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An Optimising GPGPU Compiler for a Data-Parallel Purely Functional Language

Abstract
We give a performance analysis of the purely functional language
Futhark and its optimising compiler on fourteen benchmarks, and
give a description of three features that contribute to achieving per-
formance competitive with hand-written low-level GPGPU code.

1. A type system for in-place updates of arrays that ensures refer-
ential transparency and supports equational reasoning.

2. Two new bulk parallel operators intended to support efficient
sequentialisation, along with their fusion rules.

3. Extraction of flat parallel GPU kernels through an implementa-
tion of functional loop distribution, which aims to exploit only
as much parallelism as is cost-effective on concrete hardware.

4. Tested on fourteen Rodinia, Accelerate and FinPar bench-
marks, Furthark’s OpenCL code is faster than competitors by a
harmonic-mean factor of 1.75×.

Categories and Subject Descriptors CR-number [subcategory]:
third-level

Keywords GPU, functional programming, compilers

1. Introduction
Parallel programming has undergone an increase in interest in re-
cent years, which can be likely attributed to the slowdown in se-
quential performance improvements over the last decade, and a
corresponding increase in available hardware parallelism. Today,
some of the most computationally powerful hardware available are
highly parallel Graphics Processing Units (GPUs), which are be-
ing increasingly used for general non-graphics computation under
the term GPGPU. Unfortunately, while GPUs provide very high
potential performance, they are still difficult to program, and per-
formance easily suffers if the programmer does not make proper
use of the memory hierarchy, or accesses memory in suboptimal
patterns, or provides insufficient parallelism (or too much), etc.

We believe that an automatic solution requires a clever optimis-
ing compiler capable of aggressively restructuring the code written
by the programmer. The effectiveness of such a compiler can be
significantly aided by compiling a language built to facilitate the
necessary restructuring, such as a simple high-level data-parallel
functional language. In contrast, parallelising compilers in the im-
perative context often find themselves fighting the language and
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resorting to complex low-level analysis to derive the necessary in-
variants, such as loop parallelism.

There has been much work on embedded high-performance
data-parallel programming in functional languages [9, 10, 27], but
such solutions often suffer severe limitations imposed by the host
language. Therefore, we have chosen to develop a standalone, non-
embedded language, as this gives us the freedom to design it with-
out much in the way of external constraints.

Our language, Futhark, and its compiler contains a mixture
of features inspired by imperative languages and their optimising
compilers, such as for-loops, hoisting, loop distribution, in-place
updates, and indirect array accesses; but in contrast to imperative
languages, we use functional data-parallel control structures in-
stead of index analysis to express parallelism. Thus, our work seeks
a common ground between functional and imperative approaches.

Whilst Futhark supports the writing of efficient sequential code
through the use of sequential loops and in-place updates, this is
not to facilitate completely sequential programs. Rather, these fea-
tures are intended to (i) express complicated dependent code (i.e.
not simple folds) that appears inside parallel constructs, and (ii)
to express efficient sequentialisation of excess parallelism (see ex-
ample in section 6). The support for in-place updates in Futhark’s
type-system is formalized in Section 3.

In order to accomplish goal (ii), we also furnish Futhark with
two new bulk array operators–redomap and streamRed–and ex-
tend the fusion system of [19] to incorporate these new constructs.
In particular, we fuse aggressively at all nesting levels of paral-
lelism, and support horizontal fusion, as presented in Section 4.

Since we do not assume that the code is already in flat-parallel
structure, and, in particular, the aggressive multi-level fusion may
invalidate this structure, the next step is to perform kernel extrac-
tion, as described in Section 5. The proposed technique is inspired
from the loop-distribution transformation supported by some im-
perative compilers, and attempts to unveil as much as possible
of the statically exploitable and efficient parallelism. For exam-
ple, we interchange parallel bulk-operators with sequential loops
when further distribution increases the parallelism degree (see sec-
tions 6 and 7.4), but we do not exploit inner parallelism hidden in
branches because scatter/gather operations are expensive.

Our final contribution is an evaluation of the Futhark compiler
on fourteen benchmark programs - nine ported from the Rodinia
benchmark suite [11], four from Accelerate [22], and one from the
FinPar suite of financial benchmarks [1]. Several of these bench-
marks (at least LocVolCalib, cfd, lavaMD, and Myocyte) require
features (indirect accesses, nested parallelism) that are to the best
of our knowledge not available in restricted languages such as Ac-
celerate. On average, Futhark is a (harmonic-mean) factor of 1.75×
faster than the evaluated competitors, with values ranging from be-
ing 1.52× slower – on FinPar’s LocVolCalib, large dataset, – to
20.67× faster on Rodinia’s NN benchmarks, respectively. This is
without any per-benchmark tuning and with default compiler op-
tions.
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t ::= t (Primitive type)
| [t,v] (Arrays)

dt ::= t (Nonunique type)
| *t (Unique type)

k ::= x (Primitive value)
| [v1, . . . , vn] (Array value)

p ::= v (Name in binding position )

l ::= fn t̄(n) (p1, ..., pn) => e
(Anonymous function)

e ::= k (Constant)
| v (Variable)
| {v1,...,vn}
| v1 � v2
| if v1 then e2 else e3
| v[v1, ..., vn]
| v(v1, ..., vn)
| let {p1, ..., pn} = e1 in e2
| iota(v)
| map(l, v1, ..., vn)
| reduce(l, {v1, ..., vn}, vn+1, ..., v2n)
| scan(l, {v1, ..., vn}, vn+1, ..., v2n)
| redomap(l1, l2,

{v1, ..., vn}
vn+1, ..., vn+m)

| streamRed(l1, l2,
{v1, ..., vn}
vn+1, ..., vn+m)

| v with [v1,...,vn] <- vv
| loop (p1 = v1) for p2 < v2 do e3

fun ::= fun dtr v(dt1 p1,...dtn pn) = e

prog ::= ε
| fun prog

Figure 1: Core Futhark Syntax

1.1 Notation
Whenever z is an object of some kind, we write z̄ to range over
sequences of objects of this kind. When we want to be explicit
about the size of a sequence z̄ = z0, · · · , z(n−1), we often write
it on the form z̄(n) and we write z, z̄ to denote the sequence
z, z0, · · · , z(n−1). We will also use this notation to shorten bits of
program syntax, e.g. for the parameters of a function or the indices
used to index a multi-dimensional array. We may also treat such
sequences as sets for the purpose of subsetting and set inclusion.

2. Futhark
Futhark is a monomorphic, statically typed, strictly evaluated,
purely functional language, intended to support parallel programs
to run on massively parallel hardware, such as GPGPUs. The lan-
guage, named after the first six letters of the runic alphabet (i.e.,
“Fuþark”) enables a regular notion of nested parallelism via a set
of four second-order array combinators (SOACs): map, reduce,
filter, and scan. Throughout the paper we use a subset of the
Futhark core language, which is a restricted language used inter-
nally by the Futhark compiler. The abstract syntax is shown in
Figure 1. Important details include:

Simplification engine

Source program

Typechecking

Optimized program

OpenCL code
generation

Desugaring Inlining
Fusion

Loop? Kernel extraction

Access pattern
optimisation

Simplification

Apply
simplification rules

Remove dead code

Merge common
subexpressions

Hoisting

Figure 2: Compiler pipeline.
• The operands of compound expressions must be variables,

which results in a representation similar to A-normal form [25].
• The keyword in is optional before let (this is solely for aes-

thetic reasons).
• Every written array type is parametrised with exact shape in-

formation, e.g. [[int,m],n] means a two-dimensional n×m
array of integers, where n and m must be variables in scope.

• Tuples are not supported. As a result, SOACs such as map take
as input several arrays, and similarly results in several arrays.
Our map can be seen as implicitly unzipping its output.

• All arrays must be regular, that is, all rows of an array must have
the same shape. For example array [[4],[1.0]] is illegal; this
is mostly verified through run-time checks.

• In function declarations, the return and parameter types may
have an optional uniqueness attribute. The purpose of these is
covered in depth in Section 3.

• Functions return only a single value. This is a simplification
for exposition purposes; our actual core language supports any
number of return values. If an array is returned, its dimensions
must be expressible in terms of the formal parameters of the
function. Again, this is a simplification: our actual core lan-
guage uses existential types in the style of [20] to type return
values whose size cannot be known in advance.

• We support sequential for-loops. These are morally equivalent
to a simple form of tail-recursive functions, as illustrated in Fig-
ure 3. Apart from syntactic convenience, we also take advantage
of the information provided by these loops to carry out certain
compiler transformations, as we shall see in Section 5. As with
functions, we limit for-loops to just one variant variable (which
must have a loop-invariant shape) for simplicity of exposition.

For conciseness, we will occasionally stray from the strict syn-
tax in some examples, and write e.g. map(+1, iota (10)) instead of

l e t n = 10 in l e t a = i o t a ( n ) in l e t one = 1
in map ( fn i n t ( i n t i ) => i + one , a )

We may also add type annotations to lambda parameters to aid
readability (as above).

2.1 Overall Compiler Design
The compiler architecture is depicted in figure 2. Type checking is
performed on the original program to enable meaningful error mes-
sages, but desugaring renames all bindings to unique names and
brings the program to an IR that resembles A-normal form [25],
that is, three-address code of statement-like let-bindings. Addi-
tionally, tuples are flattened, in the sense that arrays-of-tuples are
transformed to tuples-of-arrays [8] and tuples are expanded such
that no variable is bound to a tuple value. The result is a program
in the Futhark core language shown in figure 1. On the desugared
program, we apply a mixture of rewrite rules, CSE, hoisting, and
dead code removal to clean up the code and remove simple ineffi-
ciencies. The next step is producer-consumer and horizontal fusion
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loop ( x = a )
f o r i < n do

g ( i , x )

- - E q u i v a l e n t t o :
f ( 0 , n , a )

⇒

- - E q u i v a l e n t f u n c t i o n
fun t f ( i n t i ,

i n t n ,
t x ) =

i f i >= n then x
e l s e f ( i +1 , n , g ( i , x ) )

Figure 3: Loop to recursive function

(section 4), followed by extraction of flat parallel kernels suitable
for translation to GPU code (section 5). Notably, we perform fu-
sion at a stage where the program still contains nested parallelism,
in contrast to the approach taken when porting NESL (another lan-
guage supported nested parallelism) to GPU, where fusion is per-
formed on flattened VCODE instructions [5].

The flat-parallelism program is then passed through the simpli-
fier for cleanup, followed by a compiler pass that rearranges the
eventual in-memory representation of arrays to ensure coalesced
access by GPU threads, which involves ensuring that neighbouring
threads access neigh-boring memory addresses in the same cycle.
This optimisation is outside the scope of the present paper, but is
briefly discussed in section 7.

3. In-Place Updates
While Futhark is a pure functional language, it is occasionally
useful to express certain algorithms in an imperative style. Consider
a function for computing the n first Fibonacci numbers1:

fun [ i n t , n ] f i b ( i n t n ) =
l e t r e s = loop ( a r r = i o t a ( n ) )

f o r i < n -2 do
l e t a r r ’ =

a r r with [ i +2] <- a r r [ i ] + a r r [ i +1]
in a r r ’

in r e s

If the array arr is copied for each iteration of the loop, we are
going to spend a lot of time moving data around, even though it
is clear in this case that the “old” value of arr will never be used
again. Specifically, what should be an algorithm with complexity
O(n) becomes O(n2), due to copying the size n array (an O(n)
operation) for each of the n− 2 iterations of the loop.

To prevent this, we will update the array in-place, that is, with a
static guarantee that the operation will not require any additional
memory allocation, such as copying the array. With an in-place
modification, we modify the array in time proportional to the slice
being updated (O(1) in the case of the Fibonacci function), rather
than time proportional to the size of the final array, as would the
case if we perform a copy. In order to perform the update without
violating referential transparency, we need to know that no other
references to the array exists, or at least that such references will
not be used on any execution path following the in-place update.

In Futhark, this is done through a type system feature called
uniqueness types, similar to, although simpler, than the uniqueness
types of Clean [3, 4]. Alongside a (relatively) simple aliasing anal-
ysis in the type checker, this is sufficient to determine at compile
time whether an in-place modification is safe, and signal an error if
the in-place update safety cannot be guaranteed. The simplest way
to introduce uniqueness types is through an example. To that end,
let us consider the following function definition.

fun ∗ [ i n t , n ] modify ( i n t n ,
∗ [ i n t , n ] a , i n t i ,
[ i n t , n ] x ) =

l e t b = a with [ i ] < - a [ i ] + x [ i ]

1 This example is used only for demonstration purposes - there are better
ways to compute Fibonacci numbers in Futhark.

in b

The function call modify(a,i,x) returns a, but where the
element at index i has been increased by x. Note the asterisks: in
the parameter declaration *[int] a, this means that the function
modify has been given “ownership” of the array a, meaning that
any caller of modify will never reference array a after the call
again. In particular, modify can change the element at index i
without first copying the array, i.e. modify is free to do an in-
place modification. Furthermore, the return value of modify is also
unique - this means that the result of the call to modify does not
share elements with any other visible variables, i.e., it might share
elements with a but not with x.

Let us consider a call to modify, which might look as follows.

l e t b = modify (a , i , x )

In which circumstances is this call valid? Two things must hold:

1. The type of a must be [int].

2. Neither a or any variable that aliases a may be used on any
execution path following the call to modify.

When a value is passed for a unique parameter in a function
call, we consider that value to be consumed, and neither it nor any
of its aliases can be used again. Otherwise, we would break the
contract that allows the function to manipulate the argument freely.
In general, we say that an array is consumed when it must never
again be accessed on any following possible execution. For exam-
ple, in the expression ’a with [ i ] <- x’, the array a is being con-
sumed. From an implementation perspective, this contract allows
type checking to rely on simpler, intra-procedural (alias) analysis,
both in the callee and in the caller, as detailed in the next section.

3.1 Alias Analysis
We perform alias analysis on a program that we assume to be
otherwise type-correct. Our presentation uses an inference rule-
based approach similar to the one usually used for type systems.
The central judgment is as follows:

Σ ` e @ 〈σ1, . . . , σn〉

This judgment asserts that, within the context Σ, the expression e
produces n values, where value number i has the alias set σi. An
alias set is a subset of the variable names in scope, and indicates
which variables an array value (or variable) may share elements
with. Alias sets are also computed for non-array variables, but they
are meaningless and not used for anything. The context Σ is a
mapping from variables in scope to their aliasing sets.

The aliasing rules are listed in figure 4, although for space
reasons, some are left out. The ALIAS-VAR-rule defines the aliases
of a variable expression to be the alias set of the variable joined by
the name of the variable itself - this is because v /∈ Σ(v), as can
be seen by ALIAS-LETPAT. Notably, the alias sets for the values
produced by SOACs such as map are empty. Operationally, we can
imagine the arrays produced as fresh, although the compiler is of
course free to re-use existing memory if it can do so safely. The
ALIAS-INDEXARRAY rule tells us that a scalar read from an array
does not alias its origin array, but ALIAS-SLICEARRAY dictates
that an array slice does. This fits with our intuition about how such
operations might be implemented.

The most interesting aliasing rules are the ones for function
calls. Since we would like our alias analysis to be intraprocedural,
we are forced to be conservative. There are two rules: one for
functions returning unique arrays, and one for functions returning
nonunique arrays. In the former case, since the returned array is
unique, the alias set is empty. In the latter case, the returned array
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Σ ` e @ 〈σ1, . . . , σn〉 :

Σ ` v @ 〈{v} ∪ Σ(v)〉
(ALIAS-VAR)

Σ ` k @ 〈∅〉
(ALIAS-CONST)

Σ ` map(l, v̄(n)) @ 〈∅̄(n)〉
(ALIAS-MAP)

Σ ` e2 @ 〈s21, . . . , s
2
n〉 Σ ` e3 @ 〈s31, . . . , s

3
n〉

Σ ` if v1 then e2 else e3 @ 〈s21 ∪ s
3
1, . . . , s

2
n ∪ s

3
n〉

(ALIAS-IF)

Σ ` e1 @ 〈σ̄(n)〉
Σ, pi 7→ σi ` e2 @ 〈σ̄′(n)〉

Σ ` let {p̄(n)} = e1 in e2 @ 〈σ̄′(n)〉 \ {p̄(n)}
(ALIAS-LETPAT)

v is of rank n

Σ ` v[v̄(n)] @ 〈∅〉
(ALIAS-INDEXARRAY)

v is of rank< n

Σ ` v[v̄(n)] @ 〈Σ(v)〉
(ALIAS-SLICEARRAY)

Σ ` v1 @ 〈σ〉
Σ, v1 7→ σ ` e3 @ 〈σ′〉

Σ ` loop (p1 = v1)
for p2 < v2 do e3

@ 〈σ′ \ {p1〉}
(ALIAS-DOLOOP)

Σ ` va with [v̄(n)] <- vv @ 〈Σ(va)〉
(ALIAS-UPDATE)

lookupfun(vf ) = 〈tr, dt1, . . . , dtn〉
Σ ` vi @ 〈σi〉

σ =
⋃

dti is not of form *t σi

Σ ` vf(v1, ..., vn) @ 〈σ〉
(ALIAS-APPLY-NONUNIQUE)

lookupfun(vf ) = 〈*tr, dt1, . . . , dtn〉
Σ ` vf(v1, ..., vn) @ 〈∅〉

(ALIAS-APPLY-UNIQUE)

〈C1,O1〉 � 〈C2,O2〉 : 〈C3,O3〉 :

(O2 ∪ C2) ∩ C1 = ∅
〈C1,O1〉 � 〈C2,O2〉 : 〈C1 ∪ C2,O1 ∪ O2〉

(OCCURENCE-SEQ)

Figure 4: Aliasing rules

is conservatively to assumed to alias all parameters, except those
that were passed to satisfy a unique parameter.

In our actual implementation, type checking, alias computation,
and in-place update checking is all performed at the same time, but
we have split it up for expository purposes. In order to simplify the
presentation, the following section will use aliases(v) to refer to the
alias set of the variable v.

3.2 In-Place Update Checking
Now we can talk about whether an expression is functionally safe
with respect to in-place updates. The central judgment is:

e B 〈C,O〉

HereO is a set of the variables observed (used) in e, and C is the set
of variables consumed through function calls and in-place updates.
Together, the pair 〈C,O〉 is called an occurrence trace.

We also define a judgment for sequencing two occurrence traces
on figure 4. The sequencing judgment

〈C1,O1〉 � 〈C2,O2〉 : 〈C3,O3〉

can be derived if and only if it is acceptable for 〈C1,O1〉 to happen
first, then 〈C2,O2〉, giving the combined occurrence trace 〈C3,O3〉.
The formulation as a judgment is to underline the fact that sequen-
tialisation is sometimes not derivable - this corresponds to the case

e B 〈C,O〉

v B 〈∅, aliases(v)〉
(SAFE-VAR)

k B 〈∅, ∅〉
(SAFE-CONST)

e1 B 〈C1,O1〉 e2 B 〈C2,O2〉
〈C1,O1〉 � 〈C2,O2〉 : 〈C3,O3〉

let {v1, ..., vn} = e1 in e2 B 〈C3,O3〉〉
(SAFE-LETPAT)

v1 B 〈C1,O1〉 e2 B 〈C2,O2〉 e3 B 〈C3,O3〉
〈C1,O1〉 � 〈C2,O2〉 : 〈C′2,O

′
2〉

〈C1,O1〉 � 〈C3,O3〉 : 〈C′3,O
′
3〉

if v1 then e2 else e3 B 〈C′2 ∪ C
′
3,O

′
2 ∪ O

′
3〉

(SAFE-IF)

va with [nseqvn] <- vv B 〈aliases(va), aliases(vn)〉
(SAFE-UPDATE)

eb B 〈C,O〉
pi 7→ aliases(vi) ` 〈C,O〉4〈C′,O′〉

map(fn t̄(m) (p̄(n)) => eb, v̄(n)) B 〈C′,O′〉
(SAFE-MAP)

Figure 5: Uniqueness checking

where an array is used after it has been consumed. The judgment is
defined by a single inference rule, which states that two occurrence
traces can be sequentialised if and only if no array consumed in the
left-hand trace is used in the right-hand trace.

The inference rules for safety checking are given in figure 5.
One very important rule is of course the one for in-place update
va with [v̄(n)] <- vv , which gives rise to an occurrence trace
indicating that we have observed vv and consumed va. We ignore
the indices v̄(n) as these are necessarily scalar variables, and thus
cannot be consumed.

Another interesting case is checking the safety of a map expres-
sion. Intuitively, this means we do not wish to permit the lambda of
a map to consume any array bound outside of it, as that would imply
the array is consumed once for every iteration of the map. It is, how-
ever, acceptable for the lambda to perform in-place updates on its
parameters, which should be seen as the map expression as a whole
consuming the corresponding input array. An example can be seen
on figure 7 To express this, we define an auxiliary judgment:

P ` 〈C1,O1〉4〈C2,O2〉

Here, P is a mapping from parameter names to alias sets. Any
variable v in O1 that has a mapping in P is replaced with P[v]
to produce O2. If no such mapping exists, v is simply included
in O2. Similarly, any variable v in C1 that has a mapping in P
is replaced with P[v] to produce C2. However, if v does not have
such a mapping, the judgment is not derivable. This corresponds
to the body of the lambda attempting to consume something that
is not a formal parameter. The precise inference rules are shown
in Figure 6. Do-loops and function declarations can be checked for
safety in a similar way: a function is safe with respect to in-place
updates if its body consumes only those of the functions parameters
that are unique (i.e. have an * annotation).

4. New SOACs and Their Fusion Rules
Futhark’s fusion is inspired from Henriksen and Oancea’s work [19],
who propose an aggressive technique for fusing producer-consumer
SOACs at all nesting levels, without duplicating computation, even
when the produced array is used in several places. Their fusion
engine is centered around the redomap SOAC, which has the type:
redomap:: (α→ α→ α)→ (α→ β → α)→ α→ [β] → α
and is generated by a map-reduce composition rewritten as:
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P ` 〈C1,O1〉4〈C2,O2〉

P[v] = σ Ov = {vi | vi ∈ σ}
P ` 〈∅,O〉4〈∅,O′〉

P ` 〈∅, {v} ∪ O〉4〈∅,Ov ∪ O′〉
(OBSERVE-PARAM)

v /∈ P
P ` 〈∅,O〉4〈∅,O′〉

P ` 〈∅, {v} ∪ O〉4〈∅, {v} ∪ O′〉
(OBSERVE-NONPARAM)

P[v] = σ Cv = {vi | vi ∈ σ}
P ` 〈C,O〉4〈C′,O′〉

P ` 〈{v} ∪ C,O〉4〈Cv ∪ C′,O′〉
(CONSUME-PARAM)

Figure 6: Parameter consumption

- - T h i s one i s OK and c o n s i d e r e d
- - t o consume ’ as ’ .
l e t bs = map ( fn [ i n t ,m] ( a ) =>

l e t b = a with [ i ] = 2
in b ,

a s )
l e t d = i o t a (m)
- - T h i s one i s not , because we consume
- - s o m e t h i n g t h a t i s n o t a f o r m a l parame te r .
l e t cs = map ( fn [ i n t ,m] ( i ) =>

l e t c = d with [ i ] = 2
in c ,

i o t a ( n ) )

Figure 7: Examples of maps doing in-place updates

red � e . map f ≡ red � e . map (red � e . map f) .splitp
≡ red � e . map (foldl g e) . splitp ≡ redomap � g e,
i.e., the input array is split into number-of-processors chunks,
each processor efficiently sequentializes the computation on its
chunk via foldl, and the partial (one-per-processor) results are
reduced. In essence redomap is a symbolic notation that permits
efficient sequentialization of the excess parallelism in later com-
piler stages, without losing any available parallelism on the way:
redomap � g e ≡ red � e . map (g e).

This section presents an extension of the set of SOACs and the
fusion approach of [19] that solves three significant limitations:

1 With the current semantics redomap cannot produce both an
array and its reduction, because its result type does not allow it.

2 “Horizontal” fusion is not supported, e.g., two redomaps can-
not be fused and neither can redomap ◦ map even when the
result of the map is used after the redomap. This is significant
because such fusion may enable producer-consumer fusion.

3 scan does not fuses with anything and in particular poor-man
streaming by fusion is not supported.

We present the new SOACs and their rationale in Section 4.1, and
demonstrate the fusion engine on a telling example in Section 4.2.

4.1 Types, Semantics and Rationale of New SOACs
Figure 8 presents the types and semantics of the new SOACs.
First, redomap may return an arbitrary number r of arrays, neces-
sarily of the same outermost-dimension size as the input arrays, in
addition to the reduced result (of type ᾱ(p)). Its semantics is equiva-
lent to mapping the input arrays by its second (function) parameter,
and returning the last r arrays of the result, together with the re-
sult of reducing the first p arrays with the first-parameter operator.
With this extension, it is possible to fuse redomap with other maps,
reduces and redomaps which appear before or after the current
redomap. The result is a redomap.

Notation: n,m, p, q, r integers, a, b, c arrays, f function, α, β, γ types,

⊕ binary associative operator, #̄ vectorized array concatenation,

(v1, . . . , vn) tuple (type), v̄(p) expands to v1, . . . , vp.

I. New SOACs Types and Semantics

redomap :: ( (ᾱ
(p)
, ᾱ

(p)
)→ ᾱ

(p)
, (ᾱ

(p)
, β̄

(q)
)→ (ᾱ

(p)
, γ̄

(r)
)

, ᾱ
(p)
, [β1, n], . . . , [βq, n] ) → (ᾱ

(p)
, [γ1, n], . . . , [γr, n])

redomap(⊕, f, ē(p), b̄(q)) ≡ let (ā
(p)
, c̄

(r)
) = map(f, b̄(q))

in (reduce(⊕, ē(p), ā(p)), c̄(q))

streamRed :: ( (ᾱ
(p)
, ᾱ

(p)
)→ ᾱ

(p)

, (ᾱ
(p)
, [β1,m], . . . , [βq,m])→ (ᾱ

(p)
, [γ1,m], . . . , [γr,m])

, ᾱ
(p)
, [β1, n], . . . , [βq, n] ) → (ᾱ

(p)
, [γ1, n], . . . , [γr, n])

streamRed(⊕, f, ē(p), b̄(q)) ≡ (ē
(p) ⊕ ā1

(p) ⊕ . . .⊕ ās
(p)
, c̄

(r)
)

where (āi
(p)
, c̄i

(r)
) = f(ē(p), b̄i

(q)) and

c̄
(r)

= c̄1
(r)

#̄ . . . #̄c̄s
(r)
, ∀b̄(q) ≡ b̄1(q)

#̄ . . . #̄b̄s
(q)

streamSeq :: ( (ᾱ
(p)
, [β1,m], . . . , [βq,m])→ (ᾱ

(p)
, [γ1,m], . . . , [γr,m])

, ᾱ
(p)
, [β1, n], . . . , [βq, n] ) → (ᾱ

(p)
, [γ1, n], . . . , [γr, n])

streamSeq(f, ā0(p)
, b̄

(q)) ≡ (ās
(p)
, c̄1

(r)
#̄ . . . #̄c̄s

(r)
), where

(ēi
(p)
, c̄i

(r)
) = f( ¯ei−1

(p)
, b̄i

(r)), ∀b̄(q) ≡ b̄1(q)
#̄ . . . #̄b̄s

(q)

Figure 8: Types & Semantics of redomap and streamRed/Seq.

Second, streamRed is designed in much of the same way as
redomap, except that it applies its second-parameter function f to
each element of an arbitrary partitioning of the input arrays b̄(q)

(as long as all b̄(q) are partitioned in the same way), and then it
reduces and concatenates across chunks the first p and last r results,
respectively. While the semantics is that chunks can be processed
in parallel, it is left to the user to ensure the strong invariant that
any partitioning of the input arrays leads to the same result2.

Futhark also supports a streamMap SOAC (not shown), which
is a simplified streamRed in the same way that map is a simpli-
fied redomap, i.e., it lacks the reduce component. The main reason
for supporting streamMap/Red in Futhark is allowing the user to
express both all available parallelism (chunk size 1) and an effi-
cient sequentialization alternative. The latter has many guises: it
may correspond to writing a loop with in-place updates, such as
in the k-means example presented in Section 6 or to specifying
an algorithmic invariant, such as strength reduction. For example,
Sobol pseudo-random numbers can be computed by a slower but
map-parallel formula, or by a cheaper (recurrence) formula, but
which requires scan parallelism [23]. This can be expressed ele-
gantly with streamMap: the computation of each chunk starts with
applying the independent formula, while the remaining elements
are processed with the cheaper recurrence formula. With respect to
fusion rules, map, reduce, redomap, streamMap and streamRed
fuse together resulting into either streamMap or streamRed, de-
pending on whether a reduction is needed.

Finally, streamSeq requires sequential execution of chunks,
because the result ēi(p) of processing chunk b̄i

(q) becomes the (ac-
cumulator) input for processing the next chunk i+1. With respect
to fusion rules, anything fused with a scan or streamSeq results
in a streamSeq. For example, assuming f::int→int and A and
B integer arrays of size n, then map(f,scan(+,0,A)) is fused into

streamSeq ( fn { i n t , [ i n t , r ] } ( i n t acc , [ i n t , r ] a ) =>
l e t b = scan ( + , 0 , a )

2 This is compatible with Futhark supporting arbitrary reduce operators,
and delegating to the user the responsibility of ensuring their associativity.
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l e t c = map (+ acc , b )
l e t d = map ( f , c ) in { c [ r - 1 ] , d}

, 0 , A)

Note that streamSeq offers poor-man streaming by fusion, and
also, allows to recover all parallelism if needed by maximizing the
chunk size. It is important to remark however that fusion between
streamSeq or scan and streamMap/Red is disallowed, because
it would result in a streamSeq, and thus may potentially destroy
the parallelism expressed by the user via streamMap/Red. (This
is because the body of streamMap/Red may correspond to the
efficient sequentialization alternative and may offer no parallelism.)

4.2 Futhark Fusion By Example
The top part of Figure 9 shows a contrived Futhark program that,
at its outer level, is a composition of four SOACs: streamMap com-
putes [0,q,2q,. . .,(n-1)q] by performing the multiplication for
the first element of the chunk, while the rest are computed by the re-
currence formula xi+1=xi+q with a scan (under the misguided as-
sumption that the parallel computation will benefit from it). The re-
maining SOACs multiplies by 2 the array produced by streamMap,
sums it up, and also increases by one each element of input array A.

Fusion proceeds bottom-up and maintains a set of SOACs that
are possible candidates for fusion. Whenever a SOAC is encoun-
tered, the candidate set is examined: preference is given to SOACs
that are in a producer-consumer relation and if no such case then
horizontal fusion is tried. In our case, when fusion reaches the map
producing Z, there is exactly one candidate, i.e., the reduce pro-
ducing r, and horizontal fusion succeeds and generates the SOAC
numbered (7) in Figure 9. We remark that this fusion would not
be possible under the technique of Henriksen and Oancea [19] be-
cause: (i) of the restricted result type of redomap, (ii) horizontal
fusion is not supported and (iii) because array Z is used outside a
SOAC, i.e., it is returned by the main function.

Our implementation alleviates these restrictions: horizontal fu-
sion may proceed as long as (i) the two SOACs are located in the
same block of let statements (named body), (ii) the outermost sizes
of the input arrays match, and (iii) there is no (unfused) use of the
result array in between the two SOACs3. The latter can be further
relaxed by using a dependency-graph representation of body.

Continuing with our example, Step II fuses the map that pro-
duces Z with the redomap SOAC obtained in the previous step,
which consumes Z. This results in a new redomap kernel (8).

Step III is to fuse the streamMap that produces array S with its
redomap consumer, obtained in the previous step. The result of fu-
sion is the streamRed SOAC numbered (9) in Figure 9, which bor-
rows the redomap’s associative operator and neutral element, and
“inlines” the redomap in the body of streamMap’s second-function
argument. The final step is to fuse the redomap ◦ scan ◦ map
composition inside the streamRed’s function argument. This gen-
erates a streamSeq (inner) SOAC that has two (sequential) accu-
mulators: acc0 and acc1 for the scan and redomap, respectively.

In conclusion, the streamRed-streamSeq nest provides the
means (i) to preserve/recover all available parallelism, e.g., by
setting streamRed’s chunk size to 1, and (ii) to provide efficient
sequentialization of the parallelism in excess. For example, setting
the chunk size of streamSeq to 1 minimizes the memory footprint
of the parallel computation. Furthermore, if we disregard arrays A
and Z, the memory footprint of one iteration of streamRed would
be O(1), regardless of its chunk size.

5. Kernel Extraction through Loop Distribution
Futhark supports nested regular parallelism, but our target platform,
GPUs, requires that we extract flat parallel kernels. This is typically

3 We have similarly relaxed this restriction for consumer-producer fusion.

- - O r i g i n a l Program :
fun { i n t , [ i n t ] } main ( [ i n t , n ] A, i n t q ) =

l e t S = streamMap ( - - ( 4 )
fn [ i n t , c ] ( [ i n t , c ] B) =>

l e t M = map ( fn i n t ( i n t k ) => - - ( 6 )
i f k !=0 then q
e l s e B[ 0 ]∗ q

, i o t a ( c ) )
in scan ( + , 0 , M) - - ( 5 )

, i o t a ( n ) )
l e t Y = map (∗2 , S ) - - ( 3 )
l e t Z = map (+ 1 , A) - - ( 2 )
l e t r = reduce ( + , 0 , Y) - - ( 1 )
{ r , Z}

- - I . h o r i z o n t a l f u s i o n ( 1 ) and ( 2 ) r e s u l t s i n ( 7 ) :
l e t { r , Z} = redomap ( - - ( 7 )

fn i n t ( i n t x , i n t y ) => x + y
, fn { i n t , i n t } ( i n t x , i n t a , i n t y ) => {x+y , a +1}
, {0} , A, Y )

- - I I . producer - consumer f u s i o n ( 7 ) and ( 3 ) r e s u l t s i n ( 8 ) :
l e t { r , Z} = redomap ( - - ( 8 )

fn i n t ( i n t x , i n t y ) => x + y
, fn { i n t , i n t } ( i n t x , i n t s , i n t a ) => {x+s ∗2 , a +1}
, 0 , S , A )

- - I I I . producer - consumer f u s i o n ( 8 ) and ( 4 ) r e s u l t s i n ( 9 ) :
l e t { r , Z} = streamRed ( - - ( 9 )

fn i n t ( i n t x , i n t y ) => x + y
, fn { i n t , [ i n t ] } ( i n t ne , [ i n t , c1 ] B , [ i n t , c1 ] A0 ) =>

l e t M = map ( fn i n t ( i n t k ) => - - ( 6 )
i f k !=0 then q e l s e B[ 0 ]∗ q

, i o t a ( c1 ) )
l e t SC= scan ( + , 0 , M) - - ( 5 )
l e t { r , Z} = redomap ( - - ( 1 0 )

fn i n t ( i n t x , i n t y ) => x + y
, fn { i n t , i n t } ( i n t x , i n t s , i n t a ) =>

{x+s ∗2 , a +1}
, 0 , SC , A )

in { ne+r , Z}
, 0 , i o t a ( n ) , A )

- - IV . Producer - consumer f u s i o n be tween ( 5 ) , ( 6 ) and ( 1 0 )
- - r e s u l t s i n s t r eamSeq ( due t o t h e scan i n ( 5 ) ) .
fun { i n t , [ i n t ] } main ( [ i n t , n ] A, i n t q ) =

streamRed (
fn i n t ( i n t x , i n t y ) => x + y

, fn { i n t , [ i n t , c1 ] }
( i n t ne , [ i n t , c1 ] B , [ i n t , c1 ] A0 ) =>

l e t {_ , acc , Z} = streamSeq (
fn { i n t , i n t , [ i n t , c2 ] }

( i n t acc0 , i n t acc1 , [ i n t , c2 ] ks , [ i n t , c2 ] a )= >
l e t M = map ( fn i n t ( i n t k ) =>

i f k !=0 then q
e l s e B[ 0 ]∗ q

, ks )
l e t SC= scan ( + , 0 , M)
l e t n x t _ a c c 0 = acc0 + SC [ c2 - 1 ] in
l e t { acc11 , z } = redomap (

fn i n t ( i n t x , i n t y ) => x + y
, fn { i n t , i n t }

( i n t x , i n t y , i n t a _ e l ) =>
{x + ( acc0 +y )∗2 , a _ e l +1}

, 0 , M, a )
in { nx t_acc0 , acc11 +acc1 , z }

, 0 , 0 , i o t a ( c1 ) , A0 )
in { ne + acc , Z}

, 0 , i o t a ( n ) , A )

Figure 9: Futhark’s Fusion Demonstrated on a Contrived Example:
Step I horizontally fuses the last map and reduce into a redomap.
Step II fuses the map producing Y into the redomap of Step I.
Step III fuses streamMap into its consumming redomap obtained
in Step II, which results in a (outer) streamRed.
Step IV fuses the inner map ◦ scan ◦ redomap into streamSeq.
The outer streamRed provides parallelism, while allowing effi-
cient sequentialization: regardless of streamRed’s chunk size, set-
ting streamSeq’s chunk size to 1 effectively minimizes the mem-
ory footprint of the computation.
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l e t as = map ( fn i n t ( bs ) =>
l e t c = reduce ( + , 0 , bs )
l e t a = c + 2
in a ,

b s s ) (a) Before distribution

l e t cs = map ( fn i n t ( bs ) =>
l e t c = reduce ( + , 0 , bs ) in c ,

b s s )
l e t as = map ( fn i n t ( c ) =>

l e t a = c + 2 in a ,
c s ) (b) After the binding of a has been distributed

Figure 10: An example of loop distribution

done through the use of the flattening transformation [6], which at-
tempts to maximise the amount of parallelism exposed. However,
existing implementations of flattening suffer from two major draw-
backs: (i) The flattened code tends to exhibit high space usage; and
(ii) the communication and access patterns of the original code are
obscured, which makes following optimisations harder to perform.

Additionally, flattening will often result in code using irregular
arrays, which is more difficult to compile and optimise than code
using just regular arrays. Hence, we have developed an novel al-
gorithm for extracting flat data-parallel loop kernels from a nesting
of various parallel loops (mainly map). One important property of
our approach is that it does not change the representation of arrays,
which helps preserve the space usage asymptotics of the original
program. For simplicity, this section will cover only parallel loop
nests that have a map as their outermost level of parallelism.

Our algorithm is based on the idea of loop distribution, where
component expressions of a loop are extracted as separate loops. A
simple example can be seen in figure 10 – here, a map expression
with nested parallelism (the reduce) is turned into two flat parallel
kernels through the distribution of a scalar computation. The first
kernel is parallel by virtue of the fact that a map containing just
a reduce is compilable as a segmented reduction over the entire
two-dimensional array given as input to the map. Suppose that the
input array bss is of size n×m. The original loop would provide
work for n parallel threads, but after distribution we obtain one nest
with up to n×m parallel threads, and another with n. Ifm is much
greater than n, this will have a dramatic impact on total runtime on
manycore hardware.

The algorithm is given a function in a normalised form where
the result of every expression is bound to a variable. We when
traverse the function body looking for outermost map expressions,
and when one is found, we apply loop distribution in order to
turn the expression (which may contain nested parallelism) into a
sequence of flat-parallelism kernels.

In this section, we will transform nests of maps into different
nests of maps. This is for simplicity of exposition only, in order
to reduce the number of distinct syntactic constructs we need to
describe. For example, in our actual compiler, we do not create a
map containing a reduce as in figure 10, but rather use a distinct
AST construct for representing segmented reductions.

5.1 Loop Distribution by Example
We will show the workings of the loop distribution algorithm by
demonstrating its application on a complicated map nest containing
three levels of parallelism, some of which we can exploit directly,
and others which are not exploitable, as distribution would induce
irregular arrays.

The core idea is a backwards traversal of the statements within
the nest. Whenever we reach a statement let p = e, we can
distribute that statement and every following statement as a new
kernel. This is what is done in figure 10, where the statement
let a = c + 2 is distributed as its own kernel. The residual loop

nest is then modified to return the values needed by the statements
that we have distributed, and traversal continues.

Apart from distributing, we can also perform other operations.
Consider the original program in in figure 11a - it consists of a map
nest containing a sequential loop, which again contains another
map. That is, we have two parallel loops separated by a sequen-
tial loop, which prevents us from fully exploiting the parallelism -
parallel dimensions must be adjacent. Fortunately, it is well known
that it is always valid to interchange a parallel loop inwards (more
details given in section 5.2). Thus, if we distribute the loop by it-
self, we obtain a parallel map containing just the sequential loop,
after which we can swap the outer map and the middle loop, and
obtain the nesting shown in on figure 11b. Kernel extraction is then
applied to the body of the new top-level sequential loop. Here we
find a map, and begin traversing its statements in a backwards fash-
ion, as we did for the original map nest. Neither of the statements
for b’ or e motivate us to distribute, but when we reach the reduc-
tion, we wish to distribute it by itself. Distributing a statement by
itself is carried out simply by distributing everything following the
statement as its own kernel, then the statement itself. The result is
seen on figure 11d.

This finishes off the body of the sequential loop, and we con-
tinue with the asss statement. Here we find a map expression.
There is no further parallelism within its function, but we do want
to distribute the map by itself in order to exploit all levels of par-
allelism, the result of which can be seen on figure 11f, leaving a
residual of two statements: a scan and a reduce.

We first come upon the reduction, which we would normally
wish to distribute by itself. However, the reduction is on the array
cs, whose size is p, which is variant to the loop nest. Distributing
the reduction would give rise to an irregular array, which is not
supported in our framework4. Hence, we move on to the preceding
scan, which we also cannot distribute by itself. The result becomes
a kernel with two levels of map containing two (sequential) loops.

5.2 Choices when Distributing
The core of our kernel extraction algorithm is thus walking back-
wards through the statements of a map nest, and at every statement,
possibly performing an action. The possible decisions are based
both on the statement we are inspecting, as well as the context (such
as whether we can distribute without using irregular arrays). Most
of the cases presently considered in the Futhark compiler, based on
the statement let p = e being inspected, is as follows.

Case let p = e:
We always have the fallback case of sequentialising e if nothing
else works. In the worst case, we will end up sequentialising
every statement in the map and only exploit the parallelism of
the outermost nesting.

Case let p = map(fn t̄(m) (...) => e, ...):
The simplest case of nested parallelism: we recursively descend
into the statements of e, and if any are left un-distributed,
we distribute the map containing the residual statements (if
possible).

Case let p = loop (pV = v1) for pi < v2 do e:
If e does not contain any map statements, we do nothing special
with the for-loop. If it does contain map-statements however,
we would like to bring the outer parallel dimension(s)s (remem-
ber, this for-loop is itself inside of at least one map) next to the
parallel dimensions of the inner map(s). This can be done by

4 Consider what would be the declared shapes of the array returned by the
residual loop nest. It should intuitively be [[int,n],p] for “many values
of p”, but this is not expressible.
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l e t { a s s s , b s s } = map ( fn { [ [ i n t ,m] ,m] , [ i n t ,m] } ( ps ) =>
l e t a s s = map ( fn [ i n t ,m] ( p ) =>

l e t cs = scan ( + , 0 , i o t a ( p ) )
l e t f = reduce ( + , 0 , c s )
l e t as = map(+ f , ps )
in as ,

ps )
l e t bs = loop ( ws=ps ) f o r i < n do

l e t ws ’ = map ( fn i n t ( as , w) =>
l e t d = reduce ( + , 0 , a s )
l e t e = d + w
l e t w’ = 2 ∗ e
in w’ ,

ass , ws )
in ws ’

in { ass , bs } ,
p s s )

(a) Initial program, we inspect the loop.

l e t a s s s = map ( . . . )
l e t b s s = loop ( wss= p s s ) f o r i < n do

l e t wss ’ =
map ( fn [ i n t ,m] ( ass , ws ) =>

l e t ws ’ = map ( fn i n t ( as , w) =>
l e t d = reduce ( + , 0 , a s )
l e t e = d + w
l e t w’ = 2 ∗ e
in w’ ,

ass , ws )
in ws ’ ,

a s s s , wss )
in wss ’

(b) After the loop has been distributed and interchanged.

l e t a s s s = map ( . . . )
l e t b s s = loop ( wss= p s s ) f o r i < n do

l e t wss ’ =
map ( fn [ i n t ,m] ( ass , ws ) =>

l e t ws ’ = map ( fn i n t ( as , w) =>
l e t d = reduce ( + , 0 , a s )
l e t e = d + w
l e t w’ = 2 ∗ e
in w’ ,

ass , ws )
in ws ’ ,

a s s s , wss )
in wss ’

(c) None of these scalar statement give rise to new kernels by
themselves...

l e t a s s s = map ( . . . )
l e t b s s = loop ( wss= p s s ) f o r i < n do

l e t d s s =
map ( fn [ i n t ,m] ( a s s ) =>

l e t ds = map ( fn i n t ( a s ) =>
l e t d = reduce ( + , 0 , a s )
in d ,

a s s )
in ds ,

a s s s )
l e t wss ’ =

map ( fn [ i n t ,m] ( ws , ds ) =>
l e t ws ’ = map ( fn i n t (w, d ) =>

l e t e = d + w
l e t w’ = 2 ∗ e
in w’ ,

ws , ds )
in ws ’ ,

wss , d s s )
in wss ’

(d) ...but we wish to create a kernel containing the reduction by itself
(segmented reduction), and hence distribute every statement after it as

a new kernel.

l e t a s s s = map ( fn { [ i n t , l ] , [ i n t ,m] } ( ps ) =>
l e t a s s = map ( fn i n t ( p ) =>

l e t cs = scan ( + , 0 , i o t a ( p ) )
l e t f = reduce ( + , 0 , c s )
l e t as = map(+ f , ps )
in as ,

ps )
in ass ,

p s s )
l e t b s s = loop . . .

(e) This map can be distributed by itself to exploit the parallelism of
all three map nesting levels.

l e t f s s = map ( fn { [ i n t , l ] , [ i n t ,m] } ( ps ) =>
l e t f s = map ( fn i n t ( p ) =>

l e t cs = scan ( + , 0 , i o t a ( p ) )
l e t f = reduce ( + , 0 , c s )
in f ,

ps )
in f s ,

p s s )
l e t a s s s = map ( fn { [ i n t , l ] , [ i n t ,m] } ( ps , f s ) =>

l e t a s s = map ( fn i n t ( f ) =>
l e t as = map(+ f , ps )
in as ,

f s )
in ass ,

pss , f s s )
l e t b s s = loop . . .

(f) Neither the remaining reduce or scan can be distributed, due to a
loop-variant size (iota(p)), so they are sequentialised and only the

two outer map-nestings are kept parallel.

Figure 11: Extracting kernels from a complicated nesting
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interchanging the outer parallel dimensions inwards, but only if
we could distribute the loop by itself.
To get an intuition for the validity of the interchange, suppose
that we have a map containing a for-loop, where each iteration
of the for-loop applies the function f to the loop-variant vari-
able (the following is simplified syntax for exposition purposes:

map ( fn ( x ) =>
loop ( x ’= x ) f o r i < n do f ( x ) ,

xs )

Suppose xs = [x0, x1, . . . , xm], then the result of the map is

[fn(x0), fn(x1), . . . , fn−1(xm)].

If we interchange the map, then we get the following:

loop ( xs ’= xs ) f o r i < n
map ( f , xs ’ )

At the conclusion of iteration i, we have

xs′ = [f i+1(x0), f i+1(x1), . . . , f i+1(xm)].

Thus, at the conclusion of the last iteration i = n− 1, we have
obtained the same result as the non-interchanged map. Note that
the validity of the interchange does not depend on whether the
for-loop contains a map itself.

Case let p = reduce(fn t̄(m) (...) => e, ...):
A reduce statement is parallel by itself, and if we encounter
it inside of a map, it is the equivalent of a segmented re-
duction, which we can turn into a kernel by itself. However,
there is one interesting special case, namely if operator of
the reduction is a map on its operands. This occurs, for ex-
ample, if we are using vector addition to reduce the rows of
a matrix. Cheating a bit with the syntax, we can write this
as reduce(map(+), a, b). We can interchange the reduce
and map if we also transpose the input and output, yield-
ing transpose(map(reduce(+), transpose(a ), transpose(b)) .
The advantages of this transformation are twofold: (1) we bring
two levels of map parallelism together, and (2) we avoid a po-
tentially large array-typed accumulator in the reduction. When
generating OpenCL code, it is beneficial to store accumulators
in so-called local memory, but this is sharply limited in size,
and we do not know in advance the sizes of arrays.

Case let p = scan(...):
Same considerations as for reduce, including the possibility of
interchange with inner map.

Case let p = redomap(...):
Same considerations as for reduce and scan, although the
possibility of interchange with inner map is only available if we
first decompose the redomap into a separate map and reduce.

One very important detail is that we do not distribute inside
if-expressions contained in a parallel nest. This implies that a
conditional expression is always sequentialised.

5.3 Choice Means Being Able to Make the Wrong One
Several of the possible choices in section 5.2 overlap in various
cases, and all of them overlap with the fallback choice (sequen-
tialisation). Hence, the Futhark compiler needs to make decisions
about how to distribute when there are several options. Consider
a reduce inside of a map, such as the one on figure 10. While we
can extract a parallel segmented reduction from the distributed loop
nest, we could also simply sequentialise the reduction, resulting in a
number of parallel threads each running a sequential loop. If the de-
gree of parallelism in the outer map is sufficient to saturate the hard-
ware, this would result in much faster code than the comparatively

heavyweight communication required by the threads involved in a
segmented reduction.

Unfortunately, there is no way for a compiler to make the right
choice, as it depends on available hardware parallelism and the
dimensions of the input data. With a large outer dimension and a
small inner dimension, it is not worth parallelising the reduction,
but if the outer dimension is small (or in an extreme case: a single
row), parallelising the reduction is crucial to performance. In fact,
if the outer dimension is particularly small, it may be worthwhile
to sequentialise the outer map, and simply launch several (non-
segmented) reduction kernels concurrently.

The right solution, which we have planned for future work, is
to generate multi-versioned-code: whenever we have a choice in
how to perform kernel extraction, we should generate all possible
variants (possibly with some limit to prevent combinatinatorial
explosion), and construct an if expression that selects the optimal
version for the given input size.

For now, our compiler follows these rules of thumb: nested
reduce or scan statements are always turned into a segmented
operation, while redomap and streamRed statements are sequen-
tialised. Note that this applies only to statements found within a
map nesting: redomap and streamRed are turned into reduction
kernels when encountered as the outermost level of parallelism.

6. Example: k-means Clustering
So far, we have presented several unusual language features, in-
cluding in-place updates and the streamRed construct. In this sec-
tion, we will demonstrate how they are used to efficiently imple-
ment a nontrivial algorithm: k-means clustering of n d-dimensional
points, for arbitrary k, n, d > 0 (although k tends to be small
in practice, e.g. 5). This problem is from the Rodinia benchmark
suite [11], which we also discuss in section 7.2. The algorithm we
wish to implement is as follows:

1. k initial d-dimensional "means" are randomly generated within
the data domain.

2. k clusters are created by associating every point with the nearest
mean.

3. The centroid of each of the k clusters becomes the new mean.

4. Steps (2) and (3) are repeated until convergence has been
reached. In our case, the convergence criteria is that no point
has changed cluster membership.

The most complicated part of the algorithm is step (3), where we
have to compute cluster centres. A subproblem is to compute the
number of points in each of the k cluster, which is what we will
focus on here5. We have the arrays points : [[f32,d],n] and
membership : [int,n], and we must produce an array counts
: [int,k]. One possible implementation is to use a parallel map
to compute “increments”, and then perform a reduction of these
increments. This solution, shown in figure 12a, is is parallel, but not
work-efficient. Intuitively, the problem is that each of the n points
give rise to k units of work, as we produce n arrays of k elements
each, only to sum them all together. Unless we are executing on
a computer that can exploit all n × k degrees of parallelism, we
are paying an overhead for more parallelism that we can use. In
contrast, the sequential implementation shown in figure 12b does
less work, but is–alas–sequential.

What we need is a combination: a language construct that can
be “dialed” up and down to exploit at much parallelism as is needed
to take full advantage of the machine, but runs efficient sequential
code within each thread. This is where streamRed enters the pic-
ture. Using streamRed, seen on figure 12c, we specify a parallel

5 Computing the cluster centres is done in approximately the same way, but
with another dimension on top.
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l e t i n c r e m e n t s = map ( fn [ i n t , k ] ( i n t c l u s t e r ) =>
l e t i n c r = r e p l i c a t e ( k , 0 )
l e t i n c r [ c l u s t e r ] = 1
in i n c r ,

membership )
l e t c o u n t s = reduce ( fn [ i n t , k ] ( [ i n t , k ] x , [ i n t , y ] ) =>

map ( + , x , y ) ,
{ r e p l i c a t e ( k , 0 ) } , i n c r e m e n t s )

(a) Parallel calculation of counts

l e t c o u n t s = loop ( c o u n t s = r e p l i c a t e ( k , 0 ) )
f o r i < n do

l e t c l u s t e r = membership [ i ]
l e t new_counts =

c o u n t s with [ c l u s t e r ] < - c o u n t s [ c l u s t e r ] + 1
in new_counts

(b) Sequential calculation of counts

l e t c o u n t s = streamRed (map ( + ) ,
fn [ i n t , k ] ( c h u n k s i z e , [ i n t , k ] acc ,

[ i n t , c h u n k s i z e ] chunk ) =>
l e t r e s =

loop ( acc ) f o r i < c h u n k s i z e do
l e t c l u s t e r = chunk [ i ]
l e t acc [ c l u s t e r ] = acc [ c l u s t e r ]+1
in acc

in r e s ,
{ r e p l i c a t e ( k , 0 ) } , membership )

(c) Streamed calculation of counts
Figure 12: Counting cluster sizes

l e t num_threads = g e t _ n u m _ t h r e a d s ( )
- - p r o d u c e s an a r r a y o f t y p e [ [ i n t , k ] , num_threads ]
l e t p e r _ t h r e a d _ r e s u l t s =

mapPerThread ( num_threads , s e q u e n t i a l code . . . , membership )
- - combine t h e per - t h r e a d r e s u l t s
l e t c l u s t e r _ s i z e s =

reduce (map ( + ) , r e p l i c a t e ( k , 0 ) , p e r _ t h r e a d _ r e s u l t s )

(a) Stream kernels before interchange

. . .
- - combine t h e per - t h r e a d r e s u l t s
l e t c l u s t e r _ s i z e s =

map ( reduce ( + , 0 ) , t r a n s p o s e ( p e r _ t h r e a d _ r e s u l t s ) )

(b) After interchanging the reduction
Figure 13: Kernel extraction for k-means streamRed

reduction function and a sequential fold function to use for reduc-
ing the array. The compiler is able to exploit as much parallelism
as is optimal on the hardware, and can use our sequential code in-
side each thread. Note how we make use of in-place updates to
provide an efficient sequential fold - this is safe, because we only
do in-place updates on our formal parameters, which we are given
exclusive use of. Note also that this implementation performs only
a single pass of the points array.

There is one more trick to this use of streamRed, which relates
to kernel extraction. To start with (and here we are moving a little
outside our core language), the stream will be broken up by the
kernel extractor as shown on figure 13a - this makes use of the
“pseudo-SOAC” mapPerThread, which divides an array among
some number of threads, performs a sequential fold in every thread,
and returns one result per thread. A reduction using the parallel
operator from the streamRed is used to combine the per-thread
results. However, the kernel extractor recognises the pattern of a
reduce with an inner map and interchanges the two, leading to
the code on figure 13a, which uses a segmented scan (with regular
segments) to combine the per-thread results.

The performance of this implementation does rely on one as-
sumption - that k is small. This is due to the in-place update at a

data-dependent index in the sequential fold, which causes uncoa-
lesced access to memory if different GPU threads within the same
32-thread warp access different indices in the same cycle. With a
small k, this effect is lessened, but for large k, a different algorithm
with more passes over the input may be preferable.

7. Evaluation
We open this section with four performance related observations,
then describe the experimental methodology in Section 7.1 and dis-
cuss results from nine Rodinia benchmarks and five Accelerate and
FinPar [1] benchmarks in Sections 7.2, 7.3, and 7.4, respectively:

1 In several cases, such as Rodinia’s Backprop, Hotspot, kmeans,
and FinPar’s LocVolCalib, Futhark’s sequential code is up to
a factor of two slower than the hand-written C code. This is due
to inefficiencies (unnecessary copying) in the sequentialization
phase that transforms bulk-parallel operators to loops with in-
place updates, and are subject to future work. In particular,
kernel code would equally benefit from such improvements.

2 Our kernel-extraction algorithm does not necessarily takes ad-
vantage of all application parallelism, e.g., it would sequential-
ize a map that appears inside an if branch of an outer map, and a
redomap that is nested inside a map nest. Such examples of effi-
cient sequentialization occur in Rodinia’s LavaMD and Myocyte
benchmarks and allow Futhark’s code to be competitive.

3 However a reduce that is perfectly nested in a map nest is ex-
ecuted in parallel by Futhark as a segmented reduce, such as
in Rodinia’s Backprop and Kmeans. This is currently imple-
mented as a general segmented scan followed by a pack, which
is rather inefficient and can be improved by a significant factor,
which is to say there is still significant room for improvement.

4 Finally, the most impactful optimization for the GPGPU code is
ensuring coalesced accesses to global memory. In essence, sev-
eral benchmarks, such as FinPar’s LocVolCalib and Rodinia’s
CFD, Kmeans, Myocyte, and LavaMD, exhibit kernels in which
one or several innermost dimensions of the mapped arrays are
processed sequentially inside the kernel, either because they
correspond to dependent computation, i.e., loops with in-place
updates, or because they have been sequentialized by the kernel
extraction. A naive translation of this code would lead to con-
secutive threads accessing global memory with a stride equal to
the size of the inner (non-parallel) array dimensions, a.k.a. non-
coalesced, which may generate one-order-of-magnitude slow-
downs. While not in the scope of this paper, the Futhark com-
piler solves this by, intuitively, transposing the parallel dimen-
sions of the array innermost, and the same for the result array.

7.1 Experimental Methodology and Hardware
We have translated a number of programs from Rodinia and Ac-
celerate repositories to Futhark. The translation of Accelerate pro-
grams is relatively straightforward; for the Rodinia ones, we have
translated parallel loops to bulk-parallel operators such as map,
reduce, while preserving at our best the original code structure.
Both the Futhark compiler and translated benchmarks are pub-
licly available and can be straightforwardly tested, but anonymous-
review concerns prevent us to disclose the location yet.

We use the default Futhark-compiler flags (i.e., no tuning/flags)
to compile the translated code to a binary (based on sequential-C
and parallel-OpenCL code), and run it with binary -t time_file
< inp_file, where inp_file contains the dataset and time_file
records the total runtime minus the time taken for (i) reading the
input data, validating and writing the result to file, and (ii) GPU
context creation and build time (but memory-transfer time between
host and device is accounted for). We use the time instrumenta-
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tion of our competitors to measure the same runtime (as defined
above), and where not straightforward, e.g., several Rodinia cases,
we conservatively err in favor of our competitors.

Reported running times are averaged across twenty runs, and
are measured on an Intel(R) system running OPEN-SUSE 12.3, and
consisting of 16 Xeon(R) cores, model E5-2650 v2, running at
2.60 GHz, and 128GB memory. The GPGPU is a GeForce GTX 780
Ti NVIDIA, having 3 Gbytes of global memory, 2880 cores running
at 1.08 GHz, and 1.5 Mbytes of L2 cache. We use GCC 4.8.4 and
CUDA 6.0 to compile C++/C and OpenCL/CUDA code.

7.2 Evaluation of Nine Rodinia Benchmarks
Figure 14 shows the sequential-CPU and parallel-GPGPU speedups,
respectively, computed as the ratio between Rodinia’s and Futhark’s
running times, hence the higher the bars the better.

Backprop is tested on a dataset that has the size of the input
layer equal to 220. We implement the randomized initialization
phase by a map with the Sobol independent formula [1], while
Rodinia uses a sequential loop that calls C’s rand(). This explains
in part the 3× slowdown of our sequential code (rand() is faster).
The parallel computation of Sobol numbers is also the main reason
for the 5× speedup of the GPGPU code: Rodinia runtime does
not include the initialization, but takes into account the host-to-
device memory transfer time, which is expensive. The Futhark
runtime includes the initialization, but this takes place directly on
the GPGPU, hence the host-to-device transfer time is negligible.
However, the kernel running time of the training phase (excluding
initialization) are roughly equal in Rodinia and Futhark (∼ 10ms).

CFD is tested on the fvcorr.domn.193K dataset, with 1300
iterations of the convergence loop.

Hotspot is tested on an image of size 1024 × 1024, with a
convergence loop count of 360. Rodinia’s OpenCL version uses
time tiling [17], which seems to pay off on the tested hardware.

Kmeans is tested on the kdd_cup dataset. The main reason for
our speedup is that Rodinia does not parallelize the computation of
the new cluster centers, which is a segmented reduce; see Section 6.

LavaMD is tested on the dataset with boxes1d=10. Our
speedup is a bit surprising since the Rodinia implementation uses
tile-blocking in fast (local) memory to optimize an global-memory
access that is invariant to the innermost-parallelized map, while
Futhark does not, i.e., uses only global memory. Tested on an older
GPGPU6, Rodinia gains the upper hand by a factor of 1.33×, i.e.,
15 ms to 20 ms, but Rodinia’s version in which the use of fast
memory is deselected is 3.5× slower than Futhark, i.e., 65 ms.

Possible explanations are that (i) in Futhark’s case, the L1
caching of the invariant access alleviates much of the global-
memory overhead, and (ii) that the Rodinia version might exhibit
fast-memory bank conflicts. Also, the Rodinia version exhibits non-
coalesced accesses to global memory on the d_box_gpu array,
whose element type is a structure named box_str that contains six
integers and a 26 element array, each element being a five-int tuple.
In contrast, Futhark automatically transforms arrays of tuples to tu-
ples of arrays and then achieves coalesced access by transposition.

Myocyte is tested on a dataset with workload=65536 and
xmax=3. Since the only dataset available in Rodinia is for workload=1
and the amount of data parallelism is equal to workload we have
extended that dataset by replicating and perturbing the original
input directly on GPGPU. For this reason the Rodinia’s reported

6 An NVIDIA GeForce GTX680, which has 1536 cores, where LavaMD is
faster, but Rodinia’s Hotspot and SRAD are much slower than Futhark. In
Futhark’s case, the kernel time of all benchmarks are about a factor of 2×
faster on the current GPGPU in comparison with the old GPGPU, which is
what one would expect since the number-of-cores ratio is also about 2.

CUDA runtime refers to kernel-time only, i.e., the host-device trans-
fer time is not accounted for. We attribute our speedup to automatic
memory-coalescing optimization, which is tedious to do by hand
on such large programs.

NN is tested on an enlarged dataset that duplicates the default
Rodinia’s dataset 20 times, and also the number of nearest neigh-
bors is raised accordingly from 5 to 100. The reasons for the se-
quential slowdown of Rodinia is that its OpenMP and GPGPU ver-
sions differ significantly; our implementation follows Rodinia’s
GPGPU version. The reason for the Futhark GPGPU version being
more than twenty times faster is that in Rodinia, the 100 reduce
operations for finding the nearest neighbors are sequentialized on
the CPU. This is probably because the reduce operator is atypical:
it computes both the minimal value and its corresponding index.

Pathfinder is tested on an array of size 100000 with a con-
vergence loop of count 100. Both Futhark’s sequential and OpenCL
versions are significantly faster than Rodinia’s, mainly because Ro-
dinia uses time tiling in both cases, which, unlike Hotspot, does
not seem to pay off on the tested hardware.

SRAD is tested on the default Rodinia’s dataset, i.e., an image
of size 502 × 458 with a convergence loop of count 100. Futhark
sequential version is faster because the Rodinia’s code in srad_v1
exhibits bad locality. We suspect that Futhark’s OpecCL code is
1.2× faster because the reduce implementation is more efficient.

7.3 Evaluation of Four Accelerate Benchmarks
The benchmarks in this section are from the accelerate-examples
package version 0.15.1.0, and compiled with version 0.15.1.0 of
accelerate and version 0.15.1.1 of accelerate-cuda, these
being the most recently released versions at the time of writing.
Tests with unreleased versions from the Accelerate Git repository
showed similar results. Runtime of Accelerate implementations
were measured through their built-in --benchmark command line
option, and Futhark versions were measured as we did with Ro-
dinia, and again without any benchmark-specific tuning. We only
report the runtime for one dataset per benchmark, typically the
largest one available, which tends to favor Accelerate.

Figure 15 show the parallel speedups, respectively, computed as
the ratio between Accelerate’s and Futhark’s running times, hence
the higher the bars the better.

Crystal consists of two nested maps that for the chosen dataset
have size 4000 × 4000, whose body contains some scalar compu-
tation and a sequential fold.

Fluid is a rank-1 stencil computation on a 3000 × 3000 grid,
where each grid point executes a 20-iteration sequential fold. The
Accelerate version uses a stencil primitive, but the Futhark version
is merely a map over iota followed by explicit array indexing.

Mandelbrot is a naively written Mandelbrot implementation
(no clever load balancing), which we evaluate for a 800 × 600
grid. Unusually among all ported Accelerate benchmarks, Futharks
relative performance improves as we increase the grid size, and
reaches 5.87× for a grid of size 8000× 8000.

N-body is a naive n-body simulation, consisting of a width-n
map where each element performs a fold over each of the n bodies.
Accelerate provides two possible implementations; we have chosen
the fastest one (Naive2). We are reporting runtime for n = 105.

7.4 Evaluation of Local Volatility Calibration
LocVolCalib belongs to FinPar suite [1], and we have imple-
mented the version corresponding to a sequential TRIDAG computa-
tion. The result can be seen on the “VC” bars of Figure 15. We beat
the hand-written OpenCL implementation for the small dataset, as
it is optimised for larger datasets - the small dataset requires a par-
allel TRIDAG implementation to fully saturate the GPU.
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Figure 14: Sequential and OpenCL speedup (their runtime/our runtime) on 9 Rodinia benchmarks. Higher is better.
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Figure 15: GPU Speedup on Accelerate and FinPar Benchmarks

This benchmark is by far the most challenging one we present
due to its structure, which contains an outer map, containing a se-
quential for-loop, which itself contains several more maps. Ex-
ploiting all parallelism requires the compiler to interchange the
outer map and the sequential loop, as described in section 5.2. Fur-
ther, the inner sequential TRIDAG computation consists of a com-
plicated dependent loop that requires the use of in-place updates.

8. Related Work
Most related work to Futhark is SAC [15, 16], which seeks to pro-
vide a common ground between functional and imperative domains
for targeting parallel architectures, including both multi-processor
architectures [13] and massively data-parallel architectures [18].
SAC uses with and for loops to express map-reduce style paral-
lelism and sequential computation, respectively. More complex ar-
ray constructs can be compiled into with and for loops, as demon-
strated, for instance, by the compilation of the APL programming
language [21] into SAC [14]; a prototype APL-to-Futhark compiler
based on TAIL [12] is also being developed. In contrast to SAC,
Futhark holds on to the SOAC combinators also in the intermediate
representations in order to perform critical optimizations, such as
fusion, even in cases involving filtering and scans, which are not
straightforward constructs for SAC to cope with.

Much related work has been carried out in the area of support-
ing nested parallelism, including the seminal work on flattening of
nested parallelism in NESL [6, 7] and in the more recent work on

flattening [5, 28]. Investigating the use of a moderate/multi-version
flattening transform for supporting parallel implementations of ar-
bitrarily nested parallelism in Futhark is future work.

Recent work [26] has shown how rewrite rules can be used to
obtain some of the transformations performed by our compiler. The
use of rewrite rules which can be applied in many different ways
opens the door to autotuning, but it may be more difficult to express
more complicated single transformations.

Finally, compiler work in imperative setting reveals very useful
complementary with our work on Futhark. Such solutions typically
use complex polyhedral analysis [24] and excel at speeding up
loops of relatively small sizes, for example by time tiling [17],
but such analysis might not scale well to detect parallelism or to
perform distribution of larger loops with complex control flow.
For example, Pencil [2] reports speedups comparable to ours on
Rodinia, but these speedups result from index-based analysis, such
as tiling or skewing guided by extensive, per-dataset auto tuning.
In comparison, our speedups are rooted in being able to express all
parallelism, and in analysis that scales to program level – fusion,
memory coalescing, kernel extraction – precisely because it relies
on higher-level language invariants (no tuning was performed).

9. Conclusion
This paper has presented an optimizing compiler for Futhark, a
purely functional language tailored to aid the compiler in generat-
ing efficient GPGPU code. The perspective has been to seek a com-
mon ground between imperative and functional approaches that
combines advantages. For example, we support loops and in-place
updates and rely heavily on loop-like hoisting to hoist memory allo-
cations outside GPGPU kernels, but we also rely on scalable analysis
that exploits the higher-order semantics of functional combinators.

We have presented (i) how to support in-place updates in
Futhark’s type system, (ii) how second-order array combinators
(SOACs) can express symbolically both all available parallelism
and efficient sequentialization alternatives, and (iii) how to aggres-
sively compose (fusion) the program and then to decompose it
yet again into kernels in a manner that maximizes the amount of
efficient (common-case) parallelism.

Finally, we have validated our fully-automatic compiler, which
supports straightforward, flag-and-human-free GPGPU compilation
on a number of 14 Rodinia, Accelerate and FinPar benchmarks
and we have reported a harmonic-mean speedup of 1.75× against
competitors, with the highest observed slowdown being 1.52×.

While it has been a forgone conclusion for a while now that
the advance of massively parallel hardware such as GPGPUs should
favor functional languages, we believe that this works brings a
significant contribution into demonstrating this potential.
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