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Abstract
We present a shape inference analysis for a purely-functional lan-
guage, named Futhark, that supports nested parallelism via array
combinators such as map, reduce, filter, and scan. Our ap-
proach is to infer code for computing precise shape information
at run-time, which in the most common cases can be effectively
optimized by standard compiler optimizations. Instead of restrict-
ing the language or sacrificing ease of use, the language allows
the occasional shape-dynamic, and even shape-misbehaving, con-
structs. Inherently shape-dynamic code is treated with a fall-back
technique that preserves, asymptotically, the number of operations
of the program and that computes and returns the array’s shape
alongside with its value. This approach leads to a shape-dependent
system with existentially-quantified types, where static shape infer-
ence corresponds to eliminating existential quantifications from the
types of program expressions.

We optimize the common case to negligible overhead via size
slicing: a technique that separates the computation of the array’s
shape from its values. This allows the shape to be calculated in
advance and to be used to instantiate the previously existentially-
quantified shapes of the value slice. We report negligible overhead,
on several mini-benchmarks and three real-world applications.

Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]: Parallel Programming; D.3.4 [Processors]: Compiler

General Terms Performance, Design, Algorithms

Keywords size analysis, functional language, dependent types

1. Introduction
Work on automatic parallelization in both functional [6] and im-
perative languages [7, 26] goes back at least to the late eighties
and early nineties, but, while significant progress has been demon-
strated at that time, these techniques have not achieved widespread
use because parallel hardware was not yet mainstream.

The emergence of commodity multi-core, cache-coherent sys-
tems in mid 2000 has fostered the study (i) of software-transactional
memories [13] (STM) as a way to provide a clean, progress-
guaranteed semantics for atomic operations, (ii) of a variety of
algorithms and transformations [32, 37] that were aimed at en-
hancing the locality of reference in both space and time, and (iii)
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of a range of analyses from entirely dynamic [11, 29, 34] to en-
tirely static for automatic parallelization [20, 30, 33]. While these
techniques are important and ideas can be reused, such solutions
do not naturally extend to commodity (massively parallel) many-
core architectures, such as, GPGPUs, because they (i) either rely
on a fast and coherent cache infrastructure, (ii) exhibit memory
overhead proportional to the number of cores, or (iii) do not ex-
tend beyond one-loop parallelization and do not guarantee that all
available parallelism is detected. Furthermore, applications based
on data-parallel programming APIs such as OPENCL [36] often
obfuscate the original algorithm, inhibit compiler optimizations,
and still reflect a time-stamped hardware.

Many-core (massively parallel) hardware is now mainstream
and it raises both significant challenges, but also great opportu-
nities for array languages to emerge as the prime technology for
hardware-independent commodity programming. Futhark [21–23]
is a (core) array language and compiler infrastructure that offers a
unique blend of purely functional and imperative features: On the
one hand, it supports nested parallelism on regular arrays (of tuples)
via a set of second-order array combinators (SOAC) that have inher-
ently parallel semantics (e.g., map, reduce, filter, scan). The
rich algebra of invariants allows the compiler to implement aggres-
sive code transformations, such as fusion. Further, Futhark supports
(do) loops and in-place updates that still retain the pure-functional
semantics: A loop is just a special case of a (tail) recursive func-
tion, and in-place updates are implemented via a uniqueness-type
mechanism [1]. This combination allows us to express effectively
(at least several) real-world applications for which (i) parallelism
is made explicit at all levels (in the nest), and (ii) loops that exhibit
cross-iteration array dependencies are represented efficiently.

Compiling a fairly high-level language such as Futhark towards
low-level GPGPU code is not without challenges. For example,
static (rather than dynamic) memory allocation is arguably better
suited for the GPGPU architecture. However, Futhark, being de-
signed for ease of use, does not require a programmer to make ex-
plicit the array shape at array-creation points, which sometimes is
also not possible, as in the case of the use of filter.

This paper presents an analysis that infers the array shapes in
Futhark programs. The analysis infers code for computing pre-
cise shape information as runtime values. The analysis targets the
Futhark intermediate representation (IR), which means that it ben-
efits from the standard Futhark compiler optimizations, such as
inlining, common-subexpression elimination, fusion, and dead-
code elimination. We model shape information via existentially-
quantified (shape-)dependent types, which are represented in the
target IR as integral values that are computed at the same time as
the result arrays, that is, before the use of the arrays. This transfor-
mation preserves asymptotically the number of operations of the
original program.

The analysis described so far would not be effective in the
context of GPGPU execution, because, for example, the shape of



an array produced by map would be known only after the execution
of map, that is, the array would not be amenable to static allocation.

We optimize the common case via a size-slicing analysis, which
separates the computation of the array’s shape, from the computa-
tion of the array’s values whenever a cost model allows it. The anal-
ysis eliminates the existential quantifiers of the (shape-)dependent
type, because now the array’s shape is available before the com-
putation of the array elements. The current cost model allows size
slicing whenever the shape computation requires O(1) operations,
that is, when no recurrences such as map, loop, or recursive func-
tions appear in the shape slice.

Related dependent-type systems [38, 40, 41] may offer the pro-
grammer guarantees about the particular execution strategies im-
plemented by a backend compiler, but this typically comes at the
price of restricting the language and sacrificing ease of use. In com-
parison, we approach a full language, and accept the occasional
shape-misbehaved construct. This is treated by the fall-back tech-
nique that uses existentially-quantified types, while we rely on size-
slicing analysis and the common compiler infrastructure to opti-
mise the common case.

Since Futhark is currently (only) interpreted, we performed a
qualitative evaluation of (i) several micro-benchmarks, including
matrix multiplication and Floyd’s shortest path algorithm, and (ii)
of three real-world applications [28] in the range of hundred to
thousands of lines of code. Human inspection of the generated code
shows that for all tested benchmarks the shape and bounds checking
overhead is negligible; that is, it is asymptotically smaller than the
symbolically computed number of operations (work) of the orig-
inal program. For example, two real-world benchmarks exhibited
an overhead on the order of hundreds of operations when the pro-
gram’s work was on the order of tens-of-millions of operations.
All other benchmarks exhibited an overhead of O(1) number-of-
operations.

2. Compiler, Source and Target IR and Intuition
This section sets the stage for the presentation of the code transfor-
mation rules that implement size analysis: Section 2.1 briefly re-
views the organization of the Futhark compiler. Section 2.2 presents
the intermediate representation (IR), that is, the source language to
size analysis, its types and typing rules. Section 2.3 presents the
shape-dependent typing of the IR constructs, and how shapes and
“assumed but not yet verified” invariants are made explicit in the
target IR. Finally, Section 2.4 demonstrates the intuition behind our
technique on a code example.

2.1 Futhark’s Compiler Infrastructure
Futhark is a mostly-monomorphic, statically typed, strictly eval-
uated, purely functional language, intended effectively to support
parallel programs to run on massively parallel hardware, such as
GPGPUs. The language, named after the first six letters of the runic
alphabet (i.e., “Fuþark”) enables a regular notion of nested paral-
lelism via a set of six second-order array combinators (SOACs):
map, reduce, filter, scan, multireduce (not implemented
yet), and redomap (the glue that enables (de)composability).

The compiler architecture is depicted in Figure 1. Type check-
ing is performed on the original program to enable meaningful error
messages, but normalisation renames all bindings to unique names
and brings the program to an IR that resembles A-normal form [35],
that is, three-address code of statements-like bindings. Addition-
ally, tuples are flattened, in the sense that arrays-of-tuples are trans-
formed to tuples-of-arrays [6] and tuples are expanded such that no
variable is bound to a tuple value.

The simplification engine encompasses well established op-
timisations such as inlining, copy propagation, constant fold-
ing, common-subexpression elimination, dead-code elimination,
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Figure 1. Compiler pipeline.

and hoisting of invariant terms out of recurrences in loops and
SOACs. The simplification rules are critical for optimising the re-
sult of higher-level optimisations, such as producer-consumer fu-
sion [21, 22], bounds-checking analysis [23], and size analysis,
which is the subject of this paper. For example, bounds-checking
and size analysis are implemented via high-level transformation
rules that only guarantee that the asymptotic complexity (in num-
ber of operations) of the original program is preserved, but rely on
the simplification engine to reduce the overhead to be negligible in
the common case.

2.2 Source, Size-Agnostic Intermediate Representation
Whenever z is an object of some kind, we write z̄ to range over
sequences of objects of this kind. When we want to be explicit
about the size of a sequence z̄ = z0, · · · , z(n−1), we often write
it on the form z̄(n) and we write z, z̄ to denote the sequence
z, z0, · · · , z(n−1). We will write d(τ) to indicate the rank (number
of dimensions) of a type τ . We may also write d(v), where v is not
itself a type, but something which has a type, such as a variable.

Figure 2 shows the (simplified) intermediate representation of
Futhark which is the source language for size analysis:

• Variable names are ranged over by x, y, and s, and we use g
and h to range over function names.

• A variable may have a scalar type (i.e., bool, int, real), or a
multidimensional (regular) array type, such as [[real]], which
is the type of a matrix, in which all rows have the same size.

• Named and unnamed functions use a syntax similar to SML, but
unnamed functions may appear only as arguments to second-
order array combinators, such as mapT, reduceT, filterT, and
so on. Moreover, named functions may only be defined at top-
level. Named functions may be mutually recursive.

Expressions in the intermediate language are normalized. That is,
they consist of a sequence of let-bindings that always ends in a
tuple of variable names. A pattern (p) consists of a (tuple of) typed
variable name(s) that can be bound to:

• a constant, an array element (indexing), or a tuple of variables,
• an if-then-else expression or a function call,
• a loop that, using the notations from Figure 2, initialises a set

of loop-variant variables p̄ with the values of variables x̄, and
executes S iterations by re-binding p̄ to the result of e1. The



s, x ::= id (variable names, s for scalars/neutral elem)
g, h ::= id (function names)

t ::= int | bool | real (basic types)
τ ::= t (variables’ types)

| [τ ] (regular-array type)
ρ ::= {τ1, . . . , τn} (tuple types)
φ ::= ρ1 → ρ2 (fun/lambda type)

p ::= τ1 x1, . . . , τn xn (n-ary pattern)

e ::= {x1, . . . , xn} (tuple exp)
| let p = ct in e (constant binding)
| let p = x[s1, . . . , sn] in e (array indexing)
| let p = {x1, . . . , xn} in e (variable renaming)
| let p = op(ā) in e (operator call)
| let p = g(x̄) in e (function-call)
| let p = if s then e1

else e2

in e3

(if binding)

| let q = loop (p̄ = x̄) (do-loop binding)
for s < S do e1 (p̄ appears in e1)

in e2 (x̄ initialises p̄)

a ::= x (simple argument)
| fn ρ (p)⇒ e (function argument)

P ::= fun ρ g(p) = e; P (named function definition)
| e (main expression)

Figure 2. Source, Size-agnostic IR for Futhark.

loop has the semantics of the tail-recursive call:
let p = h(0, S, x1, . . . , xn) in e2, where h is defined as:
fun {τ1, . . . , τn} h({int s, int S, τ1 p1, . . . , τn pn}) =

if s >= S then {p1, . . . , pn} else h(s+ 1, S, e1)

• queries that return the size of a specific array dimension,
• operator calls, including calls to unary (e.g., -, not) or binary

(e.g., +, *) operators, but also calls to a number of (polymor-
phic) array constructors and second-order combinators (SOAC).

For giving concise types to operators, we use a notion of ex-
tended types that supports polymorphism in types and for which
arguments to functions may themselves be functions:

τ ::= t | α | [τ ] | {τ1, . . . , τn} | τ1 → τ2

σ ::= ∀ᾱ.τ
Extended types (τ ) and extended type schemes (σ) are used only for
the treatment of operators and we shall be implicit about converting
types and type schemes to and from their extended counter parts. A
substitution (S) is a mapping from type variables to extended types.
Applying a substitution S to some object B, written S(B), has the
effect of simultaneously applying S to type variables in B (being
the identity outside its domain). An extended type τ ′ is an instance
of an extended type scheme σ = ∀~α.τ , written σ ≥ τ ′, if there
exists a substitution S such that S(τ) = τ ′.

Type schemes for operators, including a representative sub-
set of the SOAC operators, are given in Figure 4, and an infor-
mal description of them is given in Figure 3. The SOACs of the
intermediate language (e.g., mapT) are the tuple-of-array version
of the user language SOACs (e.g., map). The SOACs of the in-
termediate language receive an arbitrary number of array argu-
ments and produce a tuple of arrays. As such, the semantics of a
SOAC∈ {mapT, scanT, filterT} operator can be described as
a composition between unzip, the user-language SOAC (e.g., map),
and zip, where the unnamed function is suitably modified to work
with the flat sequence of array arguments.

op(a(n)) Description
	s Unary scalar operation on s.
s1 ⊕ s2 Binary scalar operation on s1 and s2.
size(s,x) Returns the size of dim s of x.
iota(x) Returns the vector [0, . . . , x− 1].
replicate(s,x) Returns an array of rank one higher than x’s

rank, containing an s-times replication of x.
split(s,x) Returns a pair of arrays resulting from split-

ting array x at index s.
concat(x1,x2) Returns the array resulting from catenating the

two arrays x1 and x2 along the last dimension.

mapT(λ, x̄) Equivalent to (unzip o map λ′ o zip)x̄, where
map(f,[x1,..,xn])≡[f(x1),..,f(xn)]
λ ≡ fn β (p)⇒ e, p ≡ τ1 y0, . . . , τn yn−1,
λ′ ≡ fn β ({τ1, .., τn} y)⇒ let p = y in e

reduceT(λ, s̄, x̄) Equivalent to (reduce(λ′, s̄)ozip)x̄, where
reduce(�,s,[x1, .., xn])= s�x1�..�xn
λ ≡ fn τ̄ (p1, p2)⇒ e, pi ≡ τ1 xi1, .., τn xin,
λ′ ≡ fn τ̄ (τ̄ x1, τ̄ x2)⇒

let p1 = x1 in let p2 = x2 in e

scanT(λ, s̄, x̄) Equiv. to (unzip o scan(λ′, s̄) o zip)x̄

filterT(λ, x̄) Equivalent to (unzip o filter λ′ o zip) x̄

Figure 3. Description of SOAC operators.

op TySch(op)
size :: ∀α.{int, α} → int
iota :: int→ [int]
replicate :: ∀α.{int, α} → [α]
split :: ∀α.{int, [α]} → {[α], [α]}
concat :: ∀α.{[α], [α]} → [α]

mapT :: ∀ᾱ(n)β̄(m).{{ᾱ(n)} → {β̄(m)}, [α1], . . . , [αn]}
→ {[β1], . . . , [βm]}

reduceT :: ∀ᾱ(n).{φ, ᾱ(n), [α1], . . . , [αn]} → {ᾱ(n)}
where φ = {ᾱ(n), ᾱ(n)} → {ᾱ(n)}

filterT :: ∀ᾱ(n).{φ, [α1], . . . , [αn]} → {[α1], . . . , [αn]}
where φ = {ᾱ(n)} → bool

Figure 4. Type schemes for operators, including various SOACs.

Type environments (Γ) are finite maps from program variables
to types or function types. When Γ is a type environment and p
is a pattern τ1 x1, · · · , τn xn, we write Γ, p to denote the typing
environment Γ, x1 : τ1, · · · , xn : τn.

Typing rules for the source language are given in Figure 5. The
rules allow inferences among sentences of the forms (1) `p p : ρ,
(2) Γ `a a : τ/φ, (3) Γ ` e : ρ, and (4) Γ `P P : ρ. Sentences
of the first form are read “the pattern p is matched by expressions
of tuple type ρ.” Sentences of the second form are read “under the
assumptions Γ, the operator argument a has type τ or function type
φ.” Sentences of the third form are read “under the assumptions Γ,
the expression e has tuple type ρ.” Finally, sentences of the fourth
form are read “under the assumptions Γ, the program P has tuple
type ρ.”

2.3 Shape-Dependent Typing and Invariants
One important observation is that some operator-semantics invari-
ants, related to the array regularity, are guaranteed to hold by con-
struction, but several other invariants are only “assumed”, that is,
they have not been verified (made explicit) in the IR:

• iota, replicate, and split assume a positive first argument.



Patterns `p p : ρ

`p τ1 x1, · · · , τn xn : {τ1, · · · , τn}
(1)

Operator arguments `a a : τ/φ

Γ `a x : Γ(x)
(2)

`p p : ρ Γ, p ` e : ρ′

Γ `a fn ρ′ (p)⇒ e : ρ→ ρ′
(3)

Expressions Γ ` e : ρ

Γ ` {x1, · · · , xn} : {Γ(x1), · · · ,Γ(xn)} (4)

Γ(y) = [τ ] Γ(s) = int Γ, x : τ ` e : ρ

Γ ` let τ x = y[s] in e : ρ
(5)

ConstType(ct) = τ Γ, x : τ ` e : ρ

Γ ` let τ x = ct in e : ρ
(6)

Γ `a ai : τ i i = [0;n[

TySch(op) ≥ {τ̄ (n)} → ρ `p p : ρ Γ, p ` e : ρ′

Γ ` let p = op(ā(n)) in e : ρ′
(7)

Γ(xi) = τi i = [0;n[

Γ(g) = {τ̄ (n)} → ρ `p p : ρ Γ, p ` e : ρ′

Γ ` let p = g(x̄(n)) in e : ρ′
(8)

Γ(s) = bool Γ ` e1 : ρ Γ ` e2 : ρ
`p p : ρ Γ, p ` e : ρ′

Γ ` let p = if s then e1 else e2 in e : ρ′
(9)

Programs Γ `P P : ρ

`p p : ρ1 Γ, p ` e : ρ2

Γ(g) = ρ1 → ρ2 Γ `P P : ρ

Γ `P fun ρ2 g(p) = e;P : ρ
(10)

Γ ` e : ρ

Γ `P e : ρ
(11)

Figure 5. Typing rules for the source language.

• concat operator assumes that the arguments have identical
shape for all but the outermost dimensions, and guarantees that
the size of the outermost dimension of the result is the sum of
the outermost dimension sizes of the arguments.

τ ::= t | [τ, s] (outer array of size s)

φ ::= ∀s̄1.(τ̄1)→ ∃s̄2.τ̄2 (sizes of args ∈ s̄1, results ∈ s̄2)

concat :: ∀ s1 s2 τ. {[τ, s1], [τ, s2]} → [τ, s1 + s2]

reduceT :: ∀ s ᾱ(n).{φ, ᾱ(n), [α1, s], . . . , [αn, s]} → {ᾱ(n)}
where φ = {ᾱ(n), ᾱ(n)} → {ᾱ(n)}

filterT :: ∀ s1 ᾱ
(n).{φ, [α1, s1], . . . , [αn, s1]}

→ ∃ s2. {[α1, s2], . . . , [αn, s2]}
where φ = {ᾱ(n)} → bool and 0 ≤ s2 ≤ s1

mapT :: ∀t̄(n+m) s s̄α.∃s̄β . { (ᾱ(n) → β̄(m)),
{[α1, s], . . . , [αn, s]} }

→ {[β1, s], . . . , [βm, s]},

where βi = [. . . [tbi+n, s
βi
1 ] . . . , sβiki ], and sβij ∈ s̄β ,

∀i ∈ {1 . . .m}, j ∈ {1 . . . ki}. Similar for α.

Figure 6. Dependent-size types for various SOACs.

• mapT is guaranteed to receive arguments of identical outermost
size, which also matches the outermost size of all result arrays1.
However, mapT assumes that its function argument produces
arrays of identical shape for each element of the input array.

• filterT receives and produces arguments and results of iden-
tical outermost size, respectively (and the outermost size of the
argument is greater than the one of the result).

• reduceT and scanT receive arguments of identical outermost
size, and scanT results have outermost size equal to that of
the input. The semantics for reduceT and scanT assumes that
the (corresponding two) arguments and result of the (tuple-
flattened) binary associative operator have identical shapes.

Figure 6 shows an extended type system in which (i) sizes are
encoded in each array type, that is, [τ, s] represents the type of an
array in which the outermost dimension has size s, and in which (ii)
function/lambda types use universal quantifiers for the sizes of the
array parameters (∀s1), and existential quantifiers for the sizes of
the result arrays (∃s2). Figure 6 shows that this extension allows to
encode the afore-mentioned invariants into size-dependent types.

The type of mapT is verbose because the result array types can-
not be declared entirely in either the universally or existentially
quantified parts. As such, the result type is expressed in terms of
the (i) universally quantified basic-array types t̄(n+1:n+m) and out-
ermost size s, and (ii) the existentially quantified inner-dimension
sizes s̄β . The next section demonstrates, by a code example, the
code transformation that (i) makes explicit in the code the shape-
dependent types and verifies the assumed invariants and (ii) opti-
mizes away in many cases the existential types.

2.4 Birds-Eye View of the Approach
The program in Figure 7 receives as input a three-dimensional

array A, and produces a two-dimensional array B, by mapping the
elements of the outermost dimension of A by function f, such that
each of the rows of B is the catenation of the arrays produced by
reducing the innermost dimension of A by addition and multipli-
cation, respectively. The Futhark user language is very close to the
source IR in Figure 7, except that types are required only in function
declarations, and expressions need not be in three-address form.

1 In the user language zip accepts an arbitrary number of array arguments
that are required to have the same outermost size.



fun [real] f([[real]] a) =
let [real] S, [real] P =
mapT( fn {real,real} ([real] x) =>

let real s = reduceT(op +, 0.0, x) in
let real p = reduceT(op *, 1.0, x) in
{s,p}

, a ) in
let [real] R = concat(S, P) in
R

fun [real] main([[real]]] A)=
let [[real]] B = mapT(fn [real] ([[real]] a)=>f(a), A)
in B[5]

Figure 7. Running example: Program in source IR.

fun {int, [real,?0]} f(int N, int M, [[real,M],N] a) =
let [real,N] S, [real,N] P =
mapT( fn {real,real} ([real,M] x) =>

let real s = reduceT(op +, 0.0, x) in
let real p = reduceT(op *, 1.0, x) in
{s,p}

, a ) in
let k = N + N in
let [real,k] R = concat(S, P) in
{k, R}

fun [real,?0] main(int K, int N, int M, [[real,M],N],K] A)=
let S = if K == 0 then 0

else let s, _ = f(N, M, a[0]) in
s

let [[real,S],K] B =
mapT(fn [real,S] ([[real,M],N] a) =>

let int s, [real,s] v = f(N, M, a) in
let c = assert(s == S) in
<c>v,

A)
in B[5]

Figure 8. Running example: ∃-quantified target IR.

The parameters/result of main are treated in adhoc fashion
(read/written from/to a file). Note that the source IR is size-agnostic
(typed): for example, B has been inferred to be a two-dimensional
array of reals � as a result of a map with a function of signature
[[real]] → [real] � but its shape is not known yet.

The first stage, demonstrated in Figure 8, transforms the pro-
gram into an unoptimised version in which (i) all arrays have shape-
dependent types, which may be existentially quantified, and (ii) all
“assumed” invariants are explicitly checked. This is achieved by:

• extending the function signatures to encompass also the shape
information for each array argument, e.g., f receives additional
arguments N and M that specify the shape of array argument a,

• using whenever possible the “guaranteed” invariants to deter-
mine the shape of a result array, e.g., since array a (in function
f) has outermost dimension of size N, then applying mapT to a
will result in arrays S and P of (outermost) size N, and as such,
concat(S,P) will produce an array of size N+N.

• representing function’s array results via existentially-quantified
shape-dependent types. The latter corresponds to modifying the
function’s body to also return the shape of the result array. For
example, the result of f is now {k, R} where k is the size of
R, and the result type of f is {int, [real,?0]} denoting that
the size of the array result is the first int result, and finally,

• systematically inserting code that verifies all “assumed” invari-
ants. For example, verifying the regularity of array B corre-
sponds to checking that the size s of each array obtained from

fun int f_shape(int N, int M, [[real,M],N] a) =
N + N

fun [real,res]
f_value(int res, int N, int M, [[real,M],N] a) =

let [real,N] S, [real,N] P =
mapT( fn {real,real} ([real] x) =>

let real s = reduceT(op +, 0.0, x) in
let real p = reduceT(op *, 1.0, x) in
{s,p}

, a ) in
let [real,res] R = concat(S, P) in
R

fun [real,?0] main(int K, int N, int M, [[real,M],N],K] A)=
let S = if N == 0 then 0

else f_shape(N,M,A[0]) in
let [[real,S],N] B =
mapT(fn [real,S] ([[real,K],M] a) =>

let int s = f_shape(N,M,a) in
let [real,s] v = f_value(s,N,M,a) in
let c = assert(s == S) in
<c>v,

A)
in B[5]

Figure 9. Extracting and simplifying the shape slice of f

a call to f (inside mapT), is equal to S. The latter S is the pre-
dicted size of the innermost dimension of B, and has been com-
puted before the execution of mapT by applying mapT’s lambda
to A[0] (Otherwise, if A is empty then S=0; note also that the
translation of mapT does not introduce existential types.) The
syntax <c>v signifies that v may only be returned if the asser-
tion corresponding to c succeeded.

It is important to note that this transformation preserves asymptot-
ically the number of operations of the original program.

The main technique used to eliminate existentially-quantified
types from a function signature is to split such a function into a
value and a shape version, which return (only) the original array
results and their shapes, respectively. The splitting is decided by a
cost model. The current one simply performs splitting only if the
(simplified) shape version contains no recurrence constructs, e.g.,
loop, mapT, recursive function calls. (This is checked automati-
cally by the compiler.) Figure 9 demonstrates the technique:

The shape and value slices of f are f_shape and f_value
(after simplification). One can observe that the splitting succeeds
because f_shape costs one addition, and that f_value receives
one extra parameter, named res, that represents its result-array
shape. Finally, in the body of main, the call to f in mapT’s lambda
has been replaced with consecutive calls to f_shape and f_value.

Splitting the original computation into value and shape slices
enables powerful restructuring transformations, for example, the
companion paper [23] presents how the “assumed” invariants can
be separated from the original computation under the form of a
predicate, which guards the original computation, and which is ag-
gressively optimised. This technique is demonstrated in Figure 10:

The original mapT from main is split into a predicate slice and
a value slice. The predicate slice corresponds to the (first) mapT in
Figure 10.A that produces a one-dimensional array of boolean val-
ues recording whether each of the original calls to f (in mapT’s
lambda) produces an array of size S. If any of these values are
False, then a runtime error will be generated (by assert), oth-
erwise, if all are True, i.e., reduce(&&,True,bs) holds, then the
program is valid and the execution of the computational slice can
proceed. The latter corresponds to the second mapT in Figure 10.A,



A. Distributing out assertions...

fun [real,?0] main(int K, int N, int M, [[real,M],N],K] A)=
let S = if N == 0 then 0

else f_shape(N,M,A[0]) in
let [bool,N] bs =
mapT(fn cert ([[real,M],N] a) =>

let int s = f_shape(N,M,a) in
s == S,

A)
let c = assert(reduce(&&, True, bs)) in
let [[real,S],N] B =
<c>mapT(fn [real,S] ([[real,M],N] a) =>

f_value(S,N,M,a)
A)

in B[5]

B. Inlining f_shape...

fun [real,?0] main(int K, int N, int M, [[real,M],N],K] A)=
let S = if N == 0 then 0

else N+N in
let [bool,N] bs =
mapT(fn cert ([[real,M],N] a) =>

let int s = N+N in
s == S,

A)
let c = assert(reduce(&&, True, bs)) in
...

C. Rewriting mapT to replicate...

fun [real,?0] main(int K, int N, int M, [[real,M],N],K] A)=
let S = if N == 0 then 0

else N+N in
let [bool,N] bs = replicate(N, N+N == S)
let c = assert(reduce(&&, True, bs)) in
...

D. Simplifying reduction...

fun [real,?0] main(int K, int N, int M, [[real,M],N],K] A)=
let S = if N == 0 then 0

else N+N in
let c = if N == 0 then assert(True)

else assert(N+N == S) in
let [[real,S],N] B =
<c>mapT(fn [real,S] ([[real,M],N] a) =>

f_value(S,N,M,a)
A)

in B[5]

Figure 10. Running example: Optimized (∃-free) target IR.

inside which only f_value is used because the shape of its result
is known to be S, i.e., has been already computed and verified.

Figure 10.B shows the predicate slice after inlining f_shape.
Since the body of the (first) mapT lambda is invariant to the
lambda’s arguments, the mapT is simplified to replicate(N,
N+N==S) in Figure 10.C. Finally, in Figure 10.D, reducing the
array obtained from replicate with the logical-and operator has
been simplified to checking once N+N == S. The latter two steps
are only possible because f_shape is particularly simple - specifi-
cally, it does not use the elements of the argument array. However,
prior to exploiting this property, we were still able to check this
assertion via a more expensive, map-reduce construct.

One may observe that in the resulted code, the shape and reg-
ularity of B are computed and verified before the definition of B,
respectively, and, most importantly, that the size computation and
assumed-invariant verification introduce negligible overhead, i.e.,
O(1) number of operations. This is essential for GPGPU execution

e ::= · · ·
| <s̄(m)>x1, . . . , xn (predicated tuple exp)
| let p = <s̄(n)>op(ā) in e (predicated call)
| let p = assert(a) in e (assertion)

Figure 11. Certificates and assertions.

because dynamic allocation and assertions are typically not well
suited for accelerators, hence the shapes of the result and of various
intermediate arrays need to be computed (or at least overestimated)
and verified before the kernel is run.

However, it is not always the case that the technique that elim-
inates the existential quantifier (by slice separation) also preserves
asymptotically the number of operations of the program. For ex-
ample separating a recursive function might square up the original
number of operations, as the shape function may itself end up re-
cursive, and the value function may call it for every level of the
recursion. In such cases we do not perform slicing and work with
the existentially-quantified program. The next section presents in
detail the transformation rules, and several corner cases.

3. Transformation rules
This section presents a set of syntax-directed rules for transforming
an un-annotated Futhark program into an annotated Futhark pro-
gram, where all types (except return types of top-level functions)
have full shape annotations, and we explicitly check the regular-
ity assumptions given for mapT in the previous section. Checks for
other invariants – such as checking the inner sizes of the operands
to concat) – are elided for brevity, but are present in the actual
implementation.

In order to perform these checks, we formally introduce the
assert construct mentioned in Section 2.4. An assert(s) ex-
pression, where s is of type bool, returns s, except that if the value
of s is false, program execution halts with an error. An operator
invocation or function return can be predicated on a sequence of
variable names even if said variables are not otherwise used in the
computation, which prevents the expression computing said vari-
ables from being removed as dead code. This is used to ensure that
assert expressions stay in the program.

3.1 Fundamental Transformation
For each function f in the original program, we generate the exis-
tential function fext, that returns the values returned by f , with all
shapes in the return type being existentially quantified.

Specifically, if the return type of a function f is {τ1, · · · , τn},
then the return type of fext is {intd(τ1)

, · · · , intd(τn)
, τ ′1, . . . , τ

′
n},

where d(τ) is the rank of τ , and τ ′i is τi shape-annotated with
int

d(τi). For example, if f returns type {[[int]]}, fext will return
type {int, int, [[int, ?1], ?0]}. Here, ?0 refers to the first int re-
turn, and ?1 to the second. Thus, after transformation, the shape of
the return of a function will be existentially quantified.

Furthermore, the parameters of f are likewise annotated. An
explicit int parameter is added for every dimension of an array
parameter, with the array parameter itself annotated to refer to the
corresponding int parameter. For example, if f takes a single
parameter [[int]]p, then fext will take three parameters int n,
intm, and [[int,m], n].

This type translation corresponds exactly to making explicit the
existentials of the dependent return type of f , which in the above
example would be

∀n.∀m.[[int,m], n]→ ∃p.∃l.[[int, l], p],

as actual values being passed around in the program.



T (τ, s̄(d(τ))) = [[[t,sd(τ)],· · · ],s1]

T (t, s̄(d(t))) = t

V(τ x, s̄(d(τ))) = T (τ, s̄(d(τ))) x

Where t is the basic type of τ and d(τ) is the rank of τ .

Figure 12. Annotating bindings and types.

The following section will describe how to slice an existentially
typed function into shape and value functions, and Sections 3.2-
3.4 present some of the transformation rules that move from un-
annotated to existentially-annotated Futhark.

We will use function V(τ x, s) in Figure 12 to annotate a
binding τ x with the shapes in s, which is a sequence of variable
names whose length is equal to the rank of τ . Similarly, T (τ, s)
performs this annotation on a type. As an example,

T ([[int]], n, m) = [[int, m], n]

and

V([[int]] a, n, m) = [[int, m], n] a.

3.1.1 Size Slicing
We assume we have an existential function fext that has the form:

fun {intd(τ1)
, · · · , intd(τn)

, τ ′1, . . . , τ
′
n} fext(p

m) =
let bnds in

{sd(τ1), · · · , sd(τn), xn}

This function takes m parameters, and returns n interesting
values (the xs), with the the ss being the shapes. One can trivially
derive the corresponding shape function, by simply removing the
values from the return type and result expression:

fun {intd(τ1)
, · · · , intd(τn)} fshape(pm) =

let bnds in

{sd(τ1), · · · , sd(τn)}

For the value function fvalue, we introduce a number of new
parameters, corresponding to the original existential shape, that
give the result shape. The idea is that these parameters are the
result of a call to fshape, but this is not verifiable by the compiler.
This may at first seem fragile, but it is worth keeping in mind that
this transformation is done by the optimiser internally, and is not a
user-visible feature. Hence, human error (apart from errors in the
compiler implementation) will not be a factor. We use these new
parameters to annotate the return type of the value function, i.e.,
the as’ of fvalue are instantiated with the results of fshape:

fun {T (τ1, a
d(τ1)), . . . , T (τn, a

d(τn))}
fvalue(ad(τ1), . . . , ad(τn), pm) =
let bnds in
{xn}

Usually, there will be a large amount of dead and unnecessary
code in fshape, as most of the bindings will be concerned with com-
puting values, even though the function is only returning shapes.
This is for example the case with the shape function generated in
Figure 9, where almost the entire body is removed by simplifica-
tion. In practise, sophisticated dead code removal may be neces-
sary to obtain efficient shape functions – for example, we will need
to remove shape-invariant loops – and thus our approach generally
requires the compiler to possess an effective simplification engine.

3.2 Transformation Functions
The functionAexp

Σ (b) computes the annotated version of the body b
in the environment Σ and returns shapes as well as values (that is,
its type will contain existentials). The environment Σ is a mapping
from names of arrays to lists of variable names, where element i
of the list denotes the size of dimension i of the corresponding
array. We will use conventional head, tail and drop operations to
manipulate these lists, as well as bracket notation for arbitrary
indexing; we write the “cons” operation as x :: xs.

The function Afun(f) computes the existentially-quantified
function fext, by using Aexp

Σ to annotate the function’s body (and
result) with shapes information, and by modifying the function’s
type as described in the beginning of Section 3.1.

We also have a function Alam
Σ (λ, r, p). This is similar to the

function transformation, except that (i) we work within an envi-
ronment Σ, and (ii) we know in advance the intended shape of the
result (r) and parameters (p), because the result shape of an anony-
mous function is never existentially quantified.

For clarity of presentation, we elide type annotations for bind-
ings where the shape and type is obvious or not important; in the
implementation, however, all bindings have full shape annotations.

3.3 Simple Rules
This section describes cases for the function Aexp

Σ (b).
As the nonrecursive case, when given a leaf tuple expression, we

simply look up the shapes of the returned values in the environment,
and return those alongside the values:

Aexp
Σ ({x̄(n)}) = {x1, · · · , xn, x1, · · · , , xn}

where x1 = Σ(x1)
· · ·
xn = Σ(xn)

Other simple cases are listed in Figure 13. Note that, for concat
and split, we introduce new bindings in the program to record
the outer sizes of the resulting arrays. Also, observe how size
expressions are completely removed from the annotated program,
and instead replaced with the variable storing the desired size.

A call to a function f becomes a call to the function fext, where
argument sizes are passed explicitly, and the shapes of return values
are existentially quantified. Concretely, we have a single binding
group, where the existential context (the shapes) are bound first,
followed by the actual values. In the resulting program, there is no
syntactic distinction between the context and the values, and both
can be used as ordinary variables from that point in the program.
This rule is shown on Figure 14. In Section 4, we will describe an
optimisation which will split this binding into two distinct bindings
- one for the shape context, and one for the values - whenever an
efficient fshape exists for fext.

Annotating an if-then-else-expression is surprisingly tricky:

1. If the shape of the result can be known in advance, we wish for
the type to not be existentially quantified, i.e., have no bindings
of shape variables.

2. Yet, one of the two branches may be “more existential” than
the other, in the sense that for one branch, we may in advance
know the shape of the result, but on the other, we will need
existential quantification. In this case, we must be conservative,
and existentially quantify all dimensions of the result that are
existential in either of the two branches.

However, for the initial transformation given on Figure 15, we
will simply consider every shape in the result to be existentially
quantified. In Section 4 we will cover how to optimise this further.



Aexp
Σ (let v = iota(n) in e) =

let [int,n] v = iota(n) in

Aexp
v 7→〈n〉,Σ(e)

Aexp
Σ (let v = replicate(n, a) in e) =

let V(v, n :: Σ(a)) = iota(a) in

Aexp
v 7→n::Σ(a),Σ(e)

Aexp
Σ (let v = concat(a1, a2) in e) =

let n = head(Σ(a1)) + head(Σ(a2)) in

let V(v, n :: tail(Σ(a1))) = concat(a1, a2) in

Aexp
v 7→n::tail(Σ(a1)),Σ(e)

Aexp
Σ (let v1, v2 = split(n, a) in e) =

let m = head(Σ(a)) - n in

let V(v1, n :: tail(Σ(a))),V(v2, (m, tail(Σ(a)))) =

split(n, a) in

Aexp
v1 7→n::tail(Σ(a)),v2 7→m::tail(Σ(a)),Σ(e)

Aexp
Σ (let v = size(i, a) in e) =

let v = Σ(a)[i] in

Aexp
Σ (e)

Figure 13. Simple transformation rules.

Aexp
Σ (let v1, . . . , vn = f(a1, . . . , am) in e) =

let s1
1, . . . , s

d(v1)
1 , . . . , s1

n, . . . , s
d(vn)
n ,

V(v1, s1), . . . ,V(vn, sn) =

fext(a1,Σ(a1), . . . , am,Σ(am)) in

Aexp
v1 7→s1,...,vn 7→sn,Σ(e)

Where si = s1
i :: . . . :: s

d(vi)
i

Figure 14. Function call transformation rule

Aexp
Σ (let v1, . . . , vn = if ac then et else ef in eb) =

let s1
1, . . . , s

d(v1)
1 , . . . , s1

n, . . . , s
d(vn)
n ,

V(v1, s1), . . . ,V(vn, sn) =

if ac then Aexp

Σ (et) else Aexp

Σ (ef ) in

Aexp
v1 7→s1,...,vn 7→sn,Σ(eb)

Where si = s1
i :: . . . :: s

d(vi)
i

Figure 15. Branch transformation

3.4 SOAC-related Rules
The biggest problem with annotating SOACs is that, in Futhark,
anonymous functions cannot be existentially quantified. Hence, be-
fore evaluating the SOAC, we must know the shape of its return
value. For this section, we assume that given an anonymous func-
tion λ, it is possible to compute λshape, which returns the shape of
the values that would normally be returned by λ.

Similarly to function calls, when transforming mapT(λ,a),
there are two possible avenues of attack.

Pre-assertion First, calculate mapT(λshape,a), and assert, for
each returned array, that all of its elements are identical. That
is, check in advance that the mapT expression results in a reg-
ular array. After this check, we know with certainty the shape
of the values returned by the original map computation (and
that it will be regular), which we can then use to annotate the
mapT computing the values. This rule is shown in Figure 16,
generalised to handle an arbitrary amount of array arguments
to mapT. For exposition, we use a convenience function by the
name of allEqual, which is shown on Figure 18.

Intra-assertion Alternatively, we can compute λshape(a[0]), the
shape of the first element of the result. Then, we modify λ to
explicitly assert, for each call, that its actual return value has
the same shape as that computed for the first element - we call
this modified version λchecking. This rule is shown in Figure 17,
and is the one that has been applied on Figure 8. (For brevity we
have omitted the if-branch guarding the case when a is empty.)

The former approach is only efficient if λshape is efficient com-
pared to λvalue - in practice, it must not contain any loops. The latter
approach is limited in that it forces shape checking inside the value
computation, which means that we do not know in advance whether
the shape annotation is correct. The implication is that we cannot
allocate all memory required by the mapT in advance, which will
likely prevent parallel execution on GPU, although SMP parallelism
still remains possible.

However, in Section 4 we will describe an optimisation that is
able to rewrite the result of the intra-assertion approach to code
equivalent to the pre-assertion approach. In fact, this will just be a
special case of the function call splitting described previously, com-
bined with a method of separating assertions from the main compu-
tation. Hence, our compiler always applies the intra-assertion rule,
with the expectation that a later optimisation will remove the asser-
tions, if possible.

For filterT, we annotate the given lambda function, which
is simple, as we know it returns just a single boolean, meaning
there are no shape annotations in the return type. Hence, we pass an
empty list (written as 〈〉) for the return shape annotation. One pos-
sible way to treat filterT is shown on Figure 19, in which we map
the annotated filter function mapT over the original arrays, comput-
ing a boolean flag array that indicates which elements should be
included. The number of true values of the flag array could then be
counted, and used to annotate the “real” call to filterT. It is clear
that this duplicates computation - the filter function is called twice
for every element. Possible solutions include (i) a pack primitive
that can re-use the flag array, (ii) passing the flag array as array in-
put to the second filterT call then using a mapT with a projection
to remove it from the result, or (iii) simply extending filterT to
explicitly return the outer size of the result as a value, i.e., keep
filterT existentially typed. The last option is particularly entic-
ing, as we cannot in any case compute the result size of a filterT
in advance. However, we do know an upper bound on the size (ex-
actly the size of the array being filtered), which means that we are
still able to allocate memory in advance. This relation is not en-



Aexp
Σ (let {v̄(m)

} = mapT(λ, ā(n)
) in e) =

let ss2
1, . . . , ss

d(v1)
1 , . . . , ss2

m, . . . , ss
d(vm)
m =

mapT(λshape,ā
(n)

) in

let c1, s
2
1, . . . , s

d(v1)
1 = allEqual(ss2

1, . . . , ss
d(v1)
1 ) in

...

let cm, s
2
m, . . . , s

d(vm)
m = allEqual(ss2

m, . . . , ss
d(vm)
m ) in

let V(v1, si), . . . ,V(vm, si) = <c̄(m)
>mapT(λvalue, ā

(n)
) in

Aexp
v1 7→s1,...,vn 7→sn,Σ(e)

Where ri = s2
i :: . . . :: s

d(vi)
i

si = s1
i :: ri

pi = tail(Σ(ai))

λshape = Alam
Σ (λ, r̄(m), p̄(n))shape.

Figure 16. Map transformation rule if λshape contains no loops.

Aexp
Σ (let {v̄(m)

} = mapT(λ, ā(n)
) in e) =

let s2
1, . . . , s

d(v1)
1 , . . . , s2

m, . . . , s
d(vm)
m =

λshape(a1[0], . . . , an[0]) in

let V(v1, si), . . . ,V(vm, si) = mapT(λchecking, ā
(n)

) in

Aexp
v1 7→s1,...,vn 7→sn,Σ(e)

Where ri = s2
i :: . . . :: s

d(vi)
i

si = s1
i :: ri

pi = tail(Σ(ai))

λshape = Alam
Σ (λ, r̄(m), p̄(n))shape.

Figure 17. Map transformation rule if λshape is contains loops.

allEqual(ss1, . . . , ssn) =

let oks1 = mapT(op ==, ss1, rotate(1,ss1)) in

let ok1 = reduceT(op &&, oks1) in

...

let oksn = mapT(op ==, ssn, rotate(1,ssn)) in

let okn = reduceT(op &&, oksn) in

{assert(ok1 && ... && okn), ss1[0], ..., ssn[0]}

Figure 18. The allEqual convenience function.

coded in the type system, but it is not difficult for a code generator
to discover and exploit it. This approach is shown in Figure 20.

The transformation rule for reduceT is also shown on Fig-
ure 21. We exploit the invariant that the function may not change
the shape of the accumulator, and that the return value of the reduc-
tion function must hence have the same shape as the initial value
of the accumulator. In the practical implementation, we also extend
the reduction function to explicitly assert that its result is indeed
the shape that is expected, but this has been elided for brevity. Also,
in contrast to filterT and mapT, not all of the 2n parameters to the

Aexp
Σ (let v̄(n)

= filterT(λ, ā(n)
) in e) =

let [bool, Σ(a1)] ok = mapT(λ′, ā(n)
) in

let so = count(ok) in

let V(v1, s1), . . . ,V(vn, sn) = filterT(λ′, ā(n)
) in

Aexp
v1 7→s1,...,vn 7→sn,Σ(e)

Where si = so :: tail(Σ(ai))

λ′ = Alam
Σ (λ, 〈〉, tail(Σ(a1)), · · · , tail(Σ(an)))value

Figure 19. filterT duplicating work.

Aexp
Σ (let v̄(n)

= filterT(λ, ā(n)
) in e) =

let so,V(v1, s1), . . . ,V(vn, sn) = filterT(λ′, ā(n)
) in

Aexp
v1 7→s1,...,vn 7→sn,Σ(e)

Where si = so :: tail(Σ(ai))

λ′ = Alam
Σ (λ, 〈〉, tail(Σ(a1)), · · · , tail(Σ(an)))value

Figure 20. filterT without duplicating work.

Aexp
Σ (let {v̄(n)

} = reduceT(λ, {ē(n)
}, ā(n)

) in e) =

let V(v1,Σ(e1)), . . . ,V(vn,Σ(en)) =

reduceT(Alam
Σ (λ, r̄(n), p̄(2n))value, ē(n)

, ā(n)
) in

Aexp
v1 7→Σ(e1),...,vn 7→Σ(en),Σ(e)

Where ri = Σ(ei)

pi =

{
Σ(ei) if i ≤ n
tail(Σ(ai)) if i > n

λvalue = Alam
Σ (λ, 〈〉, tail(Σ(a1)), · · · , tail(Σ(an)))value

Figure 21. The reduceT transformation rule (scanT is similar).

reduction function are array elements - the first n are the accumu-
lator - so we need to make sure we pick out the right annotations.

4. Shape Optimisation
The rules presented previously are naive in the way that they some-
times assume that the shape of expressions are more existential than
they need to be,2 resulting in superfluous bindings. This is illus-
trated in Figure 22. While the first if-expression is indeed exis-
tentially typed by necessity, as the shape of the result of the sec-
ond branch (q) is not free outside the branch, both branches of the
second if-expression return the same shape (p). Hence, we can re-
move the shape binding m, obtaining the code in Figure 23.

We perform a similar optimisation for calls to existentially
typed functions. For every call to fext, we check whether fshape is
“efficient”, i.e., does not duplicate much of the work of fval. If so,
we replace the call to fext with separate calls to fshape and fvalue,
with the result that existential bindings disappear. Of course, this
does not necessarily mean that we gain much in terms of ability
to pre-allocate memory, unless fshape can be hoisted out of inner
loops (probably after inlining). Importantly, however, it also means
that the assert-expressions arising from the application of the

2 This may seem strange from a type theory perspective - in the compiler,
the “existentiality” of some expressions is given by an annotation in the
syntax tree node.



let int n, [int,n] a =
if c1 then let [int,p] a1 = iota(p) in

p, a1
else let q = f(p) in

let [int,q] a2 = iota(q) in
q, a2

let int m, [int,m] b =
if c2 then let [int,p] b1 = replicate(p,x) in

p, b1
else let [int,p] b2 = replicate(p,y) in

p, b2
...

Figure 22. Existentially typed branches.

let int n, [int,n] a =
if c1 then let [int,p] a1 = iota(p) in

p, a1
else let q = f(p) in

let [int,q] a2 = iota(q) in
q, a2

let [int,p] b =
if c2 then let [int,p] b1 = replicate(p,x) in

b1
else let [int,p] b2 = replicate(p,y) in

b2
...

Figure 23. Shape-optimised branches.

mapT transformation rule from Figure 17 can be separated from the
main loop and optimised separately, using the same technique that
the compiler employs to optimise bounds checks [23], which was
also demonstrated in Figure 10.

5. Related Work
A large body of related work is the work on libraries and embed-
ded domain specific languages for programming massively par-
allel architectures, such as GPGPUs. Initial examples of such li-
braries include Nikola [27], a Haskell library for targeting Nvidia
CUDA GPUs. Later work includes Accelerate [8] and Obsidian [10],
Haskell libraries that, with different sets of fusion- and optimization
techniques, targets OPENCL and CUDA.

Most related to this work is the work on SAC [16, 17], which
seeks to provide a common ground between functional and imper-
ative domains for targeting parallel architectures, including both
multi-processor architectures [14] and massively data-parallel ar-
chitectures [18]. SAC uses with and for loops to express map-
reduce style parallelism and sequential computation, respectively.
More complex array constructs can be compiled into with and
for loops, as demonstrated, for instance, by the compilation of
the APL programming language [24] into SAC [15]. A dependent-
type method for verifying array related invariants is presented in a
simplified offspring of SAC, named Qube [41]. Compared to SAC,
Futhark holds on to the SOAC combinators also in the intermediate
representations in order to perform critical optimizations, such as
fusion, even in cases involving filtering and scans, which are not
straightforward constructs for SAC to cope with.

Also related to the present work is the work on array languages
in general (including APL [24] and its derivatives) and the work on
capturing the essential mathematical algebraic aspects of array pro-
gramming [19]. Compilers for array languages also depend on in-
ferring shape information either dynamically or statically, although
they can often assume that the arrays operated on are regular, which
is not the case for Futhark programs. Another piece of related work

is the work on the FISH [25] programming language, which uses
partial evaluation and program specialization for resolving shape
information at compile time.

Much work has also gone into investigating expressive type sys-
tems, based on dependent types, which allow for expressing more
accurately, the assumptions of higher-order operators for array op-
erations [38, 40, 41]. Compared to the present work, such type sys-
tems may give the programmer certainty about particular execution
strategies implemented by a backend compiler. The expressiveness,
however, comes at a price. Advanced dependent type systems are
often very difficult to program and modularity and reusability of
library routines require the end programmer to grasp, in detail, the
underlying, often complicated, type system. Computer algebra sys-
tems [43, 44] have also provided for a long time a compelling ap-
plication of dependent types in order to express accurately the rich
mathematical structure of applications, but inter-operating across
such systems remains a significant challenge [9, 31].

A somewhat orthogonal approach has been to extend the lan-
guage operators such that size and bounds checking invariants al-
ways hold [12], the downfall being that non-affine indexing might
appear. The Futhark strategy is instead to rely on advanced program
analysis and compilation techniques to implement a pay-as-you-go
scheme for programming massively parallel architectures.

Another strand of related work is the work on effect systems for
region-based memory management [39], in particular, the work on
multiplicity inference and region representation analysis in terms
of physical-size inference [3, 42]. Whereas the goal of multiplicity
inference is to determine an upper bound to the number of objects
stored into a region at runtime, physical-size inference seeks to
compute an upper bound to the number of bytes stored in a single
write. Compared to the present work, multiplicity inference and
physical-size inference are engineered to work well for common
objects such as pairs and closures, but the techniques work less
well with objects whose sizes are determined dynamically.

Much related work has been carried out in the area of support-
ing nested parallelism, including the seminal work on flattening of
nested parallelism in NESL [4, 5] and in the more recent work on
flattening [2, 45]. Investigating the use of a flattening transform
for supporting parallel implementations of arbitrarily nested paral-
lelism in Futhark is future work.

6. Conclusions
In this paper we have introduced the notion of size slicing for sep-
arating the computation of array-like object sizes from the com-
putation of the values to be stored in those objects. The size slic-
ing scheme is presented as a set of transformation rules, which are
guaranteed to incur only a constant overhead, which can be further
effectively optimised via traditional optimisations such as inlining,
fusion, constant propagation, common-subexpression elimination
and dead-code elimination.

The main motivation for the present work have been to pave the
road for generating code for massively parallel architectures, such
as GPGPU kernels, where, typically, the memory for the argument
and intermediate data is statically pre-allocated. By combining size
slicing with traditional hoisting techniques, we believe this to be
possible.
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