.1145/3677997.3678226

the most affordable and easily available massively parallel
computers, while being notoriously tedious to program di-
rectly, they are an enticing compilation target for high level
languages.

In contrast to CPUs, GPUs are typically not programmed
by directly generating and loadingmachine code. Instead, the
programmer must use fairly complicated software APIs to
compile the GPU code and communicate with the GPU hard-
ware. Various GPU APIs mostly targeting graphics program-
ming exist, including OpenGL [29], DirectX, and Vulkan [29].
However, in this paper we are concerned with APIs for
general-purpose non-graphics GPU programming (GPGPU):
specifically, CUDA, OpenCL, and HIP.

CUDA was published by NVIDIA in 2007 as a proprietary
API and library for NVIDIA GPUs. It has since become the
most popular API for GPGPU, largely aided by the single-
source CUDA C++ programming model provided by the
nvcc compiler. In response, OpenCL was published in 2009
by Khronos as an open standard for heterogeneous comput-
ing [19]. In particular, OpenCL was adopted by AMD and
Intel as the main way to perform GPGPU on their GPUs, and
is also supported by NVIDIA. For reasons that are outside
the scope of this paper, OpenCL has so far failed to reach
the popularity of CUDA.
The dominance of CUDA posed a market problem for

AMD, since software written in CUDA can only be executed
on an NVIDIA GPU. Since 2016, AMD has been developing
HIP, an API that is largely identical to CUDA, and which in-
cludes tools for automatically translating CUDA programs to
HIP (hipify). Since HIP is so similar to CUDA, an implemen-
tation of the HIP API in terms of CUDA is straightforward,
and is also supplied by AMD. The consequence is that a
HIP application can also be run on both AMD and NVIDIA
hardware, often without any performance overhead [18],
although we do not investigate that in this paper.
While HIP is clearly intended as a strategic response to

the large amount of existing CUDA software, HIP can also be
used by newly written code. The potential advantage is that
HIP (and CUDA) exposes more GPU features than OpenCL,
as OpenCL is a more slow-moving and hardware-agnostic
specification developed by a committee, which cannot be
extended unilaterally by GPU manufacturers.

1

https://orcid.org/0000-0002-1195-9722
https://doi.org/10.1145/3677997.3678226
https://doi.org/10.1145/3677997.3678226


FProPer ’24, September 6, 2024, Milan, Italy Troels Henriksen

Futhark [13] is a functional array language that supports
a discipline of data-parallel programming through a vocab-
ulary of second order array combinators (SOACs), re-
sembling common functional programming constructs such
as map, reduce, and scan. Through a language-based cost
model in the style of NESL, Futhark provides asymptotic
guarantees about parallel execution, allowing the program-
mer to reason about the parallelism of their algorithms with-
out taking hardware details into account.

The Futhark compiler is an aggressively optimising ahead-
of-time compiler. Although the Futhark language itself is
hardware-agnostic, and the compiler supports various com-
pilation targets, the most mature backends are the ones that
target GPUs. Three different GPU backends, targeting dif-
ferent GPU APIs, are supported by the compiler: OpenCL,
HIP, and CUDA. These backends share the same compilation
pipeline (including all optimisations), and differ only in the
final code generation step.

This paper investigates the performance and convenience
of these three backends. The theme of our contribution is to
relay our experiences to other implementers of languages or
libraries that wish to target one or more of OpenCL, HIP, and
CUDA. In particular, we wish to identify subtle performance
or correctness pitfalls. We do this by:

1. A qualitiative explanation of how the compiler back-
ends have been structured and implemented (section 2).

2. A quantitative evaluation of the performance of the
three backends on a sizeable collection of benchmark
programs (section 3), including an analysis of the root
source of performance differences.

Due to the number of benchmarks and the sheer com-
plexity of the GPU software stacks and their somewhat in-
scrutable optimising compilers, we cannot yet explain all
observed performance differences, but we identify several
root causes that affect multiple benchmarks.

Nomenclature. We use CUDA terms rather than OpenCL
terms, even when discussing non-NVIDIA hardware, as the
CUDAnomenclature ismore commonly known in theGPGPU
community.

Background. Parts of this paper will assume basic knowl-
edge of GPU architecture, their programming model, mem-
ory hierarchy, and performance characteristics. The first cou-
ple of chapters of the CUDA C++ Programming Guide [25]
are a good introduction.

2 Compilation Model
The Futhark compiler supports three GPU backends: OpenCL,
HIP, and CUDA. All three backends use exactly the same
compilation pipeline, including all optimisations, except for
the final code generation stage. The result of compilation
is conceptually two parts: a GPU program that contains
definitions of GPU functions (kernels) that will ultimately

run on the GPU and a host program, in C, that runs on the
host (in practice, the CPU) and contains invocations of the
chosen GPU API. As a purely practical matter, the GPU pro-
gram is also embedded in the host program as a string literal.
At runtime, the host program will pass the GPU program to
the kernel compiler provided by the GPU driver, which will
generate machine code for the GPU in use.
The OpenCL backend was the first to be implemented,

starting in around 2015 and becoming operational in 2016.
The CUDA backend was implemented by Jakob Stokholm
Bertelsen in 2019 [2], largely in imitation of the OpenCL
backend, motivated by the somewhat lacking enthusiasm for
OpenCL demonstrated by NVIDIA. For similar reasons, the
HIP backend was implemented in 2023. While the OpenCL
backend might be more mature purely due to age, the back-
ends make use of the same optimisation pipeline and, as we
shall see, almost the same code generator, and so produce
code of near identical quality.
The difference between the code generated by the three

GPU backends is (almost) exclusively down to which GPU
API is invoked at runtime. To keep the backends easy to
maintain, we have designed a simple abstraction layer, shown
in fig. 1, that exposes the few operations that are required
by Futhark. The operations can be grouped into two themes:

1. A way to allocate and copy memory.
2. A way to retrieve handles to GPU kernels from the

compiled GPU program, and then execute them on
some provided array of arguments.

This interface has been defined to be straightforward to
implement with all of OpenCL, HIP, and CUDA. For HIP and
CUDA, we use the so-called “driver API” layer, which is some-
what more low-level than what most CUDA programmers
are used to and which is similar to OpenCL in terms of ab-
straction level and verbosity. The abstraction layer does not
expose any features that are not universally available (which
are therefore not usable by the Futhark code generator).
There is no significant difference between the backends

regarding how difficult this portability layer is to implement.
CUDA requires 231 lines of code, HIP 233, and OpenCL 255.
This excludes platform-specific startup and configuration
logic, but even the most verbose backend (OpenCL), consists
of a total of 1124 lines of backend-specific host code.

2.1 GPU Kernel Code
As far as Futhark is concerned, the differences between the
languages used for expressing the GPU program itself (CUDA
C, OpenCL C, and HIP C) are minor, almost down to mere
syntax, and do not merit much elaboration. This is partially
because Futhark does not make use of any language-level
abstraction features and merely uses the human-readable
syntax as a form of portable assembly code. In particular,
all these backends have complete support for integer and
floating-point types of all the sizes one might expect, as

2



A Comparison of OpenCL, CUDA, and HIP as Compilation Targets for a Functional Array Language FProPer ’24, September 6, 2024, Milan, Italy

// Types that must be defined by the backend implementation:

struct futhark_context { ... };

typedef ... gpu_mem;

typedef ... gpu_kernel;

// Memory management:

int gpu_free_actual(struct futhark_context *ctx , gpu_mem mem);

int gpu_alloc_actual(struct futhark_context *ctx , size_t size , gpu_mem *mem_out );

int gpu_memcpy(struct futhark_context* ctx ,

gpu_mem dst , int64_t dst_offset ,

gpu_mem src , int64_t src_offset ,

int64_t nbytes );

int gpu_scalar_from_device(struct futhark_context* ctx ,

void *dst ,

gpu_mem src , size_t offset , size_t size);

int gpu_scalar_to_device(struct futhark_context* ctx ,

gpu_mem dst , size_t offset , size_t size ,

void *src);

// Kernel invocation:

void gpu_create_kernel(struct futhark_context *ctx ,

gpu_kernel* kernel ,

const char* name);

int gpu_launch_kernel(struct futhark_context* ctx ,

gpu_kernel kernel , const char *name ,

const int32_t grid[3],

const int32_t block[3],

unsigned int shared_mem_bytes ,

int num_args ,

void* args[num_args],

size_t args_sizes[num_args ]);

Figure 1. C declarations for the host-side GPU abstraction layer used by the Futhark compiler. The compiler generates code
targeting this interface. An implementation of the interface in terms of OpenCL, HIP, or CUDA is prepended to the generated
program. A few bookkeeping and initialisation functions have been elided, as well as functions for copying entire arrays
between host and GPU.

well as support for pointers and pointer arithmetic. This
is unfortunately not the case for all GPU languages, with
GLSL (OpenGL) or WGSL (WebGPU) being much more con-
strained.

Futhark makes use of hardware features such as barriers,
memory fences, atomics, and shared memory, which exist in
conceptually identical forms in all of the languages, merely
with different names and syntax. These differences are easily
handled by prefixing a small set of C macro and function
definitions that provides a uniform interface.

2.2 Runtime Compilation
The choice to perform runtime compilation of the GPU pro-
gram is perhaps a little unusual, as in particular CUDA pro-
grammers are used to the single-source model of CUDA C++,

where nvcc takes care of separating GPU code from host
code, and compiles the GPU code at host compile-time.
Our choice of runtime compilation is largely a histori-

cal accident due to the OpenCL backend being the first one
implemented, since OpenCL provides an API based on run-
time compilation. While the OpenCL approach is certainly
less ergonomic than CUDA for a human programmer, run-
time compilation provides a significant advantage to a com-
piler, as it allows important constants such as thread block
sizes, tile sizes, and other tuning parameters to be set dy-
namically (from the user’s perspective) rather than statically,
while still allowing such sizes to be visible as sizes to the
kernel compiler. This enables important optimisations such
as unrolling of loops over tiles. Essentially, this approach

3



FProPer ’24, September 6, 2024, Milan, Italy Troels Henriksen

provides a primitive but very convenient form of Just-In-
Time compilation. Runtime compilation is available in CUDA
through the NVRTC library and in HIP through the equiva-
lent HIPRTC library.

Runtime compilation of GPU kernels adds significant pro-
cess start-up overhead, ranging from several seconds to more
than a minute for large programs. We have observed no sig-
nificant difference in runtime compilation time between the
different APIs. All of OpenCL, CUDA, and HIP provide effec-
tive mechanisms for retrieving the compiled form of the GPU
program, which can be stored in a disk cache and loaded
during the next startup, which significantly reduces the start-
up time. Care must of course be taken to avoid loading an
outdated compiled program from this cache. In this paper
we do not measure startup overhead, and so will not further
discuss this issue.

2.3 Parallel Constructs
Futhark supports (regular) nested parallelism at the language
level, but GPUs only efficiently support two levels of par-
allelism — the grid level and the block level, and the latter
is rather restricted.1 In practice, we consider GPUs to only
support flat parallelism. To map application-level nested par-
allelism to flat GPU parallelism, Futhark uses a program
transformation called incremental flattening [14], the precise
details of which are outside the scope of this paper. After
flattening, GPU computations are expressed in terms of a few
core primitives: maps, scans, reduces, and generalised his-
tograms [12]. These are significantly extended compared to
their common incarnation in the literature or in the Futhark
source language, and support arbitrary input transforma-
tions (i.e., they can represent fused operations), additional
outputs, scatter outputs, block-level vs. thread-level execu-
tion, multiple operators, and multiple dimensions (i.e., reg-
ular segmented operations). Again, for the purpose of this
paper, the precise details of these facilities are largely unim-
portant and will be brought up when relevant.

The code generator knows how to translate each of these
parallel primitives to GPU code. Maps are translated into
single GPU kernels, with each iteration of the map handled
by a single thread. Reductions are translated using a con-
ventional approach where the arbitrary-sized input is split
among a fixed number of threads, based on the capacity of
the GPU. For segmented reductions, Futhark uses a multi-
versioned technique that adapts to the size of the segments
at runtime [21].

Using the CUDA or HIP backends, scans are implemented
using the decoupled lookback algorithm [23], which requires
only a single pass over the input, and will be called a single-
pass scan in this paper. Unfortunately, the single-pass scan
requires memory model and progress guarantees that are
present in CUDA and HIP, but not in OpenCL. Instead, the

1One may define “warp level” parallelism as a third level.

OpenCL backend uses a less efficient two-pass scan that
manifests an intermediate array of size proportional to the in-
put array. This is the only case for which there is a significant
difference in how the CUDA, HIP, and OpenCL backends
generate code for parallel constructs. The two-pass scan is
also used whenever the scan operator takes arrays of stati-
cally unknown size as arguments, as this prevents a register
caching technique that is crucial to the performance of the
single-pass scan.

Generalised histograms are compiled to GPU kernels that
use atomic operations to update a shared array. Depending
on the size of the histogram, this array is kept in global
or shared memory. Additionally, to minimise the overhead
of conflicts when multiple threads try to update the same bin,
Futhark employes a technique based onmulti-histogramming
and multi-passing [12].

3 Application Benchmarks
We consider 48 benchmark programs manually ported to
Futhark from Accelerate [3], Rodinia [4], Parboil [30], and
PBBS [1]. Some of these are variants of the same problem.
For example, there are four different implementations of the
Rodinia breadth-first-search benchmark, as well as one for
PBBS. The benchmarks are of medium size and comprise
about 5000 source lines of code (not counting comments and
blank lines). The median program size is about 100 lines of
Futhark code.
Most of the benchmarks contain multiple workloads of

varying sizes. Each workload is executed at least ten times,
and possibly more in order to establish statistical confidence
in the measurements [16]. For each workload, we measure
the average observed wall clock runtime. For a given bench-
mark executed with two different backends on the same
GPU, we then report the average speedup across all work-
loads, as well as the standard deviation of speedups. We do
not measure GPU initialisation or other such startup over-
heads, nor do we measure the cost of copying the initial
input data to the GPU or copying the final output data from
the GPU. All other communication is included in the wall
clock measurement.
The complete list of application benchmarks, as well as

their origin, follows.

Accelerate: tunnel, fluid, smoothlife, trace, fft, canny, crys-
tal, pagerank, nbody-bh, kmeans, hashcat, nbody, man-
delbrot.

PBBS: convexHull, histogram, breadthFirstSearch, max-
imalMatching, minSpanningForest, maximalIndepen-
dentSet, merge_sort, ray, radix_sort, quick_sort.

Rodinia: backprop, cfd, bfs_iter_work_ok, hotspot,
pathfinder, bfs_filt_padded_fused, bfs_heuristic, kmeans,
bfs_asympt_ok_but_slow, lud, lavaMD, myocyte, nw, nn,
particlefilter, srad.

Parboil: tpacf, histo, sgemm, stencil, mri-q, lbm.

4



A Comparison of OpenCL, CUDA, and HIP as Compilation Targets for a Functional Array Language FProPer ’24, September 6, 2024, Milan, Italy

Due to size constraints, we do not discuss each benchmark
in detail, except as needed to explain its performance. We
benchmark on two different GPUs: an NVIDIA A100 (CUDA
12.3) using the CUDA and OpenCL backends, and an AMD
MI100 (ROCm 6.0.0) using the HIP and OpenCL backends.
We benchmark without any backend-specific tuning or con-
figuration. As we will see below, one can argue that the
Futhark backends should be modified to automatically pass
certain non-standard options to the GPU kernel compilers,
in order to make the comparison more fair. Further, the re-
sults might also look different if an auto-tuner was used to
calibrate various tuning parameters, such as thread block
sizes.
The speedup of using the OpenCL backend compared

to the CUDA backend on A100 can be seen in fig. 2a, and
similarly for OpenCL compared with HIP onMI100 on fig. 2b.
A number higher than 1 means that OpenCL is faster than
CUDA or HIP, respectively. A wide error bar indicates that
the performance difference between backends is different
for different workloads.
In the interest of reproducibility, the experimental infas-

tructure is publicly available and fully documented.2

3.1 Causes of Performance Differences
In an ideal world, we would observe no performance differ-
ences between backends. However, as discussed in section 2,
Futhark does not use equivalent parallel algorithms in all
cases. And even for those benchmarks where we do gener-
ate equivalent code no matter the backend, we still observe
differences. The causes of these differences are many and re-
quire manual investigation to uncover, sometimes requiring
inspection of generated machine code. In the following we
will identify the major sources of performance differences,
and list the affected benchmarks.

3.1.1 Defaults for Numerical Operations. OpenCL is
significantly faster on some benchmarks, such asmandelbrot
on MI100, where it outperforms HIP by 1.71×. The reason
for this is that OpenCL by default allows a less numerically
precise (but faster) implementation of single-precision divi-
sion and square roots. This is for backwards compatibility
with code written for older GPUs, which did not support
correct rounding. An OpenCL build option3 can be used to
force correct rounding of these operations, which matches
the default behaviour of CUDA and HIP. This explains the
performance discrepancies for the benchmarks nbody, trace,
ray, tunnel, and mandelbrot on both MI100 and A100. On
MI100, this makes the OpenCL version of convexHull slower
than the HIP version (due to scans, discussed below). Simi-
larly, passing -ffast-math to HIP on MI100 makes it match
OpenCL for srad, although it is not clear what precisely it
influences in this case. An argument could be made that the
2https://github.com/diku-dk/futhark-fproper24
3-cl-fp32-correctly-rounded-divide-sqrt

Futhark compiler should automatically pass the necessary
options to ensure consistent numerical behaviour across all
backends.

3.1.2 Different Scan Implementations. As discussed
above, Futhark’s OpenCL backend uses a less-efficient two-
pass scan algorithm, rather than a single-pass scan. For
benchmarks that make heavy use of scans, the impact is
significant. This affects benchmarks such as nbody-bh, all
BFS variants, convexhull, maximalIndependentSet, maximal-
Matching, radix_sort, canny, and pagerank. Interestingly, the
quick_sort benchmark contains a scan operator with par-
ticularly large operands (50 bytes each), which interacts
poorly with the register caching done by the single-pass
scan implementation. As a result, the OpenCL version of this
benchmark is faster on the MI100.

3.1.3 Smaller Thread Block Sizes. For unknown reasons,
AMD’s implementation of OpenCL limits thread blocks to
256 threads. This may be a historical limitation, as older
AMD GPUs did not support thread blocks larger than this.
However, modern AMD GPUs support up to 1024 threads
in a thread block (as does CUDA) and this is fully supported
by HIP. This limit means that some code versions generated
by incremental flattening for nested parallelism [14] are not
runnable with OpenCL on MI100, as the size of nested paral-
lelism (and thus the thread block size) exceeds 256, forcing
the program to fall back on fully flattened code versions with
worse locality. The fft, smoothlife, nw, lud, and sgemm bench-
marks on MI100 suffer most from this. The wide error bars
for fft and smoothlife are due to only the largest workloads
being affected.

3.1.4 Missing Atomics. OpenCL does not provide atomic
operations on floating point values. Despite their nondeter-
minism due to the nonassociativity of floating point arith-
metic, floating-point atomics are efficiently supported by
CUDA and HIP and are used in the implementation of gen-
eralised histograms when the element type is floating point.
With the OpenCL backend, such histograms are implemented
with less efficient Compare-And-Swap (CAS) operations.
However, this affects none of the benchmarks in this pa-
per, and this potential cause is included only out of a sense
of completeness.

3.1.5 Imprecise Cache Information. OpenCL makes it
more difficult to query some hardware properties. For ex-
ample, Futhark’s implementation of generalised histograms
uses the size of the GPU L2 cache to balance redundant
work with reduction of conflicts through a multi-pass tech-
nique [12]. With CUDA and HIP we can query this size
precisely, but OpenCL does not reliably provide such a facil-
ity4. The Futhark runtime system makes a qualified guess

4On AMD GPUs, the CL_DEVICE_GLOBAL_MEM_CACHE_SIZE property re-
turns the L1 cache size, and on NVIDIA GPUs it returns the L2 cache size.

5

https://github.com/diku-dk/futhark-fproper24


FProPer ’24, September 6, 2024, Milan, Italy Troels Henriksen

that is close to the correct value, but which is incorrect on
AMDGPUs. This affects some histogram-heavy benchmarks,
such as (unsurprisingly) histo and histogram, as well as tpacf.

3.1.6 Imprecise Thread Information. OpenCL makes it
difficult to query how many threads are needed to fully oc-
cupy the GPU. On OpenCL, Futhark makes a heuristic guess
(the number of compute units multiplied by 1024), while
on HIP and CUDA, Futhark directly queries the maximum
thread capacity. This information, which can be manually
configured by the user as well, is used to decide how many
thread blocks to launch for scans, reductions, and histograms.
In most cases, small differences in thread count have no per-
formance impact, but hashcat and myocyte on MI100 are
very sensitive to the thread count, and run faster with the
OpenCL-computed number.
This also occurs with some of the histogram datasets on

A100 (which explains the enormous variance), where the
number of threads is used to determine the number of passes
needed over the input to avoid excessive bin conflicts. The
OpenCL backend launches fewer threads and performs a
single pass over the input, rather than two. Some of the
workloads have innately very few conflicts, which makes
this run well, although other workloads run much slower.
The performance difference can be removed by config-

uring HIP to use the same number of threads as OpenCL.
Ideally, the thread count should be decided on a case-by-case
basis through auto-tuning, as the optimal number is difficult
to determine analytically.

3.1.7 API Overhead. For some applications, the perfor-
mance difference is not attributable to measurable GPU oper-
ations. For example, trace on the MI100 is faster in wall-clock
terms with HIP than with OpenCL, although low-level pro-
filing information reveals that the runtimes of actual GPU
operations are very similar. This benchmark runs for a very
brief period (around 250𝜇𝑠 with OpenCL), which makes it
sensitive to minor overheads in the CPU-side code. We have
not attempted to pinpoint the source of these inefficiencies,
but generally we observe that they are higher for OpenCL
than for CUDA and HIP. Benchmarks that have a longer total
runtime, but small individual GPU operations, are also sen-
sitive to this effect, especially when the GPU operations are
interspersed with CPU-side control flow that require trans-
fer of GPU data. The most affected benchmarks on MI100
include nn and cfd. On A100, the large variance on nbody is
due to a small workload that runs in 124𝜇𝑠 with OpenCL, but
69𝜇𝑠 with CUDA, where the difference due to API overhead,
and similar case occurs for sgemm.

3.1.8 Bounds Checking. Futhark supports bounds check-
ing of code running on GPU, despite lacking hardware sup-
port, through a program transformation that is careful never

to introduce invalid control flow or unsafe memory opera-
tions [11]. While the overhead of bounds checking is gener-
ally quite small (around 2-3%), we conjecture that its unusual
control flow can sometimes inhibit kernel compiler optimisa-
tions, with inconsistent impact on CUDA, HIP, and OpenCL.
The lbm benchmark on both MI100 and A100 is an example
of this, as the performance difference between backends al-
most disappears when compiled without bounds checking
(although interestingly, with the bounds checks, OpenCL
does better on MI100, and worse on A100).

3.1.9 Inexplicable. Some benchmarks show inexplicable
performance differences, where our investigation has been
unable to pinpoint the cause. For example, LocVolCalib on
MI100 is substantially faster with OpenCL than HIP. This is
down to a rather complicated kernel that performs several
block-wide scans and stores all intermediate results in shared
memory. Since this kernel is compute-bound, its performance
may be sensitive to minor aspects of register allocation or
instruction selection, which may differ between the OpenCL
and HIP kernel compilers. GPUs are very sensitive to reg-
ister usage, as high register pressure lowers the number of
threads that can run concurrently. The Futhark compiler
leaves all decisions regarding register allocation to the ker-
nel compiler. Similar inexplicable performance discrepancies
for compute-bound kernels occur on the MI100 for tunnel
and OptionPricing.

3.2 Discussion
Based on the results above, we might reasonably ask whether
targeting OpenCL is worthwhile. Almost all cases where
OpenCL outperforms CUDA or HIP are due to unfair com-
parisons, such as differences in default floating-point be-
haviour (section 3.1.1), or scheduling decisions based on in-
accurate hardware information (sections 3.1.5 and 3.1.6) that
happens to perform well by coincidence on some workloads.
On the other hand, when OpenCL is slow, it is because of
more fundamental issues, such as missing functionality (sec-
tions 3.1.2 to 3.1.4) or API overhead (section 3.1.7).
One argument in favour of OpenCL is its portability—an

OpenCL program can be executed on any OpenCL imple-
mentation, which includes not just GPUs, but also multicore
CPUs and more exotic hardware such as FPGAs [5]. How-
ever, OpenCL does not guarantee performance portability,
and it is well known that OpenCL programs may need sig-
nificant modification in order to perform well on different
platforms [26, 32]. Indeed, the Futhark compiler itself uses a
completely different compiler pipeline and code generator
in its multicore CPU backend [22, 31].

A stronger argument in favour of OpenCL is that it is one
of the main APIs for targeting some hardware, such as Intel
Xe GPUs [20]. An interesting avenue of future work would
be to investigate how OpenCL performs compared to the
other APIs available for that platform.

6



A Comparison of OpenCL, CUDA, and HIP as Compilation Targets for a Functional Array Language FProPer ’24, September 6, 2024, Milan, Italy

nbody-bh
breadthFirstSearch

lbm
convexhull

maximalIndependentSet
maximalMatching
radix_sort:sort_i32

backprop
bfs_heuristic

bfs_iter_work_ok
bfs_asympt_ok_but_slow

histo
bfs_filt_padded_fused

histogram
pagerank
hashcat

lud
lavaMD
sgemm

nw
fft

crystal
canny

pathfinder
rsbench

merge_sort:sort_f64
stencil
mri-q

LocVolCalib
OptionPricing

minSpanningForest
fluid

quick_sort:sort_f64
smoothlife

srad
tpacf

kmeans
xsbench
myocyte
hotspot

nn
mandelbrot
particlefilter

cfd
tunnel

ray
trace
nbody

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

0.60
0.67
0.68
0.70
0.72
0.73
0.76
0.79
0.79
0.81
0.81
0.82
0.83
0.83
0.84
0.86
0.91
0.91
0.92
0.93
0.95
0.95
0.97
0.97
0.99
1.00
1.00
1.01
1.01
1.02
1.02
1.02
1.03
1.04
1.04
1.05
1.06
1.09
1.10
1.12
1.16
1.16
1.16
1.19
1.21
1.22
1.32
1.43

(a) Speedup of OpenCL backend over CUDA backend on
NVIDIA A100 GPU.

tunnel
fluid
tpacf

smoothlife
trace

fft
canny

nn
histogram

histo
cfd

sgemm
bfs_iter_work_ok

nw
hotspot
crystal
stencil

pathfinder
bfs_filt_padded_fused

breadthFirstSearch
lud

bfs_heuristic
maximalMatching

kmeans
bfs_asympt_ok_but_slow

backprop
minSpanningForest

pagerank
rsbench

maximalIndependentSet
mri-q

merge_sort:sort_f64
nbody-bh

ray
xsbench

particlefilter
lavaMD

convexhull
radix_sort:sort_i32

myocyte
OptionPricing

lbm
srad

LocVolCalib
hashcat
nbody

quick_sort:sort_f64
mandelbrot

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

0.42
0.58
0.60
0.67
0.70
0.70
0.72
0.73
0.77
0.78
0.78
0.78
0.79
0.82
0.84
0.84
0.84
0.86
0.87
0.90
0.91
0.91
0.92
0.92
0.92
0.93
0.94
0.94
0.94
0.94
0.94
0.95
0.96
0.98
0.99
0.99
1.01
1.03
1.03
1.08
1.15
1.16
1.18
1.24
1.30
1.36
1.53
1.71

(b) Speedup of OpenCL backend over HIP backend on AMD
MI100 GPU.

Figure 2. Performance comparison on 48 benchmarks on two different GPUs. The error bars show the standard deviation of
speedups across the different workloads for a single benchmark, not variability in absolute runtime performance. Thus, a wide
error bar indicates that the performance difference between backends depends on the workload.

7



FProPer ’24, September 6, 2024, Milan, Italy Troels Henriksen

Finally, a reasonable question is whether the differences
we observe are simply due to Futhark generating poor code.
While this possibility is hard to exclude in every case, Futhark
has been demonstrated in the past to generate code that is of-
ten competitive with hand-written programs [12, 14, 24, 28],
including evaluations on various subsets of the benchmarks
considered above, and so we find it reasonable to assume
that the code generated by Futhark is adequate for the 48
programs investigated in this paper.

4 Conclusions and Related Work
Based on a comparison of 48 benchmarks, we have found
that even for equivalent code running on the same GPU,
there can be significant performance differences between
OpenCL versus CUDA, and OpenCL versus HIP. The differ-
ences are often down to differing defaults regarding floating
point behaviour or unavailability of accurate hardware in-
formation. However, there are also substantial performance
differences due to missing OpenCL features, such as floating-
point atomics or a memory model that allows single-pass
scans. We were unable to explain all performance differences
and suspect small differences in register allocation, as the
inexplicable cases tended to be for mostly compute-bound
applications.

The basic compilation model of Futhark, where high level
parallel constructs are mapped to equivalent GPU code, is
fundamentally similar to the model used by other array
languages such as Accelerate [3], SAC [9], Co-dfns [15],
SkePU [7], or RISE [10]. While the specifics of optimisation
and available constructs differ, most of the causes identified
in section 3.1 are likely to remain relevant.
Prior performance comparisons of CUDA and OpenCL

exist [6, 8, 17]. They tend to include only a few programs
and often ones with simple kernels. This is likely because
of the significant amount of tedious work required to port a
CUDA program to OpenCL or vice versa. However, because
the amount of code being studied is smaller, the investiga-
tion of the performance differences can be quite detailed.
In contrast, this paper investigates a large set of somewhat
complicated benchmarks, albeit with less in-depth analysis.
The prior work, such as [8], tends to find that performance
differences are often due to “unfair” comparisons, such as
different defaults for grid sizes or floating-point behaviour.
This is largely in line with our observations in section 3.1.

Acknowledgments
Oclgrind [27] has proven invaluable in the development of
the Futhark compiler. Cosmin Oancea initiated the Futhark
project and has contributed significantly to the compiler and
the backends discussed in this paper. Robert Schenck has
also contributed significantly to the compiler, and assisted
in improving the readability of the paper.

References
[1] Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, Magdalen Dob-

son, and Yihan Sun. 2022. The problem-based benchmark suite (PBBS),
V2. In Proceedings of the 27th ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (Seoul, Republic of Korea)
(PPoPP ’22). Association for Computing Machinery, New York, NY,
USA, 445–447. https://doi.org/10.1145/3503221.3508422

[2] Jakob Stokholm Bertelsen. 2019. CUDA backend. Bachelor’s Thesis.
University of Copenhagen.

[3] Manuel MT Chakravarty, Gabriele Keller, Sean Lee, Trevor L McDonell,
and Vinod Grover. 2011. Accelerating Haskell array codes with multi-
core GPUs. In Proceedings of the sixth workshop on Declarative aspects
of multicore programming. 3–14.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K.
Skadron. 2009. Rodinia: A benchmark suite for heterogeneous comput-
ing. InWorkload Characterization, 2009. IISWC 2009. IEEE International
Symposium on. 44–54. https://doi.org/10.1109/IISWC.2009.5306797

[5] Tomasz S Czajkowski, Utku Aydonat, Dmitry Denisenko, John Free-
man, Michael Kinsner, David Neto, Jason Wong, Peter Yiannacouras,
and Deshanand P Singh. 2012. From OpenCL to high-performance
hardware on FPGAs. In 22nd international conference on field pro-
grammable logic and applications (FPL). IEEE, 531–534.

[6] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Pe-
terson, and Jack Dongarra. 2012. From CUDA to OpenCL: Towards a
performance-portable solution for multi-platform GPU programming.
Parallel Comput. 38, 8 (2012), 391–407. https://doi.org/10.1016/j.parco.
2011.10.002 APPLICATION ACCELERATORS IN HPC.

[7] August Ernstsson, Lu Li, and Christoph Kessler. 2018. SkePU 2: Flexible
and type-safe skeleton programming for heterogeneous parallel sys-
tems. International Journal of Parallel Programming 46 (2018), 62–80.

[8] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. 2011. A com-
prehensive performance comparison of CUDA and OpenCL. In 2011
International Conference on Parallel Processing. IEEE, 216–225.

[9] Jing Guo, Jeyarajan Thiyagalingam, and Sven-Bodo Scholz. 2011.
Breaking the GPU Programming Barrier with the Auto-parallelising
SAC Compiler. In 6th Workshop on Declarative Aspects of Multicore
Programming (DAMP’11), Austin, USA. ACM Press, 15–24. https:
//doi.org/10.1145/1926354.1926359

[10] Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Xueying
Qin, Sergei Gorlatch, and Michel Steuwer. 2020. Achieving high-
performance the functional way: a functional pearl on expressing
high-performance optimizations as rewrite strategies. Proceedings of
the ACM on Programming Languages 4, ICFP (2020), 1–29.

[11] Troels Henriksen. 2021. Bounds Checking on GPU. International
Journal of Parallel Programming (03 2021). https://doi.org/10.1007/
s10766-021-00703-4

[12] Troels Henriksen, Sune Hellfritzsch, Ponnuswamy Sadayappan, and
Cosmin Oancea. 2020. Compiling Generalized Histograms for GPU.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Atlanta, Georgia) (SC
’20). IEEE Press, Article 97, 14 pages.

[13] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein,
and Cosmin E. Oancea. 2017. Futhark: Purely Functional GPU-
programming with Nested Parallelism and In-place Array Updates. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (Barcelona, Spain) (PLDI 2017). ACM,
New York, NY, USA, 556–571. https://doi.org/10.1145/3062341.3062354

[14] Troels Henriksen, Frederik Thorøe, Martin Elsman, and Cosmin
Oancea. 2019. Incremental Flattening for Nested Data Parallelism. In
Proceedings of the 24th Symposium on Principles and Practice of Parallel
Programming (Washington, District of Columbia) (PPoPP ’19). ACM,
New York, NY, USA, 53–67. https://doi.org/10.1145/3293883.3295707

[15] Aaron W Hsu. 2016. The key to a data parallel compiler. In Proceed-
ings of the 3rd ACM SIGPLAN International Workshop on Libraries,

8

https://doi.org/10.1145/3503221.3508422
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1016/j.parco.2011.10.002
https://doi.org/10.1016/j.parco.2011.10.002
https://doi.org/10.1145/1926354.1926359
https://doi.org/10.1145/1926354.1926359
https://doi.org/10.1007/s10766-021-00703-4
https://doi.org/10.1007/s10766-021-00703-4
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3293883.3295707


A Comparison of OpenCL, CUDA, and HIP as Compilation Targets for a Functional Array Language FProPer ’24, September 6, 2024, Milan, Italy

Languages, and Compilers for Array Programming. 32–40.
[16] Aleksander Junge. 2022. Reactive Benchmarking. Bachelor’s Thesis.

University of Copenhagen.
[17] Kamran Karimi, Neil G Dickson, and Firas Hamze. 2010. A performance

comparison of CUDA and OpenCL. arXiv preprint arXiv:1005.2581
(2010).

[18] Niklas Kerscher. 2022. Investigating the HIP programming model with
regards to portability and performance portability. (2022).

[19] Khronos OpenCL Working Group. 2009. The OpenCL Specification,
Version 1.0. https://www.khronos.org/registry/cl/specs/opencl-1.0.pdf

[20] Filip Kruzel and Mateusz Nytko. 2022. Intel Iris Xe-LP as a platform for
scientific computing.. In FedCSIS (Communication Papers). 121–128.

[21] Rasmus Wriedt Larsen and Troels Henriksen. 2017. Strategies for
Regular Segmented Reductions on GPU. In Proceedings of the 6th ACM
SIGPLAN International Workshop on Functional High-Performance Com-
puting (Oxford, UK) (FHPC 2017). ACM, New York, NY, USA, 42–52.
https://doi.org/10.1145/3122948.3122952

[22] W. Pema N. H. Malling, Louis Marott Normann, Oliver B. K. Petersen,
and Kristoffer A. Kortbæk. 2022. Extending Futhark’s multicore C
backend to utilize SIMD using ISPC. Bachelor’s Thesis. University of
Copenhagen.

[23] Duane Merrill and Michael Garland. 2016. Single-pass parallel prefix
scan with decoupled look-back. NVIDIA, Tech. Rep. NVR-2016-002
(2016).

[24] P. Munksgaard, T. Henriksen, P. Sadayappan, and C. Oancea. 2022.
Memory Optimizations in an Array Language. In 2022 SC22: Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis (SC) (SC). IEEE Computer Society, Los Alamitos, CA, USA,
424–438. https://doi.ieeecomputersociety.org/

[25] NVIDIA. 2024. CUDA C++ Programming Guide. https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html. Accessed: 2024-
05-29.

[26] Simon J Pennycook, Simon D Hammond, Steven A Wright, JA Herd-
man, Ian Miller, and Stephen A Jarvis. 2013. An investigation of the
performance portability of OpenCL. J. Parallel and Distrib. Comput.
73, 11 (2013), 1439–1450.

[27] James Price and Simon McIntosh-Smith. 2015. Oclgrind: An extensible
OpenCL device simulator. In Procs. of the 3rd Int. Workshop on OpenCL.
ACM, 12.

[28] R. Schenck, O. Rønning, T. Henriksen, and C. E. Oancea. 2022. AD for
an Array Language with Nested Parallelism. In 2022 SC22: International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC) (SC). IEEE Computer Society, Los Alamitos, CA, USA,
829–843. https://doi.ieeecomputersociety.org/

[29] Dave Shreiner et al. 2009. OpenGL programming guide: the official
guide to learning OpenGL, versions 3.0 and 3.1. Pearson Education.

[30] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-
Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu.
2012. Parboil: A revised benchmark suite for scientific and commercial
throughput computing. Center for Reliable and High-Performance
Computing 127 (2012).

[31] Duc Minh Tran. 2020. Multicore backend for Futhark. Bachelor’s Thesis.
University of Copenhagen.

[32] Yao Zhang, Mark Sinclair, and Andrew A Chien. 2013. Improving
performance portability in OpenCL programs. In Supercomputing: 28th
International Supercomputing Conference, ISC 2013, Leipzig, Germany,
June 16-20, 2013. Proceedings 28. Springer, 136–150.

Received 2024-06-15; accepted 2024-07-05

9

https://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
https://doi.org/10.1145/3122948.3122952
https://doi.ieeecomputersociety.org/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.ieeecomputersociety.org/

	Abstract
	1 Introduction
	2 Compilation Model
	2.1 GPU Kernel Code
	2.2 Runtime Compilation
	2.3 Parallel Constructs

	3 Application Benchmarks
	3.1 Causes of Performance Differences
	3.2 Discussion

	4 Conclusions and Related Work
	Acknowledgments
	References

