
Strategies for Regular Segmented Reductions on GPU
Rasmus Wriedt Larsen

Department of Computer Science, University of Copenhagen
(DIKU)
Denmark

rasmuswriedtlarsen@gmail.com

Troels Henriksen
Department of Computer Science, University of Copenhagen

(DIKU)
Denmark

athas@sigkill.dk

Abstract
We present and evaluate an implementation technique for regu-
lar segmented reductions on GPUs. Existing techniques tend to
be either consistent in performance but relatively inefficient in
absolute terms, or optimised for specific workloads and thereby
exhibiting bad performance for certain input. We propose three
different strategies for segmented reduction of regular arrays, each
optimised for a particular workload. We demonstrate an imple-
mentation in the Futhark compiler that is able to employ all three
strategies and automatically select the appropriate one at runtime.
While our evaluation is in the context of the Futhark compiler, the
implementation technique is applicable to any library or language
that has a need for segmented reductions.

We evaluate the technique on four microbenchmarks, two of
which we also compare to implementations in the CUB library for
GPU programming, as well as on two application benchmarks from
the Rodinia suite. On the latter, we obtain speedups ranging from
1.3× to 1.7× over a previous implementation based on scans.

CCS Concepts • Software and its engineering → General
programming languages; • Theory of computation → Pro-
gram analysis;

Keywords GPGPU, parallelism, functional programming
ACM Reference Format:
Rasmus Wriedt Larsen and Troels Henriksen. 2017. Strategies for Regular
Segmented Reductions on GPU. In Proceedings of 6th ACM SIGPLAN Inter-
national Workshop on Functional High-Performance Computing, Oxford, UK,
September 7, 2017 (FHPC’17), 11 pages.
https://doi.org/10.1145/3122948.3122952

1 Introduction
Massively parallel computers have long since entered the main-
stream in the form of GPUs. Yet their use still remains mostly
restricted to a small group of experts, who then produce high-
performance libraries useful by non-specialist programmers. While
useful, such libraries are less flexible and powerful than program-
ming the GPU directly.

The reason for this unfortunate state of affairs must be sought in
the low-level nature of the GPU programming APIs, such as CUDA
and OpenCL. Fortunately, recent years have seen a rise in work on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FHPC’17, September 7, 2017, Oxford, UK
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5181-2/17/09. . . $15.00
https://doi.org/10.1145/3122948.3122952

parallel functional languages [2, 3, 6, 8, 9, 17] that present a more
friendly programming model.

The challenge when programming massively parallel computers
is not the handling of embarrassingly parallel constructs, like map,
but rather in the efficient implementation of those constructs that
require some synchronisation and communication, such as scans
and reductions. One common operation in parallel programming
is reducing each inner array of a multidimensional array, such as
rows of a matrix. This is called a segmented reduction. For example,
we can use this to compute the sum of the rows of a matrix, yielding
a vector. We use the term segment size to refer to the size of the
inner array (the segment) being reduced.

This paper does not claim to provide the final key that unlocks
the power of GPUs for the masses, but merely seeks to advance the
state-of-the-art for one particular pattern: the regular segmented
reduction. In a regular segmented reduction, all segments have the
same size. While less flexible than an irregular segmented reduction,
this restriction permits a more efficient implementation, and is
sufficient for many tasks.

While there are existing libraries and languages supporting regu-
lar segmented reductions, they are not fully efficient. Some libraries,
such as Thrust [16], do not support regular segmented reductions
directly, but do support irregular segmented reductions, which can
be used to express regular segmented reductions albeit with some
overhead.

Accelerate [6], a Haskell eDSL for parallel programming, sup-
ports regular segmented reductions, but always uses one GPU
workgroup per segment. This is inefficient for those reductions that
involve a few very large segments, or those that involve a large
number of small segments. A similar strategy is taken by Delite [17],
in which all inner parallelism is mapped at warp or block level.

This paper proposes an adaptive approach that chooses an eval-
uation strategy at runtime based on the segment size and number
of segments. The contributions of this paper are:

First, we describe in Section 2 three strategies for handling reg-
ular segmented reductions. Each strategy is optimal for a certain
class of datasets, which are characterized by the segment size and
the number of segments.

Second, we describe in Section 3 a modification of the compiler
for Futhark [11–15], a functional array language, that incorporates
the three strategies, and switches automatically between them
based on runtime information.

Third, we present (also in Section 3) a systematic evaluation
of our approach on four synthetic benchmarks that shows that
the three strategies efficiently cover all cases of number of seg-
ments and segment size. The baseline used in this evaluation is
Futhark’s non-segmented reduction.1, as well as implementations
using CUB [18]. This is a suitable baseline because, on the one hand,

1Throughout the paper we use reduction to refer to general compositions of maps and
reductions.

42

https://doi.org/10.1145/3122948.3122952
https://doi.org/10.1145/3122948.3122952

FHPC’17, September 7, 2017, Oxford, UK Rasmus Wriedt Larsen and Troels Henriksen

reduction should be more efficient, since it is in essence a “simpler”
operation than its segmented counterpart, and, on the other hand,
Futhark’s reduction [13] is relatively efficient (and has been found
to outperform library-based implementations such as Thrust).

Finally, we demonstrate in Section 4 that our approach results in
significant (application-level) speedup on two benchmarks ported
from the Rodinia [7] benchmark suite (K-means and Backprop).

2 The Three Strategies
The efficient implementation of non-segmented reductions onGPUs
is well studied in the literature [10, 13, 19]. A common technique for
reducing an input array of size n is to spawn k workgroups2, each
consisting of w threads, where each thread sequentially reduces
a chunk of the input consisting of n

w×k elements, producing a
per-thread intermediate result, which is then reduced inside each
workgroup (using tree reduction on fast memory) to one result per
workgroup. Ifw is picked to be less than the maximum workgroup
size, we can then launch a new reduction with one workgroup of
sizew that reduces thew per-workgroup results into the final result
of the reduction.

This approach works well for most reduction operators and
input sizes (although there are of course many low-level tuning
techniques employed to improve the constant factors). Unfortu-
nately, for segmented reductions, no single technique is optimal.
One technique that is sometimes used is to recast a segmented
reduction as a segmented scan, followed by extracting the last ele-
ment from each of the produced segments. It has been shown that a
segmented scan can be implemented as an operator transformation
of a corresponding non-segmented scan [4]. Thus, if we have access
to an implementation of scan, we can also perform a segmented
reduction. However, as we shall see, this implementation performs
poorly in practice due to the extra memory traffic imposed by the
scan.

Our idea for computing segmented reductions is to use three
different kernel strategies to effectively cover all cases of number
of segments and segment size:

Sequential segments : When there are enough segments that
we can fully utilize the GPU by computing the reduction for
each segment sequentially in a single thread, we should do
so, because this eliminates inter-thread communication.

Large segments : When the size of a segment is large enough,
we can use an approach similar to a non-segmented reduc-
tion, where we use one or more (whole) workgroups to per-
form the reduction of a single segment.

Small segments :When there are so few segments that launch-
ing one thread per segment would not saturate the GPU, and
the segments are so small that launching one workgroup per
segment would not be efficient, we process several (whole)
segments per workgroup. This allows an implementation
that performs intra-workgroup segmented scan in fast mem-
ory, but does not require inter-workgroup communication.

We notice that all three strategies leverage the property that
all segments have the same size. For example, this guarantees that
the sequential-segment strategy is load balanced, and allows a
straightforward mapping between segments and workgroups for
the large- and small-segment strategies.
2This paper follows the OpenCL terminology. In NVIDIAs CUDA, a workgroup is
called a thread block.

Segments

Threads

Figure 1. The sequential segments strategy will process each seg-
ment sequentially in one thread.

Segments

Groups

Figure 2. The large segments strategy can use multiple workgroups
to reduce a single segment; this will generate multiple intermediate
results that will need to be reduced further. In this example we use
three workgroups for each of the two segments.

Segments

Groups

Figure 3. The small segments kernel can process multiple whole
segments within a single workgroup. In this example each work-
group can process two whole segments, but there is only one seg-
ment to reduce for the last workgroup.

In principle, there is also a fourth option: sequentialising the
entire segmented reduction, possibly not involving the GPU at all.
This may be the optimal strategy for very small data sets, especially
if they are already located on the CPU. However, we shall not go
in this direction.

The rest of this section describes the implementation and per-
formance characteristics of the three strategies in detail. We are
not as much interested in absolute numbers, as much as how the
different strategies perform on different inputs.

The performance of the different strategies on an NVIDIA K40
GPU is shown on Figure 4, which summarises the performance of a
segmented integer summation on two datasets; containing respec-
tively 218 (Figure 4a) and 226 (Figure 4b) integers in total. For each
of the two data sets, we show runtime for different decompositions
into number of segments and segment size, while the work remains
constant. We can thus see how a strategy may be efficient for some
input decompositions, but not for others.

43

Strategies for Regular Segmented Reductions on GPU FHPC’17, September 7, 2017, Oxford, UK

We conduct the measurements with three different GPU work-
group sizes to show how this impacts the performance. While this
shifts the thresholds at which the different strategies become opti-
mal, it does not change the overall picture. As a point of reference,
we also show the performance of a non-segmented summation, as
well as a segmented summation implemented with a segmented
prefix sum.

2.1 Sequential Segments
The sequential segments strategy (visualised on Figure 1) is to launch
one GPU thread for each segment, which then performs a sequential
reduction.

The loop-in-map approach has a very straightforward implemen-
tation: we launch as many threads as there are segments, and each
thread will iterate over the elements of a single segment and apply
the reduction operator. A straightforward serial iteration would
result in non-coalesced memory accesses. There are several ways
to resolve this issue. One common technique is to transform the
thread index space, but this is not useful in this case, because each
thread must read a logically contiguous segment of the input array.
Our solution is to transpose the array, such that the segments are
stored with a stride in memory. For large data sizes, the cost of
this transposition is much less than the penalty of non-coalesced
memory accesses.

As we can see on Figure 4, performance is abysmal when we
have few large segments, as we fail to provide enough parallelism
to the GPU. One interesting detail is that for the small 218 dataset,
this strategy becomes more efficient than segmented scan at 28
segments, while for the larger dataset this threshold is not crossed
until we are processing 210 segments. The reason is that the seg-
ments are much larger in the latter case than the former; implying
more sequential work.

2.2 Large Segments
The large segments strategy (visualised on Figure 2) is effective
when the segment size is larger than the workgroup size, as we
can then use multiple (whole) workgroups to reduce one segment.
This will allow us to use more active threads, than just using a
single workgroup per segment – so when there is only a few large
segments, this will give us better performance.

We end up producing a number of partial results per segment—
one per workgroup used3—that have to be reduced further in a
second stage. This second segmented reduction will be over the
same number of segments, but each will be orders of magnitude
smaller than in the original input, so the choice of algorithm is less
important (although the small segments strategy is a good choice)

When the segments are very large, then instead of launching
thousands of workgroups per segment, we can make each thread
of a workgroup sequentially process multiple consecutive elements.
This chunking procedure trades excess parallelism for efficient se-
quentialisation. This can improve performance significantly, be-
cause multiple memory transactions can be in flight at once. This
will also have the added benefit of reducing the number of partial
results that have to be reduced in the second stage. For a non-
commutative reduction operator, making each thread read multiple
elements will require that the input array has been transposed, to
achieve memory coalescing.

3One workgroup always processes elements from the same segment.

If the number of segments is so large that it would not increase
occupancy to use multiple workgroups per segment, we can use
a single workgroup to process an entire segment, thereby also
avoiding the cost of the recursive reduction of the partial results.

In essence, large-segment strategy is very similar to the case of
non-segmented reduction, which is known to have an efficient im-
plementation. A simplified pseudocode for this strategy is sketched
in Figure 5.

From Figure 4 we can see that the large segments strategy has
the same runtime as a non-segmented reduction when there are
many large segments. When the segments are only a few times
larger than the workgroup size, each thread will only process few
elements, and therefore the runtime increases; this is why we see
the large segments strategy being viable for larger work sizes when
using a workgroup size of 128, compared to 1024. In Figure 4a
the large segments strategy is a bit faster than the non-segmented
reduction, but this is only due to tuning parameters4.

2.3 Small Segments
The small segments strategy (visualised on Figure 3) can be used
when the segment size is smaller than the workgroup size. Process-
ing multiple segments inside a single workgroup is more efficient
than using one workgroup per segment if the segments are so small
that most of the threads of the workgroup would be idle.

To avoid (expensive) inter-workgroup communication, we re-
strict the implementation to processing a whole number of seg-
ments within one workgroup. That is, a segment cannot span two
workgroups. Therefore, we might waste some threads because we
cannot fill the workgroup completely. The input data will not need
to be transposed to ensure coalesced memory accesses, because
consecutive threads already read consecutive elements. A simplified
pseudocode for this strategy is sketched in Figure 6.

From Figure 4 we can see that the small segments strategy is only
a good choice for small input sizes. This is partially because it is able
to exploit all available parallelism, and partially because there is no
need to transpose the input to obtain coalesced memory accesses.
On larger data sets, the added overhead and intra-workgroup syn-
chronisation outweighs these benefits, and the sequential segments
strategy is superior. This is also because the small segments strategy
cannot benefit from efficient sequentialisation via chunking.

3 Implementation in the Futhark Compiler
Futhark is a purely functional data-parallel array language that
supports regular nested parallelism, with a compiler capable of
generating efficient OpenCL code for GPUs. We have modified the
Futhark compiler to handle segmented reductions via the three
different strategies presented previously. Since the topic of this
paper is not Futhark itself, we shall go into little detail on the
language as such, and only describe concepts and (non-obvious)
syntax as necessary.

Syntactically, Futhark resembles a combination of OCaml and
Haskell. Parallelism is expressed via built-in second-order array
combinators (SOACs), such as map and reduce. A segmented reduc-
tion is not a SOAC by itself, but occurs naturally when a reduce is
nested inside of a map. For example, the function sumrows shown
on Figure 7a sums the rows of an array xss.

4changing the number of workgroups used by the non-segmented reduction would
make it as fast

44

FHPC’17, September 7, 2017, Oxford, UK Rasmus Wriedt Larsen and Troels Henriksen

[2 0
][2 18

]

[2 2
][2 16

]

[2 4
][2 14

]

[2 6
][2 12

]

[2 8
][2 10

]

[2 10
][2 8

]

[2 12
][2 6

]

[2 14
][2 4

]

[2 16
][2 2

]

[2 18
][2 0

]

0.0

1.0

2.0

3.0

4.0

5.0

Data set

ru
n
ti
m
e
(m

s)

Non-segmented

Large segments

Small segments

Sequential segments

Segmented scan

Workgroup size of 128 threads

[2 0
][2 18

]

[2 2
][2 16

]

[2 4
][2 14

]

[2 6
][2 12

]

[2 8
][2 10

]

[2 10
][2 8

]

[2 12
][2 6

]

[2 14
][2 4

]

[2 16
][2 2

]

[2 18
][2 0

]

0.0

1.0

2.0

3.0

4.0

5.0

Data set

ru
n
ti
m
e
(m

s)

Non-segmented

Large segments

Small segments

Sequential segments

Segmented scan

Workgroup size of 512 threads

[2 0
][2 18

]

[2 2
][2 16

]

[2 4
][2 14

]

[2 6
][2 12

]

[2 8
][2 10

]

[2 10
][2 8

]

[2 12
][2 6

]

[2 14
][2 4

]

[2 16
][2 2

]

[2 18
][2 0

]

0.0

1.0

2.0

3.0

4.0

5.0

Data set

ru
n
ti
m
e
(m

s)

Non-segmented

Large segments

Small segments

Sequential segments

Segmented scan

Workgroup size of 1024 threads
(a) Segmented summation of 218 integers.

[2 0
][2 26

]

[2 2
][2 24

]

[2 4
][2 22

]

[2 6
][2 20

]

[2 8
][2 18

]

[2 10
][2 16

]

[2 12
][2 14

]

[2 14
][2 12

]

[2 16
][2 10

]

[2 18
][2 8

]

[2 20
][2 6

]

[2 22
][2 4

]

[2 24
][2 2

]

[2 26
][2 0

]

0

10

20

30

Data set

ru
n
ti
m
e
(m

s)

Non-segmented

Large segments

Small segments

Sequential segments

Segmented scan

Workgroup size of 128 threads

[2 0
][2 26

]

[2 2
][2 24

]

[2 4
][2 22

]

[2 6
][2 20

]

[2 8
][2 18

]

[2 10
][2 16

]

[2 12
][2 14

]

[2 14
][2 12

]

[2 16
][2 10

]

[2 18
][2 8

]

[2 20
][2 6

]

[2 22
][2 4

]

[2 24
][2 2

]

[2 26
][2 0

]

0

10

20

30

Data set

ru
n
ti
m
e
(m

s)

Non-segmented

Large segments

Small segments

Sequential segments

Segmented scan

Workgroup size of 512 threads

[2 0
][2 26

]

[2 2
][2 24

]

[2 4
][2 22

]

[2 6
][2 20

]

[2 8
][2 18

]

[2 10
][2 16

]

[2 12
][2 14

]

[2 14
][2 12

]

[2 16
][2 10

]

[2 18
][2 8

]

[2 20
][2 6

]

[2 22
][2 4

]

[2 24
][2 2

]

[2 26
][2 0

]

0

10

20

30

Data set

ru
n
ti
m
e
(m

s)

Non-segmented

Large segments

Small segments

Sequential segments

Segmented scan

Workgroup size of 1024 threads
(b) Segmented summation of 226 integers.

Figure 4. The runtime of segmented summation using various implementation strategies and workgroup sizes for a different of input sizes.
The amount of work done is constant along x-axis; only the ratio between number of segments and segment size changes.

The function sumrows takes a single parameter, xss, which is a
two-dimensionalm × n array of 32-bit integers, written as the type
[m][n]i32. The [m] [n] annotations prior to the parameter are im-
plicit size parameters, and indicate that the function is polymorphic
in the two sizes m and n (as opposed to the size of the xss array
being determined by two variables n and m in scope).

A common pattern is to reduce the result of a map, such as
computing the sum of the result of applying the function i32.abs to
all elements of xs, as on Figure 7b. This pattern is recognized by the
Futhark compiler and fused into a special internal construct, called
redomap [13], that will effectively compute both the reduction and
the application of i32.abs in one pass over the data in xs . This
can be a significant improvement as both maps and reductions are
typically memory bound computations. Just as with reductions,
we often see the pattern of a segmented redomap. In this paper
we will not distinguish between the two, and use exclusively the
term “segmented reduction”, even for programs that involve fusion
between map and reduce.

Finally, we note that while this paper is concerned exclusively
with perfectly nested segmented reductions, where a reduce is
the only component of a function being mapped (possibly after
fusion with a map), real programs may exhibit more complicated
nesting structures. For example, 8a shows a program that applies

a function containing two reduce operations on each row of a
matrix. By itself, this does not correspond to a segmented reduction,
but the Futhark compiler is able to automatically transforms the
program into the form shown on 8b, which now corresponds to
two perfectly nested segmented reductions. This technique has
been published elsewhere [15] and is not the subject of this paper.
The important point is that not having segmented reductions as a
language primitive is not a great hindrance, as the compiler can
automatically restructure a program to contain perfectly nested
reductions.

3.1 Choosing a Strategy
When the Futhark compiler encounters such a nested reduction
(possibly after automatic transformation), it will generate code for
each of the three strategies for segmented reduction, with branches
inserted to select a strategy at runtime. The present heuristic are:

1. If more than 216 segments are present, use the sequential
segments strategy.

2. Otherwise, if the segment size is greater than half the work-
group size, use the large segments strategy.

3. Otherwise, use the small segments strategy.

45

Strategies for Regular Segmented Reductions on GPU FHPC’17, September 7, 2017, Oxford, UK

1 Input: s -- segment length
2 m -- number of segments
3 w -- number of threads per workgroup
4 p -- number of workgroups
5 A -- the input (global) array of size (m ∗ s)
6 T -- temporary workgroup-local array of length w
7
8 Assumes: w < s, p <= m, and that p∗w threads fully utilize hardware.
9
10 Output: B -- array of total length p, semantically
11 -- consisting of m segments of length p/m.
12 -- If p==m then stop else recursively reduce B.
13
14 c← (m∗s) / (w∗p) -- per thread chunking factor
15 forall i in [0...p-1]: -- for all workgroups
16 forall j in [0...w-1]: -- for all workgroup's threads
17 tid← i∗w+j -- global thread id
18 T[j]← thread tid sequentially reduces
19 elements A[tid∗c : (tid+1)∗c-1]
20 endforall
21
22 B[i]← workgroup i reduces array T in parallel
23 endforall

Figure 5. Large-Segment Strategy Pseudocode. For simplicity, all
divisions are assumed to be exact, and the workgroup size divides
the segment size.

1 Input: s -- segment length
2 m -- number of segments
3 w -- number of threads per workgroup
4 p -- number of workgroups
5 A -- the input (global) array of size (m ∗ s)
6 T -- temporary workgroup-local array of length w
7
8 Assumes: w > s and s∗m == w∗p
9
10 Output: B -- array of total length m
11
12 sgm_per_wgroup← w / s
13 forall i in [0...p-1]: -- for all workgroups
14 forall j in [0...w-1]: -- for all workgroup's threads
15 tid← i∗w+j -- global thread id
16 T[j]← A[tid]
17 endforall
18
19 T← workgroup i performs a parallel segmented scan of array T
20
21 forall j in [0...w/s-1]: -- write the result to global memory
22 B[(w/s)∗i+j] = T[j∗s]
23 endforall
24 endforall

Figure 6. Small-Segment Strategy Pseudocode. For simplicity, all
divisions are assumed to be exact, and the segment size divides the
workgroup size.

1 let sumrows [m] [n] (xss: [m][n]i32): [n]i32 =
2 map (λxs→ reduce (+) 0 xs) xss

(a) Summing the rows of a matrix of integers in Futhark.

1 let sumrows [m] [n] (xss: [m][n]i32): [n]i32 =
2 map (λxs→ reduce (+) 0 (map i32.abs xs)) xss

(b) Summing the absolute value of the rows of a matrix of integers in
Futhark.

Figure 7.Two simple examples of segmented reductions in Futhark.

1 let main [m] [n] (xss: [m] [n]i32) =
2 map (λxs→ let v = reduce (+) 0 xs
3 in reduce (∗) 1 (map (+v) xs)) xss

(a) A map containing two reduce operations, which cannot by itself be
turned into a segmented reduction, as the nesting is imperfect.

1 let main [m] [n] (xss: [m] [n]i32) =
2 let vs = map (λxs→ reduce (+) 0 xs) xss
3 in map (λ(v,xs)→ reduce (∗) 1 (map (+v) xs)) vs xss

(b) The map operation has been split into two by fission, each of which
contains a perfectly nested reduce.

Figure 8. Transforming imperfectly nested reductions to perfectly
nested reductions, so they can be translated to segmented reduc-
tions.

The rationale is that we prefer to sequentialize the reduction
whenever there is enough work to fully occupy the hardware, be-
cause a parallel reduction requires inter-thread communication/syn-
chronization overhead. Failing that, we prefer the large-segment
strategy because it essentially translates to workgroup level reduc-
tion – a simpler operation with a known efficient implementation
– and allows efficient chunking (multiple memory transaction in
flight). For the rest of the cases we use small-segment reduction,
which still allows an efficient implementation based on workgroup-
level segmented scan (that uses fast memory and workgroup-level
synchronization).

As we shall see in Section 3.2 this heuristic are not optimal for
all programs. The optimal choice is dependent on both the concrete
GPU hardware on which we execute, as well as the characteristics
of the reduction operator in use. However, the heuristic above tends
to perform acceptably well in practice. Improving the procedure
for selecting a strategy remains future work.

3.2 Microbenchmarks
Wehave implemented four different benchmarks to demonstrate the
performance characteristics of the implementation of segmented
reduction in the Futhark compiler. The benchmarks are executed
on an NVIDIA K40 GPU. We use 512 workgroups, and a workgroup
size of of 256 threads.

For each benchmark, we measure runtime for each of the three
kernel strategies (large segments, small segments, and sequential
segments). We use two work sizes: a small one comprising 218
elements, and a large one comprising 226. As before, we vary the

46

FHPC’17, September 7, 2017, Oxford, UK Rasmus Wriedt Larsen and Troels Henriksen

ratio between number of segments and segment size, while keeping
the work constant.

As frames of reference, we measure the runtime of an imple-
mentation that uses a segmented scan to implement segmented
reduction, as well as a non-segmented reduction using the same
operator. This latter reference does not compute the same result,
but shows to which degree the segmented operation (which is
conceptually more complicated) is slower than a corresponding
non-segmented one.

We are primarily demonstrating how the various strategies per-
form on various workloads, and only secondarily concerned with
absolute runtimes. However, to show performance compared to
prior (non-Futhark) solutions, we have also implemented two of the
micro-benchmarks in CUDA C++ with the help of NVIDIAs CUB
library (version 1.7.0), which supports (potentially irregular) seg-
mented reductions via the cub::DeviceSegmentedReduce class.
CUB is well regarded for its performance, due to careful attention
paid to issues of hardware-specific low-level optimisation. In par-
ticular, CUB uses more efficient intra-group communication than
the code generated by Futhark.

For segmented reductions, CUB’s strategy is to launch a work-
group for each segment, which then reduces the segment. As we
shall see, while CUB outperforms Futhark for inputs that hit the
sweet spot, CUB performs poorly for edge cases with many small
or a few large segments, and fails entirely when the number of seg-
ments exceeds the maximum number of workgroups supported by
the GPU (216). While this latter problem could easily be remedied,
performance would be poor for inputs that contain a large number
of small segments, as most of the threads in each workgroup would
be idle. CUB computes its desired workgroup count and workgroup
size internally.

Unfortunately, the machine on which the benchmarks have been
performed exhibits significantly higher GPU kernel launch latency
for OpenCL (the API used by Futhark) than for CUDA (the API
used by CUB) on some kernels, on the order of 400µs . On small
workloads, this launch latency becomes dominant, resulting in CUB
outperforming Futhark to a greater degree than can be attributed
to its efficient low-level optimisations. On larger workloads, this
effect has no significant impact on the results.

We note that Futhark’s implementation of non-segmented reduc-
tion has been shown previously to match or exceed the performance
of the implementation in Thrust [13]. Apart from benchmarking
each strategy by itself, we also measure the runtime of automati-
cally picking a strategy, which is the compiler inserting code for all
three strategies, and determining which one to activate at runtime
based on the heuristic mentioned in Section 3.1.

The benchmarking infrastructure and all implementations are
publicly available at

https://github.com/HIPERFIT/futhark-fhpc17

Segmented Sum (implementation on Figure 7a and runtimes
on Figure 9) is a straightforward computation of the sums of
rows of a matrix, as shown previously. Note on Figure 9a the
switch from small segments to sequential segments when the
number of segments reaches 216, despite the small segments
strategy still being more efficient at this point. The reason for
the sequential segments strategy being slower is the cost of
a transposition inserted to ensure coalesced memory access.

[2 0
][2 18

]

[2 2
][2 16

]

[2 4
][2 14

]

[2 6
][2 12

]

[2 8
][2 10

]

[2 10
][2 8

]

[2 12
][2 6

]

[2 14
][2 4

]

[2 16
][2 2

]

[2 18
][2 0

]

0

1

2

3

4

Data set

ru
n
ti
m
e
(m

s)

Non-segmented Large segments

Small segments Sequential segments

Segmented scan Automatic

CUB

(a) Segmented sum for 218 integers.

[2 0
][2 26

]

[2 2
][2 24

]

[2 4
][2 22

]

[2 6
][2 20

]

[2 8
][2 18

]

[2 10
][2 16

]

[2 12
][2 14

]

[2 14
][2 12

]

[2 16
][2 10

]

[2 18
][2 8

]

[2 20
][2 6

]

[2 22
][2 4

]

[2 24
][2 2

]

[2 26
][2 0

]

0

10

20

30

40

Data set

ru
n
ti
m
e
(m

s)
Non-segmented Large segments

Small segments Sequential segments

Segmented scan Automatic

CUB

(b) Segmented sum for 226 integers.

Figure 9. Runtime measurements for segmented summation. The
implementation is shown on Figure 7a.

Index of Max (implementation on Figure 10 and runtimes on
Figure 11) computes the largest element of each row of an
array. The amount of global memory traffic is not much
more than for segmented summation, as the iota (which
produces an array from 0 to n) is fused by the Futhark com-
piler. However, twice as much local memory is needed, as
both the value and its corresponding index is tracked.
While the Futhark compiler can recognise the commutativity
of certain simple functions (like addition), it cannot recognise
that the function used here is commutative. Hence, we use
reduce_comm instead of just reduce as a hint to the compiler.

47

https://github.com/HIPERFIT/futhark-fhpc17

Strategies for Regular Segmented Reductions on GPU FHPC’17, September 7, 2017, Oxford, UK

1 let redop ((xv, xi): (i32,i32)) ((yv, yi): (i32,i32)): (i32,i32) =
2 if xv < yv then (yv,yi)
3 else if yv < xv then (xv,xi)
4 else -- Prefer lowest index if the values are equal.
5 if xi < yi then (xv,xi) else (yv,yi)
6
7 let index_of_max [n] (xs: [n]i32): i32 =
8 let ne = (-2∗∗31-1, n)
9 let (_, i) = reduce_comm redop ne (zip xs (iota n))
10 in i
11
12 let main [m] [n] (xss : [m][n]i32) : [m]i32 =
13 map index_of_max xss

Figure 10. Finding the index of the largest element in each of the
segments.

One complication is the need to provide a neutral element
for the reduction. In general, for the function we are using,
there is no fully neutral element. However, using a pair of
the smallest 32-bit integer at one position past the end of the
array suffices, as this will never be chosen over any element
of the array. Only if the input array is empty will this “neutral
element” be produced by the reduction.
The observed performance characteristics are similar to Seg-
mented Sum, except that the small segments strategy de-
teriorates to have approximately the same performance as
sequential segments when reaching 218 segments on the
small dataset.

Maximum Subarray Sum (implementation on Figure 12 and
runtimes on Figure 13) finds, within each row, the contiguous
subarray which has the largest sum.5 This is expressed as a
composition of map and reduce.
Unlike the other benchmarks, the reduction operator for
Maximum Subarray Sum is not commutative (although it is
of course still associative). This means that each segment
must be reduced in its original order. Unfortunately, having
each GPU thread iterate sequentially through memory leads
to inefficient non-coalesced memory accesses. The Futhark
compiler automatically detects and resolves this issue via
an index-space transformation of the original input array,
followed by changing the iteration order of the threads. The
full details of this technique are the subject of a previous
publication [13].
No CUB implementation exists, because CUB requires the re-
duction operator to be commutative, which theMSS operator
is not.

Black-Scholes Option Pricing (implementation on Figure 14
and runtimes on Figure 15) employs a composition of map
and reduce to compute the value ofm options running at n
days each. Each segment corresponds to an option with a
unique volatility and risk-free rate. The reduction operator
is a trivial addition, but the function used for the map part
is complicated.

5This problem is often called the Maximum Segment Sum, but this term might be
confusing given our other uses of the term “segment”.

Unlike the other benchmarks, the segments are not part
of the input, but are constructed with iota, which is then
fused into the inner reduction. As a result, this benchmark
exhibits much less memory traffic than the others, and its
performance is in fact bound by the computational capacity
of the GPU, not by the memory bandwidth. Yet, we see the
same performance characteristics as for the memory-bound
benchmarks.
The CUB implementation has been written with a custom
iterator that performs the equivalent of the mapop operation
on demand, in order to avoid the need for an intermediate
array.

4 Impact on Two Rodinia Benchmarks
This section shows the impact of replacing the Futhark compiler’s
previous implementation of regular segmented reductions, which
was based on scans, with the new implementation described in
this paper. This is done by measuring the performance of two
benchmarks taken from the well-known Rodinia benchmark suite:
Backprop and K-means. Both of these contain regular segmented
summations. We use the OpenCL implementations from version
3.1 of Rodinia.

Figure 16 shows for each benchmark the runtime of the hand-
written OpenCL reference implementation from Rodinia, the run-
time of a Futhark implementation where segmented reductions
are implemented using scans, and the runtime of a Futhark im-
plementation where segmented reductions are implemented by
automatically picking between the strategies presented in Section 2.
We use Futhark’s default configuration for workgroup size (256
threads) and number of workgroups (128).

In Backprop, the segmented summation is straightforward and
appears as a perfectly nested reduction in the source code. Previ-
ously, executing the segmented summation took up 26% of the total
runtime, which has been cut to approximately 2% with the new
implementation. For the dataset used, the segmented reduction
involves 16 segments each containing 1020 elements, correspond-
ing to 8 workgroups per segment, and each thread processing 512
elements sequentially.

For K-means, two different datasets are used. Both perform
K-means clustering on a 35-dimensional space, with the 204800
dataset dividing 204,800 points into eight clusters, and kdd_cup
dividing 494,019 points into five clusters. In contrast to the straight-
forward segmented summation in Backprop, it takes a bit of work
for the compiler to recognise it in K-means. One case arises from
computing the number of points in each cluster, in which a subcom-
putation involves a reduction over a matrix, where the reduction
operator is vector addition6. In Futhark, this is written as

reduce (λx y→map (+) x y) (replicate k ne) arr

where arr has shape [n][k]. Since a reduction with an array-typed
operand type can be very expensive, the compiler automatically
interchanges the reduce and themap (at the cost of a transposition),
producing

map (λrow→ reduce (+) ne row) (transpose arr)

6The code is slightly more elaborate than a plain reduce, as it involves stream_red,
a special Futhark construct that permits efficient sequentialisation, from which the
reduce is extracted as a secondary stage

48

FHPC’17, September 7, 2017, Oxford, UK Rasmus Wriedt Larsen and Troels Henriksen

[2 0
][2 18

]

[2 2
][2 16

]

[2 4
][2 14

]

[2 6
][2 12

]

[2 8
][2 10

]

[2 10
][2 8

]

[2 12
][2 6

]

[2 14
][2 4

]

[2 16
][2 2

]

[2 18
][2 0

]

0

1

2

3

4

5

Data set

ru
n
ti
m
e
(m

s)

Non-segmented Large segments

Small segments Sequential segments

Segmented scan Automatic

CUB

(a) Index of largest element for 218 integers.

[2 0
][2 26

]

[2 2
][2 24

]

[2 4
][2 22

]

[2 6
][2 20

]

[2 8
][2 18

]

[2 10
][2 16

]

[2 12
][2 14

]

[2 14
][2 12

]

[2 16
][2 10

]

[2 18
][2 8

]

[2 20
][2 6

]

[2 22
][2 4

]

[2 24
][2 2

]

[2 26
][2 0

]

0

20

40

60

Data set

ru
n
ti
m
e
(m

s)

Non-segmented Large segments

Small segments Sequential segments

Segmented scan Automatic

CUB

(b) Index of largest element for 226 integers.

Figure 11. Runtime measurements for finding the index of the
largest element in each segment. The implementation is shown on
on Figure 10.

which is exactly a segmented reduction over k segments, each of
size n. For our two datasets, k is small (five or eight), while n is large
(494,019 or 204,800). The large-segments strategy is best here.

Another segmented reduction occurs when computing cluster
centers. Here the reduction operator is matrix addition, and the
result contains two nested maps outside of a reduce.

For kdd_cup, the proportion of runtime spent on computing
segmented reductions declines from 19% to 1%, and for 204800
from 35% to 2%. In the latter case, it is the difference between
Futhark being 1.35× slower than the reference implementation,
and being 1.29× faster.

1 type quad = (i32,i32,i32,i32)
2
3 let redop ((bx, lx, rx, tx): quad) ((by, ly, ry, ty): quad): quad =
4 (i32.max bx (i32.max by (rx + ly)),
5 i32.max lx (tx+ly),
6 i32.max ry (rx+ty),
7 tx + ty)
8
9 let mapop (x: i32): quad =
10 (i32.max x 0, i32.max x 0, i32.max x 0, x)
11
12 let mss [n] (xs: [n]i32): i32 =
13 let (x, _, _, _) = reduce redop (0,0,0,0) (map mss.mapop xs)
14 in x
15
16 let main [m] [n] (xss: [m][n]i32) =
17 map mss xss

Figure 12. Implementation of segmented maximum subarray sum.

5 Related Work
In a broad sense, a segmented reduction is a special case of a his-
togram computation, where an input array of key-value pairs are
processed, to reduce all the values with the same key. This is illus-
trated in imperative pseudo-code on Figure 17.

Some implementations of segmented reduction use a definition
similar to the histogram computation, with the restriction that a
segment is defined as a consecutive range of matching keys (i.e., the
keys 1 1 2 1 defines 3 segments). Because there is no restriction
on the size of a segment, this is called an irregular segmented reduc-
tion. While there has been little prior work on regular segmented
reductions, irregular reductions have received some attention.

The work on the data parallel programming language NESL [5],
showed how a segmented reduction, capable of handling irregular
segments, could be implemented by using a segmented scan, and
an instruction to get the last element from each segment. The only
requirement is that the reduction operator is associative. NESL also
shows that a segmented scan can be implemented efficiently by
using scans and a flag array [4]. While this approach exploits all
available parallelism and has performance mostly invariant of the
segment size, our results from Section 3.2 show that it is slower
than specialised implementations of segmented reductions.

TheModernGPU [1] library fromNVIDIA supports irregular seg-
mented reductions, and supports using either using keys or offsets
as the segment descriptor. Irregular segments are handled by as-
signing an equally sized slice of the input array to each workgroup,
where each thread will process multiple consecutive elements. Par-
tial results for a segment are combined using a special streaming
kernel that scans carry-out values and redistributes them into the
destination reductions.

In essence, these approaches solve a more general problem, of
which regular-segmented reduction is just an instance of, and con-
sequently result in higher overheads.

A more related strand of research are DSLs aimed at parallel
programming such as Accelerate [6] and Delite [17], which provide
specialized implementations for regular segmented reduction. Ac-
celerate always process one segment in one GPU workgroup, while

49

Strategies for Regular Segmented Reductions on GPU FHPC’17, September 7, 2017, Oxford, UK

[2 0
][2 18

]

[2 2
][2 16

]

[2 4
][2 14

]

[2 6
][2 12

]

[2 8
][2 10

]

[2 10
][2 8

]

[2 12
][2 6

]

[2 14
][2 4

]

[2 16
][2 2

]

[2 18
][2 0

]

0

2

4

6

Data set

ru
n
ti
m
e
(m

s)

Non-segmented Large segments

Small segments Sequential segments

Segmented scan Automatic

(a) Maximum subarray sum for 218 integers.

[2 0
][2 26

]

[2 2
][2 24

]

[2 4
][2 22

]

[2 6
][2 20

]

[2 8
][2 18

]

[2 10
][2 16

]

[2 12
][2 14

]

[2 14
][2 12

]

[2 16
][2 10

]

[2 18
][2 8

]

[2 20
][2 6

]

[2 22
][2 4

]

[2 24
][2 2

]

[2 26
][2 0

]

0

20

40

60

80

Data set

ru
n
ti
m
e
(m

s)

Non-segmented Large segments

Small segments Sequential segments

Segmented scan Automatic

(b)Maximum subarray sum for 226 integers.

Figure 13. Runtime measurements for determining the maximum
subarray sum of each segment. The implementation is shown on
Figure 12.

Delite maps inner reductions (parallelism) at warp or workgroup
level. These approaches are inefficient in some cases: for example
if the array consists of only few large segments, then hardware
parallelism would be severely underutilized. We saw this in the
results for CUB in Section 3.2, which uses a similar approach.

In comparison, our approach automatically adapts to the dataset,
by choosing at runtime one of the three evaluation strategies, which
cover efficiently all cases of number of segments and segment size.

1 let horner (x: f64): f64 =
2 let (c1,c2,c3,c4,c5) =
3 (0.31938153,-0.356563782,1.781477937,
4 -1.821255978,1.330274429)
5 in x ∗ (c1 + x ∗ (c2 + x ∗ (c3 + x ∗ (c4 + x ∗ c5))))
6
7 let cnd0 (d: f64): f64 =
8 let k = 1.0 / (1.0 + 0.2316419 ∗ f64.abs d)
9 let p = horner k
10 let rsqrt2pi = 0.39894228040143267793994605993438
11 in rsqrt2pi ∗ f64.exp(-0.5∗d∗d) ∗ p
12
13 let cnd (d: f64): f64 =
14 let c = cnd0 d
15 in if 0.0 < d then 1.0 - c else c
16
17 let mapop (r: f64) (v: f64) (days: i32) (day: i32): f64 =
18 let call = day % 2 == 0
19 let price = 58.0 + 4.0 ∗ f64 (1+day) / f64 days
20 let strike = 65.0
21 let years = f64 (1+day) / 365.0
22 let v_sqrtT = v ∗ f64.sqrt years
23 let d1 =
24 (f64.log(price / strike) + (r + 0.5 ∗ v ∗ v) ∗ years) /
25 v_sqrtT
26 let d2 = d1 - v_sqrtT
27 let cndD1 = cnd d1
28 let cndD2 = cnd d2
29 let x_expRT = strike ∗ f64.exp (-r ∗ years)
30 in if call then price ∗ cndD1 - x_expRT ∗ cndD2
31 else x_expRT ∗ (1.0 - cndD2) - price ∗ (1.0 - cndD1)
32
33 let blackscholes (r: f64) (v: f64) (n: i32): f64 =
34 reduce (+) 0.0 (map (mapop r v n) (iota n))
35
36 let main [m] (rs: [m]f64) (vs: [m]f64) (n: i32): [m]f64 =
37 map (λr v→ blackscholes r v n) rs vs

Figure 14. Implementation of Black-Scholes option pricing, with
each segment corresponding to a unique value for r and σ , and the
size of the segment the running time of the option.

6 Conclusions and Future Work
This paper has shown three different implementation strategies
for regular segmented reduction on GPUs, each optimised for a
specific range of segment sizes and number of segments. We have
demonstrated a prototype of a compiler that can dynamically switch
between the strategies based on the workload encountered at run-
time. The performance of the generated code exceeds that which is
achieved with a scan-based approach, without exhibiting any sig-
nificant slowdown for extreme cases with very few large segments
or many very small segments.

We have shown that regular segmented reductions occur as
subcomputations in real published benchmark suites, and that their
efficient implementation has a non-negligible impact on overall
runtime.

50

FHPC’17, September 7, 2017, Oxford, UK Rasmus Wriedt Larsen and Troels Henriksen

[2 0
][2 18

]

[2 2
][2 16

]

[2 4
][2 14

]

[2 6
][2 12

]

[2 8
][2 10

]

[2 10
][2 8

]

[2 12
][2 6

]

[2 14
][2 4

]

[2 16
][2 2

]

[2 18
][2 0

]

0

1

2

3

4

Data set

ru
n
ti
m
e
(m

s)

Non-segmented Large segments

Small segments Sequential segments

Segmented scan Automatic

CUB

(a) Black-Scholes pricing for 218 days in total.

[2 0
][2 26

]

[2 2
][2 24

]

[2 4
][2 22

]

[2 6
][2 20

]

[2 8
][2 18

]

[2 10
][2 16

]

[2 12
][2 14

]

[2 14
][2 12

]

[2 16
][2 10

]

[2 18
][2 8

]

[2 20
][2 6

]

[2 22
][2 4

]

[2 24
][2 2

]

[2 26
][2 0

]

0

20

40

60

80

100

Data set

ru
n
ti
m
e
(m

s)

Non-segmented Large segments

Small segments Sequential segments

Segmented scan Automatic

CUB

(b) Black-Scholes pricing for 226 days in total.

Figure 15. Runtime measurements for segmented Black-Scholes
pricing. The implementation is shown on Figure 14.

Work remains on improving performance for segmented reduc-
tions with non-commutative operators, as well as refining the deci-
sion procedure used for choosing a reduction strategy for a given
dataset. The latter must likely be solved using autotuning tech-
niques.

Acknowledgments
We are grateful to NVIDIA for donating the K40 GPU used for this
work.

This research has been partially supported by the Danish Strate-
gic Research Council, Program Committee for Strategic Growth
Technologies, for the research center ’HIPERFIT: Functional High

Backprop
(1048576)

K-means
(204800)

K-means
(kdd cup)

0

500

1,000

1,500

52

734

1,484

29

994

897

21

576

688

Benchmark

ru
n
ti
m
e
(m

s)

Rodinia

Segmented Scans

Segmented Reductions

Figure 16. The performance impact of using the segmented re-
duction implementation presented in the paper over a previous
implementation based on segmented scans.

1 -- 'input_key' and 'input_val' are arrays of size 'n'
2 -- 'res' is a dictionary-like datastructure
3 for i in [0...n]:
4 acc = res[input_key[i]]
5 res[input_key[i]] = OP(acc, input_values[i])

Figure 17. A histogram computation in imperative pseudocode.

Performance Computing for Financial Information Technology’ 7
under contract number 10-092299.

References
[1] Sean Baxter. 2013. Modern GPU 1.0. (2013). https://moderngpu.github.io/

segreduce.html
[2] Lars Bergstrom and John Reppy. 2012. Nested Data-parallelism on the Gpu. In

Proceedings of the 17th ACM SIGPLAN International Conference on Functional
Programming (ICFP ’12). ACM, New York, NY, USA, 247–258. https://doi.org/10.
1145/2364527.2364563

[3] Robert Bernecky and Sven-Bodo Scholz. 2015. Abstract Expressionism for Parallel
Performance. In Proceedings of the 2Nd ACM SIGPLAN International Workshop on
Libraries, Languages, and Compilers for Array Programming (ARRAY 2015). ACM,
New York, NY, USA, 54–59. https://doi.org/10.1145/2774959.2774962

[4] Guy E. Blelloch. 1989. Scans as Primitive Parallel Operations. Computers, IEEE
Transactions 38, 11 (1989), 1526–1538.

[5] Guy E. Blelloch. 1996. Programming Parallel Algorithms. Communications of the
ACM (CACM) 39, 3 (1996), 85–97.

[6] Manuel MT Chakravarty, Gabriele Keller, Sean Lee, Trevor L McDonell, and
Vinod Grover. 2011. Accelerating Haskell array codes with multicore GPUs.
In Procs. of the sixth workshop on Declarative aspects of multicore programming.
ACM, 3–14.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron.
2009. Rodinia: A benchmark suite for heterogeneous computing. In Procs. of IEEE
Int. Symp. on Workload Characterization (IISWC). 44–54. https://doi.org/10.1109/
IISWC.2009.5306797

[8] Martin Dybdal, Martin Elsman, Bo Joel Svensson, and Mary Sheeran. 2016. Low-
level functional GPU programming for parallel algorithms. In Proceedings of the
5th International Workshop on Functional High-Performance Computing. ACM,
31–37.

[9] Jing Guo, Jeyarajan Thiyagalingam, and Sven-Bodo Scholz. 2011. Breaking the
GPU Programming Barrier with the Auto-parallelising SAC Compiler. In Procs.
Workshop Decl. Aspects of Multicore Prog. (DAMP). ACM, 15–24.

[10] MarkHarris et al. 2007. Optimizing parallel reduction in CUDA. NVIDIADeveloper
Technology 2, 4 (2007).

7http://hiperfit.dk

51

https://moderngpu.github.io/segreduce.html
https://moderngpu.github.io/segreduce.html
https://doi.org/10.1145/2364527.2364563
https://doi.org/10.1145/2364527.2364563
https://doi.org/10.1145/2774959.2774962
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
http://hiperfit.dk

Strategies for Regular Segmented Reductions on GPU FHPC’17, September 7, 2017, Oxford, UK

[11] Troels Henriksen, Martin Dybdal, Henrik Urms, Anna Sofie Kiehn, Daniel Gavin,
Hjalte Abelskov, Martin Elsman, and Cosmin Oancea. 2016. APL on GPUs: A
TAIL from the Past, Scribbled in Futhark. In Procs. of the 5th Int. Workshop on
Functional High-Performance Computing (FHPC’16). ACM, New York, NY, USA,
38–43. https://doi.org/10.1145/2975991.2975997

[12] Troels Henriksen, Martin Elsman, and Cosmin E. Oancea. 2014. Size Slicing: A
Hybrid Approach to Size Inference in Futhark. In Procs. of the 3rd ACM SIGPLAN
Workshop on Functional High-performance Computing (FHPC’14). ACM, New York,
NY, USA, 31–42. https://doi.org/10.1145/2636228.2636238

[13] Troels Henriksen, Ken Friis Larsen, and Cosmin E. Oancea. 2016. Design
and GPGPU Performance of Futhark’s Redomap Construct. In Procs. of the
3rd ACM SIGPLAN Int. Workshop on Libraries, Languages, and Compilers for
Array Programming (ARRAY’16). ACM, New York, NY, USA, 17–24. https:
//doi.org/10.1145/2935323.2935326

[14] Troels Henriksen and Cosmin E. Oancea. 2014. Bounds Checking: An Instance of
Hybrid Analysis. In Procs. of ACM SIGPLAN Int. Workshop on Libraries, Languages,
and Compilers for Array Programming (ARRAY’14). ACM, New York, NY, USA,

Article 88, 7 pages. https://doi.org/10.1145/2627373.2627388
[15] Troels Henriksen, Niels G. W Serup, Martin Elsman, Fritz Henglein, and Cos-

min E. Oancea. 2017. Futhark: Purely Functional GPU-programming with Nested
Parallelism and In-place Array Updates. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’17).
ACM, New York, NY, USA.

[16] Jared Hoberock and Nathan Bell. 2016. Thrust: A Parallel Template Library.
(2016). http://thrust.github.io/

[17] HyoukJoong Lee, Kevin J. Brown, Arvind K. Sujeeth, Tiark Rompf, and Kunle
Olukotun. 2014. Locality-Aware Mapping of Nested Parallel Patterns on GPUs.
In Procs. of the 47th Annual IEEE/ACM Int. Symp. on Microarchitecture (MICRO-47).
IEEE Computer Society, Washington, DC, USA, 63–74. https://doi.org/10.1109/
MICRO.2014.23

[18] Duane Merrill. 2017. CUB. https://github.com/NVlabs/cub. (2017).
[19] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable

Parallel Programming with CUDA. Queue 6, 2 (March 2008), 40–53. https:
//doi.org/10.1145/1365490.1365500

52

https://doi.org/10.1145/2975991.2975997
https://doi.org/10.1145/2636228.2636238
https://doi.org/10.1145/2935323.2935326
https://doi.org/10.1145/2935323.2935326
https://doi.org/10.1145/2627373.2627388
http://thrust.github.io/
https://doi.org/10.1109/MICRO.2014.23
https://doi.org/10.1109/MICRO.2014.23
https://github.com/NVlabs/cub
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500

	Abstract
	1 Introduction
	2 The Three Strategies
	2.1 Sequential Segments
	2.2 Large Segments
	2.3 Small Segments

	3 Implementation in the Futhark Compiler
	3.1 Choosing a Strategy
	3.2 Microbenchmarks

	4 Impact on Two Rodinia Benchmarks
	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References

